Appendix. On Weak Diamonds and the Power of Ext

§0. Introduction

In [DvSh:65] K. Devlin and S. Shelah introduced a combinatorial principle Φ which they called the weak diamond. It explains some of the restrictions in theorems of the form "the limit of iteration does not add reals". See more on this in [Sh:186] and Mekler and Shelah [MkSh:274] (on consistency of uniformization properties) [Sh:208] (consistency of "ZFC+2 $2^{\aleph_{0}}<2^{\aleph_{1}}<$ $\left.2^{\aleph_{2}}+\neg \Phi_{\left\{\delta<\aleph_{2}: c f(\delta)=\aleph_{1}\right\}} "\right)$ and very lately [Sh:587].

Explanation. Jensen's diamond for \aleph_{1}, denoted $\diamond_{\aleph_{1}}$, see [Jn], can be formulated as: There exists a sequence of functions $\left\{g_{\alpha}: g_{\alpha}\right.$ a function from α to α where $\left.\alpha<\omega_{1}\right\}$ such that for every $f: \omega_{1} \rightarrow \omega_{1}$ we have $\left\{\alpha<\omega_{1}: f\left\lceil\alpha=g_{\alpha}\right\} \not \equiv 0 \bmod \mathcal{D}_{\aleph_{1}}\right.$ (recall that $\mathcal{D}_{\aleph_{1}}$ is the filter on λ generated by the family of closed unbounded subsets of λ). Clearly $\diamond_{\aleph_{1}} \rightarrow 2^{\aleph_{0}}=\aleph_{1}$. Jensen (see [DeJo]) also proved that $2^{\aleph_{0}}=\aleph_{1} \nRightarrow \diamond_{\aleph_{1}}$ (see Chapters V and VII remembering that $\diamond_{\aleph_{1}}$ implies existence of an Aronszajn tree which is not special (even a Souslin tree)). You may ask, is there a diamond like principle which follows from $2^{\aleph_{0}}=\aleph_{1}$?
K. Devlin and S. Shelah [DvSh:65] answered this question positively, formulating a principle Φ which says:

$$
\begin{aligned}
(*)_{1} & \left(\forall F: \omega_{1}>2 \rightarrow 2\right)\left(\exists h: \omega_{1} \rightarrow 2\right)\left(\forall \eta: \omega_{1} \rightarrow 2\right) \\
& \left\{\alpha<\omega_{1}: F(\eta \upharpoonright \alpha)=h(\alpha)\right\} \not \equiv 0 \bmod \mathcal{D}_{\aleph_{1}} .
\end{aligned}
$$

The author had hoped that $2^{\aleph_{0}}<2^{\aleph_{1}}<2^{\aleph_{2}}$ would imply that S_{0}^{2} is not small, i.e. for all $F:{ }^{\aleph_{2}>} \aleph_{2} \rightarrow 2$ there exists $\eta \in{ }^{\aleph_{2}} 2$ such that for all $g: \aleph_{2} \rightarrow \aleph_{2}$, for all C club of \aleph_{2} there is $S \in S_{0}^{2} \cap C$ with $\eta(\delta) \neq F(g\lceil\delta)$. In [Sh:208] a consistency result contradicting this was proved.

In fact $2^{\aleph_{0}}<2^{\aleph_{1}} \Longleftrightarrow \Phi$. If the statement above holds for F, h we say that h is a weak diamond say for (the colouring) F. The principle Φ was used as a successful substitute for $\diamond_{N_{1}}$ in [Sh:88], [AbSh:114], [Sh:140] and [Sh:192].

An equivalent form of Φ is (just replace h by $1-h$)
$(*)_{2}\left(\forall F:{ }^{\omega_{1}>} 2 \rightarrow 2\right)\left(\exists h \in{ }^{\omega_{1}} 2\right)\left(\forall \eta \in{ }^{\omega_{1}} 2\right)$
$\left[\left\{\alpha<\omega_{1}: F(\eta \upharpoonright \alpha)=h(\alpha)\right\} \not \equiv \lambda \bmod \mathcal{D}_{\aleph_{1}}\right]$.
Φ can easily be generalized to higher cardinals than \aleph_{1}, for example define for uncountable regular λ and $\kappa \leq \lambda$:

$$
\begin{array}{r}
\Phi_{\lambda}^{\kappa} \Longleftrightarrow\left(\forall F:{ }^{\lambda>} 2 \rightarrow \kappa\right)(\exists h: \lambda \rightarrow \kappa)(\forall \eta: \lambda \rightarrow 2) \\
{\left[\left\{\alpha<\lambda: F(h\lceil\alpha)=\eta(\alpha)\} \not \equiv 0 \bmod \mathcal{D}_{\lambda}\right] .\right.}
\end{array}
$$

So $\Phi \Longleftrightarrow \Phi_{\aleph_{1}}^{2}$.
We thank Grossberg for reminding us that because of a flaw in [DvSh:65] he and Magidor saw conclusion 1.15 after which this section was written.

There is natural generalization. Instead of quantifying over $\eta \in{ }^{\lambda} 2=X_{i<\lambda} 2$ consider quantifying over $\eta \in X_{i<\lambda} \bar{\mu}_{i}$ (and change the domain of F accordingly).

These generalizations are our goal in the first section but instead of generalizing $\Phi_{\aleph_{1}}^{2}$ we generalize its negation. Another possible generalization is $\Phi_{\aleph_{1}}^{\kappa}$ for $2<\kappa \leq \aleph_{0}$ which by VIII $\S 4$ is stronger (its negation is consistent with G.C.H.). We do not assume the reader is familiar with [DvSh:65], for example the hard direction of $\Phi_{\aleph_{1}}^{2} \Longleftrightarrow 2^{\aleph_{0}}<2^{\aleph_{1}}$ follows from Theorem 1.10 substituting $\lambda=\aleph_{1}$ and $\mu=2$. This generalization of $\Phi_{\aleph_{1}}^{2}$ was used in [Sh:88 §6] and mentioned there in a remark; since we were asked to explain it, we present it here.

In Sect. 2 we present applications of the principle from $\S 1$ to the Whitehead problem, we shall use it for two theorems. The first, Theorem 2.2, evaluates the cardinality of $\operatorname{Ext}(G, H)$, and the second one is Theorem 2.4 where we
give information on the torsion free rank of $\operatorname{Ext}(G, H)$. We shall define here all the group theoretical terminology and shall use only one easy lemma which we quote from somewhere else. But this section is not an introduction to the subject of the Whitehead problem; the interested reader is referred to the book of P. Eklof and A. Mekler [EM], to the exposition [E] or to the original papers where the corresponding theorems were proved (from stronger set theoretical hypotheses) [Sh:44],[HHSh:91].

In [Sh:64] another combinatorial principle was introduced:
For a limit ordinal δ less than ω_{1}, an increasing ω-sequence η_{δ} of ordinals cofinal in δ is called a ladder on δ. A ladder system $\bar{\eta}$ is $\left\{\eta_{\delta}: \delta \in S\right\}$, where $S \subseteq \omega_{1}$; we say that such a ladder system $\bar{\eta}$ has the uniformization property if for every $\left\{c_{\delta} \in{ }^{\omega} 2: \delta \in S\right\}$ there exists $h \in{ }^{\omega_{1}} 2$ such that $(\forall \delta \in S)(\exists n<\omega)(\forall k<$ $\omega)\left[k>n \rightarrow c_{\delta}(k)=h\left(\eta_{\delta}(k)\right)\right]$. In $\S 3$ we define the uniformization property for a ladder system $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S\right\rangle$, where S a set of ordinals with each member of cofinality \aleph_{0}, in particular $S=\left\{\delta<\aleph_{2}: \operatorname{cf}(\delta)=\aleph_{0}\right\}$. We try to prove an analogous result to the one in Sect. 1, and we shall prove it assuming $2^{\aleph_{0}}=\aleph_{1}$; for more details see the introduction to Sect. 3. Sect. 3 does not depend on sections 1 and 2.

§1. Unif: a Strong Negation of the Weak Diamond

1.0 Notation. We will write $\underset{i<\lambda}{ } \mu_{i}$ for the cartesian product of the ordinals μ_{i} (that is for $\left\{f: f\right.$ a function with domain λ such that $\left.f(i)<\mu_{i}\right\}$), and will write $\prod_{i<\lambda} \mu_{i}$ for the cardinality of this product.

Let's recall that (see $(*)_{2}$ in the introduction) the negation of $\Phi_{\aleph_{1}}^{2}$ is:

$$
\begin{array}{r}
\left(\exists F: \omega_{1}>2 \rightarrow 2\right)\left(\forall h: \omega_{1} \rightarrow 2\right)\left(\exists \eta: \omega_{1} \rightarrow 2\right) \\
\quad\left[\left\{\alpha<\omega_{1}: F(\eta \upharpoonright \alpha)=h(\alpha)\right\} \in \mathcal{D}_{\aleph_{1}}\right] .
\end{array}
$$

This is the motivation for the following definition (we replace sometimes functions by sequences, when sequences are easier to handle).
1.1 Definition. For a regular uncountable λ and sequences $\bar{\mu}=\langle\bar{\mu}(i): i<\lambda\rangle$, $\bar{\chi}=\langle\bar{\chi}(i): i<\lambda\rangle$ of cardinals ≥ 1 let Unif $(\lambda, \bar{\mu}, \bar{\chi})$ mean: There is a function F with domain $D(\bar{\mu}) \stackrel{\text { def }}{=} \bigcup_{\alpha<\lambda} X_{i<\alpha} \bar{\mu}(i)$ such that:
(a) for every $\alpha<\lambda$ and $\eta \in D_{\alpha}(\bar{\mu}) \stackrel{\text { def }}{=} \mathbf{X}_{i<\alpha} \bar{\mu}(i)$ we have $F(\eta)<\bar{\chi}(\alpha)$.
(b) for every $h \in X_{\alpha<\lambda} \bar{\chi}(\alpha)$ there exists $\eta \in X_{\alpha<\lambda} \bar{\mu}(\alpha)$ such that the set $\{\alpha<\lambda: F(\eta \upharpoonright \alpha)=h(\alpha)\}$ belongs to \mathcal{D}_{λ}.
1.1A Notation. (1) If $\bar{\mu}$ is constant, i.e., $\bar{\mu}=\langle\mu: i<\lambda\rangle$ we may write μ; similarly for $\bar{\chi}$.
(2) If $(\forall \alpha<\lambda)[\bar{\mu}(1+\alpha)=\bar{\mu}(1)]$ we may write $\langle\mu(0), \mu(1)\rangle$ instead of $\bar{\mu}$ and Unif $(\lambda, \mu(0), \mu(1), \bar{\chi})$ instead of Unif $(\lambda, \bar{\mu}, \bar{\chi})$. We let

$$
D_{\alpha}\left(\mu_{0}, \mu_{1}\right) \stackrel{\text { def }}{=}\left\{\eta: \eta \in^{\alpha} \operatorname{Ord}, \eta(0)<\mu_{0} \text { and } \eta(1+i)<\mu_{1}\right\}
$$

and

$$
D\left(\left\langle\mu_{0}, \mu_{1}\right\rangle\right)=D\left(\mu_{0}, \mu_{1}\right) \stackrel{\text { def }}{=} D_{<\lambda}\left(\mu_{0}, \mu_{1}\right)=\bigcup_{\alpha<\lambda} D_{\alpha}\left(\mu_{0}, \mu_{1}\right)
$$

Similarly we define $D_{\alpha}(\langle\mu\rangle)=D_{\alpha}(\mu)$, so $D(\mu)={ }^{\lambda>} \mu$.
(3) From now on we assume that λ is an uncountable regular cardinal.
(4) Remember that we use δ always as limit ordinal; so for $S \subseteq \lambda$ the set $\{\delta<\lambda: \delta \in S\}$ is the set of limit ordinals which belong to S.
1.1B Remark. (1) Unif $\left(\aleph_{1}, 2,2\right)$ is the negation of $\Phi_{\aleph_{1}}^{2}$ i.e., it is the negation of the weak diamond.
(2) We shall say (concerning Definition 1.1) that the function F exemplifies Unif $(\lambda, \bar{\mu}, \bar{\chi})$.
(3) If $2^{\aleph_{0}}=2^{\aleph_{1}}$, then Unif $\left(\aleph_{1}, 2,2\right)$ holds. (Noted by Abraham: the converse is a theorem: see 1.10.)

Proof of (3). Let $H:{ }^{\omega} 2 \rightarrow{ }^{\omega_{1}} 2$ be onto. Define $F:{ }^{\omega_{1}>} 2 \rightarrow 2$ as follows:

If $\eta \in{ }^{n} 2, n<\omega$, then $F(\eta)=0$
If $\eta \in{ }^{\alpha} 2, \alpha \geq \omega$, then $F(\eta)=H(\eta \upharpoonright \omega)(\alpha)$.
Now check that F witnesses Unif $\left(\aleph_{1}, 2,2\right)$.
Recall that we can strengthen the statement in \diamond by working only on a stationary set $S \subseteq \lambda$. Similarly we can consider stronger forms of the weak diamond, i.e. weaker forms of Unif by relativizing to a stationary set S.
1.2 Definition. Let $\lambda, \bar{\mu}, \bar{\chi}$ be as in Definition 1.1 and let $S \subseteq \lambda$.
(1) Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ is defined similarly to the definition of $\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$: just replace (b) there by
(b^{\prime}) for every $h \in \mathrm{X}_{\alpha<\lambda} \bar{\chi}(\alpha)$ there exists $\eta \in X_{\alpha<\lambda} \bar{\mu}(\alpha)$ such that the set $\{\delta \in S: F(\eta \upharpoonright \delta)=h(\delta)\}$ belongs to $\mathcal{D}_{\lambda}+S$.
(2) Let Id $-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi}) \stackrel{\text { def }}{=}\{S \in \lambda: \operatorname{Unif}(\lambda, S, \bar{\mu}, \bar{\chi})$ holds $\}$.
(3) If $(\forall \alpha)\left(\bar{\mu}(1+\alpha)=\mu_{1}\right)$ we may $\operatorname{write} \operatorname{Unif}\left(\lambda, S, \mu(0), \mu_{1}, \bar{\chi}\right)$ and Id Unif $\left(\lambda, \mu(0), \mu_{1}, \bar{\chi}\right)$ in parts (1) and (2) respectively. So Unif $\left(\lambda, \mu_{0}, \mu_{1}, \bar{\chi}\right)$ mean $\operatorname{Unif}\left(\lambda, \lambda, \mu_{0}, \mu_{1}, \bar{\chi}\right)$.
(4) If $\bar{\chi}$ is constantly χ we may write χ (in Definitions $1.1,1.2(1),(2),(3)$).
1.2A Remark. The notation of Definition 1.2(2) will be justified in Lemma 1.9 where we shall prove that if Unif $(\lambda, \bar{\mu}, \bar{\chi})$ fails, then Id $-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$ is an ideal. Note also that Unif $(\lambda, \bar{\mu}, \bar{\chi})$ is trivially equivalent to $\operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi}) \neq$ $\mathcal{P}(\lambda)$.
1.3 Remark. The diamond \diamond_{λ} implies the weak diamond Φ_{λ}^{2}, and more generally $\diamond_{\lambda}(S)$ implies the failure of $\operatorname{Unif}(\lambda, S, 2,2,2)$.

Proof. Let $\left\langle\eta_{\alpha}: \alpha \in S\right\rangle$ be such that for every $\eta: \lambda \rightarrow 2$ the set $\{\alpha \in S: \eta \upharpoonright \alpha=$ $\left.\eta_{\alpha}\right\}$ is stationary. Now if $F:{ }^{\lambda>} 2 \rightarrow 2$, then we let $h: \lambda \rightarrow 2$ be defined by $h(\alpha)=F\left(\eta_{\alpha}\right)$, so clearly for any $\eta: \lambda \rightarrow 2$ the set $\{\alpha \in S: F(\eta\lceil\alpha)=h(\alpha)\}$ will be stationary.
(1) If $\{i<\lambda: \bar{\chi}(i)=1\} \in \mathcal{D}_{\lambda}$ then Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ holds.
(2) Let $\bar{\chi}^{1}, \bar{\chi}^{2}$ satisfy the requirements for $\bar{\chi}$ in Definition 1.1. then

$$
\begin{gathered}
\left\{i \in S: \bar{\chi}^{1}(i)=\bar{\chi}^{2}(i)\right\} \in \mathcal{D}_{\lambda}+S \text { imply that } \\
\text { Unif }\left(\lambda, S, \bar{\mu}, \bar{\chi}^{1}\right) \Longleftrightarrow \operatorname{Unif}\left(\lambda, S, \bar{\mu}, \bar{\chi}^{2}\right)
\end{gathered}
$$

(3) Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ implies that $\left|X_{\alpha<\lambda} \bar{\chi}(\alpha) /\left(\mathcal{D}_{\lambda}+S\right)\right| \leq \prod_{\alpha<\lambda} \bar{\mu}(\alpha)$ (notice that the left hand side of the inequality is the cardinality of a reduced product).
(4) If there exists a $\beta<\lambda$ such that $\left|X_{\alpha<\lambda} \bar{\chi}(\alpha) /\left(\mathcal{D}_{\lambda}+S\right)\right| \leq \prod_{\alpha<\beta} \bar{\mu}(\alpha)$, then Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ holds.
(5) Let $\bar{\mu}, \bar{\chi}, \bar{\mu}^{*}, \bar{\chi}^{*}$ be sequences of cardinals ≥ 1 of length λ such that for every $\alpha<\lambda$ we have $\bar{\chi}^{*}(\alpha) \leq \bar{\chi}(\alpha)$ and $\bar{\mu}(\alpha) \leq \bar{\mu}^{*}(\alpha)$. Then $\operatorname{Unif}(\lambda, S, \bar{\mu}, \bar{\chi}) \Rightarrow \operatorname{Unif}\left(\lambda, S, \bar{\mu}^{*}, \bar{\chi}^{*}\right)$.
(6) If $S^{*}=\{\delta \in S: \bar{\chi}(\delta)>1\}$ then Unif $(\lambda, S, \bar{\mu}, \bar{\chi}) \Leftrightarrow \operatorname{Unif}\left(\lambda, S^{*}, \bar{\mu}, \bar{\chi}\right)$.

Proof. Easy (note that part (4) can be proved just like 1.1B(3)).
1.5 Lemma. Let $\lambda, S, \bar{\mu}, \bar{\chi}$ be as in Definition 1.2. Let us define the following cardinals $\mu_{0} \stackrel{\text { def }}{=} \sum_{\alpha<\lambda} \prod_{i<\alpha} \bar{\mu}(i)$, and $\mu_{1} \stackrel{\text { def }}{=} \operatorname{Min}_{\alpha<\lambda} \sum_{\beta<\lambda} \prod_{i<\beta} \bar{\mu}(\alpha+i) ;$ then the following are equivalent.
(A) $\operatorname{Unif}(\lambda, S, \bar{\mu}, \bar{\chi})$
(B) $\operatorname{Unif}\left(\lambda, S, \mu_{0}, \mu_{1}, \bar{\chi}\right)($ see $1.2(3))$.

The proof will use the following easy fact.
1.5A Fact. Assume that $D(\bar{\mu})$ can be embedded into $D\left(\bar{\mu}^{*}\right)$, i.e., there is a partial function $g: D(\bar{\mu}) \rightarrow D\left(\bar{\mu}^{*}\right)$ such that:
(a) If $\eta \triangleleft \nu$ are both in $\operatorname{Dom}(g)$, then $g(\eta) \triangleleft g(\nu)$
(b) g is one - to - one
(c) g is continuous, i.e., whenever $\left\langle\eta_{\alpha}: \alpha<\delta\right\rangle$ is a sequence of elements of $\operatorname{Dom}(g)$ satisfying $\alpha_{1}<\alpha_{2} \Rightarrow \eta_{\alpha_{1}} \triangleleft \eta_{\alpha_{2}}$, then also $\eta_{\delta} \stackrel{\text { def }}{=} \bigcup_{\alpha<\delta} \eta_{\alpha}$ is in $\operatorname{Dom}(g)$, and $g\left(\eta_{\delta}\right)=\bigcup_{\alpha<\delta} \eta_{\alpha}$.
(d) For every $\eta \in X_{i<\lambda} \bar{\mu}(i)$, the set $\{i<\lambda: \eta \upharpoonright i \in \operatorname{Dom}(g)\}$ is unbounded in λ (by (c), this set will also be closed).

