
Appendix. On Weak Diamonds
and the Power of Ext

§0. Introduction

In [DvSh:65] K. Devlin and S. Shelah introduced a combinatorial principle

Φ which they called the weak diamond. It explains some of the restrictions

in theorems of the form "the limit of iteration does not add reals". See

more on this in [Sh:186] and Mekler and Shelah [MkSh:274] (on consistency

of uniformization properties) [Sh:208] (consistency of "ZFC+2*0 < 2*1 <

2*2 + -Φ{5<H2:cf(5)=κ1}") and very lately [Sh:587].

Explanation. Jensen's diamond for NI, denoted 0^, see [Jn], can be

formulated as: There exists a sequence of functions {ga : ga a function

from a to α where a < ω\] such that for every / : ω\ —> ω\ we have

{α < ω\ : f\a — ga} Φ Omod T>^ (recall that T>^ is the filter on λ generated

by the family of closed unbounded subsets of λ). Clearly <>NI —> 2H° = NI.

Jensen (see [DeJo]) also proved that 2^° = KI ^> OKI (see Chapters V and

VII remembering that 0^ implies existence of an Aronszajn tree which is not

special (even a Souslin tree)). You may ask, is there a diamond like principle

which follows from 2*° = NI?

K. Devlin and S. Shelah [DvSh:65] answered this question positively, formulat-

ing a principle Φ which says:

(*)ι (VF : ωι>2 -> 2)(3Λ : ωλ -> 2)(Vr/ : ωl -> 2)

{α < ωι : F(η\a) = h(ά)}
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The author had hoped that 2H° < 2Hl < 2*2 would imply that Sg is

not small, i.e. for all F : K 2 >K2 -* 2 there exists η e *22 such that for all

g : N2 -> N2, for all C club of N2 there is 5 G Sg Π C with η(δ) φ F(g\δ). In

[Sh:208] a consistency result contradicting this was proved.

In fact 2^° < 2Hl <=> Φ. If the statement above holds for F, h we say

that h is a weak diamond say for (the colouring) F. The principle Φ was used

as a successful substitute for 0Kl in [Sh:88], [AbSh:114], [Sh:140] and [Sh:192].

An equivalent form of Φ is (just replace ft by 1 — ft)

(*)2 (VF : ωι>2 -+ 2) (3ft G ωι2)(Vr? <Ξ ωι2)

[{α < ωι : F(η\a) = h(a)} φ X mod D^].

Φ can easily be generalized to higher cardinals than NI, for example define

for uncountable regular λ and K < λ:

φ* <=> (VF : λ>2 -> «) (3ft : λ -> /c)(Vry : λ -> 2)

[{α < λ : F(h\a) = η(a)} φ OmodPλ]

So Φ <ί=> Φ^.

We thank Grossberg for reminding us that because of a flaw in [DvSh:65]

he and Magidor saw conclusion 1.15 after which this section was written.

There is natural generalization. Instead of quantifying over η G λ2 — Y 2

consider quantifying over η G βi (and change the domain of F accordingly).
i<\

These generalizations are our goal in the first section but instead of gen-

eralizing Φ^χ we generalize its negation. Another possible generalization is Φg

for 2 < K < NO which by VIII §4 is stronger (its negation is consistent with

G.C.H.). We do not assume the reader is familiar with [DvSh:65], for example

the hard direction of Φ^ <=> 2*° < 2Kl follows from Theorem 1.10 substitut-

ing λ = KI and μ = 2. This generalization of Φ^ was used in [Sh:88 §6] and

mentioned there in a remark; since we were asked to explain it, we present it

here.

In Sect. 2 we present applications of the principle from §1 to the Whitehead

problem, we shall use it for two theorems. The first, Theorem 2.2, evaluates

the cardinality of Ext(G,ff), and the second one is Theorem 2.4 where we
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give information on the torsion free rank of Ext (G,H). We shall define here

all the group theoretical terminology and shall use only one easy lemma which

we quote from somewhere else. But this section is not an introduction to the

subject of the Whitehead problem; the interested reader is referred to the book

of P. Eklof and A. Mekler [EM], to the exposition [E] or to the original papers

where the corresponding theorems were proved (from stronger set theoretical

hypotheses ) [Sh:44],[HHSh:91].

