
Appendix. On Weak Diamonds
and the Power of Ext

§0. Introduction

In [DvSh:65] K. Devlin and S. Shelah introduced a combinatorial principle

Φ which they called the weak diamond. It explains some of the restrictions

in theorems of the form "the limit of iteration does not add reals". See

more on this in [Sh:186] and Mekler and Shelah [MkSh:274] (on consistency

of uniformization properties) [Sh:208] (consistency of "ZFC+2*0 < 2*1 <

2*2 + -Φ{5<H2:cf(5)=κ1}") and very lately [Sh:587].

Explanation. Jensen's diamond for NI, denoted 0^, see [Jn], can be

formulated as: There exists a sequence of functions {ga : ga a function

from a to α where a < ω\] such that for every / : ω\ —> ω\ we have

{α < ω\ : f\a — ga} Φ Omod T>^ (recall that T>^ is the filter on λ generated

by the family of closed unbounded subsets of λ). Clearly <>NI —> 2H° = NI.

Jensen (see [DeJo]) also proved that 2^° = KI ^> OKI (see Chapters V and

VII remembering that 0^ implies existence of an Aronszajn tree which is not

special (even a Souslin tree)). You may ask, is there a diamond like principle

which follows from 2*° = NI?

K. Devlin and S. Shelah [DvSh:65] answered this question positively, formulat-

ing a principle Φ which says:

(*)ι (VF : ωι>2 -> 2)(3Λ : ωλ -> 2)(Vr/ : ωl -> 2)

{α < ωι : F(η\a) = h(ά)}
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The author had hoped that 2H° < 2Hl < 2*2 would imply that Sg is

not small, i.e. for all F : K 2 >K2 -* 2 there exists η e *22 such that for all

g : N2 -> N2, for all C club of N2 there is 5 G Sg Π C with η(δ) φ F(g\δ). In

[Sh:208] a consistency result contradicting this was proved.

In fact 2^° < 2Hl <=> Φ. If the statement above holds for F, h we say

that h is a weak diamond say for (the colouring) F. The principle Φ was used

as a successful substitute for 0Kl in [Sh:88], [AbSh:114], [Sh:140] and [Sh:192].

An equivalent form of Φ is (just replace ft by 1 — ft)

(*)2 (VF : ωι>2 -+ 2) (3ft G ωι2)(Vr? <Ξ ωι2)

[{α < ωι : F(η\a) = h(a)} φ X mod D^].

Φ can easily be generalized to higher cardinals than NI, for example define

for uncountable regular λ and K < λ:

φ* <=> (VF : λ>2 -> «) (3ft : λ -> /c)(Vry : λ -> 2)

[{α < λ : F(h\a) = η(a)} φ OmodPλ]

So Φ <ί=> Φ^.

We thank Grossberg for reminding us that because of a flaw in [DvSh:65]

he and Magidor saw conclusion 1.15 after which this section was written.

There is natural generalization. Instead of quantifying over η G λ2 — Y 2

consider quantifying over η G βi (and change the domain of F accordingly).
i<\

These generalizations are our goal in the first section but instead of gen-

eralizing Φ^χ we generalize its negation. Another possible generalization is Φg

for 2 < K < NO which by VIII §4 is stronger (its negation is consistent with

G.C.H.). We do not assume the reader is familiar with [DvSh:65], for example

the hard direction of Φ^ <=> 2*° < 2Kl follows from Theorem 1.10 substitut-

ing λ = KI and μ = 2. This generalization of Φ^ was used in [Sh:88 §6] and

mentioned there in a remark; since we were asked to explain it, we present it

here.

In Sect. 2 we present applications of the principle from §1 to the Whitehead

problem, we shall use it for two theorems. The first, Theorem 2.2, evaluates

the cardinality of Ext(G,ff), and the second one is Theorem 2.4 where we
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give information on the torsion free rank of Ext (G,H). We shall define here

all the group theoretical terminology and shall use only one easy lemma which

we quote from somewhere else. But this section is not an introduction to the

subject of the Whitehead problem; the interested reader is referred to the book

of P. Eklof and A. Mekler [EM], to the exposition [E] or to the original papers

where the corresponding theorems were proved (from stronger set theoretical

hypotheses ) [Sh:44],[HHSh:91].

In [Sh:64] another combinatorial principle was introduced:

For a limit ordinal δ less than ω\, an increasing ω-sequence η$ of ordinals cofinal

in δ is called a ladder on δ. A ladder system ή is {η§ : δ G 5}, where S C α i;

we say that such a ladder system fj has the uniformization property if for every

{cδ G ω2 : δ G S} there exists h G ωι2 such that (Vί € 5)(3n < ω)(Vk <

ω)[k > n —> cs(k) — h ( η s ( k ) ) ] . In §3 we define the uniformization property for

a ladder system η — (η§ : δ G S), where 5 a set of ordinals with each member

of cofinality NO, in particular S = {δ < ^2 : cf(ί) = NO} We try to prove an

analogous result to the one in Sect. 1, and we shall prove it assuming 2^° = KI;

for more details see the introduction to Sect. 3. Sect. 3 does not depend on

sections 1 and 2.

§1. Unif: a Strong Negation
of the Weak Diamond

1.0 Notation. We will write μ^ for the cartesian product of the ordinals
i<\

μ; (that is for {/ : / a function with domain λ such that f(i)<μi}), and will

write Y\ μi for the cardinality of this product.
i<\

Let's recall that (see (*)2 in the introduction) the negation of Φ^ is:

(3F : ωι>2 -> 2)(Vh : ωl -+ 2)(3η : ωl -> 2)

[{α < ωι : F(η\a) = h(a)} G PHl]
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This is the motivation for the following definition (we replace sometimes func-

tions by sequences, when sequences are easier to handle).

1.1 Definition. For a regular uncountable λ and sequences β = (μ(ϊ) : i < λ),

χ = (χ(i) : i < λ) of cardinals > 1 let Unif (λ, μ, χ) mean: There is a function

F with domain D(μ) = LU<λX /-*(*) suc^ that:

(a) for every a < λ and η 6 Da(μ) = ̂ . μ(ί) we have ^(77) < χ(α).

(b) for every h 6 X χ(α) there exists 77 € ̂  μ(α) such that the set

{a < λ : F(η\a) = h(ά)} belongs to Vχ.

1.1 A Notation. (1) If /i is constant, i.e., μ = (μ : i < λ) we may write μ;

similarly for %.

(2) If (Vα < λ)[μ(l + α) = μ(l)] we may write (μ(0),μ(l)) instead of μ and

Unif (λ,μ(0),μ(l),χ) instead of Unif (λ,μ,χ). We let

Da(μv,μι)
d= {η: ηe a Ord , η(0) < μ0 and η(l + i) < μι}

and

= (J Da(μQ,μι).

Similarly we define Da((μ)) = Da(μ), so D(μ) — λ>μ.

(3) Prom now on we assume that λ is an uncountable regular cardinal.

(4) Remember that we use δ always as limit ordinal; so for 5 C λ the set

{δ < λ : δ G 5} is the set of limit ordinals which belong to 5.

1.1B Remark. (1) Unif (Hi, 2, 2) is the negation of Φ^ i.e., it is the negation

of the weak diamond.

(2) We shall say (concerning Definition 1.1) that the function F exemplifies

Unif(λ,μ,χ).

(3) If 2*° = 2*1, then Unif (Ni, 2, 2) holds. (Noted by Abraham: the converse

is a theorem: see 1.10.)

Proof of (3). Let H : ω2 -> ωι2 be onto. Define F : ωι>2 -> 2 as follows:
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If η € n2, n < ω, then F(η) = 0

If η E α2, α > ω, then F(r/) = H(η\ω)(a).

Now check that F witnesses Unif (Ni, 2, 2).

Recall that we can strengthen the statement in 0 by working only on a

stationary set S C λ. Similarly we can consider stronger forms of the weak

diamond, i.e. weaker forms of Unif by relativizing to a stationary set S.

1.2 Definition. Let λ,μ, χ be as in Definition 1.1 and let S C λ.

(1) Unif (λ, £, μ, x) is defined similarly to the definition of Unif (λ, μ, χ)\ just

replace (b) there by

(V) for every h E Y χ(α) there exists η £ X μ(α) such that the
» »θ!<CA * »Q!<^A

set {δ E 5 : F(τ/Γ<$) = Λ(5)} belongs to £>λ + 5.

(2) Let Id - Unif (λ,μ,χ) d= {5 G λ : Unif (λ, 5, μ, χ) holds }.

(3) If (Vα) (μ(l + α) = μi) we may write Unif(λ,S,μ(0),μι,χ) and Id -

Unif (λ, μ(0),μι,χ) in parts (1) and (2) respectively. So Unif (λ,μo,μι,χ)

mean Unif (λ,λ,μ0,μι,χ).

(4) If x is constantly x we may write x (in Definitions 1.1, 1.2(1), (2), (3)).

1.2A Remark. The notation of Definition 1.2(2) will be justified in Lemma

1.9 where we shall prove that if Unif (λ, μ, χ) fails, then Id — Unif (λ, μ, x) is an

ideal. Note also that Unif (λ, μ, χ) is trivially equivalent to Id — Unif (λ, μ, χ) 7^

P(\).

1.3 Remark. The diamond Oλ implies the weak diamond Φ^, and more

generally 0\(S) implies the failure of Unif (λ, 5, 2, 2, 2).

Proof. Let (ηa : α G 5} be such that for every η : λ — > 2 the set {α G 5 : η \a =

ηa} is stationary. Now if F : Λ>2 — > 2, then we let h : λ — > 2 be defined by

/ι(α) = F(r/α), so clearly for any η : λ — > 2 the set {α G S :

will be stationary.

1.4 Lemma. Let λ,5, μ,χ be as in Definition 1.2.
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(1) If {i < X : χ ( i ) = l}eVx then Unif (λ,S,μ,χ) holds.

(2) Let x^x2 satisfy the requirements for χ in Definition 1.1. then

{ί € S : χl(i) =χ2(ί)}eτ>χ + S imply that

Unif (λ, 5, μ, x1) <=» Unif (λ, 5, μ, χ2)

(3) Unif (λ, S, μ, x) implies that | \a<χ χ(a)/(Dχ + S)\< Ua<x /*(<*) (notice

that the left hand side of the inequality is the cardinality of a reduced

product).

(4) If there exists a β < X such that | Xα<λ χ(α)/(Dλ 4- 5)1 < ΓL</? £(<*)»

then Unif (λ,5, μ,χ) holds.

(5) Let μ, χ,μ*,χ* be sequences of cardinals > 1 of length λ such that

for every α < λ we have χ*(α:) < χ(α) and μ(α) < μ*(θί). Then

Unif (λ, S, μ, x) => Unif (λ, 5, μ*, χ*)

(6) If 5* = {5 € 5 : χ(ί) > 1} then Unif (λ, 5, μ, χ) o Unif (λ, 5*, μ, χ).

Proof. Easy (note that part (4) can be proved just like 1.1B(3)).

1.5 Lemma. Let λ, S, μ, χ be as in Definition 1.2. Let us define the following

cardinals μ0 = Σa<\ ΓL<α M(»). and Mi = MinQ<λ Σ,a<λ Πi</3 A(α + i); then

the following are equivalent.

(A) Unif(λ,5,μ,χ)

(B) Unif (λ, S, μ0,μι,χ) (see 1.2(3)).

The proof will use the following easy fact.

1.5A Fact. Assume that D(μ) can be embedded into £>(μ*), i.e., there is a

partial function g : D(μ) —> D(μ*) such that:

(a) If η < v are both in Dom(^), then g(η) < g(v)

(b) g is one - to - one

(c) g is continuous, i.e., whenever {77α : a < S) is a sequence of elements of

Dom(#) satisfying αi < α2 => ry^i < ^α25

 then also % == U ^α is in

a<δ

Dom(^), and p(r/5) = (J ηa.
a<δ
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(d) For every η G \ μ(i), the set {i < λ : η\i G Dom(^)} is unbounded in λ

(by (c), this set will also be closed).

Then Unif (λ, S, μ, x) implies Unif (λ,S,μ*,χ).

Proof. Assume Unif (λ,S, μ,χ) holds. Let g' = g\{η G Όom(g) : lg(η) —

£g(g(η))} The function g' will also satisfy (a) — (d). Choose F which witnesses

Unif (λjS, μ,χ), and define F* on D(μ*) as follows:

( F(η), if g'(η) = v for some η G Dom(gx)
F» = I

v 0 otherwise.

Note that F*(ί/) is well defined as there is at most one η G Dom(^/) such that

g'(η) = v as g' is a one to one function. Let h G Π x W > so as F witnesses

Unif (λ, S, μ, χ)5 necessarily there is η G ^μ(i) such that 50 = {δ < X :

F(η\δ) = h(δ)} belongs to Dχ + S.

By clause (d) of the assumption, the set C = {δ < X : η\δ G Dom(</)} is a

closed unbounded subset of λ. So δ G C => ^g(^(^t^)) — ̂  Let ^ = \J g(η\ϊ),
i€C

clearly v G Π A* (*) and S ^ S^C =ϊ F*(v\δ) = F*(g'(η\δ)) = F(η\δ) = h(δ).
i<\

So it is easy to see that F* witnesses Unif (λ, 5, μ*, χ) ΠI.SΛ

Proof of 1.5.

(A) => (B)

Let α* < λ be such that for all i we have: α* < i < X =ϊ μ(ϊ) < μi, and let

{i/ξ : ξ < μό} be a 1 — 1 enumeration of μ(i), where μό = Π β(i) ^ Mo

by the definition of μo Now define a partial function g : D(μ) — » ,D(μo, μi) by

the following conditions:

Dom(<7) - {η G D(μ) : lg(η) > α*}

9(vξ » = (0 >» whenever ξ< μ'0,Vξ~η£ D(μ)

Clearly ^ satisfies clauses (a) - (d) of fact 1.5 A, so Unif (λ, 5, μ, x) implies

Unif (λ,5,μ0,μι,χ).
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(B) =» (A)

This time we will construct an embedding g : D(μo,μι) —> D(μ) and again use

1.5A. For simplicity, let us first assume

Let α* < λ be such that for all β G [α*, λ) we have \D(μ\\β, λ))| = μi, i.e.

W.l.o.g. α* > 2. We claim that:

(a) There exists an antichain (ι/| : ξ < μ0) in £>(μ) (and w.l.o.g. £ < μo =>

€g(φ > «*)

(b) For each η G -D(/i) there exists an antichain (i/? : ξ < μi) in D(μ) satisfying

ξ < μι =ϊ η < v\.

("Antichain" means that for ξ ^ ζ we have neither v^ < v^ nor v*l<vT).

We will prove only (a), as the proof for (b) is similar. For each z/ G D(μ),

define ^*^ as follows:

, and

ι/(0) if i = 0

0 i f i < α

0 if i = α* + 2j 4- 1, j < ^g(ιχ)

if i = α* -f 2£g(ι/) or i = α* + 2£g(ι/) 4-1.