Then $\operatorname{Unif}(\lambda, S, \bar{\mu}, \bar{\chi})$ implies $\operatorname{Unif}\left(\lambda, S, \bar{\mu}^{*}, \bar{\chi}\right)$.
Proof. Assume Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ holds. Let $g^{\prime} \stackrel{\text { def }}{=} g \upharpoonright\{\eta \in \operatorname{Dom}(g): \ell \mathrm{g}(\eta)=$ $\ell \mathrm{g}(g(\eta))\}$. The function g^{\prime} will also satisfy (a) - (d). Choose F which witnesses Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$, and define F^{*} on $D\left(\bar{\mu}^{*}\right)$ as follows:

$$
F^{*}(\nu)= \begin{cases}F(\eta), & \text { if } g^{\prime}(\eta)=\nu \text { for some } \eta \in \operatorname{Dom}\left(g^{\prime}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Note that $F^{*}(\nu)$ is well defined as there is at most one $\eta \in \operatorname{Dom}\left(g^{\prime}\right)$ such that $g^{\prime}(\eta)=\nu$ as g^{\prime} is a one to one function. Let $h \in \prod_{i<\lambda} \bar{\chi}(i)$, so as F witnesses Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$, necessarily there is $\eta \in X_{i<\lambda} \bar{\mu}(i)$ such that $S_{0} \stackrel{\text { def }}{=}\{\delta<\lambda$: $F(\eta \upharpoonright \delta)=h(\delta)\}$ belongs to $D_{\lambda}+S$.

By clause (d) of the assumption, the set $C \stackrel{\text { def }}{=}\left\{\delta<\lambda: \eta\left\lceil\delta \in \operatorname{Dom}\left(g^{\prime}\right)\right\}\right.$ is a closed unbounded subset of λ. So $\delta \in C \Rightarrow \ell \mathrm{~g}\left(g^{\prime}(\eta\lceil\delta))=\delta\right.$. Let $\nu=\bigcup_{i \in C} g(\eta\lceil i)$, clearly $\nu \in \prod_{i<\lambda} \bar{\mu}^{*}(i)$ and $\delta \in S_{0} \cap C \Rightarrow F^{*}\left(\nu\lceil\delta)=F^{*}\left(g^{\prime}(\eta \upharpoonright \delta)\right)=F(\eta \upharpoonright \delta)=h(\delta)\right.$. So it is easy to see that F^{*} witnesses Unif $\left(\lambda, S, \bar{\mu}^{*}, \bar{\chi}\right)$.

Proof of 1.5 .
$(\mathrm{A}) \Rightarrow(\mathrm{B})$
Let $\alpha^{*}<\lambda$ be such that for all i we have: $\alpha^{*} \leq i<\lambda \Rightarrow \bar{\mu}(i) \leq \mu_{1}$, and let $\left\{\nu_{\xi}: \xi<\mu_{0}^{\prime}\right\}$ be a $1-1$ enumeration of $\underset{i<\alpha^{*}}{X} \bar{\mu}(i)$, where $\mu_{0}^{\prime} \stackrel{\text { def }}{=} \prod_{i<\alpha^{*}} \bar{\mu}(i) \leq \mu_{0}$ by the definition of μ_{0}. Now define a partial function $g: D(\bar{\mu}) \rightarrow D\left(\mu_{0}, \mu_{1}\right)$ by the following conditions:

$$
\begin{aligned}
& \operatorname{Dom}(g)=\left\{\eta \in D(\bar{\mu}): \ell g(\eta) \geq \alpha^{*}\right\} \\
& g\left(\nu_{\xi} \wedge \eta\right)=\langle\xi\rangle^{\wedge} \eta, \text { whenever } \xi<\mu_{0}^{\prime}, \nu_{\xi} \wedge \eta \in D(\bar{\mu})
\end{aligned}
$$

Clearly g satisfies clauses (a) - (d) of fact 1.5 A , so Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ implies Unif $\left(\lambda, S, \mu_{0}, \mu_{1}, \bar{\chi}\right)$.
(B) $\Rightarrow(\mathrm{A})$

This time we will construct an embedding $g: D\left(\mu_{0}, \mu_{1}\right) \rightarrow D(\bar{\mu})$ and again use 1.5 A . For simplicity, let us first assume
$\otimes 1 \leq i<j<\lambda \Rightarrow \bar{\mu}(i) \leq \bar{\mu}(j)$.
Let $\alpha^{*}<\lambda$ be such that for all $\beta \in\left[\alpha^{*}, \lambda\right)$ we have $|D(\bar{\mu} \upharpoonright[\beta, \lambda))|=\mu_{1}$, i.e.

$$
\beta \geq \alpha^{*} \Rightarrow \sum_{\gamma<\lambda} \prod_{i<\gamma} \bar{\mu}(\beta+i)=\mu_{1}
$$

W.l.o.g. $\alpha^{*}>2$. We claim that:
(a) There exists an antichain $\left\langle\nu_{\xi}^{0}: \xi<\mu_{0}\right\rangle$ in $D(\bar{\mu})$ (and w.l.o.g. $\xi<\mu_{0} \Rightarrow$ $\left.\ell g\left(\nu_{\xi}^{0}\right) \geq \alpha^{*}\right)$
(b) For each $\eta \in D(\bar{\mu})$ there exists an antichain $\left\langle\nu_{\xi}^{\eta}: \xi<\mu_{1}\right\rangle$ in $D(\bar{\mu})$ satisfying $\xi<\mu_{1} \Rightarrow \eta \triangleleft \nu_{\xi}^{\eta}$.
("Antichain" means that for $\xi \neq \zeta$ we have neither $\nu_{\xi}^{\eta} \unlhd \nu_{\zeta}^{\eta}$ nor $\nu_{\zeta}^{\eta} \unlhd \nu_{\xi}^{\eta}$).
We will prove only (a), as the proof for (b) is similar. For each $\nu \in D(\bar{\mu})$, define $g^{*}(\nu)$ as follows:

$$
\begin{gathered}
\lg \left(g^{*}(\nu)\right)=\alpha^{*}+2 \lg (\nu)+2, \text { and } \\
g^{*}(\nu)(i)= \begin{cases}\nu(0) & \text { if } i=0 \\
0 & \text { if } i<\alpha^{*}, i \geq 1 \\
\nu(j) & \text { if } i=\alpha^{*}+2 j, j<\lg (\nu) \\
0 & \text { if } i=\alpha^{*}+2 j+1, j<\lg (\nu) \\
1 & \text { if } i=\alpha^{*}+2 \lg (\nu) \text { or } i=\alpha^{*}+2 \lg (\nu)+1 .\end{cases}
\end{gathered}
$$

Then $\left\{g^{*}(\nu): \nu \in D(\bar{\nu})\right\}$ is an antichain of size μ_{0}. This ends the proof of (a). (We needed \otimes to ensure $\nu(i)<\bar{\mu}(i)$.)

Now we define $g: D\left(\mu_{0}, \mu_{1}\right) \rightarrow D(\bar{\mu})$ inductively as follows:

$$
\begin{gathered}
g(\emptyset)=\emptyset \\
g(\langle\xi\rangle)=\nu_{\xi}^{0} \text { when } \xi<\mu_{0},
\end{gathered}
$$

$$
\begin{gathered}
g\left(\eta^{\wedge}\langle\xi\rangle\right)=\nu_{\xi}^{g(\eta)} \text { when } \lg (\eta) \geq 1, \xi<\mu_{1} \\
g(\eta)=\bigcup_{\alpha<\ell g(\eta)} g(\eta \upharpoonright \alpha), \text { when } \lg (\eta) \text { is a limit ordinal. }
\end{gathered}
$$

Again g satisfies clauses (a) - (d) of 1.5 A , so we are done.
We have only one problem left: what occurs if \otimes fails? Really this is not serious, e.g. by the following claim 1.6 (if $\bar{\mu}^{*}(j+i)=1$ for every i, then $\mu_{0}=\prod_{i<j} \mu(i), \mu_{1}=1$, so the lemma becomes trivial, by $1.4(3)$, (4), as $\mu_{1}=1$).
1.6 Claim. Let $\lambda, S, \bar{\mu}, \bar{\chi}$ be as in Definition 1.1.
(1) For every $\left\{\alpha_{i}: i<\lambda\right\} \subseteq \lambda$ increasing and continuous such that $\alpha_{0}=0$, and $\bigcup_{i<\lambda} \alpha_{i}=\lambda$; for every $i<\lambda$ define $\bar{\mu}^{*}(i) \stackrel{\text { def }}{=} \prod_{\alpha_{i} \leq j<\alpha_{i+1}} \bar{\mu}(j)$. We have that $\operatorname{Unif}(\lambda, S, \bar{\mu}, \bar{\chi})$, and $\operatorname{Unif}\left(\lambda, S, \bar{\mu}^{*}, \bar{\chi}\right)$ are equivalent.
(2) For any $\bar{\mu}$ there exist $\left\{\alpha_{i}: i<\lambda\right\} \subseteq \lambda$ as in (1) such that letting $\bar{\mu}^{*}$ be defined using α_{i} 's as in (1) we have $\bar{\mu}^{*}(1+i) \leq \mu^{*}(1+j)$ for $i \leq j$ and $\bar{\mu}^{*}(i) \geq 1$.

Proof. (1) Similar to the proof of 1.5 .
(2) Let κ^{*} be minimal such that $\left\{i<\lambda: \bar{\mu}(i) \geq \kappa^{*}\right\}$ is bounded in λ, so for some $\alpha_{1}<\lambda$ we have [$\alpha_{1} \leq i<\lambda \Rightarrow \bar{\mu}(i)<\kappa^{*}$]. If $\kappa^{*}=\kappa^{+}$, it is enough to choose inductively α_{i} (when $1 \leq i<\lambda$, increasing continuous) such that: $\left\{j: \alpha_{i}<j<\alpha_{i+1}, \bar{\mu}(j)=\kappa\right\}$ has the same order type (hence the same cardinality) as α_{i+1}, hence $\prod_{j \in\left[\alpha_{i}, \alpha_{i+1}\right)} \bar{\mu}(i)=\kappa^{\left|\alpha_{i+1}\right|}$ will be non decreasing for $i \in[1, \lambda)$.

If κ^{*} is limit, necessarily $\operatorname{cf}\left(\kappa^{*}\right) \leq \lambda$.
If $\operatorname{cf}\left(\kappa^{*}\right)=\lambda$ choose α_{i} (when $1<i<\lambda$, increasing continuous) such that for $i>0,\left\{\beta: \alpha_{i} \leq \beta<\alpha_{i+1}, \bar{\mu}(\beta)>\sup \left\{\bar{\mu}(\gamma): \alpha_{1} \leq \gamma<\alpha_{i}\right\}\right\}$ has cardinality $\geq\left|\alpha_{i}\right|$.

If $\operatorname{cf}\left(\kappa^{*}\right)=\theta<\lambda$ let $\left\langle\kappa_{\varepsilon}: \varepsilon<\theta\right\rangle$ be a strictly increasing sequence of cardinals $<\kappa^{*}$ with limit κ^{*} and choose α_{i} (when $1<i<\lambda$, increasing continuous) such that for every $i \geq 1$ we have the order type of $\left\{\beta: \alpha_{i} \leq \beta<\right.$ α_{i+1} and $\left.\bar{\mu}(\beta) \geq \kappa_{\varepsilon}\right\}$ is α_{i+1} for each $\varepsilon<\theta$.
1.7 Claim. (1) If Unif $(\lambda, S, \bar{\mu}, \bar{\chi}), \kappa<\lambda$ and $\bar{\mu}^{*}(i)=\bar{\mu}(i)^{\kappa}, \bar{\chi}^{*}(i)=\bar{\chi}(i)^{\kappa}$ for $i<\lambda$ then Unif $\left(\lambda, S, \bar{\mu}^{*}, \bar{\chi}^{*}\right)$
(2) If Unif $\left(\lambda, S, \bar{\mu}_{\xi}, \bar{\chi}_{\xi}\right)$ for $\xi<\kappa, \kappa<\lambda$ and $\bar{\mu}(i)=\prod_{\xi<\kappa} \bar{\mu}_{\xi}(i)$ and $\bar{\chi}(i)=$ $\prod_{\xi<\kappa} \bar{\chi}_{\xi}(i)$ then Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$
(3) If $\bar{\mu}$ is a nondecreasing sequence of infinite cardinals and Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ and $\bar{\chi}^{*}(i) \leq(\bar{\chi}(i))^{|i|}$ then $\operatorname{Unif}\left(\lambda, S, \bar{\mu}, \bar{\chi}^{*}\right)$.

Proof. (1) Easy. Let $G_{\xi}^{i}: \bar{\mu}^{*}(i) \rightarrow \bar{\mu}(i)$ (for $\xi<\kappa$) be such that for every $\left\langle\alpha_{\xi}: \xi<\kappa\right\rangle \in{ }^{\kappa} \bar{\mu}(i)$ there is a unique $\gamma<\bar{\mu}^{*}(i)$ such that $(\forall \xi<\kappa) G_{\xi}^{i}(\gamma)=\alpha_{\xi}$ that is, identifying $\bar{\mu}(i)^{\kappa}$ with the cartesian product ${ }^{\kappa} \bar{\mu}(i)$, the function G_{ξ}^{i} is the projection onto the ξ-th coordinate. Similarly $H_{\xi}^{i}: \bar{\chi}^{*}(i) \rightarrow \bar{\chi}(i)$ for $\xi<\kappa$. If F exemplifies Unif $(\lambda, S, \bar{\mu}, \bar{\chi})$ let us define F^{*} :

For $\eta \in D\left(\bar{\mu}^{*}\right)$ let $F^{*}(\eta)$ be the unique $\gamma<\chi^{*}(\ell g(\eta))$ such that

$$
(\forall \xi<\kappa)\left[F\left(\left\langle G_{\xi}^{i}(\eta(i)): i<\ell \mathrm{g}(\eta)\right\rangle\right)=H_{\xi}^{i}(\gamma)\right]
$$

So given $h \in X_{i<\lambda} \bar{\chi}^{*}(i)$ we have to find appropriate η. Let $h_{\xi} \in$ $X_{i<\lambda} \bar{\chi}(i)$ be such that $h_{\xi}(i)=H_{\xi}^{i}(h(i))$. By the choice of F, for each $\xi<\kappa$ there is $\eta_{\xi} \in X_{i<\lambda} \bar{\mu}(i)$ such that $C_{\xi} \stackrel{\text { def }}{=}\left\{\delta \in S: F\left(\eta_{\xi} \mid \delta\right)=h_{\xi}(\delta)\right\} \in \mathcal{D}_{\lambda}+S$. Define $\eta(i)$ as the unique $\gamma<\bar{\mu}^{*}(i)$ such that $\left\langle\eta_{\xi}(i): \xi<\kappa\right\rangle=\left\langle G_{\xi}^{i}(\gamma): \xi<\kappa\right\rangle$. Now $\bigcap_{\xi<\kappa} C_{\xi} \in \mathcal{D}_{\lambda}+S$ and for every $\delta \in \bigcap_{\xi<\kappa} C_{\xi}$ we have $F^{*}(\eta)=h(\delta)$ so we finish.
(2) Similarly.
(3) Without loss of generality $\bar{\chi}^{*}(i)=|\bar{\chi}(i)|^{|i|}$ (by 1.4(5)). Let $\left\langle h_{\zeta}: \zeta<\lambda\right\rangle$ be such that: h_{ζ} is a strictly increasing function from λ to λ and $\left\langle\operatorname{Rang}\left(h_{\zeta}\right): \zeta<\lambda\right\rangle$ are pairwise disjoint and $\bar{\mu}(i) \leq \bar{\mu}\left(h_{\zeta}(i)\right)$ (for $\zeta<\lambda, i<\lambda$). Let $H_{\xi}^{i}: \bar{\chi}^{*}(i) \rightarrow$ $\bar{\chi}(i)$ for $\xi<i<\lambda$ be as in the proof of part (1). Let

$$
\begin{aligned}
& C^{*}=\{\delta<\lambda: \delta \text { a limit ordinal such that for every } \zeta<\delta, \\
& \text { the order type of } \left.\delta \cap \operatorname{Rang}\left(h_{\zeta}\right) \text { is } \delta \text { so } h_{\zeta} \operatorname{maps} \delta \text { to } \delta\right\} .
\end{aligned}
$$

Lastly define F^{*} by: if $\delta \in C^{*}$ and $\eta \in D_{\delta}(\bar{\mu})$, let $\eta^{[\zeta]} \in D_{\delta}(\bar{\mu})$ be defined by $\eta^{[\zeta]}(i)=\eta\left(h_{\zeta}(i)\right)$, and $F^{*}(\eta)$ is defined such that $H_{\xi}^{\delta}\left(F^{*}(\eta)\right)=F\left(\eta^{[\xi]}\right)$; $F^{*}(\eta)=0$ otherwise. The checking is as above.
1.8 Conclusion. If Unif $(\lambda, \mu(0), 2, \chi), 1<\kappa<\lambda$ and $\mu(0)^{\kappa}=\mu(0)$ then Unif $\left(\lambda, \mu(0), 2, \chi^{\kappa}\right)$.

Proof. By the previous lemma 1.7(1) we have Unif $\left(\lambda, \mu(0)^{\kappa}, 2^{\kappa}, \chi^{\kappa}\right)$ and as $\mu(0)=\mu(0)^{\kappa}$ by applying 1.5 twice this is equivalent to $\operatorname{Unif}\left(\lambda, \mu(0), 2, \chi^{\kappa}\right)$.
1.9 Lemma . 1) Id $-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$ is either $\mathcal{P}(\lambda)$ or an ideal on λ.
2) If $\bar{\mu}$ is non decreasing then $\operatorname{Id}-\operatorname{Unif}(\lambda, \mu, \bar{\chi})$ is either $\mathcal{P}(\lambda)$ or a normal ideal on λ (i.e., on $\mathcal{P}(\lambda)$) containing all nonstationary sets.
1.9A Remark. Note that $\operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$ is equal to $\operatorname{Id}-\operatorname{Unif}\left(\lambda, \mu_{0}, \mu_{1}, \bar{\chi}\right)$ when μ_{0}, μ_{1} are defined as in 1.5. Also Id $-\operatorname{Unif}\left(\lambda, \mu_{0}, \mu_{1}, \bar{\chi}\right)$ is equal to Id $-\operatorname{Unif}\left(\lambda, \mu_{0}, \mu_{0}, \lambda\right)$ if $\operatorname{cov}\left(\mu_{0}, \lambda\right)=\mu_{0}$ (see Definition 1.12 below) by 1.14(5), (6) below (applied twice), so of course the normality holds in such cases.

Proof. 1) Trivial.
2) Call the ideal I. Trivially any nonstationary $S \subseteq \lambda$ belongs to I. So it is enough to prove that if $S \subseteq \lambda$ and f is a function from λ to λ such that $(\forall \alpha \in S) f(\alpha)<1+\alpha$, and for every $i<\lambda$ we have $S_{i} \stackrel{\text { def }}{=}\{\alpha \in S: f(\alpha)=i\} \in I$ then $S \in I$. Let F_{i} exemplify that $S_{i} \in I$ and $\left\langle h_{\zeta}: \zeta<\lambda\right\rangle, C^{*}$ be as in the proof of $1.7(3)$. Let us define F : if $\eta \in D\left(\mu_{0}, \mu_{1}\right), \lg (\eta) \in S_{i} \cap C^{*}$, we let $F(\eta)$ be $F_{i}\left(\left\langle\eta\left(h_{i}(j)\right): j<\ell g(\eta)\right\rangle\right)$, otherwise $F(\eta)=0$, and we can finish as in the proof of 1.7(3).
1.10 Theorem. 1) Assume the following conditions hold:
(A) λ regular and $2^{<\lambda}<2^{\lambda}$.
(B) $\mu^{\aleph_{0}}<2^{\lambda}$.