In [Sh:64] another combinatorial principle was introduced:

For a limit ordinal δ less than ω\, an increasing ω-sequence η$ of ordinals cofinal

in δ is called a ladder on δ. A ladder system ή is {η§ : δ G 5}, where S C α i;

we say that such a ladder system fj has the uniformization property if for every

{cδ G ω2 : δ G S} there exists h G ωι2 such that (Vί € 5)(3n < ω)(Vk <

ω)[k > n —> cs(k) — h ( η s ( k ) ) ] . In §3 we define the uniformization property for

a ladder system η — (η§ : δ G S), where 5 a set of ordinals with each member

of cofinality NO, in particular S = {δ < ^2 : cf(ί) = NO} We try to prove an

analogous result to the one in Sect. 1, and we shall prove it assuming 2^° = KI;

for more details see the introduction to Sect. 3. Sect. 3 does not depend on

sections 1 and 2.

§1. Unif: a Strong Negation
of the Weak Diamond

1.0 Notation. We will write μ^ for the cartesian product of the ordinals
i<\

μ; (that is for {/ : / a function with domain λ such that f(i)<μi}), and will

write Y\ μi for the cardinality of this product.
i<\

Let's recall that (see (*)2 in the introduction) the negation of Φ^ is:

(3F : ωι>2 -> 2)(Vh : ωl -+ 2)(3η : ωl -> 2)

[{α < ωι : F(η\a) = h(a)} G PHl]
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This is the motivation for the following definition (we replace sometimes func-

tions by sequences, when sequences are easier to handle).

1.1 Definition. For a regular uncountable λ and sequences β = (μ(ϊ) : i < λ),

χ = (χ(i) : i < λ) of cardinals > 1 let Unif (λ, μ, χ) mean: There is a function

F with domain D(μ) = LU<λX /-*(*) suc^ that:

(a) for every a < λ and η 6 Da(μ) = ̂ . μ(ί) we have ^(77) < χ(α).

(b) for every h 6 X χ(α) there exists 77 € ̂  μ(α) such that the set

{a < λ : F(η\a) = h(ά)} belongs to Vχ.

1.1 A Notation. (1) If /i is constant, i.e., μ = (μ : i < λ) we may write μ;

similarly for %.

(2) If (Vα < λ)[μ(l + α) = μ(l)] we may write (μ(0),μ(l)) instead of μ and

Unif (λ,μ(0),μ(l),χ) instead of Unif (λ,μ,χ). We let

Da(μv,μι)
d= {η: ηe a Ord , η(0) < μ0 and η(l + i) < μι}

and

= (J Da(μQ,μι).

Similarly we define Da((μ)) = Da(μ), so D(μ) — λ>μ.

(3) Prom now on we assume that λ is an uncountable regular cardinal.

(4) Remember that we use δ always as limit ordinal; so for 5 C λ the set

{δ < λ : δ G 5} is the set of limit ordinals which belong to 5.

1.1B Remark. (1) Unif (Hi, 2, 2) is the negation of Φ^ i.e., it is the negation

of the weak diamond.

(2) We shall say (concerning Definition 1.1) that the function F exemplifies

Unif(λ,μ,χ).

(3) If 2*° = 2*1, then Unif (Ni, 2, 2) holds. (Noted by Abraham: the converse

is a theorem: see 1.10.)

Proof of (3). Let H : ω2 -> ωι2 be onto. Define F : ωι>2 -> 2 as follows:
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If η € n2, n < ω, then F(η) = 0

If η E α2, α > ω, then F(r/) = H(η\ω)(a).

Now check that F witnesses Unif (Ni, 2, 2).

Recall that we can strengthen the statement in 0 by working only on a

stationary set S C λ. Similarly we can consider stronger forms of the weak

diamond, i.e. weaker forms of Unif by relativizing to a stationary set S.