Then {5f*(t/) : ^ G D(v)} is an antichain of size μo This ends the proof of (a).

(We needed (g) to ensure v(ϊ) < μ(ϊ).)

Now we define g : D(μo,μι) —» D(μ) inductively as follows:

9(9) = 0,

g((ξ)) = i/l when ξ < μ0,
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(0) = "lη when lg(η) > U < μi,

α)' when ^g(ry) is a limit ordinal.

Again g satisfies clauses (a) - (d) of 1.5 A, so we are done.

We have only one problem left: what occurs if ® fails? Really this is not

serious, e.g. by the following claim 1.6 (if β*(j + ί) — 1 for every i, then

μo = Πi^ μ W ϊ μi — I? so tne lemma becomes trivial, by 1.4(3), (4), as

μi = i) Πι.5

1.6 Claim. Let λ,5, μ,χ be as in Definition 1.1.

(1) For every {α^ : i < X} C λ increasing and continuous such that αo = 0,
and U»<λα< = λ; for every i < χ define μ*M =f Uaί<j<ai+lβ(j} We
have that Unif (λ, 5, μ, χ), and Unif (λ, 5, μ*, χ) are equivalent.

(2) For any μ there exist {α^ : i < λ} C λ as in (1) such that letting μ* be

defined using α^'s as in (1) we have μ*(l + i) < μ*(l -f- j) for i < j and

μ*(i) > I-

Proof. (1) Similar to the proof of 1.5.

(2) Let ft* be minimal such that {i < X : β(i) > ft*} is bounded in λ, so for

some Oίi < X we have [QI < i < λ => μ(i) < ft*]. If ft* = ft"1", it is enough

to choose inductively α^ (when 1 < i < λ, increasing continuous) such that:

{j : OLi < j < ai+ι,μ(j) = ft} has the same order type (hence the same

cardinality) as c^+i, hence f] μ(i) = ft'0^1' will be non decreasing for
j€[c*i,αt+ι)

i € [ l , λ ) .

If ft* is limit, necessarily cf(ft*) < λ.

If cf(ft*) = λ choose Oίi (when 1 < i < λ, increasing continuous) such that

for i > 0, {β : c^ < β < Oίi+ι,μ(β) > sup{μ(7) : αi < 7 < α^}} has cardinality

> H
If cf(ft*) = θ < X let (fte : ε < θ) be a strictly increasing sequence of

cardinals < ft* with limit ft* and choose α^ (when 1 < i < λ, increasing

continuous) such that for every i > 1 we have the order type of {β : c^ < β <

and μ(β) > ftε} is QΪ+I for each ε < θ. Dι>6
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1.7 Claim. (1) If Unif (λ,S,μ,χ), AC < λ and μ*(i) = μ(i)κ, χ*(i) - χ(i)* for

i <λ then Unif (λ,S,μ*,χ*)

(2) If Unif ( X , S , β ξ , χ ξ ) for £ < «, « < λ and μ(i) - Π^/^W and xW =

Πξ<κXeW ^en Unif (λ, S, μ, x)

(3) If β is a nondecreasing sequence of infinite cardinals and Unif (λ, 5, μ, x)

and χ*(i) < (χ(i))'*' Λen Unif (λ, S,μ,χ*)

Proof. (1) Easy. Let (71 : μ*(i) — > μ(ί) (for £ < «) be such that for every

{αξ : ξ < K) G Λμ(ϊ) there is a unique 7 < μ*(i) such that (Vξ < «)C?^(7) = α$

that is, identifying μ(i)Λ with the cartesian product *μ(i), the function G^ is

the projection onto the ξ-th coordinate. Similarly Hζ : χ * ( i ) —> χ(ΐ) for ξ < K.

If F exemplifies Unif (λ, 5, μ, x) let us define F*:

For η e D(β*) let F"(τ7) be the unique 7 < χ*(^g(ry)) such that

So given h G Y. λχ*(i) we have to find appropriate η. Let hξ G

. χ(i) be such that ft^(i) = H^(h(i)). By the choice of F, for each ξ < K

there is r/e G X.<A μ(i) such that Ce

 d= {5 G 5 : F(r/ξ ^) = hζ(δ)} eT>x + S.

Define η(i) as the unique 7 < β*(i) such that (r/^(i) : ξ < K) = (0^(7) : ξ < «}.

Now Πe<« Q ^ ^λ + S and for every 5 G f\<κ Cξ we have F*(ry) - ft(5) so

we finish.

(2) Similarly.

(3) Without loss of generality χ*(i) - \χ(i) \*\ (by 1.4(5)). Let (hζ : ζ < λ) be

such that: hζ is a strictly increasing function from λ to λ and (Rang(/iζ) : ζ < λ)

are pairwise disjoint and μ(i) < β ( h ζ ( i ) ) (for ζ < λ,i < λ). Let ff| : χ*(z) — >

χ ( i ) for ξ < i < λ be as in the proof of part (1). Let

C* = {δ < λ : δ a limit ordinal such that for every ζ < 5,

the order type of δ Π Rang(ft^) is δ so /iζ maps δ to (5}.

Lastly define F* by: if 5 G C* and 77 G Dδ(β), let rjKl G Dδ(μ) be defined

by ηKl(i) = τy(Λ c (i)), and F*(ry) is defined such that H^F^η)) -

F*(η) = 0 otherwise. The checking is as above.
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1.8 Conclusion. If Unif (λ,μ(0),2,χ), 1 < K < X and μ(0)" = μ(0) then

Unif(λ,μ(0),2,χ").

Proof. By the previous lemma 1.7(1) we have Unif (λ,μ(0)/ς,2'c,χ'c) and as

μ(0) = μ(0)* by applying 1.5 twice this is equivalent to Unif (λ,μ(0),2,χκ).

1.9 Lemma . 1) Id — Unif (λ,μ, χ) is either P(X) or an ideal on λ.

2) If μ is non decreasing then Id — Unif (λ, μ, χ) is either P(X) or a normal

ideal on λ (i.e., on P(X)) containing all nonstationary sets.

1.9A Remark. Note that Id - Unif (λ, μ, χ) is equal to Id - Unif (λ, μ0, μi, χ)

when μo, μi are defined as in 1.5. Also Id — Unif (λ,μo,μι,χ) is equal to

Id — Unif (λ, μo, μo, λ) if cov(μo, λ) = μo (see Definition 1.12 below) by 1.14(5),

(6) below (applied twice), so of course the normality holds in such cases.

Proof. 1) Trivial.

2) Call the ideal /. Trivially any nonstationary S C λ belongs to /. So it

is enough to prove that if S C X and / is a function from λ to λ such that

(Vα G 5)/(α) < 1+α, and for every i < X we have Si ^f {α G S : /(α) = i} G /

then S £ I. Let Fi exemplify that Si e I and (hζ : ζ < λ), C* be as in the

proof of 1.7(3). Let us define F: if η G L>(μ0,μι), ig(η) G S< Π C*, we let F(η)

be Fi((η(hi(j)) : j < l g ( η ) ) ) , otherwise F(η) = 0, and we can finish as in the

proof of 1.7(3). Dι.9

1.10 Theorem. 1) Assume the following conditions hold:

(A) λ regular and 2<λ < 2λ.

(B) μ*° < 2λ.

Then Unif (λ,μ,2<λ,2<λ) fails.

2) Moreover in part (1) instead of (B) it suffices to assume

(B') The following property does not hold:

(*) There is a family {£» : i < 2λ}, 5» C μ, |̂ | = λ and i ^ j < 2λ

implies |5i Π 5j| < KQ
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1.10A Conclusion. If for some θ < λ, 2Θ = 2<λ < 2λ (hence λ regular

uncountable) then Unif (λ,2<λ,2<λ,2) fails.

[Why? This holds as by 1.10 applied to μ = 2<λ we get -. Unif (λ, 2<λ, 2<λ, 2<λ)

now apply 1.7(1) for /ς = θ.]

Proof. First notice that (B) => (B'). [Why? Assume by contradiction that (*)

holds, choose Ti C Si countable for every i < 2λ. So necessarily i ^ j =$> Ti ̂

Tj, and we got {Ti : i < 2λ} C {5 C μ : \S\ = N0}, i.e., 2λ < μH° contradiction

to μ*° < 2λ.]

Therefore from now till the end of the proof of 1.11 we assume that (*)

fails. This implies μ < 2λ as if μ = 2λ then the family {Si : i < 2λ} where

Si d= {a: Xi<a<\i + X}{ori< 2λ would show that (*) holds trivially . We

also assume the conclusion of the theorem fails (i.e., Unif (λ, μ, 2<λ, 2<λ) holds)

and eventually get a contradiction. Let F exemplify Unif (λ,μ,2<λ,2<λ). Let

us define:

Mod- {(a,CQ,gQ,Cι,gι,...Cβ,gβ,...)β<β(Q) : 0(0),α < λ,

gβ a function from α \ {0} to λ>2, Cβ a closed subset of α}

Clearly | Mod| — 2<λ hence we can fix a one-to-one function H : Mod —»
λ>2. Now for every function / : λ —> (0,1} we shall define by induction on

β < λ, functions h/β : λ —> λ>2 and g$β G D\(μ, λ>2) and a closed unbounded

subset Cftβ of λ. If we have defined for every β < 7,7 < λ let us define /ι/)7,

#/,7,Cf)7 as follows.

7/7 - 0, let h/ι7 = gftΊ = f and C/,7 = λ \ {0}.

//7>0, let:

A) Λ/ι7(i) is H((a, Cft0na,gffl\(a\{0}),..., C/)/3Πα, gf,β\(a\{0}),.. .)/3<7)

where α = α(i, /, 7) = Min(Π/3<7 C
f

/)/3 \ (i + 1))

B) As /ι/)7 : λ —> Λ>2 is defined, and as we are assuming Unif (λ, μ, 2<λ, 2<λ)

is exemplified by F, there are a function # £ D\(μ, 2<λ), and a closed

unbounded subset C of λ such that: C C {5 < λ : F(g\δ) — hβ,Ί(δ)}. Now
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let #/)7 — g and C/,7 be the set of accumulation points of Π/3<7 @f,β

In order to finish the proof we need (proved later):

1.11 Fact. If /ι,/2 G λ2 , and jn < X for n < ω, [n ̂  m -> jn ^ jm], and

5n

 d= MinC/lJτι - MinC/2jn and 0Λ ιjn \δn = ghjn \δn and /ι(0) = /2(0) ίften

/I — /2

Continuation of the proof of 1.10.

For every / : λ —> {0,1}, define

^/ = { & 9 f , j ( 0 ) , 9 f t j \ ( δ \ {0}),/(0)) : j < λ,ί - MinC,}. Clearly |A/| - λ.

If A/! Π Af2 is infinite, we can easily get the hypothesis of Fact 1.11 hence

/i = /2 So A/j Π A/2 is finite for /i ^ /2 The A/'s are not subsets of μ

but of A* = λ x μ x λ>(<λ2) x 2, which is a set of cardinality μ + 2<λ so

P = {A/ : f a function from λ to {0,1}} is a family of 2λ subsets of A*, each

of power λ, the intersection of any two is finite. If \A*\ = μ we finish (having

contradicted (*) of (B)'), otherwise \A*\ = 2<λ and 2λ = \{A/ : / a function

from λ to 2}| < |A*|*° < (2<λ)N° = 2<λ < 2λ (second inequality-as in the

proof of (B)=>(B') above), contradiction.

Proof of Fact 1.11. By Ramsey theorem, and as the ordinals are well ordered,

w.l.o.g. jo < jι < ... < jn < jn+ι < , and let j d= \Jn<ωjn

Let C£ = Γ\n<ω Cfι,jn for f — 1,2, and let Cl = {jf : i < λ}, 7^ increasing

continuous, and let 7^ = λ.

Now we shall prove by induction on i < X that:

a) Ίi = Ίi
b) for every ζ < j, 0/ l fcΓ(7i \ ί°}) = Qf^Kll \ {0})

This is enough, as in particular it says, for i = λ, ζ — 0 that <7/1)0 ί(λ\{0} =

0/2,0 t(λ \ {0}), but by its definition gM = f£, so /i \(λ \ {0}) - /2 ί(λ \ {0}).

But in fact we have assumed /ι(0) = /2(0), so f\ = /2, which is the desired

conclusion of the fact. So for proving the fact, it suffices to prove (g).
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Case I. i = 0

We first prove clause a) of 0. Now for ί = 1,2 clearly 7^ = MinC* > δn

 d=f

MinC/j jn, hence 7^ > Supn<ωδn. On the other hand for n < ra, Cftjm C C/£>J n

(as jfn < jm) hence (ίm : m < ω) is non decreasing and {5m : n <

m < ω} C Cf£jn, hence Supm<α;(5m - Supm€[nfW) 5m e C/£ϊJ n, hence

Supm<α;όm € Πn^C/^n = &, so 7* - MinC* < Supm<α;Jm. Clearly we

got 7^ - MinC^ = Supm<ωίm, so 7^ - 7^.

For clause b) of ® we can choose large enough n, such that ζ < jn(< j )

and

(*)o ff/liζ tίTo1 \ {0}) ̂  ̂ /2)ζ Γ(7o2 \ {0}) implies gf^ \(δn \ {0}) φ gf^ \(δn \ {0})

and C/1>c Π 7^ C/2)C Π 7^ implies C/1?c Π δn φ C/2>c Π δn

Now we have assumed in the statement of the fact that:

(*)l 9fι,jn\
Sn =9f2Jn\δn

hence

(*)2 F(gfljn\δn) = hhjn(δn) = H((a,...,Cf^na,gfίίβ\(a\{0}),...)β<jn)

where α - α(τf, Λ, jn) = Min[Π^<jτι C/,f/3 \ (<Jn 4-1)].

We can conclude, as the left side in (*)2 does not depend on I, (by (*)ι)

and as H is one-to-one, that β < jn => fl/lι/sr(7o \ ί0)) = 0/2,/s Γ(7o \ {0»

and β < jn => Cfiβ n 7o — ^/2,/3 n 7o -^ut m particular ^ < jn hence

^/ι,c K*n \ {0}) - 9/2ίζ \(δn \ {0}) and C/1>c Π 5n - C/2,c Π 5n so we have gotten

tf/i.c f(To \ {°}) = ̂ .c t(To \ {°}) by (*)o So we have proved clause b) of 0 (for

the case i = 0).

Case II. i limit

This is easy: clause a) holds as 7^ (for ξ < i) is increasing continuous and

(V£ < i) 7! = 7? by the induction hypothesis, and similarly clause b) holds.