Then Unif $\left(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda}\right)$ fails.
2) Moreover in part (1) instead of (B) it suffices to assume
(B^{\prime}) The following property does not hold:
(*) There is a family $\left\{S_{i}: i<2^{\lambda}\right\}, S_{i} \subseteq \mu,\left|S_{i}\right|=\lambda$ and $i \neq j<2^{\lambda}$ implies $\left|S_{i} \cap S_{j}\right|<\aleph_{0}$.
1.10A Conclusion. If for some $\theta<\lambda, 2^{\theta}=2^{<\lambda}<2^{\lambda}$ (hence λ regular uncountable) then $\operatorname{Unif}\left(\lambda, 2^{<\lambda}, 2^{<\lambda}, 2\right)$ fails.
[Why? This holds as by 1.10 applied to $\mu=2^{<\lambda}$ we get $\neg \operatorname{Unif}\left(\lambda, 2^{<\lambda}, 2^{<\lambda}, 2^{<\lambda}\right)$ now apply $1.7(1)$ for $\kappa=\theta$.]

Proof. First notice that $(\mathrm{B}) \Longrightarrow\left(\mathrm{B}^{\prime}\right)$. [Why? Assume by contradiction that (*) holds, choose $T_{i} \subseteq S_{i}$ countable for every $i<2^{\lambda}$. So necessarily $i \neq j \Rightarrow T_{i} \neq$ T_{j}, and we got $\left\{T_{i}: i<2^{\lambda}\right\} \subseteq\left\{S \subseteq \mu:|S|=\aleph_{0}\right\}$, i.e., $2^{\lambda} \leq \mu^{\aleph_{0}}$ contradiction to $\mu^{\aleph_{0}}<2^{\lambda}$.]

Therefore from now till the end of the proof of 1.11 we assume that $(*)$ fails. This implies $\mu<2^{\lambda}$ as if $\mu=2^{\lambda}$ then the family $\left\{S_{i}: i<2^{\lambda}\right\}$ where $S_{i} \stackrel{\text { def }}{=}\{\alpha: \lambda i \leq \alpha<\lambda i+\lambda\}$ for $i<2^{\lambda}$ would show that $\left({ }^{*}\right)$ holds trivially. We also assume the conclusion of the theorem fails (i.e., Unif $\left(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda}\right)$ holds) and eventually get a contradiction. Let F exemplify Unif $\left(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda}\right)$. Let us define:

$$
\begin{aligned}
\operatorname{Mod}=\{ & \left\{\alpha, C_{0}, g_{0}, C_{1}, g_{1}, \ldots C_{\beta}, g_{\beta}, \ldots\right\rangle_{\beta<\beta(0)}: \beta(0), \alpha<\lambda, \\
& \left.g_{\beta} \text { a function from } \alpha \backslash\{0\} \text { to }{ }^{\lambda>} 2, C_{\beta} \text { a closed subset of } \alpha\right\}
\end{aligned}
$$

Clearly $|\operatorname{Mod}|=2^{<\lambda}$ hence we can fix a one-to-one function $H: \operatorname{Mod} \rightarrow$ $\lambda>2$. Now for every function $f: \lambda \rightarrow\{0,1\}$ we shall define by induction on $\beta<\lambda$, functions $h_{f, \beta}: \lambda \rightarrow{ }^{\lambda>} 2$ and $g_{f, \beta} \in D_{\lambda}\left(\mu,{ }^{\lambda>} 2\right)$ and a closed unbounded subset $C_{f, \beta}$ of λ. If we have defined for every $\beta<\gamma, \gamma<\lambda$ let us define $h_{f, \gamma}$, $g_{f, \gamma}, C_{f, \gamma}$ as follows.

If $\gamma=0$, let $h_{f, \gamma}=g_{f, \gamma}=f$ and $C_{f, \gamma}=\lambda \backslash\{0\}$.
If $\gamma>0$, let:
A) $h_{f, \gamma}(i)$ is $H\left(\left\langle\alpha, C_{f, 0} \cap \alpha, g_{f, 0} \upharpoonright(\alpha \backslash\{0\}), \ldots, C_{f, \beta} \cap \alpha, g_{f, \beta} \upharpoonright(\alpha \backslash\{0\}), \ldots\right\rangle_{\beta<\gamma}\right)$ where $\alpha=\alpha(i, f, \gamma)=\operatorname{Min}\left(\bigcap_{\beta<\gamma} C_{f, \beta} \backslash(i+1)\right)$
B) As $h_{f, \gamma}: \lambda \rightarrow{ }^{\lambda>} 2$ is defined, and as we are assuming Unif $\left(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda}\right)$ is exemplified by F, there are a function $g \in D_{\lambda}\left(\mu, 2^{<\lambda}\right)$, and a closed unbounded subset C of λ such that: $C \subseteq\left\{\delta<\lambda: F(g \upharpoonright \delta)=h_{\beta, \gamma}(\delta)\right\}$. Now
let $g_{f, \gamma}=g$ and $C_{f, \gamma}$ be the set of accumulation points of $\bigcap_{\beta<\gamma} C_{f, \beta} \cap C$. In order to finish the proof we need (proved later):
1.11 Fact. If $f_{1}, f_{2} \in{ }^{\lambda} 2$, and $j_{n}<\lambda$ for $n<\omega,\left[n \neq m \rightarrow j_{n} \neq j_{m}\right]$, and $\delta_{n} \stackrel{\text { def }}{=} \operatorname{Min} C_{f_{1}, j_{n}}=\operatorname{Min} C_{f_{2}, j_{n}}$ and $g_{f_{1}, j_{n}} \upharpoonright \delta_{n}=g_{f_{2}, j_{n}} \upharpoonright \delta_{n}$ and $f_{1}(0)=f_{2}(0)$ then $f_{1}=f_{2}$.

Continuation of the proof of 1.10 .
For every $f: \lambda \rightarrow\{0,1\}$, define
$A_{f}=\left\{\left\langle j, g_{f, j}(0), g_{f, j}\lceil(\delta \backslash\{0\}), f(0)\rangle: j<\lambda, \delta=\operatorname{Min} C_{j}\right\}\right.$. Clearly $\left|A_{f}\right|=\lambda$. If $A_{f_{1}} \cap A_{f_{2}}$ is infinite, we can easily get the hypothesis of Fact 1.11 hence $f_{1}=f_{2}$. So $A_{f_{1}} \cap A_{f_{2}}$ is finite for $f_{1} \neq f_{2}$. The A_{f} 's are not subsets of μ but of $A^{*}=\lambda \times \mu \times{ }^{\lambda>}\left({ }^{<\lambda} 2\right) \times 2$, which is a set of cardinality $\mu+2^{<\lambda}$ so $\mathcal{P}=\left\{A_{f}: f\right.$ a function from λ to $\left.\{0,1\}\right\}$ is a family of 2^{λ} subsets of A^{*}, each of power λ, the intersection of any two is finite. If $\left|A^{*}\right|=\mu$ we finish (having contradicted $(*)$ of $\left.(\mathrm{B})^{\prime}\right)$, otherwise $\left|A^{*}\right|=2^{<\lambda}$ and $2^{\lambda}=\mid\left\{A_{f}: f\right.$ a function from λ to 2$\}\left|\leq\left|A^{*}\right|^{\aleph_{0}} \leq\left(2^{<\lambda}\right)^{\aleph_{0}}=2^{<\lambda}<2^{\lambda}\right.$ (second inequality-as in the proof of $(B) \Rightarrow\left(B^{\prime}\right)$ above $)$, contradiction.

Proof of Fact 1.11. By Ramsey theorem, and as the ordinals are well ordered, w.l.o.g. $j_{0}<j_{1}<\ldots<j_{n}<j_{n+1}<\cdots$, and let $j \stackrel{\text { def }}{=} \bigcup_{n<\omega} j_{n}$

Let $C^{\ell}=\bigcap_{n<\omega} C_{f_{\ell}, j_{n}}$ for $\ell=1,2$, and let $C^{\ell}=\left\{\gamma_{i}^{\ell}: i<\lambda\right\}, \gamma_{i}^{\ell}$ increasing continuous, and let $\gamma_{\lambda}^{\ell}=\lambda$.
Now we shall prove by induction on $i \leq \lambda$ that:

$$
\otimes\left\{\begin{array}{l}
\text { a) } \gamma_{i}^{1}=\gamma_{i}^{2} \\
\text { b) for every } \zeta<j, g_{f_{1}, \zeta} \upharpoonright\left(\gamma_{i}^{1} \backslash\{0\}\right)=g_{f_{2}, \zeta} \upharpoonright\left(\gamma_{i}^{2} \backslash\{0\}\right) \\
\quad \text { and } C_{f_{1}, \zeta \cap \gamma_{i}^{1}}=C_{f_{2}, \zeta} \cap \gamma_{i}^{2}
\end{array}\right.
$$

This is enough, as in particular it says, for $i=\lambda, \zeta=0$ that $g_{f_{1}, 0} \upharpoonright(\lambda \backslash\{0\}=$ $g_{f_{2}, 0} \upharpoonright(\lambda \backslash\{0\})$, but by its definition $g_{f_{\ell}, 0}=f_{\ell}$, so $f_{1} \upharpoonright(\lambda \backslash\{0\})=f_{2} \upharpoonright(\lambda \backslash\{0\})$. But in fact we have assumed $f_{1}(0)=f_{2}(0)$, so $f_{1}=f_{2}$, which is the desired conclusion of the fact. So for proving the fact, it suffices to prove \otimes.

Case I. $\quad i=0$

We first prove clause a) of \otimes. Now for $\ell=1,2$ clearly $\gamma_{0}^{\ell}=\operatorname{Min} C^{\ell} \geq \delta_{n} \stackrel{\text { def }}{=}$ $\operatorname{Min} C_{f_{\ell}, j_{n}}$, hence $\gamma_{0}^{\ell} \geq \operatorname{Sup}_{n<\omega} \delta_{n}$. On the other hand for $n<m, C_{f_{\ell}, j_{m}} \subseteq C_{f_{\ell}, j_{n}}$ (as $j_{n}<j_{m}$) hence $\left\langle\delta_{m}: m<\omega\right\rangle$ is non decreasing and $\left\{\delta_{m}: n \leq\right.$ $m<\omega\} \subseteq C_{f_{\ell}, j_{n}}$, hence $\operatorname{Sup}_{m<\omega} \delta_{m}=\operatorname{Sup}_{m \in[n, \omega)} \delta_{m} \in C_{f_{\ell}, j_{n}}$, hence $\operatorname{Sup}_{m<\omega} \delta_{m} \in \bigcap_{n<\omega} C_{f_{\ell}, j_{n}}=C^{\ell}$, so $\gamma_{0}^{\ell}=\operatorname{Min} C^{\ell} \leq \operatorname{Sup}_{m<\omega} \delta_{m}$. Clearly we $\operatorname{got} \gamma_{0}^{\ell}=\operatorname{Min} C^{\ell}=\operatorname{Sup}_{m<\omega} \delta_{m}$, so $\gamma_{0}^{1}=\gamma_{0}^{2}$.

For clause b) of \otimes we can choose large enough n, such that $\zeta<j_{n}(<j)$ and
$(*)_{0} g_{f_{1, \zeta}} \upharpoonright\left(\gamma_{0}^{1} \backslash\{0\}\right) \neq g_{f_{2, \zeta}} \upharpoonright\left(\gamma_{0}^{2} \backslash\{0\}\right)$ implies $g_{f_{1, \zeta}} \upharpoonright\left(\delta_{n} \backslash\{0\}\right) \neq g_{f_{2, \zeta}} \upharpoonright\left(\delta_{n} \backslash\{0\}\right)$ and $C_{f_{1}, \zeta} \cap \gamma_{0}^{1} \neq C_{f_{2}, \zeta} \cap \gamma_{0}^{2}$ implies $C_{f_{1}, \zeta} \cap \delta_{n} \neq C_{f_{2}, \zeta} \cap \delta_{n}$
Now we have assumed in the statement of the fact that:
$(*)_{1} g_{f_{1}, j_{n}} \upharpoonright \delta_{n}=g_{f_{2}, j_{n}} \upharpoonright \delta_{n}$
hence
$(*)_{2} F\left(g_{f_{\ell}, j_{n}} \upharpoonright \delta_{n}\right)=h_{f_{\ell}, j_{n}}\left(\delta_{n}\right)=H\left(\left\langle\alpha, \ldots, C_{f_{\ell, \beta}} \cap \alpha, g_{f_{\ell, \beta}} \upharpoonright(\alpha \backslash\{0\}), \ldots\right\rangle_{\beta<j_{n}}\right)$
where $\alpha=\alpha\left(\gamma_{i}^{\ell}, f_{\ell}, j_{n}\right)=\operatorname{Min}\left[\bigcap_{\beta<j_{n}} C_{f_{\ell, \beta}} \backslash\left(\delta_{n}+1\right)\right]$.
We can conclude, as the left side in $(*)_{2}$ does not depend on ℓ, (by $\left.(*)_{1}\right)$ and as H is one-to-one, that $\beta<j_{n} \Rightarrow g_{f_{1, \beta}} \upharpoonright\left(\gamma_{0}^{1} \backslash\{0\}\right)=g_{f_{2, \beta}} \upharpoonright\left(\gamma_{0}^{2} \backslash\{0\}\right)$ and $\beta<j_{n} \Rightarrow C_{f_{1}, \beta} \cap \gamma_{0}^{1}=C_{f_{2}, \beta} \cap \gamma_{0}^{2}$. But in particular $\zeta<j_{n}$ hence $g_{f_{1, \zeta}} \upharpoonright\left(\delta_{n} \backslash\{0\}\right)=g_{f_{2, \zeta}} \upharpoonright\left(\delta_{n} \backslash\{0\}\right)$ and $C_{f_{1}, \zeta} \cap \delta_{n}=C_{f_{2}, \zeta} \cap \delta_{n}$ so we have gotten $q_{f_{1, \zeta}} \upharpoonright\left(\gamma_{0}^{1} \backslash\{0\}\right)=g_{f_{2, \zeta}} \upharpoonright\left(\gamma_{0}^{2} \backslash\{0\}\right)$ by $(*)_{0}$. So we have proved clause b$)$ of \otimes (for the case $i=0$).

Case II. $\quad i$ limit

This is easy: clause a) holds as γ_{ξ}^{ℓ} (for $\xi \leq i$) is increasing continuous and $(\forall \xi<i) \gamma_{\xi}^{1}=\gamma_{\xi}^{2}$ by the induction hypothesis, and similarly clause b) holds.

Case III. Prove for $i+1$, assuming truth for i.

For any $n<\omega, g_{f_{1}, j_{n}}\left\lceil\gamma_{0}^{1}=g_{f_{2}, j_{n}}\left\lceil\gamma_{0}^{2}\right.\right.$ by the assumption in the fact. By the induction hypothesis $g_{f_{1}, j_{n}} \upharpoonright\left(\gamma_{i}^{1} \backslash\{0\}\right)=g_{f_{2}, j_{n}} \upharpoonright\left(\gamma_{i}^{2} \backslash\{0\}\right)$. Together we can conclude
(α) $g_{f_{1}, j_{n}}\left\lceil\gamma_{i}^{1}=g_{f_{2}, j_{n}}\left\lceil\gamma_{i}^{2}\right.\right.$ for $n<\omega$
By the definition of $g_{f_{\ell}, j_{n}}$, for $\ell=1,2$ we have
(β) $F\left(g_{f_{\ell}, j_{n}}\left\lceil\gamma_{i}^{1}\right)=h_{f_{\ell}, j_{n}}\left(\gamma_{i}^{1}\right)=\right.$
$H\left(\left\langle\alpha_{n}^{\ell}, \ldots, C_{f_{\ell, \beta}} \cap \alpha_{n}^{\ell}, g_{f_{\ell, \beta}} \upharpoonright\left(\alpha_{n}^{\ell} \backslash\{0\}\right), \ldots\right\rangle_{\beta<j_{n}}\right)$
$\left[\right.$ where $\alpha_{n}^{\ell}=\alpha\left(\gamma_{i}^{\ell}, f_{\ell}, j_{n}\right)=\operatorname{Min}\left[\bigcap_{\beta<j_{n}} C_{f_{\ell, \beta}} \backslash\left(\gamma_{i}^{\ell}+1\right)\right]$
As H is one-to-one, by (α) and (β) we can conclude
$(\gamma)\left\langle\alpha_{n}^{1}, \ldots, C_{f_{1}, \beta} \cap \alpha_{n}^{1}, g_{f_{1}, \beta} \upharpoonright\left(\alpha_{n}^{1} \backslash\{0\}\right), \ldots\right\rangle_{\beta<j_{n}}=$
$=\left\langle\alpha_{n}^{2}, \ldots, C_{f_{2}, \beta} \cap \alpha_{n}^{2}, g_{f_{2}, \beta} \upharpoonright\left(\alpha_{n}^{2} \backslash\{0\}\right), \ldots\right\rangle_{\beta<j_{n}}$
So $\alpha_{n}^{1}=\alpha_{n}^{2}$; it is also clear that, for $\ell=1,2 \alpha_{0}^{\ell}<\ldots<\alpha_{n}^{\ell}<\alpha_{n+1}^{\ell}<\ldots$ and $\bigcup_{n<\omega} \alpha_{n}^{\ell}=\operatorname{Min}\left[\bigcap_{\beta<j} C_{f_{\ell}, \beta} \backslash\left(\gamma_{i}^{\ell}+1\right)\right]$ is γ_{i+1}^{ℓ}, so we can conclude $\gamma_{i+1}^{1}=$ γ_{i+1}^{2} (i.e. clause a) of \otimes). Also, by (γ), for every $\zeta<j$ for every n large enough, $\zeta<j_{n}$ and $C_{f_{1}, \zeta} \cap \alpha_{n}^{1}=C_{f_{2}, \zeta} \cap \alpha_{n}^{2}$, and as this holds for every n and $\alpha_{n}^{1}=\alpha_{n}^{2}$ and $\gamma_{i+1}^{\ell}=\bigcup_{n<\omega} \alpha_{n}^{\ell}$ clearly:
($\delta) C_{f_{1}, \zeta} \cap \gamma_{i+1}^{1}=C_{f_{2}, \zeta} \cap \gamma_{i+1}^{2}$.
Similarly $g_{f_{1}, \zeta}\left\lceil\left(\gamma_{i+1}^{1} \backslash\{0\}\right)=g_{f_{2}, \zeta} \upharpoonright\left(\gamma_{i+1}^{2} \backslash\{0\}\right)\right.$, and so we finish proving clause b) of \otimes for $i+1$. So we have finished proving \otimes for all i. As stated earlier by this we prove Fact 1.11.
1.12 Definition. Let X be a set and λ a cardinal.
(1) A family \mathcal{F} of subsets of X is an (X, λ) - cover if for all $S \subseteq X,|S|=\lambda$, there is $T \in \mathcal{F}$ such that $S \subseteq T$, and all the members of \mathcal{F} are of cardinality $\leq \lambda$. In other words, \mathcal{F} is cofinal in the directed partial order $\left(\mathcal{S}_{\leq \lambda}(X), \subseteq\right)$.
(2) The covering number of (X, λ) which is denoted by $\operatorname{cov}(X, \lambda)$ is :

$$
\operatorname{cov}(X, \lambda)=\operatorname{Min}\{|\mathcal{F}|: \mathcal{F} \text { is a }(X, \lambda) \text {-cover }\}
$$

Clearly $\operatorname{cov}(X, \lambda)$ depends just on $|X|$ and λ (see 1.13(1) below) so we usually use cardinals for X.