1.2 Definition. Let λ,μ, χ be as in Definition 1.1 and let S C λ.

(1) Unif (λ, £, μ, x) is defined similarly to the definition of Unif (λ, μ, χ)\ just

replace (b) there by

(V) for every h E Y χ(α) there exists η £ X μ(α) such that the
» »θ!<CA * »Q!<^A

set {δ E 5 : F(τ/Γ<$) = Λ(5)} belongs to £>λ + 5.

(2) Let Id - Unif (λ,μ,χ) d= {5 G λ : Unif (λ, 5, μ, χ) holds }.

(3) If (Vα) (μ(l + α) = μi) we may write Unif(λ,S,μ(0),μι,χ) and Id -

Unif (λ, μ(0),μι,χ) in parts (1) and (2) respectively. So Unif (λ,μo,μι,χ)

mean Unif (λ,λ,μ0,μι,χ).

(4) If x is constantly x we may write x (in Definitions 1.1, 1.2(1), (2), (3)).

1.2A Remark. The notation of Definition 1.2(2) will be justified in Lemma

1.9 where we shall prove that if Unif (λ, μ, χ) fails, then Id — Unif (λ, μ, x) is an

ideal. Note also that Unif (λ, μ, χ) is trivially equivalent to Id — Unif (λ, μ, χ) 7^

P(\).

1.3 Remark. The diamond Oλ implies the weak diamond Φ^, and more

generally 0\(S) implies the failure of Unif (λ, 5, 2, 2, 2).

Proof. Let (ηa : α G 5} be such that for every η : λ — > 2 the set {α G 5 : η \a =

ηa} is stationary. Now if F : Λ>2 — > 2, then we let h : λ — > 2 be defined by

/ι(α) = F(r/α), so clearly for any η : λ — > 2 the set {α G S :

will be stationary.

1.4 Lemma. Let λ,5, μ,χ be as in Definition 1.2.
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(1) If {i < X : χ ( i ) = l}eVx then Unif (λ,S,μ,χ) holds.

(2) Let x^x2 satisfy the requirements for χ in Definition 1.1. then

{ί € S : χl(i) =χ2(ί)}eτ>χ + S imply that

Unif (λ, 5, μ, x1) <=» Unif (λ, 5, μ, χ2)

(3) Unif (λ, S, μ, x) implies that | \a<χ χ(a)/(Dχ + S)\< Ua<x /*(<*) (notice

that the left hand side of the inequality is the cardinality of a reduced

product).

(4) If there exists a β < X such that | Xα<λ χ(α)/(Dλ 4- 5)1 < ΓL</? £(<*)»

then Unif (λ,5, μ,χ) holds.

(5) Let μ, χ,μ*,χ* be sequences of cardinals > 1 of length λ such that

for every α < λ we have χ*(α:) < χ(α) and μ(α) < μ*(θί). Then

Unif (λ, S, μ, x) => Unif (λ, 5, μ*, χ*)

(6) If 5* = {5 € 5 : χ(ί) > 1} then Unif (λ, 5, μ, χ) o Unif (λ, 5*, μ, χ).

Proof. Easy (note that part (4) can be proved just like 1.1B(3)).

1.5 Lemma. Let λ, S, μ, χ be as in Definition 1.2. Let us define the following

cardinals μ0 = Σa<\ ΓL<α M(»). and Mi = MinQ<λ Σ,a<λ Πi</3 A(α + i); then

the following are equivalent.

(A) Unif(λ,5,μ,χ)

(B) Unif (λ, S, μ0,μι,χ) (see 1.2(3)).

The proof will use the following easy fact.

1.5A Fact. Assume that D(μ) can be embedded into £>(μ*), i.e., there is a

partial function g : D(μ) —> D(μ*) such that:

(a) If η < v are both in Dom(^), then g(η) < g(v)

(b) g is one - to - one

(c) g is continuous, i.e., whenever {77α : a < S) is a sequence of elements of

Dom(#) satisfying αi < α2 => ry^i < ^α25

 then also % == U ^α is in

a<δ

Dom(^), and p(r/5) = (J ηa.
a<δ
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(d) For every η G \ μ(i), the set {i < λ : η\i G Dom(^)} is unbounded in λ

(by (c), this set will also be closed).