Case III. Prove for i 4-1, assuming truth for i.
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For any n < ω, #/1Jn Ϊ7o = 9 f 2 t j n Ϊ7o by the assumption in the fact. By

the induction hypothesis g/1jn \(^l \ {0}) = g/2jn Krf \ {0}). Together we can

conclude

(<*) 0/ι jn \Ίi = 0/2 ,j« \ΊΪ for n < ω

By the definition of g f £ j n , for ί — 1, 2 we have

(β) F(9ft,in\Ίt} = hh,jn(Ίl) =

H((a'n, ..., Cftιβ Π α£, 0Λι/> Kα£ \ {0}), . - .)0<jn)

[where α£ = α(7f , //, j«) = MinΠ^ Cfttβ \ (7f + 1)]

As H is one-to-one, by (a) and (/?) we can conclude

(7) <αi, . . . , σ/ll/3 n α£, <7/1)/5rK \ {o}), - - W -
- (α£, . . . , C/2ι/3 Π α^ , 0/2ι/3 r(α2 \ {0}), . . .)β<jn

So α^ = α£; it is also clear that, for ί — 1, 2 QQ < . . . < ofn < ofn+l < . . .

and Un<α; αl = U[n[Γ\β<j

 Ch,β \ (7i + 1)] is 7ί+ι, so we can conclude 7/+1 =

TH-I (i e clause a) of (8)) Also, by (7), for every ζ < j for every n large enough,

C < J'n and C/ι,c Π α^ = C/2jζ Π α^, and as this holds for every n and α^ = α^

and τf+1 = \Jn<ω ae

n clearly:

W C f/1,cΠ7/+1-C'/2,cn7?+1.
Similarly gf^ζ\(ji+l \ {0}) - gf^ΊΪ+i \ {0}) , and so we finish proving

clause b) of 0 for i + 1. So we have finished proving 0 for all i. As stated earlier

by this we prove Fact 1.11. Πi.n

1.12 Definition. Let X be a set and λ a cardinal.

(1) A family T of subsets of X is an (X, λ)- cover if for all 5 C X, \S\ = λ,

there is T G J7 such that 5 C Γ, and all the members of J7 are of cardinality

< λ. In other words, .T7 is cofinal in the directed partial order (S<χ(X), C).

(2) The covering number of (X, λ) which is denoted by cov(X, λ) is :

cov(X, λ) = Min{| Γ\ : T is a (X, λ)-cover}.

Clearly cov(X, λ) depends just on \X\ and λ (see 1.13(1) below) so we

usually use cardinals for X.
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1.13 Lemma.

(1) X C y => cov(X,λ) < cov(y,λ), and \X\ < \Y\ =* cov(X,λ) < cov(y,λ)

hence if \X\ = \Y\ then cov(X,λ) - cov(y,λ)

(2) if λ < μ then cov(μ, λ) > μ

(3) i. cov(λ, λ) - 1

ii. for λ < μ we have cov(μ+, λ) = cov(μ, λ) 4- μ+

iii. If μ is a limit cardinal, λ < μ and let {μ^ : i < cfμ} be an increasing

sequence with limit μ and μo > λ; then cov(μ, λ) < Πi<cfμ
 cov(/^> λ).

(4) cov(λ+α,λ)<(λ+α)lαl

Remark. See more in [Sh:g], [Sh:400a].

Prro/. (1) E.g., if X C Y and if f is a (y, λ)-cover, then Ft = {AnX : A G f}

isa(X,λ)-cσverand \J*\ < \F\.

(2) Because if T is a (μ, λ)-cover then \J{A : A G F} is necessarily μ hence

μ < I U{^ : A G .F}| < Σ N < l^lλ so \Γ\ > μ.
A€^

(3) i. Take F = {λ}. It is obvious that this is a cover as required.

(3) ii. Clearly cov(μ+, λ) > cov(μ, λ) by part (1) and cov(μ+, λ) > μ+ by

part (2). So it suffices to show that cov(μ+,λ) < cov(μ, λ) -f μ+. We do this

by finding a (μ+, λ)-cover f of cardinality cov(μ, λ) +μ+. For every ordinal α,

λ < α < μ+ let J ^ be an (α, λ)-cover such that \fa\ = cov(|α|, λ) < cov(μ, λ)

(we use part (1)). Define T = \Ja<μ Fa, we shall prove that it is (μ+, λ)-cover.

Let 5 C μ+ be of cardinality λ, from the regularity of μ+ follows the existence

of α, μ < α < μ+ such that 5 C α, since Fa is a (α, λ)-cover there is T G Fa

(T G T since fa C J") such that S C Γ, |Γ| < λ, so we have proved one

inequality. The other was done before.

(3) iii. We shall find a (μ, λ)-cover T of the appropriate cardinality. For

i < cf(μ) let Ti be a (μ^, λ)-cover exemplifying cov(μ^, λ), define ̂  = ̂ U{0},

J ^ {U-65 Si : Si e F\, S C cf(μ) and |5| < λ}. It is easy to verify that f is a

(μ,λ)-cover and \F\ < Ui<cfμ cov(μί?λ).

(4) Prove by induction on α < λ.

For α -f- 0, we have cov(λ+°, λ) = cov(λ, λ) = 1 < (X)+° (by 3 (i)).

For a = β + I we have cov(λ+α,λ) - cov(λ+^+1),λ) - cov((λ+^)+,λ) -
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cov(λ+^,λ) -f (λ+^)+ where the last equality holds by clause (ii) of part (3);

now, using the induction hypothesis, cov(λ+^+1),λ) < (λ+β)\β\ +

For a a limit ordinal; let {α^ : i < cf(α)} be a cofinal sequence in α; then by

3(iii) cσv(λ+α,λ) < Πi<cfμ cov(λ+αSλ) < (λ+")cf<* < (λ+α)H Dι.13

1.14 Lemma. 1) Let λ < μ < 2λ, χι, χ be cardinals, χ = (xi : i < λ),

X — sup{χi : i < λ}, λ regular uncountable, then

Unif (λ,μ,μ,χ) implies Unif (λ, cov(μ, λ), λ,χ).

2) In part (1) assume μo + Mi +X < 2λ, λ < χ and cov(χ,λ) < μ0 (and μi > 2).

Then Unif (λ,μ0,μι,χ) <ί=> Unif (λ,μ0,μι, λ).

3) In part (2) if in addition μ0 < μi, λ is not strong limit and only 2 < x is

required then Unif (λ,μo,μι,χ) <=> Unif (λ,μ0,μι,2).

4) If λ < μo < μi < 2Λ and χ = (x^ : i < λ) is a sequence of cardinals, λ is

regular uncountable then

Unif (λ,μ0,μι,χ) => Unif(λ,μ 0+ cov(μι, λ), λ,χ).

5) In part (4) if μo > cov(μι, λ) > μ\ > 2 then

Unif (λ,μ0,μι,χ) <^ Unif (λ,μ0, 2,χ).

6) We get similar results if we add S C X is a parameter (in parts 1) - 5)).

Proof. 1) We do it by translating every g G D(μ,μ) to g* e D(cov(μ, λ),λ)

where the first coordinate <7*(0) codes a subset of μ of cardinality λ which

covers Rang(^), and #*(! -f i) tells us where g(ϊ) appears in it (e.g. the place

in some well ordering) of order type λ. More formally let K = cov(μ, λ),

and let J — {Ai : i < K} exemplify this, where w.l.o.g. Ai ^ 0 and

let Ai = {&ij : j < λ} possibly with repetition. We define a function H

from λμ to D\(κ, λ). For a given g : λ — » μ let h = H(g) be defined by:
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/ι(0) = min{i < « : {g(a) : a < X} C AI} and h(l + i) is the first

j < X such that g(ϊ) = α/ι(o)j Let F exemplify Unif (λ,μ,μ,χ), and we

shall define F* which will exemplify Unif (λ, ft, λ, χ) : for η G D(κ,\) let

F*(77) - FKα^oMi+o : 1 + i < *gη)) if η ̂  {), and F*(η) = 0 if r? = {>•

2) By 1.4(5) the implication => holds.

For the other direction, assume that Unif (λ,μo,μι, λ) holds. Let T = {Ai :

i < μo} exemplify cov(χ, λ) < μo with Aζ — {ctζj : j < X} and let

F exemplify Unif (λ,μo,μι,λ), and let pr(— ,— ) be a pairing function on

μo (so it is onto μo). Now we define F* as follows: F*({)) = 0 and for

η G D(μ0, μι)\{{)}, let ry(O) -pr(/50,Λ),^ - (ft) Λ η \ [Mgfo)), and we choose

F*(η) = θίβQ,F(^γ Now check that F* exemplifies Unif (λ,μ0,μι,χ); for any

g G λχ, let Rang(#) C Aζ, g(ϊ) = α^^W where Λ € A^5 let ^*

be such that for some club C of λ, δ G C => F(τy*f5) = h(δ). Now define

i/* G DΛ(μo,μι) as follows: ι/*Γ[l,λ) = tfTM) and ι/*(0) - pr(C,r/*(0)). Eas-

ily 5 G C&δ > 0 => F*(z^* \δ) = otζth(δ) = g(δ), as required

3) W.l.o.g. 2 < μi (otherwise the statements are trivially false). By monotonic-

ity (=1.4(5)) and part (2) without loss of generality χ = λ, and we have to

prove the 4= direction. Now apply 1.7(3) and 1.5.

4) Repeat the proof of part (1).

5) The implication => holds by monotonicity (that is by 1.4(5)). The implica-

tion <= holds by part (4) above and 1.5.

6) Same proofs. Πι.i4

1.15 Conclusion. Let μ < Nωι and assume μH° < 2N l, then Unif (Nι,μ,μ, 2)

fails.

Proof. Assume toward contradiction Unif (Kι,μ,μ, 2); from Claim 1.7(3) we

obtain Unif (Kι,μ, μ,2<Hl) is true, apply Lemma 1.14(1) and we have

Now by Lemma 1.13(4) ( let Nα = μ,α < cji) cov(μ,Hι) < Kl£l < μ*° < 2Hl.

This is a contradiction to theorem 1.10. Πι.15
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We can strengthen theorem 1.10 to

1.16 Theorem. Suppose λ is regular uncountable, 2<λ < 2λ, and μ > λ. If

Unif (λ,μ,2<λ,2<λ) holds then:

(*)2\μ,λ+ There is a family {Si : i < 2λ}, Si C μ, \Si\ = λ+ and

\SiΠSj\ < N 0 f o r i ^ j .

Proof. Similar to 1.10; we may assume μ < 2λ, otherwise the conclusion

is trivial. Prom the proof of 1.10 we get 2λ < μκ°. Hence we may assume

μ > (2<λ)+ω (otherwise we have μ = (2<λ)+n for some n, so by the Hausdorff

formula we get μH° = μ + (2<λ)H° = μ-f-2<λ = μ < 2λ < μκ°, a contradiction).

Let for every α < λ+, α = (Ji<χ B f , \Bf\ < λ, Bf increasing continuous in i,

and we can assume: Bf Π λ = i, and βj G Bf =ϊ B? C Bf. For notational

convenience let β(α,z) = Bf. We follow the proof of 1.10 and mention only

the differences. We let

Mod = {(a,...,Cβ,gβ,...}β£B(θί^ β < λ+,i < \,9β a function from £f \{0}

to Λ>2, Cβ a closed subset of z}, so from x G Mod we can reconstruct α and

B(a, ϊ) hence i. Now for every / : λ — > {0, 1} we define by induction on β < λ4"

functions h/tβ : λ — > λ>2, g/?/3 G Dχ(μ,χ>e2) and a closed unbounded subset

If we have defined for every β < 7 and 7 > 0, let

Λ/>7(i) = if ({α, . . . , C/,/3 Π α, ^/j/3 f(α \ {0}), . . .)

where a — α(i, /, 7) is the minimal α > i, a G Π{C/,/3 : /3 G £(7, i)} and we let

CfίΊ = {δ : if β e 5(7, δ) then 5 is an accumulation point of Cf^}.

We modify Fact 1.11 to : there are no distinct jn < λ4" for n < ω and

/o G λ2 such that the set Y d= {/ G λ2 : gf,jn(Q) = 9f0jn(fy for each n < ̂ }

has power > 2<λ (the number is just to give us two distinct /'s as required for

starting the induction there).

How do we prove this new version of 1.11? Assume (jn : n < ω) and /0

form a counterexample. Without loss of generality /\njn < jn+i and choose
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i < X large enough such that jn G B(jm, ί) for n < ra, and for each / G Y let

α(/) = Min{α : α > i, α G Πn<α; ̂ /Jnlί we define a relation £ on F:

fιE/2 iff a(fι) = α(/2) and f o r n < α;,

and <7/1Jn fa(/) - ghtjn \a(f)

Now £ is an equivalence relation with < λ x (2<λ)H° x (2<λ)*° = 2<λ

equivalence classes. So we can find /i ^ /2 G V which are equivalent.

Now 9 f l t j n ( 0 ) = 9 f 0 t j n ( f y — 9hJn(ty by the definition of Y. Now we can

apply the proof of 1.11 to /i, /2, contradicting the choice of /i 7^/2-

Why is this new version of 1.11 enough? For /0 G λ2 let Y}Q

 d= {/ : / G λ2

and for infinitely many j < λ+ we have <7/,j(0) = 9 f 0 , j ( Q ) } , now the number

of possible (jn : n < ω) is < (λ+)*° < 2<λ + λ+ which is < 2λ. Moreover

sup{|y/| : / G λ2} < λ+ + 2<λ < 2λ. As /0 G F^ ^ /i G r/o we can find

F* C λ2 such that |F*| - 2λ and /0 G F* &/ι G F* &/0 ^ Λ => /0 ^ F^. So

{{(#/,.? (°) > •? ) : ̂  < ̂ +) : / G ^*) is a family of 2λ subsets of μ x λ+; which by

the choice of F* satisfies: the intersection of any two is finite, confirming (*) of

1.16 (note that without this symmetry we could have used HajnaPs free subset

theorem [Haβl]). Πi.ie

1.17 Conclusion. If λ = cf (λ) > N0, 2
λ > μ > 2<λ = 2Λ, cov(μ, λ) < 2λ ί/ien

Unif (λ, μ, μ, 2) fails.

Proof. Let σ = cov(μ, λ) and let us assume toward contradiction that

Unif (λ,μ,μ,2). Now by Claim 1.7(3) we have Unif (λ,μ,μ,2<λ), and by

Lemma 1.14(1) we have Unif (λ, cov(μ, λ), λ, 2<λ) i.e. Unif (λ, σ, λ, 2<λ) hence

by monotonicity (i.e. 1.4(5)) we have Unif (λ,σ, 2<Λ,2<λ), so by 1.16 we know

that (*)2λ σ λ+ holds. Now we would like to apply [Sh:430, 2.1(2)], with ft+, λ,

μ here standing for AC, λ, μ there, but we have to check the assumptions there:

"μ > λ > AV" is obvious, as μ > λ > κ+; as for "cov(λ,κ, ft,2) < μ" trivially

|«S<Λ+(λ)| < μ suffices but |5<Λ+(λ)| = X" < 2<λ < μ. Now "cov(μ,λ+,λ+, 2)"
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there means cov(μ, λ) here, so we get σ<κ = σ. Hence σ = σκ° hence

(*)2λ,σ,λ+ is impossible. DI.IT

1.18 Conclusion. 1) If θ < X are regular cardinals, 2Θ = 2<λ < 2λ,

and λ < μ < 2λ and -"(*)2λ,μ,λ+ (this is the statement from 1.16) then

-πUnif(λ,μ,2< λ,2*).