1.13 Lemma.

(1) $X \subseteq Y \Rightarrow \operatorname{cov}(X, \lambda) \leq \operatorname{cov}(Y, \lambda)$, and $|X| \leq|Y| \Rightarrow \operatorname{cov}(X, \lambda) \leq \operatorname{cov}(Y, \lambda)$ hence if $|X|=|Y|$ then $\operatorname{cov}(X, \lambda)=\operatorname{cov}(Y, \lambda)$
(2) if $\lambda<\mu$ then $\operatorname{cov}(\mu, \lambda) \geq \mu$
i. $\operatorname{cov}(\lambda, \lambda)=1$
ii. for $\lambda \leq \mu$ we have $\operatorname{cov}\left(\mu^{+}, \lambda\right)=\operatorname{cov}(\mu, \lambda)+\mu^{+}$
iii. If μ is a limit cardinal, $\lambda<\mu$ and let $\left\{\mu_{i}: i<\operatorname{cf} \mu\right\}$ be an increasing sequence with limit μ and $\mu_{0}>\lambda$; then $\operatorname{cov}(\mu, \lambda) \leq \prod_{i<\operatorname{cf} \mu} \operatorname{cov}\left(\mu_{i}, \lambda\right)$.
(4) $\operatorname{cov}\left(\lambda^{+\alpha}, \lambda\right) \leq\left(\lambda^{+\alpha}\right)^{|\alpha|}$

Remark. See more in [Sh:g], [Sh:400a].
Proof. (1) E.g., if $X \subseteq Y$ and if \mathcal{F} is a (Y, λ)-cover, then $F^{\dagger}=\{A \cap X: A \in \mathcal{F}\}$ is a (X, λ)-cover and $\left|\mathcal{F}^{\dagger}\right| \leq|\mathcal{F}|$.
(2) Because if \mathcal{F} is a (μ, λ)-cover then $\bigcup\{A: A \in \mathcal{F}\}$ is necessarily μ hence $\mu \leq|\bigcup\{A: A \in \mathcal{F}\}| \leq \sum_{A \in \mathcal{F}}|A| \leq|\mathcal{F}| \lambda$ so $|\mathcal{F}| \geq \mu$.
(3) i. Take $F=\{\lambda\}$. It is obvious that this is a cover as required.
(3) ii. Clearly $\operatorname{cov}\left(\mu^{+}, \lambda\right) \geq \operatorname{cov}(\mu, \lambda)$ by part (1) and $\operatorname{cov}\left(\mu^{+}, \lambda\right) \geq \mu^{+}$by part (2). So it suffices to show that $\operatorname{cov}\left(\mu^{+}, \lambda\right) \leq \operatorname{cov}(\mu, \lambda)+\mu^{+}$. We do this by finding a $\left(\mu^{+}, \lambda\right)$-cover \mathcal{F} of cardinality $\operatorname{cov}(\mu, \lambda)+\mu^{+}$. For every ordinal α, $\lambda \leq \alpha<\mu^{+}$let \mathcal{F}_{α} be an (α, λ)-cover such that $\left|\mathcal{F}_{\alpha}\right|=\operatorname{cov}(|\alpha|, \lambda) \leq \operatorname{cov}(\mu, \lambda)$ (we use part (1)). Define $\mathcal{F}=\bigcup_{\alpha<\mu} \mathcal{F}_{\alpha}$, we shall prove that it is $\left(\mu^{+}, \lambda\right)$-cover. Let $S \subseteq \mu^{+}$be of cardinality λ, from the regularity of μ^{+}follows the existence of $\alpha, \mu \leq \alpha<\mu^{+}$such that $S \subseteq \alpha$, since \mathcal{F}_{α} is a (α, λ)-cover there is $T \in \mathcal{F}_{\alpha}$ $\left(T \in \mathcal{F}\right.$ since $\left.\mathcal{F}_{\alpha} \subseteq \mathcal{F}\right)$ such that $S \subseteq T,|T| \leq \lambda$, so we have proved one inequality. The other was done before.
(3) iii. We shall find a (μ, λ)-cover \mathcal{F} of the appropriate cardinality. For $i<\operatorname{cf}(\mu)$ let \mathcal{F}_{i} be a $\left(\mu_{i}, \lambda\right)$-cover exemplifying $\operatorname{cov}\left(\mu_{i}, \lambda\right)$, define $\mathcal{F}_{i}^{\dagger}=\mathcal{F}_{i} \cup\{\emptyset\}$, $\mathcal{F}=\left\{\bigcup_{i \in S} s_{i}: s_{i} \in \mathcal{F}_{i}^{\dagger}, S \subseteq \operatorname{cf}(\mu)\right.$ and $\left.|S| \leq \lambda\right\}$. It is easy to verify that \mathcal{F} is a (μ, λ)-cover and $|\mathcal{F}| \leq \prod_{i<\mathrm{cf} \mu} \operatorname{cov}\left(\mu_{i}, \lambda\right)$.
(4) Prove by induction on $\alpha<\lambda$.

For $\alpha+0$, we have $\operatorname{cov}\left(\lambda^{+0}, \lambda\right)=\operatorname{cov}(\lambda, \lambda)=1 \leq(\lambda)^{+0}$ (by 3 (i)).
For $\alpha=\beta+1$ we have $\operatorname{cov}\left(\lambda^{+\alpha}, \lambda\right)=\operatorname{cov}\left(\lambda^{+(\beta+1)}, \lambda\right)=\operatorname{cov}\left(\left(\lambda^{+\beta}\right)^{+}, \lambda\right)=$
$\operatorname{cov}\left(\lambda^{+\beta}, \lambda\right)+\left(\lambda^{+\beta}\right)^{+}$where the last equality holds by clause (ii) of part (3); now, using the induction hypothesis, $\operatorname{cov}\left(\lambda^{+(\beta+1)}, \lambda\right) \leq\left(\lambda^{+\beta}\right)^{|\beta|}+\left(\lambda^{+\beta}\right)^{+} \leq$ $\left(\lambda^{+\alpha}\right)^{|\alpha|}$.
For α a limit ordinal; let $\left\{\alpha_{i}: i<\operatorname{cf}(\alpha)\right\}$ be a cofinal sequence in α; then by 3 (iii) $\operatorname{cov}\left(\lambda^{+\alpha}, \lambda\right) \leq \prod_{i<\operatorname{cf} \mu} \operatorname{cov}\left(\lambda^{+\alpha_{i}}, \lambda\right) \leq\left(\lambda^{+\alpha}\right)^{\operatorname{cf} \alpha} \leq\left(\lambda^{+\alpha}\right)^{|\alpha|} . \quad \square_{1.13}$
1.14 Lemma. 1) Let $\lambda \leq \mu<2^{\lambda}, \chi_{1}, \chi$ be cardinals, $\bar{\chi}=\left\langle\chi_{i}: i<\lambda\right\rangle$, $\chi=\sup \left\{\chi_{i}: i<\lambda\right\}, \lambda$ regular uncountable, then

$$
\operatorname{Unif}(\lambda, \mu, \mu, \bar{\chi}) \text { implies } \operatorname{Unif}(\lambda, \operatorname{cov}(\mu, \lambda), \lambda, \bar{\chi})
$$

2) In part (1) assume $\mu_{0}+\mu_{1}+\chi<2^{\lambda}, \lambda \leq \chi$ and $\operatorname{cov}(\chi, \lambda) \leq \mu_{0}$ (and $\mu_{1} \geq 2$). Then Unif $\left(\lambda, \mu_{0}, \mu_{1}, \chi\right) \Longleftrightarrow \operatorname{Unif}\left(\lambda, \mu_{0}, \mu_{1}, \lambda\right)$.
3) In part (2) if in addition $\mu_{0} \leq \mu_{1}, \lambda$ is not strong limit and only $2 \leq \chi$ is required then Unif $\left(\lambda, \mu_{0}, \mu_{1}, \chi\right) \Leftrightarrow \operatorname{Unif}\left(\lambda, \mu_{0}, \mu_{1}, 2\right)$.
4) If $\lambda \leq \mu_{0} \leq \mu_{1}<2^{\lambda}$ and $\bar{\chi}=\left\langle\chi_{i}: i<\lambda\right\rangle$ is a sequence of cardinals, λ is regular uncountable then

$$
\operatorname{Unif}\left(\lambda, \mu_{0}, \mu_{1}, \bar{\chi}\right) \Rightarrow \operatorname{Unif}\left(\lambda, \mu_{0}+\operatorname{cov}\left(\mu_{1}, \lambda\right), \lambda, \bar{\chi}\right)
$$

5) In part (4) if $\mu_{0} \geq \operatorname{cov}\left(\mu_{1}, \lambda\right) \geq \mu_{1} \geq 2$ then

$$
\operatorname{Unif}\left(\lambda, \mu_{0}, \mu_{1}, \bar{\chi}\right) \Leftrightarrow \operatorname{Unif}\left(\lambda, \mu_{0}, 2, \bar{\chi}\right)
$$

6) We get similar results if we add $S \subseteq \lambda$ is a parameter (in parts 1) - 5)).

Proof. 1) We do it by translating every $g \in D(\mu, \mu)$ to $g^{*} \in D(\operatorname{cov}(\mu, \lambda), \lambda)$ where the first coordinate $g^{*}(0)$ codes a subset of μ of cardinality λ which covers $\operatorname{Rang}(g)$, and $g^{*}(1+i)$ tells us where $g(i)$ appears in it (e.g. the place in some well ordering) of order type λ. More formally let $\kappa \stackrel{\text { def }}{=} \operatorname{cov}(\mu, \lambda)$, and let $\mathcal{F}=\left\{A_{i}: i<\kappa\right\}$ exemplify this, where w.l.o.g. $A_{i} \neq \emptyset$ and let $A_{i}=\left\{\alpha_{i, j}: j<\lambda\right\}$ possibly with repetition. We define a function H from ${ }^{\lambda} \mu$ to $D_{\lambda}(\kappa, \lambda)$. For a given $g: \lambda \rightarrow \mu$ let $h=H(g)$ be defined by:
$h(0)=\min \left\{i<\kappa:\{g(\alpha): \alpha<\lambda\} \subseteq A_{i}\right\}$ and $h(1+i)$ is the first $j<\lambda$ such that $g(i)=\alpha_{h(0), j}$. Let F exemplify Unif $(\lambda, \mu, \mu, \bar{\chi})$, and we shall define F^{*} which will exemplify $\operatorname{Unif}(\lambda, \kappa, \lambda, \bar{\chi})$: for $\eta \in D(\kappa, \lambda)$ let $F^{*}(\eta)=F\left(\left\langle\alpha_{\eta(0), \eta(1+i)}: 1+i<\ell g \eta\right\rangle\right)$ if $\eta \neq\langle \rangle$, and $F^{*}(\eta)=0$ if $\eta=\langle \rangle$.
2) By $1.4(5)$ the implication \Rightarrow holds.

For the other direction, assume that Unif $\left(\lambda, \mu_{0}, \mu_{1}, \lambda\right)$ holds. Let $\mathcal{F}=\left\{A_{i}\right.$: $\left.i<\mu_{0}\right\}$ exemplify $\operatorname{cov}(\chi, \lambda) \leq \mu_{0}$ with $A_{\zeta}=\left\{\alpha_{\zeta, j}: j<\lambda\right\}$ and let F exemplify Unif $\left(\lambda, \mu_{0}, \mu_{1}, \lambda\right)$, and let $\operatorname{pr}(-,-)$ be a pairing function on μ_{0} (so it is onto μ_{0}). Now we define F^{*} as follows: $F^{*}(\langle \rangle)=0$ and for $\eta \in D\left(\mu_{0}, \mu_{1}\right) \backslash\left\{\rangle\}\right.$, let $\eta(0)=\operatorname{pr}\left(\beta_{0}, \beta_{1}\right), \nu_{\eta}=\left\langle\beta_{1}\right\rangle^{\wedge} \eta \upharpoonright[1, \ell \mathrm{~g}(\eta))$, and we choose $F^{*}(\eta) \stackrel{\text { def }}{=} \alpha_{\beta_{0}, F\left(\nu_{\eta}\right)}$. Now check that F^{*} exemplifies Unif $\left(\lambda, \mu_{0}, \mu_{1}, \chi\right)$; for any $g \in{ }^{\lambda} \chi$, let $\operatorname{Rang}(g) \subseteq A_{\zeta}, g(i)=\alpha_{\zeta, h(i)}$ where $h \in{ }^{\lambda} \lambda$; let $\eta^{*} \in D_{\lambda}\left(\mu_{0}, \mu_{1}\right)$ be such that for some club C of $\lambda, \delta \in C \Rightarrow F\left(\eta^{*} \upharpoonright \delta\right)=h(\delta)$. Now define $\nu^{*} \in D_{\lambda}\left(\mu_{0}, \mu_{1}\right)$ as follows: $\nu^{*} \upharpoonright[1, \lambda)=\eta^{*} \upharpoonright[1, \lambda)$ and $\nu^{*}(0)=\operatorname{pr}\left(\zeta, \eta^{*}(0)\right)$. Easily $\delta \in C \& \delta>0 \Rightarrow F^{*}\left(\nu^{*} \mid \delta\right)=\alpha_{\zeta, h(\delta)}=g(\delta)$, as required
3) W.l.o.g. $2 \leq \mu_{1}$ (otherwise the statements are trivially false). By monotonicity $(=1.4(5))$ and part (2) without loss of generality $\chi=\lambda$, and we have to prove the \Leftarrow direction. Now apply $1.7(3)$ and 1.5 .
4) Repeat the proof of part (1).
5) The implication \Rightarrow holds by monotonicity (that is by $1.4(5)$). The implication \Leftarrow holds by part (4) above and 1.5.
6) Same proofs.
1.15 Conclusion. Let $\mu<\aleph_{\omega_{1}}$ and assume $\mu^{\aleph_{0}}<2^{\aleph_{1}}$, then Unif $\left(\aleph_{1}, \mu, \mu, 2\right)$ fails.

Proof. Assume toward contradiction Unif $\left(\aleph_{1}, \mu, \mu, 2\right)$; from Claim 1.7(3) we obtain Unif $\left(\aleph_{1}, \mu, \mu, 2^{<\aleph_{1}}\right)$ is true, apply Lemma 1.14(1) and we have

$$
\operatorname{Unif}\left(\aleph_{1}, \operatorname{cov}\left(\mu, \aleph_{1}\right), \aleph_{1}, 2^{<\aleph_{1}}\right)
$$

Now by Lemma 1.13(4) (let $\left.\aleph_{\alpha}=\mu, \alpha<\omega_{1}\right) \operatorname{cov}\left(\mu, \aleph_{1}\right) \leq \aleph_{\alpha}^{|\alpha|} \leq \mu^{\aleph_{0}}<2^{\aleph_{1}}$. This is a contradiction to theorem 1.10.

We can strengthen theorem 1.10 to
1.16 Theorem. Suppose λ is regular uncountable, $2^{<\lambda}<2^{\lambda}$, and $\mu>\lambda$. If Unif $\left(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda}\right)$ holds then:
$(*)_{2^{\lambda}, \mu, \lambda^{+}}$There is a family $\left\{S_{i}: i<2^{\lambda}\right\}, S_{i} \subseteq \mu,\left|S_{i}\right|=\lambda^{+}$and $\left|S_{i} \cap S_{j}\right|<\aleph_{0}$ for $i \neq j$.

Proof. Similar to 1.10 ; we may assume $\mu<2^{\lambda}$, otherwise the conclusion is trivial. From the proof of 1.10 we get $2^{\lambda} \leq \mu^{\aleph_{0}}$. Hence we may assume $\mu \geq\left(2^{<\lambda}\right)^{+\omega}$ (otherwise we have $\mu=\left(2^{<\lambda}\right)^{+n}$ for some n, so by the Hausdorff formula we get $\mu^{\aleph_{0}}=\mu+\left(2^{<\lambda}\right)^{\aleph_{0}}=\mu+2^{<\lambda}=\mu<2^{\lambda} \leq \mu^{\aleph_{0}}$, a contradiction). Let for every $\alpha<\lambda^{+}, \alpha=\bigcup_{i<\lambda} B_{i}^{\alpha},\left|B_{i}^{\alpha}\right|<\lambda, B_{i}^{\alpha}$ increasing continuous in i, and we can assume: $B_{i}^{\alpha} \cap \lambda=i$, and $\beta, j \in B_{i}^{\alpha} \Rightarrow B_{j}^{\beta} \subseteq B_{i}^{\alpha}$. For notational convenience let $B(\alpha, i)=B_{i}^{\alpha}$. We follow the proof of 1.10 and mention only the differences. We let
$\operatorname{Mod}=\left\{\left\langle\alpha, \ldots, C_{\beta}, g_{\beta}, \ldots\right\rangle_{\beta \in B(\alpha, i)}: \beta<\lambda^{+}, i<\lambda, g_{\beta}\right.$ a function from $B_{i}^{\alpha} \backslash\{0\}$ to ${ }^{\lambda>} 2, C_{\beta}$ a closed subset of $\left.i\right\}$, so from $x \in \operatorname{Mod}$ we can reconstruct α and $B(\alpha, i)$ hence i. Now for every $f: \lambda \rightarrow\{0,1\}$ we define by induction on $\beta<\lambda^{+}$ functions $h_{f, \beta}: \lambda \rightarrow{ }^{\lambda>} 2, g_{f, \beta} \in D_{\lambda}\left(\mu,{ }^{\lambda>} 2\right)$ and a closed unbounded subset $C_{f, \beta}$ of λ.

If we have defined for every $\beta<\gamma$ and $\gamma>0$, let

$$
\left.h_{f, \gamma}(i)=H\left(\left\langle\alpha, \ldots, C_{f, \beta} \cap \alpha, g_{f, \beta}\right\rceil(\alpha \backslash\{0\}), \ldots\right\rangle_{\beta \in B(\gamma, i)}\right)
$$

where $\alpha=\alpha(i, f, \gamma)$ is the minimal $\alpha>i, \alpha \in \cap\left\{C_{f, \beta}: \beta \in B(\gamma, i)\right\}$ and we let

$$
C_{f, \gamma} \stackrel{\text { def }}{=}\left\{\delta: \text { if } \beta \in B(\gamma, \delta) \text { then } \delta \text { is an accumulation point of } C_{f, \beta}\right\} .
$$

We modify Fact 1.11 to : there are no distinct $j_{n}<\lambda^{+}$for $n<\omega$ and $f_{0} \in{ }^{\lambda} 2$ such that the set $Y \stackrel{\text { def }}{=}\left\{f \in{ }^{\lambda} 2: g_{f, j_{n}}(0)=g_{f_{0}, j_{n}}(0)\right.$ for each $\left.n<\omega\right\}$ has power $>2^{<\lambda}$ (the number is just to give us two distinct f 's as required for starting the induction there).

How do we prove this new version of 1.11? Assume $\left\langle j_{n}: n<\omega\right\rangle$ and f_{0} form a counterexample. Without loss of generality $\bigwedge_{n} j_{n}<j_{n+1}$ and choose
$i<\lambda$ large enough such that $j_{n} \in B\left(j_{m}, i\right)$ for $n<m$, and for each $f \in Y$ let $\alpha(f)=\operatorname{Min}\left\{\alpha: \alpha>i, \alpha \in \bigcap_{n<\omega} C_{f, j_{n}}\right\}$; we define a relation E on Y :

$$
\begin{aligned}
f_{1} E f_{2} \quad \text { iff } & \alpha\left(f_{1}\right)=\alpha\left(f_{2}\right) \text { and for } n<\omega, \\
& f_{1} \upharpoonright \alpha(f)=f_{2} \upharpoonright \alpha(f) \text { and } g_{f_{1}, j_{n}} \upharpoonright \alpha(f)=g_{f_{2}, j_{n}} \upharpoonright \alpha(f) \\
& \text { and } C_{f_{1}, j_{n}} \cap \alpha(f)=C_{f_{2}, j_{n}}=\alpha(f) .
\end{aligned}
$$

Now E is an equivalence relation with $\leq \lambda \times\left(2^{<\lambda}\right)^{\aleph_{0}} \times\left(2^{<\lambda}\right)^{\aleph_{0}}=2^{<\lambda}$ equivalence classes. So we can find $f_{1} \neq f_{2} \in Y$ which are equivalent.