Then Unif (λ, S, μ, x) implies Unif (λ,S,μ*,χ).

Proof. Assume Unif (λ,S, μ,χ) holds. Let g' = g\{η G Όom(g) : lg(η) —

£g(g(η))} The function g' will also satisfy (a) — (d). Choose F which witnesses

Unif (λjS, μ,χ), and define F* on D(μ*) as follows:

( F(η), if g'(η) = v for some η G Dom(gx)
F» = I

v 0 otherwise.

Note that F*(ί/) is well defined as there is at most one η G Dom(^/) such that

g'(η) = v as g' is a one to one function. Let h G Π x W > so as F witnesses

Unif (λ, S, μ, χ)5 necessarily there is η G ^μ(i) such that 50 = {δ < X :

F(η\δ) = h(δ)} belongs to Dχ + S.

By clause (d) of the assumption, the set C = {δ < X : η\δ G Dom(</)} is a

closed unbounded subset of λ. So δ G C => ^g(^(^t^)) — ̂  Let ^ = \J g(η\ϊ),
i€C

clearly v G Π A* (*) and S ^ S^C =ϊ F*(v\δ) = F*(g'(η\δ)) = F(η\δ) = h(δ).
i<\

So it is easy to see that F* witnesses Unif (λ, 5, μ*, χ) ΠI.SΛ

Proof of 1.5.

(A) => (B)

Let α* < λ be such that for all i we have: α* < i < X =ϊ μ(ϊ) < μi, and let

{i/ξ : ξ < μό} be a 1 — 1 enumeration of μ(i), where μό = Π β(i) ^ Mo

by the definition of μo Now define a partial function g : D(μ) — » ,D(μo, μi) by

the following conditions:

Dom(<7) - {η G D(μ) : lg(η) > α*}

9(vξ » = (0 >» whenever ξ< μ'0,Vξ~η£ D(μ)

Clearly ^ satisfies clauses (a) - (d) of fact 1.5 A, so Unif (λ, 5, μ, x) implies

Unif (λ,5,μ0,μι,χ).
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(B) =» (A)

This time we will construct an embedding g : D(μo,μι) —> D(μ) and again use

1.5A. For simplicity, let us first assume

Let α* < λ be such that for all β G [α*, λ) we have \D(μ\\β, λ))| = μi, i.e.

W.l.o.g. α* > 2. We claim that:

(a) There exists an antichain (ι/| : ξ < μ0) in £>(μ) (and w.l.o.g. £ < μo =>

€g(φ > «*)

(b) For each η G -D(/i) there exists an antichain (i/? : ξ < μi) in D(μ) satisfying

ξ < μι =ϊ η < v\.

("Antichain" means that for ξ ^ ζ we have neither v^ < v^ nor v*l<vT).

We will prove only (a), as the proof for (b) is similar. For each z/ G D(μ),

define ^*^ as follows:

, and

ι/(0) if i = 0

0 i f i < α

0 if i = α* + 2j 4- 1, j < ^g(ιχ)

if i = α* -f 2£g(ι/) or i = α* + 2£g(ι/) 4-1.

Then {5f*(t/) : ^ G D(v)} is an antichain of size μo This ends the proof of (a).

(We needed (g) to ensure v(ϊ) < μ(ϊ).)

Now we define g : D(μo,μι) —» D(μ) inductively as follows:

9(9) = 0,

g((ξ)) = i/l when ξ < μ0,
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(0) = "lη when lg(η) > U < μi,

α)' when ^g(ry) is a limit ordinal.

Again g satisfies clauses (a) - (d) of 1.5 A, so we are done.