2) Under the assumptions of 1) if cov(μ, λ) < μ or just cov(2(9,λ) < μ then

-Unif (λ,μ,μ,λ).

Proof. 1) By 1.16 we have-Unif (λ,μ,2<λ,2<λ) i.e. -Unif (λ,μ,2<λ, 2Θ).

2) By part (1) and 1.14(2). Dι.18

1.19 Conclusion. 1) If θ < X are regular cardinals 2Θ = 2<λ < 2λ (e.g. λ = 0+,

2Θ < 2λ) and θ > X then for every μ < λ, we have - Unif (λ, μ, 2Θ, 2^).

2) Moreover if cov(μ,λ) < 2λ then -Unif (λ,μ,2^, λ).

Proof.

1) By 1.18 it suffices to prove ~'(*)2λ,μ,λ+ which is proved in [Sh:460]. For the

reader's benefit we derive it from the main theorem of [Sh:460]. As μ > θ > I

main theorem of [Sh:460] says that for every regular large enough ft < X, the

ft-revised power of μ, μW, is μ where

μM = miu{\P\ :P C S<κ(μ) and every a C S<κ(μ)

is included in a union of < ft members of P}

Let P C <S<«(μ) exemplified μM = μ, and let PI = {b : |6| =

ft and (3α)(6 C α G P)}, so PI C 5<Λ(μ), |Pι| < μ x 2K < μ + X = μ.

Now if {Si : i < 2Λ} C S<χ+(μ) is as required in (*)2\μ,λ+' each ^ contains

some α^ of cardinality ft, hence for some ζ* < ft, bi^ G P for ζ < ζ* we have

α* ζ U ^ί,C» hence for some ζ(i) we have Ci = α^ Π 6i^(i) has cardinality
c<c;

ft. Clearly a € PI, but |Pι| < μ < 2λ hence for some i < j < 2λ, c3 , = Ci so
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Cj — Ci is a subset of 5̂  Π Sj of cardinality AC contradiction to the choice of

{Si : i < 2λ}.

2) By part (1) and 1.18(2). Πi.ig

Remark. Even for smaller λ, (*)2\μ,λ+ is a verY strong requirement, and it is

not clear if it is consistent with ZFC. By [Sh:420, §6] it implies that there are

regular cardinals 0$ G (2<λ, μ) for i < X such that Π θi/S<^Q(\) is μ+-directed
i<\

and even has true cofinality which is > μ.

1.20 Question. 1) Does λ = cf(λ) > K0, λ < 2<λ < 2Λ imply that

Unif (λ, 2,2,2) fails?

2) Is it consistent with ZFC that for some strongly inaccessible λ we have

Unif (λ, 2,2,2) fails?

3) Can we prove in 1.14(2) equality? can we omit the "λ not strong limit" in

1.14(3)?

4) How complete is Id — Unif (λ,μo, A^i>x)?

§2. On the Power of Ext and
Whitehead's Problem

Let the word group stand here for abelian group, for notational simplicity. A

comprehensive book of set-theoretic methods in Abelian group theory is [EM].

By [Sh:44], [Sh:52] if G is a non-free group and V = L then Ext (G,Z) ̂

{0}. In Killer, Huber and Shelah [HHSh:91], it is proved that if V = L, the

torsion free rank of Ext (G, Z) is the immediate upper bound: Min{2lKl : K a

subgroup of G such that G/K free }.

Now in fact not the full power of the axiom V — L is used, just the

satisfaction of the diamond principle for every stationary subset of a regular

uncountable cardinal. Devlin and Shelah [DvSh:65] introduced a weakening of

this principle, and in [HHSh:91] we stated that for the result mentioned above

it is enough that the weak diamond holds for every stationary subset of any
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regular uncountable cardinal. Here we prove a somewhat stronger result, using

failure of cases of Unif, (e.g., χ = 2H° suffice). Meanwhile Eklof and Huber

[EkHu] found an alternative proof, more group-theoretic, for the result with

weak diamond (really a slight weakening)

On the difference between weak diamond and failure of Unif, and between

variants of Unif, see [Sh:98] also §1 of this chapter and VIII §4 (where we

show that it is consistent that only one of them holds). On the torsion part of

Ext(G,Z) see Sageev and Shelah [SgSh:138] [SgSh:148]; an alternative proof

to [SgSh:138], more group theoretic, Eklof and Huber [EkHu]; on other car-

dinals Grossberg and Shelah [GrSh:302] and Mekler, Roslanowski and Shelah

[MRSh:314].

2.0 Definition.

(1) A group (G, -f) is called torsion free, if for all g G G \ {0}, for all n > 0 we

have ng ̂  0.

(2) The torsion free rank of an (abelian) group G, ro(G) is the maximal size

of a set {cii : i < X} C G such that for every finite non empty S C λ, for

all (ui'.ie S} (iii G Z \ {0}), we have £ u^ / 0.
ies

(3) For g G G and n such that 0 < n < ω, we say that "n divides g in G"

(G N n\g) if there is g' G G such that ng' = g. A subgroup A C G is called

a "pure" subgroup if for all α G A, all n, 0 < n < ω we have: G N n|α

implies A N n|α.

(4) If A C G is a subgroup, we write G/A for the quotient group, and for

α G G we let α + A or a/A be the equivalence class of α.

(5) G is called divisible, if for all α G G, all n > 0 we have G N n|α.

(6) G is called free if it has a free basis, where (xι : i G Γ) is a free basis of G

iff every element of G has a representation J^ UiXi where S C T is finite
ΐ<ES

and Ui G Z, and ^ u^x^ = 0 => /\ u^ = 0.
i€5 165

2.0A Fact.

(1) If G is torsion free, A C G a pure subgroup, then G/A is torsion free.
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(2) If G is not a torsion group (i.e. 3α G G Vn > 0 [na φ 0]), then the two

cardinals

: A C G, for all αi φ a^ in A, all n > 0 : nαi

and

: A C G, for all α G G there is u G Z, such that

are equal to max{r0(G), K0}

(3) If G is torsion free non zero, then |G| = max{r0(G), N0}.

(4) If G is an abelian group and 0 < n < ω then we can find α^ G G for

i < \nG\ such that i φ j => n(a» - a?) 7^ OG, where nG = {na : a G G}.

Note that if G is divisible then \nG\ = |G| as nG = G.

Recall (see [Fu])

2. OB Fact.

(a) If H and G/H are free (so HCG), then G is free.

(b) If G = U GΪ where (G» : i < λ) is an increasing continuous sequence of
i<λ

groups, GO is free and for all i < λ the group Gi+ι/Gi is free, then G is

free.

(c) If G = U Gi where (G^ : i < λ) is an increasing continuous sequence of
i<\

group, each Gi is free and for a closed unbounded set of i < \ we have

(Vj)(i < j < λ => Gj/Gi is free) then G is free.

After Fuchs [Fu] pp. 209-211:

2.1 Definition. For abelian groups A, H let

(1) Fact (A, H) is the family of functions / : A x A — > ίί such that

/(α, -α) = /(α, 0) = /(O, α) = 0 and

/(α, 6 + c) + /(&, c) - /(&, α + c) + /(α, c) - /(c, α + b) + /(α, 6)

(2) We make Fact (A, H) into an abelian group by coordinatewise addition.
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(3) For each function g : A — > H satisfying #(0) = 0, g(-a) = —g(ά) (we

call such g normal) let (dg) G Fact (A, H) be defined by (9#)(α, 6) =

(4) Trans (A, H) is {dg : g a normal function from A to H}, and it is a sub-

group of Fact (A, H) and we make it to an abelian group by coordinatewise

addition.

(5) Ext (A, G) — Fact (A, G}/ Trans (A, G) (quotient as an abelian group).

2.1A Fact.

(1) If h : A —* B is a group homomorphism, ίften h induces naturally a

homomorphism

ft: Fact (£,#)-* Fact (A, H)

(namely, ft(/)((αι,α2)) i-+ / '(ft(αι) , ̂ (^2))) for αi, α2 G A which satisfies

ft(d#) = 9(0 ft) so maps Trans (£?, if) into Trans (A, H) and so naturally

induces a homomorphism

ft: Ext(£,if) -» Ext (A, if)

(satisfying h(f 4- Trans (5, if)) = ft(/) + Trans (A, if)).

(2) If ft is 1 — 1, then ft and ft are onto.

(See [Fu, 51.3] for ft and [HHSh, Lemma 1] for ft.)

2. IB Remark. (See [Fu])

(1) If G is free, then Ext (G, if) - {0} i.e. Trans (G, if) - Fact (G, if).

(2) G is called a Whitehead group if Ext (G?,Z) = {0}.

(3) If G is divisible, then Ext (G, if) is torsion free (see [Fu, 52.1 I]).

2.2 Theorem. Suppose λ is a regular uncountable cardinal, if , G = G\ are

abelian groups, Gi (for i < λ) torsion free abelian subgroups of G, |G| = λ >

|Gi|, G = \Ji<:xGi,Gi(i < λ) increasing and continuous, and let χ ( i ) be the

cardinality of Ext (Gi+ι/Gi, if). If Unif (λ, \ H \ , χ ) fails ίften | Ext (G, if )| > 1.
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Proof. First we remark that we may w.l.o.g. assume that each Gi is a pure

subgroup of G (and hence of G$+i): the set C = {i < X : Gi is a pure

subgroup of G} is a closed unbounded subset of λ, say C = {& : i < X} an

increasing continuous enumeration. Let G\ — G^, χf(i) = |Ext (G£+1/GJ,if)|,

E = {i : ξi — z}, then E is closed unbounded and for i G E we have

G't = Gi C Gi+i C G^+1 so χ'(i) > χ(i) (by 2.1A(2)), so the failure of

Unif (λ, \ H \ , χ ) implies the failure of Unif (λ, \H\,χ') by 1.4(2) and 1.4(5), and

we can continue the proof with G(, χ'(ϊ) instead of G^, χ ( ϊ ) renaming them as

d, χ ( ί ) . Let μ = (μ(ϊ) : i < λ) be defined by μ(ϊ) = \H\™, so by 1.6(1) we

get that Unif (λ, μ, χ) too fails and we can assume |Gα| > |α| -f NO-

Next we prove

2.3 Claim. Let H,A,B be abelian groups, B a pure subgroup of A, / G

Fact (B, if). Then there are ft G Fact (A, if) (for t G Ext(A/B,ίΓ)) extend-

ing /, such that

(*) there are no distinct ί, s G Ext (A/B, H) and normal functions <&, #s from

A to H such that θ#t = /t, 9p5 = /5 and pt fβ = ps fβ.

In other words, for any normal function go : B —> H there is at most one

t G Ext (A/B, H) such that for some normal g : A —» H extending p0 we

have ft = dg.

Proof of the Claim 2.3 By 2.1A(2) there is /0 G Fact (A, H) extending /.

Let for each t G Exk(A/B,H),ht € Fact (A/B, H) represent ί, i.e., ί =

ht/ Trans (-A/B, if), and w.l.o.g. Λ0 is the zero function. For t G Ext (A/B, H)

let Λ G Fact (A, H) be defined by:

(g) for α, b G A, /t(α, 6) = /0(α, 6) 4- Λt(α/B, b/B) (where α/B, 6/B G A/B are

defined naturally).

Clearly each ft is well defined and belongs to Fact (A, if), (and the two

definitions of /o agree).

Suppose ί, s are members of Ext (A/B, if), and there are normal functions

gt,ga from A to if, % - /t, <9#5 = /θ and & fJ5 = #θ fS. Let /* d= ft - fs G
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Fact (A, H), g* = gt—gs (a normal function from A to H), so clearly dg* = /*

and f*\B = Oβ, moreover, /*(α,6) = h*(a/B,b/B) where Λ* = Λ t - Λβ (see

(g) above). It is also clear that h* G Fact(4/B,ff) and h* / Trans (A/B, if) =

t-s^Q.

Now if in A, c - a = b G B then fc*(α/B, 6/5) = /*(o, 6) - (9flf*)(α, 6) =

<?*(α) - <?*(α + 6) + fl*(b) - fl*(α) - <?*(c) + <;*(&). As 6 G B, </*(&) - 0# by

"0* = gt- gs and ^B - #JB" and δ/B - QA/B hence h*(a/B,b/B) =

h*(a/B,0A/B) = OH (as Λ* G Fact (A/B, G)). So putting together the last

two sentences 0# = g*(ά) — g*(c) + O//, hence ^*(α) — ̂ *(c).

We can conclude that c/B = a/B implies α — c G B hence <7*(α) = g*(c).

So there is g^ : A/B — * H such that g*(ά) = g^(a/B). We can check ft* = dg^

but /ι*/ Trans (α/B, H) = t — s ^ 0, contradiction. U2.3

Continuation of the proof of the Theorem 2.2.

Recall that we assumed that each Gi is a pure subgroup of G. We define by

induction on α < λ for every η G Y . χ(ϊ) a function /^ (note that χ(ι) > 1

for every i) such that:

a) fη G Fact (Gα, if) (when £g(ry) = α)

b) if i/ = r/t/3, and β < ίg(v) then /„ C fη

c) if ξ < ζ < χ(α), then there are no normal functions go,gι from Gα+ι

into if, such that 9flf0 = Λ Λ <ξ>, ̂ i = fη Λ <C> and ^o \Ga - ̂ i fGa.

Hence

c)' for any function go : Ga — > H there is at most one ξ < χ(α) such

that there exists a normal function g : Gα+ι —> H extending </0 with

fη

 Λ (ξ> = dg.

There is no problem in the induction, as the induction step is done by the

Claim 2.3.

In the end, it is enough to prove that: for some η G \^^ ^or no

normal function g from G into H do we have fη = dg. So assume that for

each η G ̂  χ(ά) there is a normal function gη : G ̂  H such that fη = dgη.
a<\

So also fηla = fη\(Ga x Ga) = d(gη\Ga), if ίg(η) = a. Hence ry(α) can

be computed from ( η \ θ ί j g η \ G 0 ί ) j since it is the unique (by (c)) ξ < χ(a)
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such that there is a normal g : Ga+ι —> H extending gη \Ga and satisfying

f(η\a) Λ {£) = dg. What is the cardinality of {(η\a,gη\Ga) : η G λ2}? Clearly at

most ( Π X(β)) x |ff | | G β l < ( Π (|if| |G"xG"1) x l#| |Gα| - |Jf| |Gβl = μ(α) as
β<a β<a

\Ga\ > |α| +No» we thus easily get that Unif (λ, μ, χ) holds, which is equivalent

to Unif (λ, |if|,χ). This contradicts our assumption. U2.2

2.4 Theorem. Assume λ is regular uncountable, H, G are abelian groups, Gi

a torsion free abelian subgroup of G increasing continuous with i for i < X

such that G = \J G*. Let χ° = (χQ(i) : i < λ) be defined by χ°(i) =
;<λ

|Ext(G i +i/Gi,if)| and let χl = ( χ l ( ί ) : i < λ) be defined by χ1^) -

|Ext(G?