Now $g_{f_{1}, j_{n}}(0)=g_{f_{0}, j_{n}}(0)=g_{f_{2}, j_{n}}(0)$ by the definition of Y. Now we can apply the proof of 1.11 to f_{1}, f_{2}, contradicting the choice of $f_{1} \neq f_{2}$.

Why is this new version of 1.11 enough? For $f_{0} \in{ }^{\lambda} 2$ let $Y_{f_{0}}^{\prime} \stackrel{\text { def }}{=}\left\{f: f \in{ }^{\lambda_{2}}\right.$ and for infinitely many $j<\lambda^{+}$we have $\left.g_{f, j}(0)=g_{f_{0}, j}(0)\right\}$, now the number of possible $\left\langle j_{n}: n<\omega\right\rangle$ is $\leq\left(\lambda^{+}\right)^{\aleph_{0}} \leq 2^{<\lambda}+\lambda^{+}$which is $<2^{\lambda}$. Moreover $\sup \left\{\left|Y_{f}^{\prime}\right|: f \in{ }^{\lambda} 2\right\} \leq \lambda^{+}+2^{<\lambda}<2^{\lambda}$. As $f_{0} \in Y_{f_{1}}^{\prime} \Leftrightarrow f_{1} \in Y_{f_{0}}^{\prime}$ we can find $F^{*} \subseteq{ }^{\lambda} 2$ such that $\left|F^{*}\right|=2^{\lambda}$ and $f_{0} \in F^{*} \& f_{1} \in F^{*} \& f_{0} \neq f_{1} \Rightarrow f_{0} \notin Y_{f_{1}}^{\prime}$. So $\left\{\left\{\left\langle g_{f, j}(0), j\right\rangle: j<\lambda^{+}\right\}: f \in F^{*}\right\}$ is a family of 2^{λ} subsets of $\mu \times \lambda^{+}$; which by the choice of F^{*} satisfies: the intersection of any two is finite, confirming $(*)$ of 1.16 (note that without this symmetry we could have used Hajnal's free subset theorem [Ha61]).
1.17 Conclusion. If $\lambda=\operatorname{cf}(\lambda)>\aleph_{0}, 2^{\lambda}>\mu \geq 2^{<\lambda}=2^{\kappa}, \operatorname{cov}(\mu, \lambda)<2^{\lambda}$ then Unif $(\lambda, \mu, \mu, 2)$ fails.

Proof. Let $\sigma \stackrel{\text { def }}{=} \operatorname{cov}(\mu, \lambda)$ and let us assume toward contradiction that Unif $(\lambda, \mu, \mu, 2)$. Now by Claim $1.7(3)$ we have Unif $\left(\lambda, \mu, \mu, 2^{<\lambda}\right)$, and by Lemma 1.14(1) we have Unif $\left(\lambda, \operatorname{cov}(\mu, \lambda), \lambda, 2^{<\lambda}\right)$ i.e. Unif $\left(\lambda, \sigma, \lambda, 2^{<\lambda}\right)$ hence by monotonicity (i.e. $1.4(5)$) we have Unif $\left(\lambda, \sigma, 2^{<\lambda}, 2^{<\lambda}\right)$, so by 1.16 we know that $(*)_{2^{\lambda}, \sigma, \lambda^{+}}$holds. Now we would like to apply [Sh:430, 2.1(2)], with κ^{+}, λ, μ here standing for κ, λ, μ there, but we have to check the assumptions there: " $\mu>\lambda \geq \kappa$ " is obvious, as $\mu>\lambda \geq \kappa^{+}$; as for $" \operatorname{cov}(\lambda, \kappa, \kappa, 2) \leq \mu$ " trivially $\left|\mathcal{S}_{<\kappa^{+}}(\lambda)\right| \leq \mu$ suffices but $\left|\mathcal{S}_{<\kappa^{+}}(\lambda)\right|=\lambda^{\kappa} \leq 2^{<\lambda} \leq \mu$. Now $" \operatorname{cov}\left(\mu, \lambda^{+}, \lambda^{+}, 2\right)^{\prime}$
there means $\operatorname{cov}(\mu, \lambda)$ here, so we get $\sigma^{<\kappa^{+}}=\sigma$. Hence $\sigma=\sigma^{\aleph_{0}}$ hence $(*)_{2^{\lambda}, \sigma, \lambda^{+}}$is impossible.
1.18 Conclusion. 1) If $\theta<\lambda$ are regular cardinals, $2^{\theta}=2^{<\lambda}<2^{\lambda}$, and $\lambda \leq \mu<2^{\lambda}$ and $\neg(*)_{2^{\lambda}, \mu, \lambda^{+}}$(this is the statement from 1.16) then $\neg \operatorname{Unif}\left(\lambda, \mu, 2^{<\lambda}, 2^{\theta}\right)$.
2) Under the assumptions of 1) if $\operatorname{cov}(\mu, \lambda) \leq \mu$ or just $\operatorname{cov}\left(2^{\theta}, \lambda\right) \leq \mu$ then $\neg \operatorname{Unif}(\lambda, \mu, \mu, \lambda)$.

Proof. 1) By 1.16 we have $\neg \operatorname{Unif}\left(\lambda, \mu, 2^{<\lambda}, 2^{<\lambda}\right)$ i.e. $\neg \operatorname{Unif}\left(\lambda, \mu, 2^{<\lambda}, 2^{\theta}\right)$.
2) By part (1) and 1.14(2).
1.19 Conclusion. 1) If $\theta<\lambda$ are regular cardinals $2^{\theta}=2^{<\lambda}<2^{\lambda}$ (e.g. $\lambda=\theta^{+}$, $\left.2^{\theta}<2^{\lambda}\right)$ and $\theta \geq \beth_{\omega}$ then for every $\mu<\lambda$, we have $\neg \operatorname{Unif}\left(\lambda, \mu, 2^{\theta}, 2^{\theta}\right)$.
2) Moreover if $\operatorname{cov}(\mu, \lambda)<2^{\lambda}$ then $\neg \operatorname{Unif}\left(\lambda, \mu, 2^{\theta}, \lambda\right)$.

Proof.

1) By 1.18 it suffices to prove $\neg(*)_{2^{\lambda}, \mu, \lambda^{+}}$which is proved in [Sh:460]. For the reader's benefit we derive it from the main theorem of [Sh:460]. As $\mu \geq \theta \geq 1$ main theorem of [Sh:460] says that for every regular large enough $\kappa<\beth_{\omega}$, the κ-revised power of $\mu, \mu^{[\kappa]}$, is μ where

$$
\mu^{[\kappa]}=\min \left\{|\mathcal{P}|: \mathcal{P} \subseteq \mathcal{S}_{\leq \kappa}(\mu) \text { and every } a \subseteq \mathcal{S}_{\leq \kappa}(\mu)\right.
$$

is included in a union of $<\kappa$ members of $\mathcal{P}\}$
Let $\mathcal{P} \subseteq \mathcal{S}_{\leq \kappa}(\mu)$ exemplified $\mu^{[\kappa]}=\mu$, and let $\mathcal{P}_{1}=\{b:|b|=$ κ and $(\exists a)(b \subseteq a \in \mathcal{P})\}$, so $\mathcal{P}_{1} \subseteq \mathcal{S}_{\leq \kappa}(\mu),\left|\mathcal{P}_{1}\right| \leq \mu \times 2^{\kappa} \leq \mu+\beth_{\omega}=\mu$.
Now if $\left\{S_{i}: i<2^{\lambda}\right\} \subseteq \mathcal{S}_{\leq \lambda^{+}}(\mu)$ is as required in $(*)_{2^{\lambda}, \mu, \lambda^{+}}$, each S_{i} contains some a_{i} of cardinality κ, hence for some $\zeta_{i}^{*}<\kappa, b_{i, \zeta} \in \mathcal{P}$ for $\zeta<\zeta_{i}^{*}$ we have $a_{i} \subseteq \bigcup_{\zeta<\zeta_{i}^{*}} b_{i, \zeta}$, hence for some $\zeta(i)$ we have $c_{i} \stackrel{\text { def }}{=} a_{i} \cap b_{i, \zeta(i)}$ has cardinality κ. Clearly $c_{i} \in \mathcal{P}_{1}$, but $\left|\mathcal{P}_{1}\right| \leq \mu<2^{\lambda}$ hence for some $i<j<2^{\lambda}, c_{j}=c_{i}$ so
$c_{j}=c_{i}$ is a subset of $S_{i} \cap S_{j}$ of cardinality κ contradiction to the choice of $\left\{S_{i}: i<2^{\lambda}\right\}$.
2) By part (1) and 1.18(2).

Remark. Even for smaller $\lambda,(*)_{2^{\lambda}, \mu, \lambda^{+}}$is a very strong requirement, and it is not clear if it is consistent with ZFC. By [Sh:420, §6] it implies that there are regular cardinals $\theta_{i} \in\left(2^{<\lambda}, \mu\right)$ for $i<\lambda$ such that $\prod_{i<\lambda} \theta_{i} / \mathcal{S}_{<\aleph_{0}}(\lambda)$ is μ^{+}-directed and even has true cofinality which is $>\mu$.
1.20 Question. 1) Does $\lambda=\operatorname{cf}(\lambda)>\aleph_{0}, \lambda \leq 2^{<\lambda}<2^{\lambda}$ imply that Unif ($\lambda, 2,2,2$) fails?
2) Is it consistent with ZFC that for some strongly inaccessible λ we have Unif ($\lambda, 2,2,2$) fails?
3) Can we prove in $1.14(2)$ equality? can we omit the " λ not strong limit" in 1.14(3)?
4) How complete is Id - Unif $\left(\lambda, \mu_{0}, \mu_{1}, \bar{\chi}\right)$?

§2. On the Power of Ext and Whitehead's Problem

Let the word group stand here for abelian group, for notational simplicity. A comprehensive book of set-theoretic methods in Abelian group theory is [EM].

By [Sh:44], [Sh:52] if G is a non-free group and $V=L$ then $\operatorname{Ext}(G, \mathbb{Z}) \neq$ $\{0\}$. In Hiller, Huber and Shelah [HHSh:91], it is proved that if $V=L$, the torsion free rank of $\operatorname{Ext}(G, \mathbb{Z})$ is the immediate upper bound: $\operatorname{Min}\left\{2^{|K|}: K\right.$ a subgroup of G such that G / K free $\}$.

Now in fact not the full power of the axiom $V=L$ is used, just the satisfaction of the diamond principle for every stationary subset of a regular uncountable cardinal. Devlin and Shelah [DvSh:65] introduced a weakening of this principle, and in [HHSh:91] we stated that for the result mentioned above it is enough that the weak diamond holds for every stationary subset of any
regular uncountable cardinal. Here we prove a somewhat stronger result, using failure of cases of Unif, (e.g., $\chi=2^{\aleph_{0}}$ suffice). Meanwhile Eklof and Huber [EkHu] found an alternative proof, more group-theoretic, for the result with weak diamond (really a slight weakening)

On the difference between weak diamond and failure of Unif, and between variants of Unif, see [Sh:98] also $\S 1$ of this chapter and VIII $\S 4$ (where we show that it is consistent that only one of them holds). On the torsion part of Ext (G, \mathbb{Z}) see Sageev and Shelah [SgSh:138] [SgSh:148]; an alternative proof to [SgSh:138], more group theoretic, Eklof and Huber [EkHu]; on other cardinals Grossberg and Shelah [GrSh:302] and Mekler, Roslanowski and Shelah [MRSh:314].

2.0 Definition.

(1) A group $(G,+)$ is called torsion free, if for all $g \in G \backslash\{0\}$, for all $n>0$ we have $n g \neq 0$.
(2) The torsion free rank of an (abelian) group $G, r_{0}(G)$ is the maximal size of a set $\left\{a_{i}: i<\lambda\right\} \subseteq G$ such that for every finite non empty $S \subseteq \lambda$, for all $\left\langle u_{i}: i \in S\right\rangle\left(u_{i} \in \mathbb{Z} \backslash\{0\}\right)$, we have $\sum_{i \in S} u_{i} a_{i} \neq 0$.
(3) For $g \in G$ and n such that $0<n<\omega$, we say that " n divides g in G " $(G \vDash n \mid g)$ if there is $g^{\prime} \in G$ such that $n g^{\prime}=g$. A subgroup $A \subseteq G$ is called a "pure" subgroup if for all $a \in A$, all $n, 0<n<\omega$ we have: $G \vDash n \mid a$ implies $A \vDash n \mid a$.
(4) If $A \subseteq G$ is a subgroup, we write G / A for the quotient group, and for $a \in G$ we let $a+A$ or a / A be the equivalence class of a.
(5) G is called divisible, if for all $a \in G$, all $n>0$ we have $G \vDash n \mid a$.
(6) G is called free if it has a free basis, where $\left\langle x_{i}: i \in T\right\rangle$ is a free basis of G iff every element of G has a representation $\sum_{i \in S} u_{i} x_{i}$ where $S \subseteq T$ is finite and $u_{i} \in \mathbb{Z}$, and $\sum_{i \in S} u_{i} x_{i}=0 \Rightarrow \bigwedge_{i \in S} u_{i}=0$.

2.0A Fact.

(1) If G is torsion free, $A \subseteq G$ a pure subgroup, then G / A is torsion free.
(2) If G is not a torsion group (i.e. $\exists a \in G \forall n>0[n a \neq 0]$), then the two cardinals

$$
\max \left\{|A|: A \subseteq G, \text { for all } a_{1} \neq a_{2} \text { in } A, \text { all } n>0: n a_{1} \neq n a_{2}\right\}
$$

and
$\min \{|A|: A \subseteq G$, for all $a \in G$ there is $u \in \mathbb{Z}$, such that $u a \in A\}$
are equal to $\max \left\{r_{0}(G), \aleph_{0}\right\}$.
(3) If G is torsion free non zero, then $|G|=\max \left\{r_{0}(G), \aleph_{0}\right\}$.
(4) If G is an abelian group and $0<n<\omega$ then we can find $a_{i} \in G$ for $i<|n G|$ such that $i \neq j \Rightarrow n\left(a_{i}-a_{j}\right) \neq 0_{G}$, where $n G=\{n a: a \in G\}$. Note that if G is divisible then $|n G|=|G|$ as $n G=G$.

Recall (see [Fu])

2.0B Fact.

(a) If H and G / H are free (so $H \subseteq G$), then G is free.
(b) If $G=\bigcup_{i<\lambda} G_{i}$ where $\left\langle G_{i}: i<\lambda\right\rangle$ is an increasing continuous sequence of groups, G_{0} is free and for all $i<\lambda$ the group G_{i+1} / G_{i} is free, then G is free.
(c) If $G=\bigcup_{i<\lambda} G_{i}$ where $\left\langle G_{i}: i<\lambda\right\rangle$ is an increasing continuous sequence of group, each G_{i} is free and for a closed unbounded set of $i<\lambda$ we have $(\forall j)\left(i \leq j<\lambda \Rightarrow G_{j} / G_{i}\right.$ is free $)$ then G is free.

After Fuchs [Fu] pp. 209-211:
2.1 Definition. For abelian groups A, H let
(1) $\operatorname{Fact}(A, H)$ is the family of functions $f: A \times A \longrightarrow H$ such that

$$
\begin{aligned}
& f(a,-a)=f(a, 0)=f(0, a)=0 \text { and } \\
& f(a, b+c)+f(b, c)=f(b, a+c)+f(a, c)=f(c, a+b)+f(a, b)
\end{aligned}
$$

(2) We make Fact (A, H) into an abelian group by coordinatewise addition.
(3) For each function $g: A \rightarrow H$ satisfying $g(0)=0, g(-a)=-g(a)$ (we call such g normal) let $(\partial g) \in \operatorname{Fact}(A, H)$ be defined by $(\partial g)(a, b)=$ $g(a)-g(a+b)+g(b)$.
(4) Trans (A, H) is $\{\partial g: g$ a normal function from A to $H\}$, and it is a subgroup of Fact (A, H) and we make it to an abelian group by coordinatewise addition.
(5) $\operatorname{Ext}(A, G)=\operatorname{Fact}(A, G) / \operatorname{Trans}(A, G)$ (quotient as an abelian group).

2.1A Fact.

(1) If $h: A \rightarrow B$ is a group homomorphism, then h induces naturally a homomorphism

$$
\check{h}: \operatorname{Fact}(B, H) \rightarrow \operatorname{Fact}(A, H)
$$

(namely, $\left.\check{h}(f)\left(\left(a_{1}, a_{2}\right)\right) \mapsto f\left(h\left(a_{1}\right), h\left(a_{2}\right)\right)\right)$ for $a_{1}, a_{2} \in A$ which satisfies $\hat{h}(\partial g)=\partial(g \cdot h)$ so maps $\operatorname{Trans}(B, H)$ into $\operatorname{Trans}(A, H)$ and so naturally induces a homomorphism

$$
\hat{h}: \operatorname{Ext}(B, H) \rightarrow \operatorname{Ext}(A, H)
$$

(satisfying $\hat{h}(f+\operatorname{Trans}(B, H))=\breve{h}(f)+\operatorname{Trans}(A, H))$.
(2) If h is $1-1$, then \check{h} and \hat{h} are onto. (See [Fu, 51.3] for \check{h} and [HHSh, Lemma 1] for \hat{h}.)
2.1B Remark. (See [Fu])
(1) If G is free, then $\operatorname{Ext}(G, H)=\{0\}$ i.e. Trans $(G, H)=\operatorname{Fact}(G, H)$.
(2) G is called a Whitehead group if $\operatorname{Ext}(G, \mathbb{Z})=\{0\}$.
(3) If G is divisible, then $\operatorname{Ext}(G, H)$ is torsion free (see [Fu, 52.1 I$]$).
2.2 Theorem. Suppose λ is a regular uncountable cardinal, $H, G=G_{\lambda}$ are abelian groups, G_{i} (for $i<\lambda$) torsion free abelian subgroups of $G,|G|=\lambda>$ $\left|G_{i}\right|, G=\bigcup_{i<\lambda} G_{i}, G_{i}(i<\lambda)$ increasing and continuous, and let $\bar{\chi}(i)$ be the cardinality of $\operatorname{Ext}\left(G_{i+1} / G_{i}, H\right)$. If Unif $(\lambda,|H|, \bar{\chi})$ fails then $|\operatorname{Ext}(G, H)|>1$.