We have only one problem left: what occurs if ® fails? Really this is not

serious, e.g. by the following claim 1.6 (if β*(j + ί) — 1 for every i, then

μo = Πi^ μ W ϊ μi — I? so tne lemma becomes trivial, by 1.4(3), (4), as

μi = i) Πι.5

1.6 Claim. Let λ,5, μ,χ be as in Definition 1.1.

(1) For every {α^ : i < X} C λ increasing and continuous such that αo = 0,
and U»<λα< = λ; for every i < χ define μ*M =f Uaί<j<ai+lβ(j} We
have that Unif (λ, 5, μ, χ), and Unif (λ, 5, μ*, χ) are equivalent.

(2) For any μ there exist {α^ : i < λ} C λ as in (1) such that letting μ* be

defined using α^'s as in (1) we have μ*(l + i) < μ*(l -f- j) for i < j and

μ*(i) > I-

Proof. (1) Similar to the proof of 1.5.

(2) Let ft* be minimal such that {i < X : β(i) > ft*} is bounded in λ, so for

some Oίi < X we have [QI < i < λ => μ(i) < ft*]. If ft* = ft"1", it is enough

to choose inductively α^ (when 1 < i < λ, increasing continuous) such that:

{j : OLi < j < ai+ι,μ(j) = ft} has the same order type (hence the same

cardinality) as c^+i, hence f] μ(i) = ft'0^1' will be non decreasing for
j€[c*i,αt+ι)

i € [ l , λ ) .

If ft* is limit, necessarily cf(ft*) < λ.

If cf(ft*) = λ choose Oίi (when 1 < i < λ, increasing continuous) such that

for i > 0, {β : c^ < β < Oίi+ι,μ(β) > sup{μ(7) : αi < 7 < α^}} has cardinality

> H
If cf(ft*) = θ < X let (fte : ε < θ) be a strictly increasing sequence of

cardinals < ft* with limit ft* and choose α^ (when 1 < i < λ, increasing

continuous) such that for every i > 1 we have the order type of {β : c^ < β <

and μ(β) > ftε} is QΪ+I for each ε < θ. Dι>6
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1.7 Claim. (1) If Unif (λ,S,μ,χ), AC < λ and μ*(i) = μ(i)κ, χ*(i) - χ(i)* for

i <λ then Unif (λ,S,μ*,χ*)

(2) If Unif ( X , S , β ξ , χ ξ ) for £ < «, « < λ and μ(i) - Π^/^W and xW =

Πξ<κXeW ^en Unif (λ, S, μ, x)

(3) If β is a nondecreasing sequence of infinite cardinals and Unif (λ, 5, μ, x)

and χ*(i) < (χ(i))'*' Λen Unif (λ, S,μ,χ*)

Proof. (1) Easy. Let (71 : μ*(i) — > μ(ί) (for £ < «) be such that for every

{αξ : ξ < K) G Λμ(ϊ) there is a unique 7 < μ*(i) such that (Vξ < «)C?^(7) = α$

that is, identifying μ(i)Λ with the cartesian product *μ(i), the function G^ is

the projection onto the ξ-th coordinate. Similarly Hζ : χ * ( i ) —> χ(ΐ) for ξ < K.

If F exemplifies Unif (λ, 5, μ, x) let us define F*:

For η e D(β*) let F"(τ7) be the unique 7 < χ*(^g(ry)) such that

So given h G Y. λχ*(i) we have to find appropriate η. Let hξ G

. χ(i) be such that ft^(i) = H^(h(i)). By the choice of F, for each ξ < K

there is r/e G X.<A μ(i) such that Ce

 d= {5 G 5 : F(r/ξ ^) = hζ(δ)} eT>x + S.

Define η(i) as the unique 7 < β*(i) such that (r/^(i) : ξ < K) = (0^(7) : ξ < «}.

Now Πe<« Q ^ ^λ + S and for every 5 G f\<κ Cξ we have F*(ry) - ft(5) so

we finish.

(2) Similarly.