ί+ι/Gί)/Torsion(Ext(G'ί+ι/G'ί,Jfί))|. Let £(*) < 2 and assume that

Unif (λ, |JT|, χ*<*>) fails (note: ^(i) is K0 x r0(Ext (G^/G^H))).

(1) Ext (G, ff) is not a torsion group provided that

(*) (a) l(*) = 1 or

(b) £(*) = 0 and the Boolean algebra P(\)/ld - Unif (λ,//,^1) is

infinite.

(2) If Unif (λ, μo, |-H"|, X°) fails and (*) of part (1) then the torsion free rank of

Ext (G, if) is >μ0.

(3) Suppose Id — Unif (λ, |ίf|,χ°) is not /^-saturated, N0 < K < λ then the

torsion free rank of Ext (G, H) is at least 2K.

Remark. 1) An ideal / on λ is called ^-saturated if there are no K pairwise

disjoint non zero elements in the Boolean algebra P(X)/I.

2) An ideal / on λ is called weakly λ-saturated if there are no λ pairwise disjoint

sets in P(X) \ /.

3) As is well known; if / is ^-complete the two notions are equivalent.

4) It is well known that the extra hypothesis in 2.4(3) is very weak (i.e. the

assumption that there is a normal /^-saturated ideal on λ has high consistency

strength and put other restrictions on λ e.g. λ not successor).
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Proof. (1) As in the proof of 2.4 w.l.o.g. each Gi is a pure subgroup of G, hence

Ga,Ga+ι/Ga are torsion free. Also |G^| > N0> and letting β(i) = \H\\Gί\ also

Unif (λ, μ, x^*)) fails. Now we prove two claims:

2.5 Observation. There are pairwise disjoint Sn C λ,n < ω such that

Unif (λ, 5n, μ, x) fails, provided that one of the following holds:

(α) μ(i) < 2<λ

(β) P ( X ) / l d - Unif (λ,μ,χ) is an infinite Boolean algebra

(7) β(i) non decreasing, λ not measurable.

(δ) χ(α) > 2 for every α or just for every normal ultrafilter D on λ, {α :

χ(α) > 2} G D.

Proof. If clause (/?) holds, this is very trivial. If the Boolean algebra P(\)/ld —

Unif (λ, μ, x) is atomless below some element, say 5/Id — Unif (λ,μ, x) we

choose by induction on n a set Sn C S such that 5n/Id — Unif (λ,μ, x)

is not zero and Sn C 5 \ U St, and S \ |J St φ Id - Unif (λ,μ,χ), so
t<n i<n

(Si : t < ω) is as required. If P(λ)/Id - Unif (λ,μ,χ) is an atomic Boolean

algebra, it has infinitely many atoms say (Sf

n/ld — Unif (λ,μ,χ) : n < ω) are

disjoint atoms, so Sn = S'n \ (J S'e are as required. So assume clause (α), so
i<n

by 1.7 w.l.o.g. μi = 2<Λ. By induction on n try to choose pairwise disjoint sets

Sn € P(X) \ Id - Unif (λ,μ,χ) such that λ \ U Sk £ Id - Unif (λ,μ,χ).
k<n

Assume that we cannot continue the induction in stage n, then clearly S' =

{α < λ : χ(α) — 1} belongs to the ideal (by 1.4(1)), hence the restriction of

Id — Unif (λ, μ, x) to S = λ \ (J 5̂  is a maximal ideal. Since it is also normal
k<n

by 1.9(2), λ must be measurable and the dual filter is a normal ultrafilter

to which 5 belongs. So Os holds. Now it is easy to find disjoint stationary

sets Sn C 5, n < ω such that for all n the statement Oλ(Sn) holds (e.g. let

(Xa : a e S) be a diamond sequence, and let Sn = {α : Min(Xα) = n}). Since

Oλ('S'n) implies the weak diamond on Sn i.e. ->Unif (λ, 2,2,2) (by 1.3) by 1.7

also -«Unif (λ, 2<λ,2<λ,2) hence by monotonicity (1.4(5)), we are done.

The proof when clause (7) holds is included in the proof above. U2.5
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2.6 Claim. Let H,A,B be abelian groups, B a subgroup of A, A/B torsion

free and / G Fact (B, H) and n, 0 < n < ω.

(1) Then there are f i G Fact (A, H) for i < χ = \ Ext (A/B, H)\ such that:

(*) there are no i < j < χ and normal functions g^gj from A to H such

that dgi = nfi,dgj = nfj and gi\B = gj\B. This means that for

every normal #o : B —> H there is at most one i < χ such that for

some normal g : A —> /ι extending #o we have n/i = dg.

(2) Then there are fi G Fact(^4, #) for i < (the torsion free rank of

Ext (A/B, H) multiplied by N0) such that

(**) There are no i ^ j and functions g^gj from A to H and 0 < m < α;

such that mfi = dgi, mfj = dgj and gi \B = gj \B.

Proof. (1) As A/B is torsion free, Ext(A/B,H) is a divisible abelian group

(see [Fu]), hence we can inductively find ti G Ext (A/B, H) for i < χ such that

i < j implies n(tj — ti) ^ 0 (see 2.0A(4)). Now repeat the proof of Claim 2.3.

(2) We can choose a sequence (ti : i < ro(Ext (A/B,H)) x N0) such that for

ra < ω if mti = mtj and m ^ 0 then i = j (this is possible by 2.0A(2)), and

continue as in 2.3. U2.6

Continuation of the Proof of 2.4(1)- Let us first assume -£(*) = 0 and the

Boolean algebra P(\)/Id - Unif (λ, μ, χQ) is infinite (i.e. possibility (b) holds).

Let Sn C λ (for n < ω) be as in Fact 2.5, and w.l.o.g. λ = \Jn<ω Sn.

Let us define by induction on a, < X for every η G Y. χ(i) a function fη

such that

a) fη G Fact (Ga,H) (when £g(^) - α)

b) if v = η\β,β < £g(ι/) then /v C fη.

c) if α G Sn,ξ < ζ < χ(a) and η G ̂  α X W *en t'lere are no normal

functions ^QJ^I fr°m ^α+i into fl" such that 9 0̂ = (n + l)fη- <ξ>, 9 ι̂ =

(n 4-1)/^ * <c> and g0 \Ga = g1 \Ga.

Hence

c); if α G Sn and 77 G Y X°(0 ίΛen for every normal #o : G^α ~^ H there is
i<α

at most one ξ < χ(a) such that for some normal function g : Gα+1 -> ίί

extending ^o we have (n -f l)fη - ̂  = d(g)
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There is no problem in the induction as the induction step is by Claim

2.6(1), and we finish as in the proof of 2.2.

If we do not assume (*)(a) but rather (*) (b), we have to use 2.6(2) instead

of 2.6(1) and let Sn = X for n < ω (so in clause (c) above, the demand is for

every α < λ, n < ω).

Proof of 2.4(2). As in the proof of part (1) w.l.o.g. Gi is a pure subgroup of

G, infinite. Let μ = (μ(i) : i < X) be defined as: μ(0) = μ0 x |ίf| |Go1, and

μ(i) = \H\\Gi\, and again as in the proof of part (1) also Unif (λ,μ, χ°) fails.

Note that μ(0) > N0

We define fη as in the proof of 2.4(1). If the torsion free rank of Ext (G, H)

is < μo> then there are ta G Ext (G, H) (a < μo) such that for any t G

Ext (G, H) , for some n > 0 and for some α we have nt = ta (note that w.l.o.g.

μo > NO by the proof of 2.4(1)). So there are ga G Fact (G, H) for α < μ0, so

that for every / G Fact (G, H) there are n/ > 0 and a function #/ from G to

H and α(/) < μo such that

In particular this holds for every fη,η G X λ x W First assume (*)(b),

so we have defined the 5n's. So for each 77 G y^χ(0? f°r eacn * £ 'S'n/ and
i<λ

g' : Gi ^> H satisfying dg7 = /r j fGΐ we have η(ι) can be computed from

(a(fη),η\i) as

(*) "the unique ξ < χ^(i) such that for some normal g : Gi+i — > #, and we

have n/ x Λ,r/3 - (0 = 00 + 0α(/ιr/0.»

This contradicts -> Unif (λ, μ, χ) (which was deduced above). If we assume (*)(a)

holds just replace "i G 5n/" by "i < λ" and use 2.6(1) rather than 2.6(2) and

in (*) replace "and we have n/x" by "and for some n we have nx"

Proof of 2.4(3).

As in the prove of part (1) w.l.o.g. Gi is infinite pure subgroup of G and

Unif (λ,μ,χ°) fail with μ(ί) = |tf| |Gί|. Let (5f : i < κ,n < ω) be pairwise

disjoint subsets of λ which are positive modulo Id — Unif (λ, |iΓ|,χ), and



§2. On the Power of Ext and Whitehead's Problem 971

let Si = U S f . Using a lemma similar to 2.6(1) we can define a family
0<n<ω

(hη : η G λ>2), hη G Fact (Gέg(η) , H) such that:

whenever α G Sf (so n > 0), χ(α) > 1, η G "2, # : Gα+ι -> # is

normal and n(hη - (0) — ̂  Λ <i}) = <9<7, then g\Ga ^ 0.

For each 77 G λ2 we thus get a function /i^ = \J hη\a G Fact (G, #). Be-
α<λ

low we will select 2* many 77 G Λ2 such that the corresponding hη witness

Let (Aε : ε < 2*) be subsets of K such that for any ε\ ^ 62 the set Aει \A£2

is nonempty.

For each ί < K, n < ω define F/1 on |J α2 x α2 x GaH as follows: if 771,
αGST1

^72 ^ α2, ^o Ga — > JT is normal, α G 5f and there is a normal g+ : Gα+ι — > 7f

extending gQ such that

then ίT1 (1/1,772,^0) = 1, otherwise ^(771,7/2,00) = 0.

Since 5f ^ Id - Unif (λ, μ, 2) we can find a weak diamond f? for F 1 and

5f (so only f?\S? matters).

Now for ε < 2* define τ/(ε) G λ2 by

v 0 otherwise.

We now claim that for all εi / £2, for all n > 0

n/ιr?(ει) ^ nhη(ε<2} mod Trans (G,H).

(This claim will finish the proof of 2.4(3).)

So assume that nhη(ει) — nhη^ε^ = dg for some normal g : G -+ H. Let

7/1 = τ/(ει), 7/2 = τ/(ε2). Choose i G Aeι \ A£2. Since ff was a weak diamond

for F/1 on SJ1, the set

{α G S? : Fr(ηι\a,η2\a,g\a) = f?(ά)}
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is nonempty, so let a be an element of this set.

Case 1. /p(α) = 1.

So there is normal g' : Gα+i — > H such that

n(hm Λ (0) - hη2 - (o)) = <V and #' extends g\Ga.

But we also have

n(hηι\(a+l) ~

Note that r/ι(α) - /f (α) - 1, r/2(α) = 0, since α G SJ1, i G Aει \ Λ£2. So

subtracting the two equations above, we get

n(hm Λ (o) - hηi Λ (i)) = d((g' - g) \Ga+ι).

Since ((g1 — g) \Ga+ι) \Ga — 0, this contradicts our choice of (hη : η e Λ>2).

Case 2. /f (α) - 0.

So there is no normal g' : Gα+ι — > H satisfying

n(hm Λ <o> ~ hη2 - (o)) = dgf, g' extends g\a.

This is a contradiction, since g' = pίG^+i satisfies the requirements (as

f7ι(α) =r/2(α) = 0). D2.4

2.7 Conclusion. Assume that

0 for every regular uncountable λ, for all stationary subsets 5 C λ, the weak

diamond holds on 5, or just Unif (λ, 5, 2, (2^ : i < λ}) fails.

Then

(a) Every Whitehead group is free.

(b) If G is torsion free but not free, uncountable and for all subgroups H of

cardinality \H\ < \G\ the quotient group G/H is not free, then the torsion

free rank of Ext (G,Z) is 2\G\.

Remark. 1) If there is no inaccessible cardinal then Θ is equivalent, by 1.7(2),

to
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0' for every regular uncountable λ, for every stationary subset S of λ, the

weak diamond holds for 5, that is Unif (λ, 5,2,2).

2) We can get a weaker version, still sufficient for our theorem, if we restrict

F in the definition of Unif to the particular kind of functions implicit in the

proof. See generally on such version of the weak diamond in [Sh:57β, §2].

Proof. First note that (b) implies (a). Indeed, let G be a nonfree Whitehead

group of minimal size. The countable case is well known (see below) so assume

|G| > K0. Then G is almost free, so all subgroups H such that |if| < |G| are

free, hence G/H is not free (by 2.OB) so G satisfies the assumption of (b), hence

its conclusion so | Ext (G, Z)| > 1.

Proof of (b). We prove by induction on λ.

The case |G| = H0 is well known (see e.g. [HHSh:91]) and the case |G| is

singular is just like [HHSh:91]. So assume λ — |G| is regular > No-

Let G — (J G7 with G7 a continuous increasing in 7, each G7 a pure
7<λ

subgroup of G of size < λ such that:

(*) If G/G7 is not almost free i.e. if (3/3)(7 < β < X & Gβ/GΊ not free), then

G7+ι/G7 is not free.

Let

5 = {7 : G7_|_ι/G7 is not free}.

χ = (x(i) •* < λ)

χ(i) - r0(Ext (G7+1/G7,Z) x K0

Note that by induction hypothesis for all 7 G S we have ^(7) > 2 (in fact

> 2N°).

If S is stationary, then 5 can be divided into λ many stationary sets

(Si : i < λ). By our assumption, all the sets Si will be φ 0 mod Id —

Unif (λ, 2,2,2) = Id - Unif (λ, N0, NO, 2), so by 2.4(3) we know that Ext (G, Z)

has torsion free rank 2λ.

If S is not stationary then by (*) we have a continuous increasing sequence

(7i : i < λ), (J 7i = λ with i < λ => GΊί+l/GΊi is free. Then it is easy to
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see that G/G7o is free (see 2. OB, clause (c)), contradicting an assumption (of

clause (b) of 2.7). D2.7

A more detailed analysis of the situation shows that for a given group G of

cardinality λ (regular uncountable), we do not need the full strength of 2.7Θ

(assuming the induction hypothesis of 2.7(b)).