Proof. First we remark that we may w.l.o.g. assume that each G_{i} is a pure subgroup of G (and hence of G_{i+1}): the set $C=\left\{i<\lambda: G_{i}\right.$ is a pure subgroup of $G\}$ is a closed unbounded subset of λ, say $C=\left\{\xi_{i}: i<\lambda\right\}$ an increasing continuous enumeration. Let $G_{i}^{\prime}=G_{\xi_{i}}, \bar{\chi}^{\prime}(i)=\left|\operatorname{Ext}\left(G_{i+1}^{\prime} / G_{i}^{\prime}, H\right)\right|$, $E=\left\{i: \xi_{i}=i\right\}$, then E is closed unbounded and for $i \in E$ we have $G_{i}^{\prime}=G_{i} \subseteq G_{i+1} \subseteq G_{i+1}^{\prime}$ so $\bar{\chi}^{\prime}(i) \geq \bar{\chi}(i)$ (by $2.1 \mathrm{~A}(2)$), so the failure of Unif $(\lambda,|H|, \bar{\chi})$ implies the failure of Unif $\left(\lambda,|H|, \bar{\chi}^{\prime}\right)$ by 1.4(2) and 1.4(5), and we can continue the proof with $G_{i}^{\prime}, \bar{\chi}^{\prime}(i)$ instead of $G_{i}, \bar{\chi}(i)$ renaming them as $G_{i}, \bar{\chi}(i)$. Let $\bar{\mu}=\langle\bar{\mu}(i): i<\lambda\rangle$ be defined by $\bar{\mu}(i)=|H|^{\left|G_{i}\right|}$, so by $1.6(1)$ we get that Unif $(\lambda, \bar{\mu}, \bar{\chi})$ too fails and we can assume $\left|G_{\alpha}\right| \geq|\alpha|+\aleph_{0}$.

Next we prove
2.3 Claim. Let H, A, B be abelian groups, B a pure subgroup of $A, f \in$ $\operatorname{Fact}(B, H)$. Then there are $f_{t} \in \operatorname{Fact}(A, H)$ (for $\left.t \in \operatorname{Ext}(A / B, H)\right)$ extending f, such that
(*) there are no distinct $t, s \in \operatorname{Ext}(A / B, H)$ and normal functions g_{t}, g_{s} from A to H such that $\partial g_{t}=f_{t}, \partial g_{s}=f_{s}$ and $g_{t} \upharpoonright B=g_{s} \upharpoonright B$.
In other words, for any normal function $g_{0}: B \rightarrow H$ there is at most one $t \in \operatorname{Ext}(A / B, H)$ such that for some normal $g: A \rightarrow H$ extending g_{0} we have $f_{t}=\partial g$.

Proof of the Claim 2.3 By 2.1A(2) there is $f_{0} \in \operatorname{Fact}(A, H)$ extending f. Let for each $t \in \operatorname{Ext}(A / B, H), h_{t} \in \operatorname{Fact}(A / B, H)$ represent t, i.e., $t=$ $h_{t} / \operatorname{Trans}(A / B, H)$, and w.l.o.g. h_{0} is the zero function. For $t \in \operatorname{Ext}(A / B, H)$ let $f_{t} \in \operatorname{Fact}(A, H)$ be defined by:
\otimes for $a, b \in A, f_{t}(a, b)=f_{0}(a, b)+h_{t}(a / B, b / B)$ (where $a / B, b / B \in A / B$ are defined naturally).
Clearly each f_{t} is well defined and belongs to Fact (A, H), (and the two definitions of f_{0} agree).

Suppose t, s are members of $\operatorname{Ext}(A / B, H)$, and there are normal functions g_{t}, g_{s} from A to $H, \partial g_{t}=f_{t}, \partial g_{s}=f_{s}$ and $g_{t} \upharpoonright B=g_{s} \upharpoonright B$. Let $f^{*} \stackrel{\text { def }}{=} f_{t}-f_{s} \in$

Fact $(A, H), g^{*} \stackrel{\text { def }}{=} g_{t}-g_{s}$ (a normal function from A to H), so clearly $\partial g^{*}=f^{*}$ and $f^{*} \upharpoonright B=0_{B}$, moreover, $f^{*}(a, b)=h^{*}(a / B, b / B)$ where $h^{*}=h_{t}-h_{s}$ (see \otimes above). It is also clear that $h^{*} \in \operatorname{Fact}(A / B, H)$ and $h^{*} / \operatorname{Trans}(A / B, H)=$ $t-s \neq 0$.

Now if in $A, c-a=b \in B$ then $h^{*}(a / B, b / B)=f^{*}(a, b)=\left(\partial g^{*}\right)(a, b)=$ $g^{*}(a)-g^{*}(a+b)+g^{*}(b)=g^{*}(a)-g^{*}(c)+g^{*}(b)$. As $b \in B, g^{*}(b)=0_{H}$ by $" g^{*}=g_{t}-g_{s}$ and $g_{t} \upharpoonright B=g_{s} \upharpoonright B "$ and $b / B=0_{A} / B$ hence $h^{*}(a / B, b / B)=$ $h^{*}\left(a / B, 0_{A} / B\right)=0_{H}$ (as $\left.h^{*} \in \operatorname{Fact}(A / B, G)\right)$. So putting together the last two sentences $0_{H}=g^{*}(a)-g^{*}(c)+0_{H}$, hence $g^{*}(a)=g^{*}(c)$.

We can conclude that $c / B=a / B$ implies $a-c \in B$ hence $g^{*}(a)=g^{*}(c)$. So there is $g^{\dagger}: A / B \longrightarrow H$ such that $g^{*}(a)=g^{\dagger}(a / B)$. We can check $h^{*}=\partial g^{\dagger}$, but $h^{*} / \operatorname{Trans}(a / B, H)=t-s \neq 0$, contradiction.

Continuation of the proof of the Theorem 2.2.
Recall that we assumed that each G_{i} is a pure subgroup of G. We define by induction on $\alpha<\lambda$ for every $\eta \in X_{i<\alpha} \bar{\chi}(i)$ a function f_{η} (note that $\bar{\chi}(i) \geq 1$ for every i) such that:
a) $f_{\eta} \in \operatorname{Fact}\left(G_{\alpha}, H\right)($ when $\lg (\eta)=\alpha)$
b) if $\nu=\eta \upharpoonright \beta$, and $\beta \leq \ell g(\nu)$ then $f_{\nu} \subseteq f_{\eta}$
c) if $\xi<\zeta<\bar{\chi}(\alpha)$, then there are no normal functions g_{0}, g_{1} from $G_{\alpha+1}$ into H, such that $\partial g_{0}=f_{\eta^{\wedge}<\xi>}, \partial g_{1}=f_{\eta^{\wedge}<\zeta>}$ and $g_{0} \upharpoonright G_{\alpha}=g_{1} \upharpoonright G_{\alpha}$.
Hence
c)' for any function $g_{0}: G_{\alpha} \rightarrow H$ there is at most one $\xi<\bar{\chi}(\alpha)$ such that there exists a normal function $g: G_{\alpha+1} \rightarrow H$ extending g_{0} with $f_{\eta^{\wedge}\langle\xi\rangle}=\partial g$.

There is no problem in the induction, as the induction step is done by the Claim 2.3.

In the end, it is enough to prove that: for some $\eta \in X_{i<\lambda} \bar{\chi}(i)$ for no normal function g from G into H do we have $f_{\eta}=\partial g$. So assume that for each $\eta \in X_{\alpha<\lambda} \bar{\chi}(\alpha)$ there is a normal function $g_{\eta}: G \rightarrow H$ such that $f_{\eta}=\partial g_{\eta}$. So also $f_{\eta \upharpoonright \alpha}=f_{\eta} \upharpoonright\left(G_{\alpha} \times G_{\alpha}\right)=\partial\left(g_{\eta} \upharpoonright G_{\alpha}\right)$, if $\ell g(\eta)=\alpha$. Hence $\eta(\alpha)$ can be computed from $\left\langle\eta\left\lceil\alpha, g_{\eta} \upharpoonright G_{\alpha}\right\rangle\right.$, since it is the unique (by (c)) $\xi<\bar{\chi}(\alpha)$
such that there is a normal $g: G_{\alpha+1} \rightarrow H$ extending $g_{\eta} \upharpoonright G_{\alpha}$ and satisfying $f_{(\eta \upharpoonright \alpha)^{\wedge}\langle\xi\rangle}=\partial g$. What is the cardinality of $\left\{\left(\eta \upharpoonright \alpha, g_{\eta} \upharpoonright G_{\alpha}\right): \eta \in{ }^{\lambda} 2\right\}$? Clearly at $\operatorname{most}\left(\prod_{\beta<\alpha} \bar{\chi}(\beta)\right) \times|H|^{\left|G_{\alpha}\right|} \leq\left(\prod_{\beta<\alpha}\left(|H|^{\left|G_{\beta} \times G_{\beta}\right|}\right) \times|H|^{\left|G_{\alpha}\right|}=|H|^{\left|G_{\alpha}\right|}=\bar{\mu}(\alpha)\right.$ as $\left|G_{\alpha}\right| \geq|\alpha|+\aleph_{0}$, we thus easily get that Unif $(\lambda, \bar{\mu}, \bar{\chi})$ holds, which is equivalent to Unif $(\lambda,|H|, \bar{\chi})$. This contradicts our assumption.
2.4 Theorem. Assume λ is regular uncountable, H, G are abelian groups, G_{i} a torsion free abelian subgroup of G increasing continuous with i for $i<\lambda$ such that $G=\bigcup_{i<\lambda} G_{i}$. Let $\bar{\chi}^{0}=\left\langle\chi^{0}(i): i<\lambda\right\rangle$ be defined by $\bar{\chi}^{0}(i)=$ $\left|\operatorname{Ext}\left(G_{i+1} / G_{i}, H\right)\right|$ and let $\bar{\chi}^{1}=\left\langle\bar{\chi}^{1}(i): i<\lambda\right\rangle$ be defined by $\bar{\chi}^{1}(i)=$ $\left|\operatorname{Ext}\left(G_{i+1} / G_{i}\right) / \operatorname{Torsion}\left(\operatorname{Ext}\left(G_{i+1} / G_{i}, H\right)\right)\right|$. Let $\ell(*)<2$ and assume that $\operatorname{Unif}\left(\lambda,|H|, \bar{\chi}^{\ell(*)}\right)$ fails (note: $\bar{\chi}^{1}(i)$ is $\left.\aleph_{0} \times r_{0}\left(\operatorname{Ext}\left(G_{i+1} / G_{i}, H\right)\right)\right)$.
(1) $\operatorname{Ext}(G, H)$ is not a torsion group provided that
(*) (a) $\ell(*)=1$ or
(b) $\ell(*)=0$ and the Boolean algebra $\mathcal{P}(\lambda) / \operatorname{Id}-\operatorname{Unif}\left(\lambda, \bar{\mu}, \bar{\chi}^{1}\right)$ is infinite.
(2) If Unif $\left(\lambda, \mu_{0},|H|, \bar{\chi}^{0}\right)$ fails and (*) of part (1) then the torsion free rank of $\operatorname{Ext}(G, H)$ is $>\mu_{0}$.
(3) Suppose Id - Unif $\left(\lambda,|H|, \bar{\chi}^{0}\right)$ is not κ-saturated, $\aleph_{0} \leq \kappa \leq \lambda$ then the torsion free rank of $\operatorname{Ext}(G, H)$ is at least 2^{κ}.

Remark. 1) An ideal I on λ is called κ-saturated if there are no κ pairwise disjoint non zero elements in the Boolean algebra $\mathcal{P}(\lambda) / I$.
2) An ideal I on λ is called weakly λ-saturated if there are no λ pairwise disjoint sets in $\mathcal{P}(\lambda) \backslash I$.
3) As is well known; if I is κ-complete the two notions are equivalent.
4) It is well known that the extra hypothesis in $2.4(3)$ is very weak (i.e. the assumption that there is a normal κ-saturated ideal on λ has high consistency strength and put other restrictions on λ e.g. λ not successor).

Proof. (1) As in the proof of 2.4 w.l.o.g. each G_{i} is a pure subgroup of G, hence $G_{\alpha}, G_{\alpha+1} / G_{\alpha}$ are torsion free. Also $\left|G_{i}\right| \geq \aleph_{0}$, and letting $\bar{\mu}(i)=|H|^{\left|G_{i}\right|}$ also Unif ($\left.\lambda, \bar{\mu}, \bar{\chi}^{\ell(*)}\right)$ fails. Now we prove two claims:
2.5 Observation. There are pairwise disjoint $S_{n} \subseteq \lambda, n<\omega$ such that Unif ($\lambda, S_{n}, \bar{\mu}, \bar{\chi}$) fails, provided that one of the following holds:
(α) $\bar{\mu}(i) \leq 2^{<\lambda}$
(β) $\mathcal{P}(\lambda) /$ Id - Unif $(\lambda, \bar{\mu}, \bar{\chi})$ is an infinite Boolean algebra
(γ) $\bar{\mu}(i)$ non decreasing, λ not measurable.
(δ) $\bar{\chi}(\alpha) \geq 2$ for every α or just for every normal ultrafilter D on $\lambda,\{\alpha$: $\bar{\chi}(\alpha) \geq 2\} \in D$.

Proof. If clause (β) holds, this is very trivial. If the Boolean algebra $\mathcal{P}(\lambda) /$ Id Unif $(\lambda, \bar{\mu}, \bar{\chi})$ is atomless below some element, say $S / \operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$ we choose by induction on n a set $S_{n} \subseteq S$ such that $S_{n} / \operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$ is not zero and $S_{n} \subseteq S \backslash \bigcup_{\ell<n} S_{\ell}$, and $S \backslash \bigcup_{\ell \leq n} S_{\ell} \notin \operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$, so $\left\langle S_{\ell}: \ell<\omega\right\rangle$ is as required. If $\mathcal{P}(\lambda) / \operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$ is an atomic Boolean algebra, it has infinitely many atoms say $\left\langle S_{n}^{\prime} / \operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi}): n<\omega\right\rangle$ are disjoint atoms, so $S_{n} \stackrel{\text { def }}{=} S_{n}^{\prime} \backslash \bigcup_{\ell \leq n} S_{\ell}^{\prime}$ are as required. So assume clause (α), so by 1.7 w.l.o.g. $\mu_{i}=2^{<\lambda}$. By induction on n try to choose pairwise disjoint sets $S_{n} \in \mathcal{P}(\lambda) \backslash \operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$ such that $\lambda \backslash \bigcup_{k \leq n} S_{k} \notin \operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$. Assume that we cannot continue the induction in stage n, then clearly $S^{\prime} \stackrel{\text { def }}{=}$ $\{\alpha<\lambda: \bar{\chi}(\alpha)=1\}$ belongs to the ideal (by 1.4(1)), hence the restriction of Id $-\operatorname{Unif}(\lambda, \bar{\mu}, \bar{\chi})$ to $S \stackrel{\text { def }}{=} \lambda \backslash \bigcup_{k<n} S_{k}$ is a maximal ideal. Since it is also normal by $1.9(2), \lambda$ must be measurable and the dual filter is a normal ultrafilter to which S belongs. So \diamond_{S} holds. Now it is easy to find disjoint stationary sets $S_{n} \subseteq S, n<\omega$ such that for all n the statement $\diamond_{\lambda}\left(S_{n}\right)$ holds (e.g. let $\left\langle X_{\alpha}: \alpha \in S\right\rangle$ be a diamond sequence, and let $\left.S_{n}=\left\{\alpha: \operatorname{Min}\left(X_{\alpha}\right)=n\right\}\right)$. Since $\diamond_{\lambda}\left(S_{n}\right)$ implies the weak diamond on S_{n} i.e. \neg Unif $(\lambda, 2,2,2)$ (by 1.3) by 1.7 also $\neg \operatorname{Unif}\left(\lambda, 2^{<\lambda}, 2^{<\lambda}, 2\right)$ hence by monotonicity (1.4(5)), we are done.

The proof when clause (γ) holds is included in the proof above.
2.6 Claim. Let H, A, B be abelian groups, B a subgroup of $A, A / B$ torsion free and $f \in \operatorname{Fact}(B, H)$ and $n, 0<n<\omega$.
(1) Then there are $f_{i} \in \operatorname{Fact}(A, H)$ for $i<\chi=|\operatorname{Ext}(A / B, H)|$ such that:
(*) there are no $i<j<\chi$ and normal functions g_{i}, g_{j} from A to H such that $\partial g_{i}=n f_{i}, \partial g_{j}=n f_{j}$ and $g_{i} \upharpoonright B=g_{j} \upharpoonright B$. This means that for every normal $g_{0}: B \rightarrow H$ there is at most one $i<\chi$ such that for some normal $g: A \rightarrow h$ extending g_{0} we have $n f_{i}=\partial g$.
(2) Then there are $f_{i} \in \operatorname{Fact}(A, H)$ for $i<$ (the torsion free rank of $\operatorname{Ext}(A / B, H)$ multiplied by $\left.\aleph_{0}\right)$ such that
(**) There are no $i \neq j$ and functions g_{i}, g_{j} from A to H and $0<m<\omega$ such that $m f_{i}=\partial g_{i}, m f_{j}=\partial g_{j}$ and $g_{i} \upharpoonright B=g_{j} \upharpoonright B$.

Proof. (1) As A / B is torsion free, $\operatorname{Ext}(A / B, H)$ is a divisible abelian group (see [Fu]), hence we can inductively find $t_{i} \in \operatorname{Ext}(A / B, H)$ for $i<\chi$ such that $i<j$ implies $n\left(t_{j}-t_{i}\right) \neq 0$ (see 2.0A(4)). Now repeat the proof of Claim 2.3.
(2) We can choose a sequence $\left\langle t_{i}: i<r_{0}(\operatorname{Ext}(A / B, H)) \times \aleph_{0}\right\rangle$ such that for $m<\omega$ if $m t_{i}=m t_{j}$ and $m \neq 0$ then $i=j$ (this is possible by $2.0 \mathrm{~A}(2)$), and continue as in 2.3.

Continuation of the Proof of 2.4(1). Let us first assume $\ell(*)=0$ and the Boolean algebra $\mathcal{P}(\lambda) /$ Id $-\operatorname{Unif}\left(\lambda, \bar{\mu}, \bar{\chi}^{0}\right)$ is infinite (i.e. possibility (b) holds).

Let $S_{n} \subseteq \lambda$ (for $n<\omega$) be as in Fact 2.5, and w.l.o.g. $\lambda=\bigcup_{n<\omega} S_{n}$.
Let us define by induction on $\alpha \leq \lambda$ for every $\eta \in X_{i<\alpha} \bar{\chi}(i)$ a function f_{η} such that
a) $f_{\eta} \in \operatorname{Fact}\left(G_{\alpha}, H\right)($ when $\lg (\eta)=\alpha)$
b) if $\nu=\eta \upharpoonright \beta, \beta \leq \ell g(\nu)$ then $f_{\nu} \subseteq f_{\eta}$.
c) if $\alpha \in S_{n}, \xi<\zeta<\bar{\chi}(\alpha)$ and $\eta \in X_{i<\alpha} \bar{\chi}(i)$ then there are no normal functions g_{0}, g_{1} from $G_{\alpha+1}$ into H such that $\partial g_{0}=(n+1) f_{\eta^{\wedge}<\xi>}, \partial g_{1}=$ $(n+1) f_{\eta^{\wedge}<\zeta>}$ and $g_{0} \upharpoonright G_{\alpha}=g_{1} \upharpoonright G_{\alpha}$.
Hence
c) $)^{\prime}$ if $\alpha \in S_{n}$ and $\eta \in X_{i<\alpha} \bar{\chi}^{0}(i)$ then for every normal $g_{0}: G_{\alpha} \rightarrow H$ there is at most one $\xi<\bar{\chi}(\alpha)$ such that for some normal function $g: G_{\alpha+1} \rightarrow H$ extending g_{0} we have $(n+1) f_{\eta^{\wedge}}{ }_{\langle\xi\rangle}=\partial(g)$

There is no problem in the induction as the induction step is by Claim 2.6(1), and we finish as in the proof of 2.2.

If we do not assume $(*)$ (a) but rather $(*)(\mathrm{b})$, we have to use $2.6(2)$ instead of 2.6(1) and let $S_{n}=\lambda$ for $n<\omega$ (so in clause (c) above, the demand is for every $\alpha<\lambda, n<\omega)$.