(3) Without loss of generality χ*(i) - \χ(i) \*\ (by 1.4(5)). Let (hζ : ζ < λ) be

such that: hζ is a strictly increasing function from λ to λ and (Rang(/iζ) : ζ < λ)

are pairwise disjoint and μ(i) < β ( h ζ ( i ) ) (for ζ < λ,i < λ). Let ff| : χ*(z) — >

χ ( i ) for ξ < i < λ be as in the proof of part (1). Let

C* = {δ < λ : δ a limit ordinal such that for every ζ < 5,

the order type of δ Π Rang(ft^) is δ so /iζ maps δ to (5}.

Lastly define F* by: if 5 G C* and 77 G Dδ(β), let rjKl G Dδ(μ) be defined

by ηKl(i) = τy(Λ c (i)), and F*(ry) is defined such that H^F^η)) -

F*(η) = 0 otherwise. The checking is as above.
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1.8 Conclusion. If Unif (λ,μ(0),2,χ), 1 < K < X and μ(0)" = μ(0) then

Unif(λ,μ(0),2,χ").

Proof. By the previous lemma 1.7(1) we have Unif (λ,μ(0)/ς,2'c,χ'c) and as

μ(0) = μ(0)* by applying 1.5 twice this is equivalent to Unif (λ,μ(0),2,χκ).

1.9 Lemma . 1) Id — Unif (λ,μ, χ) is either P(X) or an ideal on λ.

2) If μ is non decreasing then Id — Unif (λ, μ, χ) is either P(X) or a normal

ideal on λ (i.e., on P(X)) containing all nonstationary sets.

1.9A Remark. Note that Id - Unif (λ, μ, χ) is equal to Id - Unif (λ, μ0, μi, χ)

when μo, μi are defined as in 1.5. Also Id — Unif (λ,μo,μι,χ) is equal to

Id — Unif (λ, μo, μo, λ) if cov(μo, λ) = μo (see Definition 1.12 below) by 1.14(5),

(6) below (applied twice), so of course the normality holds in such cases.

Proof. 1) Trivial.

2) Call the ideal /. Trivially any nonstationary S C λ belongs to /. So it

is enough to prove that if S C X and / is a function from λ to λ such that

(Vα G 5)/(α) < 1+α, and for every i < X we have Si ^f {α G S : /(α) = i} G /

then S £ I. Let Fi exemplify that Si e I and (hζ : ζ < λ), C* be as in the

proof of 1.7(3). Let us define F: if η G L>(μ0,μι), ig(η) G S< Π C*, we let F(η)

be Fi((η(hi(j)) : j < l g ( η ) ) ) , otherwise F(η) = 0, and we can finish as in the

proof of 1.7(3). Dι.9

1.10 Theorem. 1) Assume the following conditions hold:

(A) λ regular and 2<λ < 2λ.

(B) μ*° < 2λ.

Then Unif (λ,μ,2<λ,2<λ) fails.

2) Moreover in part (1) instead of (B) it suffices to assume

(B') The following property does not hold:

(*) There is a family {£» : i < 2λ}, 5» C μ, |̂ | = λ and i ^ j < 2λ

implies |5i Π 5j| < KQ
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1.10A Conclusion. If for some θ < λ, 2Θ = 2<λ < 2λ (hence λ regular

uncountable) then Unif (λ,2<λ,2<λ,2) fails.

[Why? This holds as by 1.10 applied to μ = 2<λ we get -. Unif (λ, 2<λ, 2<λ, 2<λ)

now apply 1.7(1) for /ς = θ.]

Proof. First notice that (B) => (B'). [Why? Assume by contradiction that (*)

holds, choose Ti C Si countable for every i < 2λ. So necessarily i ^ j =$> Ti ̂

Tj, and we got {Ti : i < 2λ} C {5 C μ : \S\ = N0}, i.e., 2λ < μH° contradiction

to μ*° < 2λ.]