2. 7 A Theorem. Assume G satisfies the assumption on G of clause (b) from

2.7, |G| = λ, λ regular uncountable and that all groups of size < λ satisfy

2.7(b) or just: \H\ < λ, H not free => Ext (if, Z) ^ 0. Let G = \J Gi be an
i<\

increasing union of (w.l.o.g. pure) subgroups of G, and let

S* C {i < X : Gi+i/Gi is not free}.

(Note that S* is stationary since G is not free.)

Now assume that 5* is not in Id - Unif (λ, 2, 2, χ), χ* = Ext (Gi+i/G., Z) (so

i e 5* => Xi > 2) and i G 5*, i inaccessible => Ext(Gί+ι/Gi,Z) = 2*. Then

r0(Ext(G,Z)) = 2λ.

Proof. As remarked in 2.0 ([Fu], or see essentially [HHSh:91, Lemma 1 p. 41]) if

G^ is a subgroup of G, then Ext (G^, H) is a homomorphic image of Ext (G, if),

hence the torsion free rank of Ext (G, H) is not smaller than the torsion free

rank of Ext (G1", if) , so we shall freely replace G by some subgroups during

the proof.

We split the proof to cases.

Case I: G has subgroups G*, Gα(α < λ) such that:

|Gα| < λ,G* C Gα,Gα/G* is not free and {Gα : α < λ} is independent over

G*, (i.e., if n G (0,ω) and xm G Garn \ G* for m < n, the αm's distinct then

We choose, for any n < ω,a < X , a function /™ G Fact (Gα/G*,Z)

such that /° = 0, and for n ^ 0 we have n/£/ Trans (Gα/G*,Z) ^ {0}. Let

F : ω x λ -̂  λ, be one to one onto. Let {Ai : i < 2λ} be a family of distinct



§2. On the Power of Ext and Whitehead's Problem 975

subsets of λ, and define, for i < 2λ, a function ξi : X —> ω by: &(α) = n if

for some ζ G -£», α = F(n, 2C) or for some C € λ \ A<, α = F(n, 2£ 4-1), and

ξi(a) = 0 otherwise.

So we have defined functions ξi (for i < 2λ), from λ to α;, such that for

every n < ω and i ^ j <2χ for some α < λ we have £i(α) = 0, ξ j ( a ) = n.

For every i < 2λ we define ft, G Fact (Σα<λ Gc*,Z): if z = Σαχβ,2/ =

Σay<* and xα,2/α € Gα (so xt = yi = 0 for all but finitely many i's) then

Λ»(x,2/) = Σafa (za/G*jya/G*) (the representation x = Σαx<* is not

unique, but for any two representations x — Σα xα = Σα x£, we get xa/G* =

χt,/G*, so /ii is well defined).

It is easy to check ft» G Fact (Σα G?α, Z).

Now if the torsion free rank of G (= ΣaGa) is < 2λ, there is an n,

0 < n < ω such that {rafti/Trans (G^Z) : i < 2λ} has power < 2λ. We

know that 2 | G*' < 2λ (if 2|cr| = 2λ, then letting χ(α) = μ(α) = 2 we get

["] χ(α) = I"] μ(α), so Unif(λ,μ, x) holds by 1.4(4)) so without loss
α<λ α<|G*|

of generality (by renaming ) n/^/Trans (G, Z) are equal, for i < (2'G*I)+.

Hence there are normal functions Qi : G —» Z such that n/ι^ — nhQ = dgi

for i < (2 |G* l)'f. Now the number of g^G* is < (2 |G*!), hence without loss of

generality for every i such that 0 < i < (2^*')"*" we have gi\G* = g*.

We can choose a < X such that ξι(α) = 0, ξzfa) = n. Now restricting

ourselves to Ga, note for some k (namely k = ξo(α)), h0\(Ga x Gα) = /^ and

(Λi - fto) \(Ga x Gα) = /2 - /ί, (Λ2 - ΛO) ί(Gα x Gα) = /2 - /5 and now we

can apply the proof of Claim 2.3, and get a contradiction.

So we have finished Case I.

* * *

Let from now on, G — Ui<λ^*»^* increasing and continuous, |G*| < λ,

all Gi are pure subgroups of G, hence all the quotients G/Gi are torsion free.

2.8 Subclaim. If Case I does not hold, we can assume that:

(a) for every 7 < λ, there is no Gt, GΊ C Gt C G, |Gt| < λ, Gt Π G7+ι - GΊ

and G^ /G7 is not free.
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(b) for every limit J, G/G$ is (cfJ)-free, except, maybe, when cf(<5) = K0.

Proof of the Subdaim. We define by induction on i < λ, α^ < λ, increasing and

continuous.

Let αo = 0, and for a limit i let α^ = Uj<iαj ^ ai ιs defined let

{G£ : ζ < ζi} be a maximal family of subgroups of G, satisfying: Gai C

Glζ> \Glζ\ < ^5 Glζ/Gai not free and {G£ : ζ < ζi} is independent over Gαi; such

a family exists by Zorn's Lemma and ζb < λ as Case I does not hold.

Let oίi+i — Min{α : α* < α and G£ C Gα for every C < ζi}>

We know that a$+i exists as λ is regular, |G£| < λ, <^ < λ. Also there is

no G?t,G?α. C Gt C G, |Gt| < λ,G^ Π Gαί+1 - Gai and Gt/Gα. not free, as

this would contradict the choice of {G£ : ζ < ζi} as a maximal family.

Now we can replace (Gα : a < λ) by (Gai : i < λ) and clause (a) of the

subclaim will hold, so without loss of generality (a) holds, i.e., α^ = i. What

about (b)? Now we will show that (a) implies (b). So assume that G/G§ is not

cf(5)-free, where cf(5) > NQ. Let G*/G$ be a non-free subgroup of cardinality

AC < cf(5). Let {xj : j < K} be a set of representatives, and let K be the group

generated by this set. Clearly \K\ = K (K, > K 0? as G/G§ and hence G*/G^

are torsion free). So there is an ordinal 7 < δ such that K$ Π G$ C G7. Hence

(#$ + G7) Π G7+ι = G7, and

(Kδ -h G7)/G7 ̂  /O/tf* Π G7 - ̂ /K5 Π G5 ̂  (K5 + Gδ)/Gδ = G*/Gδ

is not free. This contradicts condition (a) for 7. U2.8

Continuation of the proof of 2.7 A Recall S* C {7 < λ : G7+ι/G7 is not free}

and let 5 = {7 G S* : 7 is a regular limit (i.e. inaccessible) cardinal}. Let

X - (X(7) : 7 < λ), χ(τ) - |Ext(G7+ι/G7,Z)|

//: not Case I and S* \ S φ Id - Unif (λ, N0, x)

We can use 2.4(3), because of the following well-known theorem:
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Theorem. Assume λ is regular, D a normal filter on λ, 5° φ 0modD and

S £ S° => cf(^) < 5 (i e δ n°t a regular cardinal). Then there are pairwise

disjoint Sa C S°(a < λ), Sa φ Omod D.

Proof.

Clearly cf (— ) is a regressive function on 5° \ {0}, hence for some K and Sl C 5,

Sl φ 0mod£>, (VJ G 5*)[cf(5) - «]. For each 5 G S1, choose (α($,f) : £ < K)

an increasing continuous converging to ί, and let Aςj = {δ G 51 : α(ί,£) = j}.

Now we can prove that for some ξ for λ ordinals j we have Aξj φ Omod J9,

and as Aςj Π Aξti — 0 for i φ j we will finish.

So we have finished Case II.

Continuation of the proof of 2. 7 A

Case III: 5* \ 5 G Id - Unif (λ, N0, x)-

So by our assumption S φ Id — Unif (λ, NO, X) Note that by an assumption

We first state (and prove later).

2.9 Subclaim. Assume GG,Gl are torsion free, G° a pure subgroup of G1,

fi G Fact(G°,Z), for i < x and the torsion free rank of Ext(Gl/GQ,Z) is

> λ > x and λ > NO- Then we can define /i>α G Fact(G1,Z), f i C f^a for

α < λ such that:

(*) if β φ 7 < x and 0 < n < ω and g : G° — > Z is a normal function then for

at most one α there is a normal function g^ : G1 — » Z extending g, such that

π//3,α -n/7,α = 9 .̂

Continuation of the proof of 2. 7A

So let us prove the theorem in Case III. We define by induction on i < λ, for

every η G Y . .Xj and A C i, a function /^ G Fact (G*, Z) such that

a) if j < lg(η),η G X^-XUM C i ίften /^^^ - Λ^rί^ x G j ) .

b) if ^ G X, <z+ι ̂ ')' Λ S C i + 1, A n i = B n i then fηΛ = fη,B.

c) if δ G 5 (so χ(δ) = 2 l * l ) , τ / G X ( X U ) , ^ C 5,.B C 5,^ : Gδ -> Z is normal
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and 0 < n < ω then for at most one j < χ(δ) there is a normal g^ : G$+ι —> Z

extending g such that nfη-^^ — nfη^j^β = dg^.

There is no problem in the definition: for c) use the subclaim 2.9, remembering

δ G 5 => χ(δ) = 2δ. Now for at least one η G X \ X W > ^or evelT distinct

A,B C λ and 0 < n < α;, nfη^A — nfη,B $• Trans (G,Z). Otherwise for every

η G y. £(i) there are Aη ^ Bη C λ and 0 < n^ < α; and g^ : G —» Z such

that

By condition c) above, for every δ G 5, from nη, fη,A \(G$ x G$) = fη\δ,Anδ,

fη,B \((*δ x Gδ) = fη\δ,Bnδ and gη \Gδ we can compute η(δ), so this contradicts

5^0 mod Id — Unif (λ, NO, χ) Now for such an 77, {fη,A '• A C λ} exemplify-

that the torsion free rank of Ext (G, Z) is > 2λ. Π2.7Λ

Proof of the subclaim 2.9.

Let {(iζj Oίζ) : ζ < X} be a list of all pairs (i, α), i < χ, α < λ, and we define

/iς,ας by induction on ζ. Suppose we have defined /ΐ ί )αί for every ξ < ζ, £ < λ

and they are required, and let us define /iζ,ας

Let (t(j) : j < λ} be members of Ext(GVG°,Z) such that nt(jι) -

nt(jϊ) ^ 0 for n > 0, ji ^ j2. By Claim 2.6(2) there are f j ( j < λ) such that:

fj G Fact(G1,Z) extend /<c, and there are no n > 0, j(l) ^ j(2) < λ and

normal g : G1 -> Z such that n/J'(1) - n/J'(2) = dg and gfG 0 = 0.

We can try to let /iζ>αζ = fj for any j < X and assume toward contra-

diction that it always fail. The only thing that can go wrong is (*) from the

subclaim. So for every j there are βj,Ίjιnj > 0 and normal gj : G° —» Z

and αj 7^ α| and normal gj : G1 —» Z,^2 : G1 —> Z extending ^ such that

{(/?j,α}), (7j»«)), ()8j)^)» (7j,«j)} ^ {(*C>αc) : C < J'} and letting /ίζιαc = /•?

we have:

(**) Πjfβ αι — n y/y αι = dg} and n^ fg. α2 — n? /γ. α2 = 9^?.
Λ-J > j / J > j J Λ'J > j /J > j J
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Now there are λ ordinals j and only NO x 1C + 1| x 1C + 1| x 1C + 1 x |C + 1| < ^

possible 5-tuples (nj,/3j,7j,αj,α?): so without loss of generality for j < ω we

have the same n, /3,7, αι,α2 Also by the induction hypothesis, at least one of

{(/?, αi), (7, αi), (β, 0:2), (7, α2)} is not in {(ie, αξ) : £ < C} hence is (ic, αc), so

by symmetry without loss of generality (/?,αι) = (^,0^). As β ^ 7, QI ^ #2

clearly {(7,^1), (A α2), (7,^2)} £ {(iξ,cκξ) : £ < C} So for each j < ω

(subtracting the equations in (**)) we have:

njj - n/7>αι - nfaαa -f n/7)CK2 = dg] - dg] = d(g] - g?)

Subtracting the equations for j = 0, 1

n/1 - n/° = d(g\ - gΐ) - d(g\ - g2

0) = d(g\ - g\ - 9

1

0 + 5o

2)

clearly (g\ — g\ ) fG° = 0 and (#o — 9ι ) Γ^° = 0 so we get a contradiction to the

choice of the /J's. U2.9

Now similarly to [HHSh:91] by our proof:

2.10 Conclusions. If 0 of 2.10 holds, G a torsion free group, λ

is free }, then Ext (G,Z) has torsion free rank 2λ.

Remark. The use of Z instead H in 2.13, 2.10 is just for simplicity.

How strong are the assumptions of theorem 2.7?

Unlike the full diamond, the weak diamond has only little influence on

the behavior of the exponentiation function K ̂  2K, as the following theorem

shows:

2.11 Theorem. Assume V N GCH, F is a function defined on the regular

cardinals, F(λ) a cardinal, (Vλ)cf (F(λ)) > λ,

® Vλ[ ^ F(μ) < F(λ)] (so in particular F is strictly increasing).
μG Reg Πλ
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Let Pf be Easton forcing for F. (So (Vλ G RCar)[Fp^ N 2λ = F(λ)].)

Then VPF N Vλ regular, VS C λ stationary, -i Unif (λ, 5, 2, 2, 2) holds.

(Note that for inaccessible λ, 2<λ = 2Λ implies the failure of the weak diamond,

so <g) is a reasonable hypothesis.)

Proof. Recall that Easton forcing Pp = Π P\ with Easton support (i.e.
λeRCar

bounded below inaccessibles, full support below non-inaccessibles) , where

Pχ = {F: Dom(/) G [F(λ)]<λ and Rang(/) C {0, 1}}.

So fix λ and a name S for a stationary subset of λ. We will work in V\ =

λp-. Note that Vι satisfies GCH up to λ, as Π Pκ is λ+-closed, hence
κ>\

does not add any subsets of λ. So we have to deal with the forcing P° x Pχ,

where P° d= Π Pμ Let ? be tne name °f a function, lhPox P λ "F : λ>2 -> 2".
μ<λ

Dom(F) is in Vf , as P\ adds no bounded subsets to λ. Since P° x Pχ satisfies

the λ+-c.c., we can find a set A C F(λ), satisfying |F(λ) \ A| = λ such that F

and 5 are P° x (Pλ ί^l)-names, where Pχ\A d= {/ G Pλ : Dom(/) C A}. (We

can even find such A of size λ.)

Assume that p Ih " there is no weak diamond on 5 for F" .

We may also assume p G P° x (P\\A), and for notational convenience

assume A = [λ,F(λ)).

Let /λ : F(X) — > 2 be the name for the generic function for Pχ. We claim

that a = fχ fλ is a weak diamond for F on 5. So assume that η is a P° x Pχ-

name such that

p Ih "77 G

Let N = (Ni : i < λ) be a continuous increasing sequence of elementary

submodels of H(χ) (for some large enough χ) satisfying
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CΊ, p, r/, 5, F,... e T V o

Define a name C2 by

a[GpoxPχ] n\ = NaΓ}\ = a}".