Proof of 2.4(2). As in the proof of part (1) w.l.o.g. G_{i} is a pure subgroup of G, infinite. Let $\bar{\mu}=\langle\bar{\mu}(i): i<\lambda\rangle$ be defined as: $\bar{\mu}(0)=\mu_{0} \times|H|^{\left|G_{0}\right|}$, and $\bar{\mu}(i)=|H|^{\left|G_{i}\right|}$, and again as in the proof of part (1) also Unif $\left(\lambda, \bar{\mu}, \bar{\chi}^{0}\right)$ fails. Note that $\bar{\mu}(0) \geq \aleph_{0}$.

We define f_{η} as in the proof of 2.4(1). If the torsion free rank of $\operatorname{Ext}(G, H)$ is $\leq \mu_{0}$, then there are $t^{\alpha} \in \operatorname{Ext}(G, H)\left(\alpha<\mu_{0}\right)$ such that for any $t \in$ $\operatorname{Ext}(G, H)$, for some $n>0$ and for some α we have $n t=t^{\alpha}$ (note that w.l.o.g. $\mu_{0} \geq \aleph_{0}$ by the proof of $\left.2.4(1)\right)$. So there are $g^{\alpha} \in \operatorname{Fact}(G, H)$ for $\alpha<\mu_{0}$, so that for every $f \in \operatorname{Fact}(G, H)$ there are $n_{f}>0$ and a function g_{f} from G to H and $\alpha(f)<\mu_{0}$ such that

$$
n_{f} f=\partial g_{f}+g^{\alpha(f)}
$$

In particular this holds for every $f_{\eta}, \eta \in X_{i<\lambda} \bar{\chi}(i)$. First assume (*)(b), so we have defined the S_{n} 's. So for each $\eta \in X_{i<\lambda}^{X} \chi(i)$, for each $i \in S_{n_{f}}$ and $g^{\prime}: G_{i} \rightarrow H$ satisfying $\partial g^{\prime}=f_{\eta} \upharpoonright G_{i}$ we have $\eta(i)$ can be computed from $\left\langle\alpha\left(f_{\eta}\right), \eta \upharpoonright i\right\rangle$ as
$(*)$ "the unique $\xi<\bar{\chi}^{\ell(*)}(i)$ such that for some normal $g: G_{i+1} \rightarrow H$, and we have $n_{f} \times f_{\eta \upharpoonright \beta^{\wedge}\langle\xi\rangle}=\partial g+g^{\alpha\left(f_{\eta \mid \beta}\right)} . "$
This contradicts \neg Unif $(\lambda, \bar{\mu}, \bar{\chi})$ (which was deduced above). If we assume $(*)$ (a) holds just replace " $i \in S_{n_{f}}$ " by " $i<\lambda$ " and use 2.6(1) rather than 2.6(2) and in (*) replace "and we have $n_{f} \times$ " by "and for some n we have $n \times$ "

Proof of 2.4(3).
As in the prove of part (1) w.l.o.g. G_{i} is infinite pure subgroup of G and Unif $\left(\lambda, \bar{\mu}, \bar{\chi}^{0}\right)$ fail with $\bar{\mu}(i)=|H|^{\left|G_{i}\right|}$. Let $\left\langle S_{i}^{n}: i<\kappa, n<\omega\right\rangle$ be pairwise disjoint subsets of λ which are positive modulo Id $-\operatorname{Unif}(\lambda,|H|, \bar{\chi})$, and
let $S_{i} \stackrel{\text { def }}{=} \bigcup_{0<n<\omega} S_{i}^{n}$. Using a lemma similar to 2.6(1) we can define a family $\left\langle h_{\eta}: \eta \in^{\lambda>} 2\right\rangle, h_{\eta} \in \operatorname{Fact}\left(G_{\ell g(\eta)}, H\right)$ such that:
whenever $\alpha \in S_{i}^{n}$ (so $n>0$), $\bar{\chi}(\alpha)>1, \eta \in{ }^{\alpha} 2, g: G_{\alpha+1} \rightarrow H$ is normal and $n\left(h_{\eta}{ }^{\wedge}\langle 0\rangle-h_{\eta^{\wedge}\langle 1\rangle}\right)=\partial g$, then $g \upharpoonright G_{\alpha} \neq 0$.
For each $\eta \in{ }^{\lambda} 2$ we thus get a function $h_{\eta}=\bigcup_{\alpha<\lambda} h_{\eta{ }^{\gamma} \alpha} \in \operatorname{Fact}(G, H)$. Below we will select 2^{κ} many $\eta \in{ }^{\lambda} 2$ such that the corresponding h_{η} witness $r_{0}(\operatorname{Ext}(G, H)) \geq 2^{\kappa}$.

Let $\left\langle A_{\varepsilon}: \varepsilon<2^{\kappa}\right\rangle$ be subsets of κ such that for any $\varepsilon_{1} \neq \varepsilon_{2}$ the set $A_{\varepsilon_{1}} \backslash A_{\varepsilon_{2}}$ is nonempty.

For each $i<\kappa, n<\omega$ define F_{i}^{n} on $\bigcup_{\alpha \in S_{i}^{n}}{ }^{\alpha} 2 \times{ }^{\alpha} 2 \times{ }^{G_{\alpha}} H$ as follows: if η_{1}, $\eta_{2} \in^{\alpha} 2, g_{0}: G_{\alpha} \rightarrow H$ is normal, $\alpha \in S_{i}^{n}$ and there is a normal $g^{+}: G_{\alpha+1} \rightarrow H$ extending g_{0} such that

$$
n\left(h_{\eta_{1} \wedge}\langle 0\rangle-h_{\eta_{2} \wedge}{ }^{\wedge}\langle 0\rangle\right)=\partial g^{+}
$$

then $F_{i}^{n}\left(\eta_{1}, \eta_{2}, g_{0}\right)=1$, otherwise $F_{i}^{n}\left(\eta_{1}, \eta_{2}, g_{0}\right)=0$.
Since $S_{i}^{n} \notin \operatorname{Id}-\operatorname{Unif}(\lambda, \bar{\mu}, 2)$ we can find a weak diamond f_{i}^{n} for F_{i}^{n} and S_{i}^{n} (so only $f_{i}^{n} \upharpoonright S_{i}^{n}$ matters).

Now for $\varepsilon<2^{\kappa}$ define $\eta(\varepsilon) \in{ }^{\lambda} 2$ by

$$
\eta(\varepsilon)(\gamma)= \begin{cases}f_{i}^{n}(\gamma) & \text { if } \gamma \in S_{i}^{n}, i \in A_{\varepsilon} \\ 0 & \text { otherwise } .\end{cases}
$$

We now claim that for all $\varepsilon_{1} \neq \varepsilon_{2}$, for all $n>0$

$$
n h_{\eta\left(\varepsilon_{1}\right)} \not \equiv n h_{\eta\left(\varepsilon_{2}\right)} \bmod \quad \operatorname{Trans}(G, H)
$$

(This claim will finish the proof of 2.4(3).)
So assume that $n h_{\eta\left(\varepsilon_{1}\right)}-n h_{\eta\left(\varepsilon_{2}\right)}=\partial g$ for some normal $g: G \rightarrow H$. Let $\eta_{1} \stackrel{\text { def }}{=} \eta\left(\varepsilon_{1}\right), \eta_{2} \stackrel{\text { def }}{=} \eta\left(\varepsilon_{2}\right)$. Choose $i \in A_{\varepsilon_{1}} \backslash A_{\varepsilon_{2}}$. Since f_{i}^{n} was a weak diamond for F_{i}^{n} on S_{i}^{n}, the set

$$
\left\{\alpha \in S_{i}^{n}: F_{i}^{n}\left(\eta_{1} \upharpoonright \alpha, \eta_{2} \upharpoonright \alpha, g \upharpoonright \alpha\right)=f_{i}^{n}(\alpha)\right\}
$$

is nonempty, so let α be an element of this set.
Case 1. $f_{i}^{n}(\alpha)=1$.
So there is normal $g^{\prime}: G_{\alpha+1} \rightarrow H$ such that

$$
n\left(h_{\eta_{1} \wedge\langle 0\rangle}-h_{\eta_{2} \wedge\langle 0\rangle}\right)=\partial g^{\prime} \text { and } g^{\prime} \text { extends } g \upharpoonright G_{\alpha} .
$$

But we also have

$$
n\left(h_{\eta_{1} \upharpoonright(\alpha+1)}-h_{\eta_{2} \upharpoonright(\alpha+1)}\right)=\partial\left(g \upharpoonright G_{\alpha+1}\right)
$$

Note that $\eta_{1}(\alpha)=f_{i}^{n}(\alpha)=1, \eta_{2}(\alpha)=0$, since $\alpha \in S_{i}^{n}, i \in A_{\varepsilon_{1}} \backslash A_{\varepsilon_{2}}$. So subtracting the two equations above, we get

$$
n\left(h_{\eta_{1} \wedge\langle 0\rangle}-h_{\eta_{1} \wedge\langle 1\rangle}\right)=\partial\left(\left(g^{\prime}-g\right) \upharpoonright G_{\alpha+1}\right) .
$$

Since $\left(\left(g^{\prime}-g\right) \upharpoonright G_{\alpha+1}\right) \upharpoonright G_{\alpha}=0$, this contradicts our choice of $\left\langle h_{\eta}: \eta \in^{\lambda>} 2\right\rangle$.
Case 2. $f_{i}^{n}(\alpha)=0$.
So there is no normal $g^{\prime}: G_{\alpha+1} \rightarrow H$ satisfying

$$
\left.n\left(h_{\eta_{1} \wedge\langle 0\rangle}-h_{\eta_{2} \wedge}{ }^{\wedge}\right\rangle\right)=\partial g^{\prime}, g^{\prime} \text { extends } g \upharpoonright \alpha
$$

This is a contradiction, since $g^{\prime} \stackrel{\text { def }}{=} g \upharpoonright G_{\alpha+1}$ satisfies the requirements (as $\left.\eta_{1}(\alpha)=\eta_{2}(\alpha)=0\right)$.

2.7 Conclusion. Assume that

\oplus for every regular uncountable λ, for all stationary subsets $S \subseteq \lambda$, the weak diamond holds on S, or just Unif $\left(\lambda, S, 2,\left\langle 2^{|i|}: i<\lambda\right\rangle\right)$ fails.
Then
(a) Every Whitehead group is free.
(b) If G is torsion free but not free, uncountable and for all subgroups H of cardinality $|H|<|G|$ the quotient group G / H is not free, then the torsion free rank of $\operatorname{Ext}(G, \mathbb{Z})$ is $2^{|G|}$.

Remark. 1) If there is no inaccessible cardinal then \oplus is equivalent, by $1.7(2)$, to
\oplus^{\prime} for every regular uncountable λ, for every stationary subset S of λ, the weak diamond holds for S, that is Unif $(\lambda, S, 2,2)$.
2) We can get a weaker version, still sufficient for our theorem, if we restrict F in the definition of Unif to the particular kind of functions implicit in the proof. See generally on such version of the weak diamond in [Sh:576, §2].

Proof. First note that (b) implies (a). Indeed, let G be a nonfree Whitehead group of minimal size. The countable case is well known (see below) so assume $|G|>\aleph_{0}$. Then G is almost free, so all subgroups H such that $|H|<|G|$ are free, hence G / H is not free (by 2.0B) so G satisfies the assumption of (b), hence its conclusion so $|\operatorname{Ext}(G, \mathbb{Z})|>1$.
Proof of (b). We prove by induction on λ.
The case $|G|=\aleph_{0}$ is well known (see e.g. [HHSh:91]) and the case $|G|$ is singular is just like [HHSh:91]. So assume $\lambda=|G|$ is regular $>\aleph_{0}$.

Let $G=\bigcup_{\gamma<\lambda} G_{\gamma}$ with G_{γ} a continuous increasing in γ, each G_{γ} a pure subgroup of G of size $<\lambda$ such that:
$(*)$ If G / G_{γ} is not almost free i.e. if $(\exists \beta)\left(\gamma<\beta<\lambda \& G_{\beta} / G_{\gamma}\right.$ not free $)$, then $G_{\gamma+1} / G_{\gamma}$ is not free.
Let

$$
\begin{gathered}
S=\left\{\gamma: G_{\gamma+1} / G_{\gamma} \text { is not free }\right\} \\
\bar{\chi}=\langle\bar{\chi}(i): i<\lambda\rangle \\
\bar{\chi}(i)=r_{0}\left(\operatorname{Ext}\left(G_{\gamma+1} / G_{\gamma}, \mathbb{Z}\right) \times \aleph_{0}\right.
\end{gathered}
$$

Note that by induction hypothesis for all $\gamma \in S$ we have $\chi(\gamma) \geq 2$ (in fact $\geq 2^{\aleph_{0}}$).

If S is stationary, then S can be divided into λ many stationary sets $\left\langle S_{i}: i<\lambda\right\rangle$. By our assumption, all the sets S_{i} will be $\not \equiv 0 \bmod$ Id $\operatorname{Unif}(\lambda, 2,2,2)=\operatorname{Id}-\operatorname{Unif}\left(\lambda, \aleph_{0}, \aleph_{0}, 2\right)$, so by $2.4(3)$ we know that $\operatorname{Ext}(G, \mathbb{Z})$ has torsion free rank 2^{λ}.

If S is not stationary then by $(*)$ we have a continuous increasing sequence $\left\langle\gamma_{i}: i<\lambda\right\rangle, \bigcup_{i<\lambda} \gamma_{i}=\lambda$ with $i<\lambda \Rightarrow G_{\gamma_{i+1}} / G_{\gamma_{i}}$ is free. Then it is easy to
see that $G / G_{\gamma_{0}}$ is free (see 2.0B, clause (c)), contradicting an assumption (of clause (b) of 2.7).

A more detailed analysis of the situation shows that for a given group G of cardinality λ (regular uncountable), we do not need the full strength of $2.7 \oplus$ (assuming the induction hypothesis of 2.7(b)).
2.7A Theorem. Assume G satisfies the assumption on G of clause (b) from $2.7,|G|=\lambda, \lambda$ regular uncountable and that all groups of size $<\lambda$ satisfy 2.7 (b) or just: $|H|<\lambda, H$ not free $\Rightarrow \operatorname{Ext}(H, \mathbb{Z}) \neq 0$. Let $G=\bigcup_{i<\lambda} G_{i}$ be an increasing union of (w.l.o.g. pure) subgroups of G, and let

$$
S^{*} \subseteq\left\{i<\lambda: G_{i+1} / G_{i} \text { is not free }\right\}
$$

(Note that S^{*} is stationary since G is not free.)
Now assume that S^{*} is not in Id $-\operatorname{Unif}(\lambda, 2,2, \bar{\chi}), \chi_{i}=\operatorname{Ext}\left(G_{i+1} / G_{i}, \mathbb{Z}\right)$ (so $\left.i \in S^{*} \Rightarrow \chi_{i} \geq 2\right)$ and $i \in S^{*}, i$ inaccessible $\Rightarrow \operatorname{Ext}\left(G_{i+1} / G_{i}, \mathbb{Z}\right)=2^{i}$. Then $r_{0}(\operatorname{Ext}(G, \mathbb{Z}))=2^{\lambda}$.

Proof. As remarked in 2.0 ([Fu], or see essentially [HHSh:91, Lemma 1 p.41]) if G^{\dagger} is a subgroup of G, then $\operatorname{Ext}\left(G^{\dagger}, H\right)$ is a homomorphic image of $\operatorname{Ext}(G, H)$, hence the torsion free rank of $\operatorname{Ext}(G, H)$ is not smaller than the torsion free rank of $\operatorname{Ext}\left(G^{\dagger}, H\right)$, so we shall freely replace G by some subgroups during the proof.

We split the proof to cases.
Case I: G has subgroups $G^{*}, G_{\alpha}(\alpha<\lambda)$ such that:
$\left|G_{\alpha}\right|<\lambda, G^{*} \subseteq G_{\alpha}, G_{\alpha} / G^{*}$ is not free and $\left\{G_{\alpha}: \alpha<\lambda\right\}$ is independent over G^{*}, (i.e., if $n \in(0, \omega)$ and $x_{m} \in G_{\alpha_{m}} \backslash G^{*}$ for $m<n$, the α_{m} 's distinct then $\left.\sum_{m<n} x_{m} \notin G^{*}\right)$. W.l.o.g. $G=\sum_{\alpha} G_{\alpha}$.

We choose, for any $n<\omega, \alpha<\lambda$, a function $f_{\alpha}^{n} \in \operatorname{Fact}\left(G_{\alpha} / G^{*}, \mathbb{Z}\right)$ such that $f_{\alpha}^{0}=0$, and for $n \neq 0$ we have $n f_{\alpha}^{n} / \operatorname{Trans}\left(G_{\alpha} / G^{*}, \mathbb{Z}\right) \neq\{0\}$. Let $F: \omega \times \lambda \rightarrow \lambda$, be one to one onto. Let $\left\{A_{i}: i<2^{\lambda}\right\}$ be a family of distinct
subsets of λ, and define, for $i<2^{\lambda}$, a function $\xi_{i}: \lambda \rightarrow \omega$ by: $\xi_{i}(\alpha)=n$ if for some $\zeta \in A_{i}, \alpha=F(n, 2 \zeta)$ or for some $\zeta \in \lambda \backslash A_{i}, \alpha=F(n, 2 \zeta+1)$, and $\xi_{i}(\alpha)=0$ otherwise.

So we have defined functions ξ_{i} (for $i<2^{\lambda}$), from λ to ω, such that for every $n<\omega$ and $i \neq j<2^{\lambda}$ for some $\alpha<\lambda$ we have $\xi_{i}(\alpha)=0, \xi_{j}(\alpha)=n$.

For every $i<2^{\lambda}$ we define $h_{i} \in \operatorname{Fact}\left(\sum_{\alpha<\lambda} G_{\alpha}, \mathbb{Z}\right)$: if $x=\sum_{\alpha} x_{\alpha}, y=$ $\sum_{\alpha} y_{\alpha}$ and $x_{\alpha}, y_{\alpha} \in G_{\alpha}$ (so $x_{i}=y_{i}=0$ for all but finitely many i 's) then $h_{i}(x, y)=\sum_{\alpha} f_{\alpha}^{\xi_{i}(\alpha)}\left(x_{\alpha} / G^{*}, y_{\alpha} / G^{*}\right)$ (the representation $x=\sum_{\alpha} x_{\alpha}$ is not unique, but for any two representations $x=\sum_{\alpha} x_{\alpha}=\sum_{\alpha} x_{\alpha}^{\dagger}$ we get $x_{\alpha} / G^{*}=$ $x_{\alpha}^{\dagger} / G^{*}$, so h_{i} is well defined).
It is easy to check $h_{i} \in \operatorname{Fact}\left(\sum_{\alpha} G_{\alpha}, \mathbb{Z}\right)$.
Now if the torsion free rank of $G\left(=\sum_{\alpha} G_{\alpha}\right)$ is $<2^{\lambda}$, there is an n, $0<n<\omega$ such that $\left\{n h_{i} / \operatorname{Trans}\left(G^{\dagger}, \mathbb{Z}\right): i<2^{\lambda}\right\}$ has power $<2^{\lambda}$. We know that $2^{\left|G^{*}\right|}<2^{\lambda}$ (if $2^{\left|G^{*}\right|}=2^{\lambda}$, then letting $\bar{\chi}(\alpha)=\bar{\mu}(\alpha)=2$ we get $\prod_{\alpha<\lambda} \bar{\chi}(\alpha)=\prod_{\alpha<\left|G^{*}\right|} \bar{\mu}(\alpha)$, so Unif $(\lambda, \bar{\mu}, \bar{\chi})$ holds by $\left.1.4(4)\right)$ so without loss of generality (by renaming) $n h_{i} / \operatorname{Trans}(G, \mathbb{Z})$ are equal, for $i<\left(2^{\left|G^{*}\right|}\right)^{+}$. Hence there are normal functions $g_{i}: G \rightarrow \mathbb{Z}$ such that $n h_{i}-n h_{0}=\partial g_{i}$ for $i<\left(2^{\left|G^{*}\right|}\right)^{+}$. Now the number of $g_{i} \mid G^{*}$ is $\leq\left(2^{\left|G^{*}\right|}\right)$, hence without loss of generality for every i such that $0<i<\left(2^{\left|G^{*}\right|}\right)^{+}$we have $g_{i} \backslash G^{*}=g^{*}$.