Therefore from now till the end of the proof of 1.11 we assume that (*)

fails. This implies μ < 2λ as if μ = 2λ then the family {Si : i < 2λ} where

Si d= {a: Xi<a<\i + X}{ori< 2λ would show that (*) holds trivially . We

also assume the conclusion of the theorem fails (i.e., Unif (λ, μ, 2<λ, 2<λ) holds)

and eventually get a contradiction. Let F exemplify Unif (λ,μ,2<λ,2<λ). Let

us define:

Mod- {(a,CQ,gQ,Cι,gι,...Cβ,gβ,...)β<β(Q) : 0(0),α < λ,

gβ a function from α \ {0} to λ>2, Cβ a closed subset of α}

Clearly | Mod| — 2<λ hence we can fix a one-to-one function H : Mod —»
λ>2. Now for every function / : λ —> (0,1} we shall define by induction on

β < λ, functions h/β : λ —> λ>2 and g$β G D\(μ, λ>2) and a closed unbounded

subset Cftβ of λ. If we have defined for every β < 7,7 < λ let us define /ι/)7,

#/,7,Cf)7 as follows.

7/7 - 0, let h/ι7 = gftΊ = f and C/,7 = λ \ {0}.

//7>0, let:

A) Λ/ι7(i) is H((a, Cft0na,gffl\(a\{0}),..., C/)/3Πα, gf,β\(a\{0}),.. .)/3<7)

where α = α(i, /, 7) = Min(Π/3<7 C
f

/)/3 \ (i + 1))

B) As /ι/)7 : λ —> Λ>2 is defined, and as we are assuming Unif (λ, μ, 2<λ, 2<λ)

is exemplified by F, there are a function # £ D\(μ, 2<λ), and a closed

unbounded subset C of λ such that: C C {5 < λ : F(g\δ) — hβ,Ί(δ)}. Now
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let #/)7 — g and C/,7 be the set of accumulation points of Π/3<7 @f,β

In order to finish the proof we need (proved later):

1.11 Fact. If /ι,/2 G λ2 , and jn < X for n < ω, [n ̂  m -> jn ^ jm], and

5n

 d= MinC/lJτι - MinC/2jn and 0Λ ιjn \δn = ghjn \δn and /ι(0) = /2(0) ίften

/I — /2

Continuation of the proof of 1.10.

For every / : λ —> {0,1}, define

^/ = { & 9 f , j ( 0 ) , 9 f t j \ ( δ \ {0}),/(0)) : j < λ,ί - MinC,}. Clearly |A/| - λ.

If A/! Π Af2 is infinite, we can easily get the hypothesis of Fact 1.11 hence

/i = /2 So A/j Π A/2 is finite for /i ^ /2 The A/'s are not subsets of μ

but of A* = λ x μ x λ>(<λ2) x 2, which is a set of cardinality μ + 2<λ so

P = {A/ : f a function from λ to {0,1}} is a family of 2λ subsets of A*, each

of power λ, the intersection of any two is finite. If \A*\ = μ we finish (having

contradicted (*) of (B)'), otherwise \A*\ = 2<λ and 2λ = \{A/ : / a function

from λ to 2}| < |A*|*° < (2<λ)N° = 2<λ < 2λ (second inequality-as in the

proof of (B)=>(B') above), contradiction.

Proof of Fact 1.11. By Ramsey theorem, and as the ordinals are well ordered,

w.l.o.g. jo < jι < ... < jn < jn+ι < , and let j d= \Jn<ωjn

Let C£ = Γ\n<ω Cfι,jn for f — 1,2, and let Cl = {jf : i < λ}, 7^ increasing

continuous, and let 7^ = λ.

Now we shall prove by induction on i < X that:

a) Ίi = Ίi
b) for every ζ < j, 0/ l fcΓ(7i \ ί°}) = Qf^Kll \ {0})

This is enough, as in particular it says, for i = λ, ζ — 0 that <7/1)0 ί(λ\{0} =

0/2,0 t(λ \ {0}), but by its definition gM = f£, so /i \(λ \ {0}) - /2 ί(λ \ {0}).

But in fact we have assumed /ι(0) = /2(0), so f\ = /2, which is the desired

conclusion of the fact. So for proving the fact, it suffices to prove (g).