Since C^ is the name of a club set, we can find an ordinal δ and a condition

ς > p in P° x P\ such that

As g Ih "δ G *S"' clearly the set J§ C P° x P\ [A is predense above g where

J5 = {r G P° x (PΛ ΓA) : r forces that 5 G §}.

As <? Ih "5 G C2", clearly for every a < δ the set J5>α C P° x (PλΓ(<* U A)) is

predense above ς, where

Zδ,a = {r G P° x (PΛ Γ(ί U A)) : for some β G (α, δ) r forces that β G CΊ}.

Why? Let G C P° x Pλ be generic over V, and 0 G G, so 5 G C^G] hence

Λfe [G] Π λ = 5 C ΛΓ, so there is β G (α, 5) Π CΊ [G] hence for some p G AΓ5 [G] Π G

we have p Ih "β G CΊ" , so p G 2i,α Π G.

Define g7 G P° x Pλ by g'fP0 - q\P°, q'\Pχ - gί(Pλr(5 U A)). It is clear

that also J§ and J$)α (for a < δ) are predense above q1 hence

^ Ih "(5 G 5 and J - sup(CΊ n δ) hence δ G CΊ".

(Alternatively for every (P° x P\)-name r G N$ of an ordinal < λ the set

JΓ = {p :p G P° x PΛ and p\P\ G PΛ \(δ U A) and p forces a value to τ

which is 7T)P and is < δ}

is predense above q1 ', hence
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So since Ih «CΊ G AΓ0[G] C Nδ[G\n, we also have qf Ih "5 G CV'.)

But now we can extend qf to a condition q" forcing a value to F(rjfα), say f,

again by the choice of A w.l.o.g. q" G PO x Pf(ί U A). Now we can extend q"

to a condition forcing f\(ot) = I*, a contradiction. Hb.n

The following variation of the weak diamond is also sufficient for our

purposes (see more in [Sh:576, §1, §3]).

2.12 Definition. 1) We say F : λ>2 -> 2 is "μ-definable" if for some Y C λ,

for every δ < λ, η G 52 we can compute F(η) in L[r/, V]. If μ = X we may omit

it.

2) We say F is "weakly definable" if it is //-definable for some μ < 2λ.

2.13 Remark. 1) For the proof of 2.7A it is enough to have the weak diamond

for all weakly definable F. (We let the set Y code G, (Ga : a < λ), H, and for

each a where Ga+ι/Ga is not free, Y computes a function / G Fact (Gα+ι, if),

/f(Gα x Gα = 0, and in V there is no g G Trans (Gα+ι, -ff), g\Ga = 0, / = 50.

See [MkSh:313] for a related argument.)

2) Now all Easton forcings P/ (not just the ones satisfying ® from Theorem

2.11 stating with universe satisfying GCH) satisfies: in VFf the definable weak

diamonds hold for 5 C λ whenever λ is regular uncountable, S stationary.

§3. Weak Diamond for #2 Assuming CH

3.1 Definition. Let λ be a cardinal and S C λ. The sequence ή — (η$ : δ G S)

is called a ladder system if for all δ G 5, 775 = (ηδ(i) i < ^g(^)) is increasing

and cofinal in δ. We say that ή is continuous if each η$ is continuous.

η has the uniformization [alternatively: club uniformization] property if:

Whenever c = (c$ : δ G S) is a sequence of functions c§ : £g(rj§) — > 2, then we

can find a function ft : λ — > 2 such that for each δ € S the set

: cδ(ί) =
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is cobounded [alternatively: contains a closed unbounded set] . (In this case we

say that h "uniformizes" c.)

3.2 Remark.

(1) If η is a ladder system on S then we can thin out η to a ladder system η'

on 5 satisfying £g(η'δ) = cf (5) for all δ G S. Moreover, if ή was continuous,

and if η had the uniformization property, then also η1 will have it.

(2) If 2*° < 2N l, then no ladder system on S% d= {δ < HI : cf(<J) = H0} has

the uniformization property.

Proof of (2). ^Prorn 2K° < 2*1 we conclude that Unif (Ni, 2, 2H°) fails (by 1.10).

Let — * be the equivalence relation on ωe2 defined by / =* g iff Vfc 3n > k such

that f ( n ) — g(ri). Let A = ω2/ =* be the set of equivalence classes. By the

failure of Unif (Ni, 2, 2*°) we know that

(*) VF : ωι>2 -> A3/ι : ωi -> AV# : cji -> 2 [{α : F(prα) ^ Λ(α)} stationary].

Fix a ladder system f/ = (775 : δ G 5o). We will show that η does not have

the uniformization property. Let

F(s) = (so ηδ/ =*) G A for s G

Let h : ω\ — > A be as in (*), and let h : ω\ — > 2^ be such that

Λ(α) = (Λ(α)/ =*).

Define cδ : ω -> 2 by c$(π) = Λ(5)(n). Now check that c = (cδ : δ e SQ)

witnesses the failure of the uniformization property of η. D3>2

Recall that S? d= {i < N2 : cf(i) = HI}.

In this section we will consider continuous ladder systems on Sj, and we ask

the following

3.3 Question. Can η = (ηδ : δ G Sf } have the (club) uniformization property

(with 77^ increasing continuous with limit 5, of length cf (ί))?

We shall answer this question negatively even for club uniformization

property in Conclusion 3.7 assuming 2^° = MI.



984 Appendix. On Weak Diamonds and the Power of Ext

3.4 Why only for continuous η$7. The reader may ask what happens if

we waive the restriction that η§ be a continuous sequence and require just

η$ which is cofinal in δl By works of the author (see in [Sh:80], Steinhorn

and King [SK] and [Sh:186] and very lately [Sh:587]) even assuming GCH a

sequence (η$ : δ G S^) may have the uniformization property. But if we require

e.g. each c$ to be eventually constant, for every η§ which enumerates a club

of 5, we have consistency. Also if we restrict ourselves to (η§ : δ G S) where

S C Si, Si \ S stationary we have consistency results.

3.4A Discussion. This shows the impossibility of some generalizations of

MA to Ni-complete forcing notions. Why? Suppose ή = (η§ : δ G Sj2), η§

is increasing continuous with limit 5, and c = (05 : δ € Sjf), c$ G ωι2. We

define Pη^ = {p '• p = (u, i, d, /) = (up, ip, Jp, fp) where u is a countable subset

of Si, i a successor ordinal < ωι, d = (d$ : δ G u), d£ a closed subset of

i, / is a function from Dom(/) = {ηs(j) '• S G n, j < i} to {0,1} such that

j G cfo & 5 G u =Φ f ( η δ ( j ) ) = Cδ(j)} ordered by p < q iff up C u9, zp < i9,

[δ euP ^dp

δ=dq

δΓ]i*], fP C /«, and ip < iq & δι G up & 52 G up &ix 7^ 52 =>

{%U) : j e [i«,α;ι)} Π {^2(j) : j G [i«,ωι)} - 0.

So:

(*) if the answer to 3.3 is no as exemplified by c, tten there is no directed

G C P^jδ which intersect each I$ti — {p G P^,c : 5 G up and i < ip and

cίj \ i ^ 0} which is dense.

So any generalization of MA as above necessarily does not include Pη^

which is a quite nice forcing notion: it is Ni-complete, and can be divided to

HI formulas, each NI-directed.

3.5 Convention. Let F denote a function from

{h : h a function, Dom(/ι) C u;2 is countable, Rang(/ι) C 2} into 2 = {0,1}.

3.6 Theorem. 1) (2*° = NI): For any function F and fj = (ηδ : δ e S?) as in

3.1 ί/iere zs (cfo : 5 G Sι),ds G α;ι2, (we can call it a weak diamond sequence)

such that for any h : ω<2 —» 2, for stationarily many 5 G S ,̂ for stationarily
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many i < ω\ ,

2) Suppose

(a) θ < K = cf(/c), 2Θ = 2<κ = K (so AC = κ</c).

(b) S={δ<κ+ :cf(δ) = κ}.

(c) for each δ G 5, η§ is a strictly increasing continuous function from ft to δ

with limit 5.

(d) F is a function with domain {h : h a partial function from ft+ to {0, 1} of

cardinality < K} with range {0, 1}.

Then we can find (ds : δ G 5), d§ £ *2 such that for any h : ft+ — > {0, 1} for

stationarily many δ G 5 for stationarily many i < K, we have

3.6 A Remark. Note the "j < i" rather than "j < i" in part (1).

3.7 Conclusion. (CH) η — (η§ : δ G 5^) does not have the club uniformization

property.

Proof of 3.7. Let F(h) be Λ(MaxDom(/ι)) if defined, zero otherwise. By 3.6

there are for F, η$ a sequence (ds '• δ € 8%) as there; let c^(i) — 1 - cfc(z).

Proof of 3.6. We prove part (1) as (2) has essentially the same proof. Let λ

be big enough (e.g., (2^2)+), and M* be an expansion of (ί/"(λ), €) by Skolem

functions (if it has a definable well ordering it suffices).

Suppose 77, F form a counterexample. It is known that there is a function

G from {A : A C ω2, |A| < H0} to α i such that G(A) = G(B) implies

A,B have the same order type and their intersection is an initial segment

of both (e.g. if ha : a —» ω\ is one-to-one for α < α i, we let GQ(A) =

{(otp(A Π α),otp(A Π β), hβ(a)} : a e A and β G A}. Now G0 is as required

except that Rang(G0) 2 ωi but |Rang(G0)| < #ι so we can correct this).



986 Appendix. On Weak Diamonds and the Power of Ext

We now define a procedure for defining for any p G ί/"(λ), (<?δ : δ G 5?)

where c£ : ω\ —> H(ω\), which we shall use later.

For every δ G Sf, i < ωi, let 7V^ be the Skolem hull of {5,i,p} in M*,

and let

c£(i) d= ( isomorphism type (tf£.,p, 5,i), G(JV£. n «2)).

Remarks. I) The model of (Ng^p^δ^i) is not in -ff(Nι), but since JVJ^ is

countable we can assume its isomorphism type does belong.

2)(JVj>

ί,p, i, 5) is TVj^ expanded by three individual constants.

Now remember we have assumed F, ή form a counterexample. So for every

cs G W12 (δ G Si) there is ft$ : 6^2 — * 2 such that for a closed unbounded set of

δ G Si, for a closed unbounded set of i < ωi, c§(i) — F(h§\{ηs(j) : j < ί } ) .

Now we can easily replace 2 by the set ωcl as follows.

For /ι a function into ω2, let ftW be /ιtnl(i) - (h(i))(n) for i G Dom(Λ).

Define F* by: F*(ή) - (F(h^) : n < α;); now if we are given (cδ : δ e Sf)

where c5 G ̂ ("2), i.e., Q : ωi -> W2, so 4nl G ωι2 is well defined for each

δ G Sf and let /ι'nl : K2 -* 2 be such that for a club of 5 G S? for a club of

i < α i we have

Define Λ : H2 — > ω2 by Λ(i) = (hW(i) : n < α;), it is as required.

Now as \ω2\ = 2H° - |ff(Nι)|, we conclude:

(*) for every cδ G W l j f f(«ι) (5 G S?) there is ft : α;2 -> ff(^ι) such that for a

club of δ e Si for a club of i < α i, 05(1) = F*(h\{ηs(j) : j < i})

Now we define by induction on n < α;, p(n) G ίί(λ), and hn : ω^

Let p(0) = (ry). If we have defined p(n), let cγn* : ω\ — > ίί(Nι) be as we

have defined before (in 0), so by (*) there is a suitable hn : ^2 —> Ή"(^ι); i.e.,

there is a closed unbounded VFn C K2 such that for every δ G VFn Π 5 ,̂ there
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is a closed unbounded Wg C ω\ such that for i G WJ1, 5 G Wn Π 5^ we have:

c?δ

(n\ϊ) = F*(hn\{ηδ(j):j<i}).

Let p(n + 1) =f

(p(n), /in, W™, (W7 : 5 G Wn Π 5?>, <(JV*<n) : i < ωι) : δ G 5?».

Now let W = Πn<u, WU-> and for 5 G W let W* = Πn<u, wδ Clearly W is

a closed unbounded subset of N2, and W$ is a closed unbounded subset of ω\.

So for every δ G WΠ5ι, there is i(δ) G W$; so as ηδ(i(δ)) < δ by Fodor lemma,

for some i < N2 and z* < NI the set {5 G W Π 5? : ηδ(i(δ)) = i and i(5) = i*}

is stationary. As CH holds there are ίi, ί2 in W n 5^ and ξ < ω\ such that

A) ηβί (0 = % (0 moreover % \ (ξ + 1) - %2 f(ί + 1)

B) Ji < 52

C) ξ € W i , for £-1,2.

So clearly we can assume

D) there are no δ^δ^ satisfying (A), (B) and (C) such that δ{ < 5χ, δ\ < δ<2

Now as δι < 52, for some i > £,77^(1) / %(i), and there is a minimal

such i; but as 17̂  , 77^2 are increasing and continuous, such minimal i should be a

succesor ordinal, so there is a maximal ζ among those satisfying ζ < ω\ , ηδl \ζ —

%ΓC, %(C) = %(C) and C e Wδl Π W52. So ωi > Cf > ^^=1,2^ ^ Wδl

implies 775l(C f) 7^ ^ίC1) or at least ηδl \(ζ* + 1) ̂  % fCC 1 + 1).

So for every n

(a) cgn>(0=cgn)(0

as both are equal to F* :(hn\{ηδέ(j) ' j < C}) Looking at the definition of

c? (C) (see θ) we see tnat ̂ ! ,c is isomorphic to A^f2 C ' and ^et tne isomor~

phism be called gn. Note that the isomorphism is unique (as G in those models

is transitive well founded).

By the definition of (?δ (C)» clearly without loss of generality

9n\p(n)] =p(n),gn(δι) = δ<2,gn(ζ) = C
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Looking at p(n)'s definition we see that gn(nδι) = % and for n > 0

gn(W"-i) = W-1 and gn(W^1) = W?~l and gn(f^^) = N^ G

ΛrP(n)
7V52,C

As N%^~ is countable and belongs to </V^ ^ , it is also included in it,

hence gn \N^~1} is an isomorphism from N^~l} onto N^~l} hence (by the

uniqueness of gn )

(β)

For ί = 1,2 let 7V> = \Jn<ωN$$ and # = \Jn<ωgn] so # is an isomorphism

from NI to 7V2.

By the definition of c^n)(C), clearly the second coordinates are the same, thus:

(7)

hence those sets have their intersection an initial segment of both hence also

NI Π α;2, ΛΓ2 Π α;2 have their intersection an initial segment of both (as usually,

we are not strictly distinguishing between a model and its universe), hence g

is the identity on NI Π AΓ2 Π ω^.

Note that clearly δι φ N% as g(δι) = 6% ^ ίi, hence 62 ^ NI.

Let <j; d= Min(α;2 Π N£ \ (̂  n AΓ2)), so clearly δ*t < δ£, gffi) = δ% and so

cf(ίί)=cf(ί5).

Why? Otherwise cf(5ί) - H0, and as 5? G Wi for some n, 5ι G ΛΓj^,

hence there is {βm : m < ω} C ίj Π ΛΓ^ ^ cofinal in ίj. By the choice

of ίf,/3m G JV! Π JV2, hence ^(/3m) = βm let /?* - mm(#£(J \ Um^m), so

^* e JVgJ C <5+1), so δl = Sup{/3m : m < ω} = sup(/?* Π ΛΓjJJ) G 7V2,

contradiction.

So we have proved (5).
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Now let for ί = 1,2, αι — NI Π α i, (it is an initial segment) and βt =

sup(Nι Π 5|) hence βι = /32 (by δ% definition) and call it β. As cf(ί^) > NI

clearly ί| > α i, and so clearly by g's existence αi = α2 and call it a (also as

α i G NI Π ΛΓ2 Π α;2, necessarily NI Π α i = 7V2 Π α i).

As 775* is a one to one function (being increasing) from α i, clearly

775* (i) G A/i iff i < a.

Also NI \= "(ffaj W '- i < ωι) is unbounded below ίj" (remember A/i -< M* as

N$$ ^M* for each n).

So clearly /3 = Sup{r/5j (i) : i < α}; but η§* is increasing continuous and α

is a limit ordinal (being NI Π α i), hence β = η$* (a).

For the same reasons β — 775* (α).

Now 775* fα = 775* fα because ^(775*) = 775*, and α G WJi for each n < ω(t —

1,2) as NI \= "WJl is a closed unbounded subset of α i". For similar reasons

δl G Wn for each n: as Wn G ̂ ^^ hence Wn G AΓ^ hence Wn G NI Π ΛΓ2,

and as Λ/Ί, AΓ2 X M*,M* has Skolem functions, clearly ΛΓi Π 7V2 -< M*, so

Wn is an unbounded subset of NI Π AΓ2 Π α;2. So in A^, Wn is unbounded in

δl = Min[(α;2 Π Nt) \ (Nι Π JV2)], hence AΓ^ μ "5; G HV' hence 5; G Wn.

We can conclude that δ^δ^β satisfy the requirements (A), (B), (C)

on #ι,£2,ξ. Hence by requirement (D) on them, δι — 5^, 52 = 6%. But,

ζ G Nfa^ C AΓ^ hence C < ωi Π AΓi Π AΓ2 hence C < «, so clause (α) contradicts

the choice of ζ, so we get a contradiction, thus finishing the proof of the theorem

(3.6). D3.6

3.8 Concluding Remarks. 1) If λ = /s+, K, is strongly inaccessible then the

conclusion of 3.6(2) may fail (see [Sh:186], we repeat the proof in [Sh:64], see

more in [Sh:587]).

2) If 2H° = 2N 2, then it follows that for some F and 77 we have uniformization.

Just choose 77 = (775 : δ G 5^) such that (775 fα; : δ G S%) are pairwise distinct and

for every δ G S± and non successor i < ω\ and n < ω for some non successor

j < ω-2 we have ηδ(ί + n) = j + n. Now let ((c] : δ G 5?) : 7 < 2*2} list the set
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of sequences (eg ' δ G S?),c$ G ωι2. Let (ra : a < 2H°) list distinct reals, and

we let hΊ G W 22 be: Λ7(z -f n) = rτ(n) for any non-successor ordinal z < ω\.

Now define F by: F(h) — c^(i) if Dom(/ι) = {α? : j < i} with QJ increasing,

i > α;, (h(an) : n < ω] — rΊ.

3) In 3.6(2) we may demand that (e) F(h\Rang(ηs\(i 4- 1))) only depend on

h(ηs(i)) and i. Then we can weaken clause (a) there as follows.

3.9 Theorem. Suppose

(a) NO < cf (0) - θ < ft = 2Θ,

(b) S={δ<κ+ :cf(5)>0+}.

(c) for each δ e 5, τ?<5 is a strictly increasing continuous function from cf (<5) to

5 with limit δ.

(d) F is a function with domain {h : h a partial function from ft+ to ft such

that |Dom(Λ)| < θ} with range {0,1}.

(e) ά=(al :δ eS,ί< cf(ί)), αf C ̂ (i) -h 1 and |αα| < θ,

Then we can find (d§ : δ G 5), cί̂  € K2 such that for any h : ft+ —> ft for

stationarily many 5 e 5 for stationarily many i < cf(J), dj(i) = F(f t fαf) .

3.10 Conclusion. If ^, ft,fy as above t/ien ry = (775 : δ G 5) does not have the

club uniformization property.

Proo/ o/ 5.^0. Let F(h) = Λ(MaxDom(Λ)) if defined, zero otherwise. By 3.6

there are for F, 77$ a sequence (ofo : 5 G Sj); let ^(i) = 1 — d§(i).

The proof of 3.10 is very similar to that of 3.6.

Proof of 3.9. Let λ be big enough (e.g., (D3(ft))+), and M* be an expansion of

(H(X), G,r;, α,z)^<0 be Skolem functions (if it has a definable well ordering it

suffices).

Suppose fy, F form a counterexample. It is known that there is a function G

from {,4 : A C ft+, |A| < θ} to ft such that G(A) = G(B) implies A Π f t = 5Πft,

^4,5 have the same order type and their intersection is an initial segment

of both (e.g. if ha : α —> ft is one-to-one for a < ft+, we let Go(A) =
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{(otp(A Π α),otp(^4 Π /?), hβ(a)) : a e A and β G A}. Now GO is as required

except that Rang(Go) <2 « but |Rang(G0)| < κθ — K so we can correct this).

We now define a procedure for defining for any p G #(λ), ((?δ : 5 G 5),

c£ : cf(5) —> H(θ+), which we shall use later.

For every <S G 5, i < ωi, let N^ be the Skolem hull of {5, i,p}U{α : α < θ}

in M*, and let

0 cP(i) 1lf { isomorphism type (N^p, δ, i), G(^ Π

Remarks. 1) The model of {ΛΓj^p, ί,i) is not in H(θ+), but since ΛΓ^ has

cardinality < ̂  we can assume its isomorphism type does belong.

2)(7Vj?

i,p, z,£) is JV^ expanded by three individual constants.

Now remember we have assumed

0 F, a, η form a counterexample.

So for every c& G cf(^2 (for 5 G 5) there is h$ : /^+ — > /€ such that for

a closed unbounded set of 5 G 5, for a closed unbounded set of i < cf(ί),

Now we can easily replace 2 by the set ^2 as follows.

For ε < θ and h a function into *2, let /i^ be / iW(z) = (Λ(i))(e) for

i G Dom(Λ). Define F* by: F*(/ι) = (F(/ιIεl) : ε < 0); now if c* G cf(5)(^2)

for δ G 5, i.e., c5 : cf(ί) -> ^2 (so 4el are well defined for ε < 6>). So by

the assumption "F, α and 77 form a counterexample" for each ε < θ there is

hlε] : ^+ _^ 2 be such that for a club of 5 G 5 for a club of i < cf (δ)

Define the function Λ : κ+ -> ^2 by h(i) = (Λ[e](ϊ) : ε < α;>.
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Now as \Θ2\ = K = |if(0+)|, we conclude:

(*) for every cδ G c fWjϊ(0+) (5 G 5) there is ft : AC+ -> #(0+) such that for a

club of δ G S for a club of i < cf(ί) we have c$(i) = F*(/ιfαf ).

Now we define by induction on n < ω, p(ri) G H(X), and /ιn : «+ — > H(θ+).

Let p(0) - (η,ά,F). If we have defined p(n), let c£(n) : cf(ί) -> #(0+) be

as we have defined before (in 0), so by (*) there is a suitable /ιn : /ς+ — > H(θ+)]

i.e., there is a closed unbounded VFn C AV+ such that for every S G W™ Π 5,

there is a closed unbounded W£ C cf (ί) such that for i G Wf, δ G VFn Π 5 we

Let

p(n 4- 1) -f (p(n), hn, Wn, (W? : ί G Wn Π 5), {{JVgn) : t < cf (δ)) : ί G 5)}.

Now let W = Γ\n<ωwn> and for δ £ W> Wδ = Γ\n<ω
wδ- Clearly W

is a closed unbounded subset of «+, and if δ G VF Π S then W$ is a closed

unbounded subset of c/(ί). So for every 5 G W Π 5, there is i(δ) G W^; so

as ηs(i(δ)) < δ for some i < κ+ and i* < K and 5 = cf(ί) < K the set

{δ e W Π S : η$(i(δ)) = i,i(δ) = i* and cf(ί) = δ} is stationary. As K = κθ

holds there are Ji, #2 in W Π S and ξ < cf(ίι) such that

A) %1(0 = % a(Oandcf(ίι) = cf(J2)

B) ίi < ί2 (so both in W Π 5)

C) ξ G Wί£ for ί = 1, 2 (so ξ < cf (ί)).

So clearly we can assume

D) there are no ίj,^ satisfying (A), (B) and (C) such that δ\ < δι, δ% < #2

Now as δι < 62 for every large enough i < cf(ίι), riδ2(ϊ) > ίi, hence

{C < cf(ί) : C ̂  Wδl, ζ G Wi2 and ̂ (C) = %(C)} is a bounded subset of

cf(ίι). As W^jW^ are clubs of cf(Jι) and T/^,^ are increasing continuous,

the set above is closed hence it has a last element. So there is ζ < cf(<$ι) such
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that ηδί(ζ) = ηδ2(ζ) and ζ e Wδl Π W§2, but Cf > C,A^i,2C
f € Wδt implies

WΛCO^WΛCt)-

So for every n

(a)cgn )(0=cg">(0

as both are equal to F*(/ιnfα** (£)), which do not depend on t as ηδι(ζ) =

ηs2(ζ)) and they are equal to hn+ι(ηst(ζ)) Looking at the definition of <% (ζ)

(see Θ above) we see that N^^ is isomorphic to N^^ , and let the isomorphism

be gn. Note that the isomorphism is unique (as G in those models is transitive

well founded).

By the definition of <fδ (C)> clearly without loss of generality

gn(p(n)) =p(n),gn(δι) = δ2,gn(ζ) = ζ

Looking at the definition of M* and p(n), p(0) we see that gn&δi) — %

and for n > 0 we have gn(Wn~l) = Wn~l and g^W^'1) = Wg~l and

n (Np(n~1^ — Np^n~1^ (= /Vp(n)

9n(^sltζ ) - ^V52,C E iV52,C

As Nfζ~
l} is of cardinality Θ and belongs to JVjJJ, and Θ + 1 C 7V£(n)

clearly N$^~ ' is also included in it, hence gn\N%^~1' is an isomorphism

from N%^ζ~ onto N%^~ hence (by the uniqueness of #n and the previous

sentence)

For ί = 1,2 let ̂  = Un<w ^fc.c* and ^ = Un<ω^n; so g is an isomorphism

from NI to AΓ2.

By the definition of c££

(n)(C), clearly:

n Λ+ = G n

hence sets NI Π /ί+, A^2 Π ft+ have the same intersection with K and have



994 Appendix. On Weak Diamonds and the Power of Ext

their intersection an initial segment of both (as usually, we are not strictly

distinguishing between a model and its universe), hence g is the identity on

NI n W 2 π« + .

Note that clearly δι φ 7V2 as g(δι) = 62 ^ <Jι, hence 62 φ N\.

Let δ*t =f Min(«+ Π Nt \ (Nι Π ΛΓ2)), so clearly ί* < δt, g(δl) = δ%. Note

cf(ί ) < « (as 5; < «+) so cf(ί ) G AT/ Π (/c 4- 1) C #1 Π 7V2 Π «+ and so

cf (<Sf) = cf(&£). Call it σ, so σ G NI Π 7V2 Π (« + 1) is regular.

(δ) cf(<5*) > 0.

[Why? Otherwise cf(ίϊ) < 0, and as ij G JVi for some n, 5ι G W^, hence

there is b G JVf^, b = {βε : ε < σ} C 5* cofinal in δ^. As \b\ = σ < θ,

b G JV£(J and (9 + 1 C JVjJJ necessarily 6 - {& : ε < σ} C JVjJJ. By the

choice of <$ί,/Je G A/Ί Π N2 Π Λ:+, hence p(/?ε) = βε. Easily p(6) - {g(βε) : ε <

σ} = {βε : £ < σ} = b (as (9 + 1 C NI Π AΓ2) and ̂  N "5* = sup(6)" hence

^2 N "g(δ*) = suP(d(b)T that is ^2 N "ί5 = sup(fr)" so ίj = 5$, contradiction.]

So we have proved (ί).

Now for ί = 1,2 let α^ = sup [Λ^Πcf(ίι)], so as NIΪΊK — N2Γ]κ, clearly aι — α2

call it α. Let βt = sup(A^ Π ί|) hence /?ι = /32 (by ί|'s definition) and call it

As T/δ* is a one to one function (being increasing) from σ, clearly

ηδ*(i) eNiίSieσΠNi.

Also NI \= "(ηδ*(i) ' i < σ) is unbounded below ίj" (remember A/Ί X M* as

AΓJ^ ^ M* for each n).

So clearly β = Sup{τ?«5*(ΐ) : i < α}; but 775* is increasing continuous and α

is a limit ordinal (being sup(Nι Π σ)), hence β = η$* (a).

For the same reasons β = 77,5* (α).
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So η&* (a) — η$* (a) and α G WJl for each n < ω(£ = 1, 2) as

N£ |= " WJl is a closed unbounded subset of σ" . For similar reasons ί| G W™

for each n: as Wn G W£(£+1) hence Wn G N£, hence Wn G NI Π 7V2, and

as NI,NZ -< M*,M* has Skolem functions, clearly Λ/i Π A^2 -< M*, so Wn

is an unbounded subset of Λ/i Π N% Π κ+. So in N£jWn is unbounded in

δl - Min[(κ+ Π A^) \ (Nι Π JV2)], hence Nέ |= "(5; G Wn" hence J| G Wn.

We can conclude that δ$, δ%, β satisfy the requirements (A), (B), (C)

on £ι,#2,£ Hence by require-mint (D) on them, δι = 5J, 52 = <52. But,

j ^ C 7V^ hence C G AίΠA/iΠ^ hence ζ < α, so clause (α) contradicts theG

choice of £, so we get a contradiction, thus finishing the proof of the theorem

(3.9). D3.9

3.11 Remark. We can replace in the conclusion of 3.9, F(h\a^) by Ff(h\ so

F is replaced by (Ff : δ G 5, ί < cf(5)}, where Ff is a function from κ K to

{0, 1}. Also we may weaken αf C ryo(0 4- 1 to αf C λ+.