We can choose $\alpha<\lambda$ such that $\xi_{1}(\alpha)=0, \xi_{2}(\alpha)=n$. Now restricting ourselves to G_{α}, note for some k (namely $\left.k=\xi_{0}(\alpha)\right), h_{0} \upharpoonright\left(G_{\alpha} \times G_{\alpha}\right)=f_{\alpha}^{k}$ and $\left(h_{1}-h_{0}\right) \upharpoonright\left(G_{\alpha} \times G_{\alpha}\right)=f_{\alpha}^{0}-f_{\alpha}^{k},\left(h_{2}-h_{0}\right) \upharpoonright\left(G_{\alpha} \times G_{\alpha}\right)=f_{\alpha}^{n}-f_{\alpha}^{\kappa}$ and now we can apply the proof of Claim 2.3, and get a contradiction.

So we have finished Case I.

Let from now on, $G=\bigcup_{i<\lambda} G_{i}, G_{i}$ increasing and continuous, $\left|G_{i}\right|<\lambda$, all G_{i} are pure subgroups of G, hence all the quotients G / G_{i} are torsion free.
2.8 Subclaim. If Case I does not hold, we can assume that:
(a) for every $\gamma<\lambda$, there is no $G^{\dagger}, G_{\gamma} \subseteq G^{\dagger} \subseteq G,\left|G^{\dagger}\right|<\lambda, G^{\dagger} \cap G_{\gamma+1}=G_{\gamma}$ and G^{\dagger} / G_{γ} is not free.
(b) for every limit $\delta, G / G_{\delta}$ is (cf δ)-free, except, maybe, when $\operatorname{cf}(\delta)=\aleph_{0}$.

Proof of the Subclaim. We define by induction on $i<\lambda, \alpha_{i}<\lambda$, increasing and continuous.

Let $\alpha_{0}=0$, and for a limit i let $\alpha_{i}=\bigcup_{j<i} \alpha_{j}$. If α_{i} is defined let $\left\{G_{\zeta}^{i}: \zeta<\zeta_{i}\right\}$ be a maximal family of subgroups of G, satisfying: $G_{\alpha_{i}} \subseteq$ $G_{\zeta}^{i},\left|G_{\zeta}^{i}\right|<\lambda, G_{\zeta}^{i} / G_{\alpha_{i}}$ not free and $\left\{G_{\zeta}^{i}: \zeta<\zeta_{i}\right\}$ is independent over $G_{\alpha_{i}}$; such a family exists by Zorn's Lemma and $\zeta_{0}<\lambda$ as Case I does not hold.

Let $\alpha_{i+1}=\operatorname{Min}\left\{\alpha: \alpha_{i}<\alpha\right.$ and $G_{\zeta}^{i} \subseteq G_{\alpha}$ for every $\left.\zeta<\zeta_{i}\right\}$.
We know that α_{i+1} exists as λ is regular, $\left|G_{\zeta}^{i}\right|<\lambda, \zeta_{i}<\lambda$. Also there is no $G^{\dagger}, G_{\alpha_{i}} \subseteq G^{\dagger} \subseteq G,\left|G^{\dagger}\right|<\lambda, G^{\dagger} \cap G_{\alpha_{i+1}}=G_{\alpha_{i}}$ and $G^{\dagger} / G_{\alpha_{i}}$ not free, as this would contradict the choice of $\left\{G_{\zeta}^{i}: \zeta<\zeta_{i}\right\}$ as a maximal family.

Now we can replace $\left\langle G_{\alpha}: \alpha<\lambda\right\rangle$ by $\left\langle G_{\alpha_{i}}: i<\lambda\right\rangle$ and clause (a) of the subclaim will hold, so without loss of generality (a) holds, i.e., $\alpha_{i}=i$. What about (b)? Now we will show that (a) implies (b). So assume that G / G_{δ} is not $\operatorname{cf}(\delta)$-free, where $\operatorname{cf}(\delta)>\aleph_{0}$. Let G^{*} / G_{δ} be a non-free subgroup of cardinality $\kappa<\operatorname{cf}(\delta)$. Let $\left\{x_{j}: j<\kappa\right\}$ be a set of representatives, and let K be the group generated by this set. Clearly $|K|=\kappa\left(\kappa \geq \aleph_{0}\right.$, as G / G_{δ} and hence G^{*} / G_{δ} are torsion free). So there is an ordinal $\gamma<\delta$ such that $K_{\delta} \cap G_{\delta} \subseteq G_{\gamma}$. Hence $\left(K_{\delta}+G_{\gamma}\right) \cap G_{\gamma+1}=G_{\gamma}$, and

$$
\left(K_{\delta}+G_{\gamma}\right) / G_{\gamma} \cong K_{\delta} / K_{\delta} \cap G_{\gamma}=K_{\delta} / K_{\delta} \cap G_{\delta} \cong\left(K_{\delta}+G_{\delta}\right) / G_{\delta}=G^{*} / G_{\delta}
$$

is not free. This contradicts condition (a) for γ.

Continuation of the proof of 2.7A Recall $S^{*} \subseteq\left\{\gamma<\lambda: G_{\gamma+1} / G_{\gamma}\right.$ is not free $\}$ and let $S \stackrel{\text { def }}{=}\left\{\gamma \in S^{*}: \gamma\right.$ is a regular limit (i.e. inaccessible) cardinal $\}$. Let $\bar{\chi}=\langle\bar{\chi}(\gamma): \gamma<\lambda\rangle, \bar{\chi}(\gamma)=\left|\operatorname{Ext}\left(G_{\gamma+1} / G_{\gamma}, \mathbb{Z}\right)\right|$

Case II: not Case I and $S^{*} \backslash S \notin \mathrm{Id}-\operatorname{Unif}\left(\lambda, \aleph_{0}, \bar{\chi}\right)$.
We can use 2.4(3), because of the following well-known theorem:

Theorem. Assume λ is regular, D a normal filter on $\lambda, S^{0} \not \equiv \emptyset \bmod D$ and $\delta \in S^{0} \Rightarrow \operatorname{cf}(\delta)<\delta$ (i.e. δ not a regular cardinal). Then there are pairwise disjoint $S_{\alpha} \subseteq S^{0}(\alpha<\lambda), S_{\alpha} \not \equiv 0 \bmod D$.

Proof.

Clearly $\operatorname{cf}(-)$ is a regressive function on $S^{0} \backslash\{0\}$, hence for some κ and $S^{1} \subseteq S$, $S^{1} \not \equiv \emptyset \bmod D,\left(\forall \delta \in S^{*}\right)[\operatorname{cf}(\delta)=\kappa]$. For each $\delta \in S^{1}$, choose $\langle\alpha(\delta, \xi): \xi<\kappa\rangle$ an increasing continuous converging to δ, and let $A_{\xi, j}=\left\{\delta \in S^{1}: \alpha(\delta, \xi)=j\right\}$. Now we can prove that for some ξ for λ ordinals j we have $A_{\xi, j} \not \equiv 0 \bmod D$, and as $A_{\xi, j} \cap A_{\xi, i}=\emptyset$ for $i \neq j$ we will finish.

So we have finished Case II.

Continuation of the proof of 2.7A
Case III: $S^{*} \backslash S \in \operatorname{Id}-\operatorname{Unif}\left(\lambda, \aleph_{0}, \bar{\chi}\right)$.
So by our assumption $S \notin \operatorname{Id}-\operatorname{Unif}\left(\lambda, \aleph_{0}, \bar{\chi}\right)$. Note that by an assumption we have $S^{*} \backslash \delta \in S \Rightarrow \chi(\delta)=2^{\delta}$.

We first state (and prove later).
2.9 Subclaim. Assume G^{0}, G^{1} are torsion free, G^{0} a pure subgroup of G^{1}, $f_{i} \in \operatorname{Fact}\left(G^{0}, \mathbb{Z}\right)$, for $i<\chi$ and the torsion free rank of $\operatorname{Ext}\left(G^{1} / G^{0}, \mathbb{Z}\right)$ is $\geq \lambda \geq \chi$ and $\lambda>\aleph_{0}$. Then we can define $f_{i, \alpha} \in \operatorname{Fact}\left(G^{1}, \mathbb{Z}\right), f_{i} \subseteq f_{i, \alpha}$ for $\alpha<\lambda$ such that:
$(*)$ if $\beta \neq \gamma<\chi$ and $0<n<\omega$ and $g: G^{0} \rightarrow \mathbb{Z}$ is a normal function then for at most one α there is a normal function $g^{\dagger}: G^{1} \rightarrow \mathbb{Z}$ extending g, such that $n f_{\beta, \alpha}-n f_{\gamma, \alpha}=\partial g^{\dagger}$.

Continuation of the proof of 2.7A

So let us prove the theorem in Case III. We define by induction on $i \leq \lambda$, for every $\eta \in \mathbf{X}_{j<i} \chi_{j}$ and $A \subseteq i$, a function $f_{\eta, A} \in \operatorname{Fact}\left(G_{i}, \mathbb{Z}\right)$ such that
a) if $j<\lg (\eta), \eta \in X_{j<i} \bar{\chi}(j), A \subseteq i$ then $f_{\eta \upharpoonright j, A \cap j}=f_{\eta, A} \upharpoonright\left(G_{j} \times G_{j}\right)$.
b) if $\eta \in X_{j<i+1} \bar{\chi}(j), A, B \subseteq i+1, A \cap i=B \cap i$ then $f_{\eta, A}=f_{\eta, B}$.
c) if $\delta \in S$ (so $\bar{\chi}(\delta)=2^{|\delta|}$), $\eta \in \mathbf{X}_{j<\delta} \bar{\chi}(j), A \subseteq \delta, B \subseteq \delta, g: G_{\delta} \rightarrow \mathbb{Z}$ is normal
and $0<n<\omega$ then for at most one $j<\bar{\chi}(\delta)$ there is a normal $g^{\dagger}: G_{\delta+1} \rightarrow \mathbb{Z}$ extending g such that $n f_{\eta^{\wedge}\langle j\rangle, A}-n f_{\eta^{\wedge}\langle j\rangle, B}=\partial g^{\dagger}$.
There is no problem in the definition: for c) use the subclaim 2.9, remembering $\delta \in S \Rightarrow \bar{\chi}(\delta)=2^{\delta}$. Now for at least one $\eta \in \mathbf{X}_{i<\lambda} \bar{\chi}(i)$, for every distinct $A, B \subseteq \lambda$ and $0<n<\omega, n f_{\eta, A}-n f_{\eta, B} \notin \operatorname{Trans}(G, \mathbb{Z})$. Otherwise for every $\eta \in X_{i<\lambda} \bar{\xi}(i)$ there are $A_{\eta} \neq B_{\eta} \subseteq \lambda$ and $0<n_{\eta}<\omega$ and $g_{\eta}: G \rightarrow \mathbb{Z}$ such that

$$
n_{\eta} f_{\eta, A}-n_{\eta} f_{\eta, B}=\partial g_{\eta}
$$

By condition c) above, for every $\delta \in S$, from $n_{\eta}, f_{\eta, A} \upharpoonright\left(G_{\delta} \times G_{\delta}\right)=f_{\eta \mid \delta, A \cap \delta}$, $f_{\eta, B} \upharpoonright\left(G_{\delta} \times G_{\delta}\right)=f_{\eta \upharpoonright \delta, B \cap \delta}$ and $g_{\eta} \upharpoonright G_{\delta}$ we can compute $\eta(\delta)$, so this contradicts $S \not \equiv \emptyset \bmod \operatorname{Id}-\operatorname{Unif}\left(\lambda, \aleph_{0}, \bar{\chi}\right)$. Now for such an $\eta,\left\{f_{\eta, A}: A \subseteq \lambda\right\}$ exemplify that the torsion free rank of $\operatorname{Ext}(G, \mathbb{Z})$ is $\geq 2^{\lambda}$.

Proof of the subclaim 2.9.
Let $\left\{\left(i_{\zeta}, \alpha_{\zeta}\right): \zeta<\lambda\right\}$ be a list of all pairs $(i, \alpha), i<\chi, \alpha<\lambda$, and we define $f_{i_{\zeta}, \alpha_{\zeta}}$ by induction on ζ. Suppose we have defined $f_{i_{\xi}, \alpha_{\xi}}$ for every $\xi<\zeta, \zeta<\lambda$ and they are required, and let us define $f_{i_{\zeta}, \alpha_{\zeta}}$.

Let $\{t(j): j<\lambda\}$ be members of $\operatorname{Ext}\left(G^{1} / G^{0}, \mathbb{Z}\right)$ such that $n t\left(j_{1}\right)-$ $n t\left(j_{2}\right) \neq 0$ for $n>0, j_{1} \neq j_{2}$. By Claim 2.6(2) there are $f^{j}(j<\lambda)$ such that: $f^{j} \in \operatorname{Fact}\left(G^{1}, \mathbb{Z}\right)$ extend $f_{i_{\zeta}}$, and there are no $n>0, j(1) \neq j(2)<\lambda$ and normal $g: G^{1} \rightarrow \mathbb{Z}$ such that $n f^{j(1)}-n f^{j(2)}=\partial g$ and $g \upharpoonright G^{0}=0$.

We can try to let $f_{i_{\zeta}, \alpha_{\zeta}}=f^{j}$ for any $j<\lambda$ and assume toward contradiction that it always fail. The only thing that can go wrong is $(*)$ from the subclaim. So for every j there are $\beta_{j}, \gamma_{j}, n_{j}>0$ and normal $g_{j}: G^{0} \rightarrow \mathbb{Z}$ and $\alpha_{j}^{1} \neq \alpha_{j}^{2}$ and normal $g_{j}^{1}: G^{1} \rightarrow \mathbb{Z}, g_{j}^{2}: G^{1} \rightarrow \mathbb{Z}$ extending g_{j} such that $\left\{\left(\beta_{j}, \alpha_{j}^{1}\right),\left(\gamma_{j}, \alpha_{j}^{1}\right),\left(\beta_{j}, \alpha_{j}^{2}\right),\left(\gamma_{j}, \alpha_{j}^{2}\right)\right\} \subseteq\left\{\left(i_{\zeta}, \alpha_{\zeta}\right): \zeta \leq j\right\}$ and letting $f_{i_{\zeta}, \alpha_{\zeta}}=f^{j}$ we have:
$(* *) n_{j} f_{\beta_{j}, \alpha_{j}^{1}}-n_{j} f_{\gamma_{j}, \alpha_{j}^{1}}=\partial g_{j}^{1}$ and $n_{j} f_{\beta_{j}, \alpha_{j}^{2}}-n_{j} f_{\gamma_{j}, \alpha_{j}^{2}}=\partial g_{j}^{2}$.

Now there are λ ordinals j and only $\aleph_{0} \times|\zeta+1| \times|\zeta+1| \times|\zeta+1| \times|\zeta+1|<\lambda$ possible 5-tuples $\left\langle n_{j}, \beta_{j}, \gamma_{j}, \alpha_{j}^{1}, \alpha_{j}^{2}\right\rangle$: so without loss of generality for $j<\omega$ we have the same $n, \beta, \gamma, \alpha_{1}, \alpha_{2}$. Also by the induction hypothesis, at least one of $\left\{\left(\beta, \alpha_{1}\right),\left(\gamma, \alpha_{1}\right),\left(\beta, \alpha_{2}\right),\left(\gamma, \alpha_{2}\right)\right\}$ is not in $\left\{\left(i_{\xi}, \alpha_{\xi}\right): \xi<\zeta\right\}$ hence is $\left(i_{\zeta}, \alpha_{\zeta}\right)$, so by symmetry without loss of generality $\left(\beta, \alpha_{1}\right)=\left(i_{\xi}, \alpha_{\xi}\right)$. As $\beta \neq \gamma, \alpha_{1} \neq \alpha_{2}$ clearly $\left\{\left(\gamma, \alpha_{1}\right),\left(\beta, \alpha_{2}\right),\left(\gamma, \alpha_{2}\right)\right\} \subseteq\left\{\left(i_{\xi}, \alpha_{\xi}\right): \xi<\zeta\right\}$. So for each $j<\omega$ (subtracting the equations in (**)) we have:

$$
n f^{j}-n f_{\gamma, \alpha_{1}}-n f_{\beta, \alpha_{2}}+n f_{\gamma, \alpha_{2}}=\partial g_{j}^{1}-\partial g_{j}^{2}=\partial\left(g_{j}^{1}-g_{j}^{2}\right)
$$

Subtracting the equations for $j=0,1$

$$
n f^{1}-n f^{0}=\partial\left(g_{1}^{1}-g_{1}^{2}\right)-\partial\left(g_{0}^{1}-g_{0}^{2}\right)=\partial\left(g_{1}^{1}-g_{1}^{2}-g_{0}^{1}+g_{0}^{2}\right)
$$

clearly $\left(g_{1}^{1}-g_{1}^{2}\right) \upharpoonright G^{0}=0$ and $\left(g_{0}^{1}-g_{1}^{2}\right) \upharpoonright G^{0}=0$ so we get a contradiction to the choice of the f^{j} 's.

Now similarly to [HHSh:91] by our proof:
2.10 Conclusions. If \oplus of 2.10 holds, G a torsion free group, $\lambda=\operatorname{Min}\left\{\left|G^{\dagger}\right|\right.$: G / G^{\dagger} is free $\}$, then $\operatorname{Ext}(G, \mathbb{Z})$ has torsion free rank 2^{λ}.

Remark. The use of \mathbb{Z} instead H in $2.13,2.10$ is just for simplicity. How strong are the assumptions of theorem 2.7?

Unlike the full diamond, the weak diamond has only little influence on the behavior of the exponentiation function $\kappa \mapsto 2^{\kappa}$, as the following theorem shows:
2.11 Theorem. Assume $V \vDash G C H, F$ is a function defined on the regular cardinals, $F(\lambda)$ a cardinal, $(\forall \lambda) \operatorname{cf}(F(\lambda))>\lambda$,
$\otimes \forall \lambda\left[\sum_{\mu \in \operatorname{Reg} \cap \lambda} F(\mu)<F(\lambda)\right]$ (so in particular F is strictly increasing).

Let P_{f} be Easton forcing for F. (So $(\forall \lambda \in \operatorname{RCar})\left[V^{P_{F}} \vDash 2^{\lambda}=F(\lambda)\right]$.) Then $V^{P_{F}} \vDash \forall \lambda$ regular, $\forall S \subseteq \lambda$ stationary, \neg Unif $(\lambda, S, 2,2,2)$ holds. (Note that for inaccessible $\lambda, 2^{<\lambda}=2^{\lambda}$ implies the failure of the weak diamond, so \otimes is a reasonable hypothesis.)

Proof. Recall that Easton forcing $P_{F}=\prod_{\lambda \in \mathrm{RCar}} P_{\lambda}$ with Easton support (i.e. bounded below inaccessibles, full support below non-inaccessibles), where

$$
P_{\lambda}=\left\{F: \operatorname{Dom}(f) \in[F(\lambda)]^{<\lambda} \text { and } \operatorname{Rang}(f) \subseteq\{0,1\}\right\}
$$

So fix λ and a name $\underset{\sim}{S}$ for a stationary subset of λ. We will work in $V_{1} \stackrel{\text { def }}{=}$ $V \prod_{\kappa>\lambda} P_{\kappa}$. Note that V_{1} satisfies GCH up to λ, as $\prod_{\kappa>\lambda} P_{\kappa}$ is λ^{+}-closed, hence does not add any subsets of λ. So we have to deal with the forcing $P^{0} \times P_{\lambda}$, where $P^{0} \stackrel{\text { def }}{=} \prod_{\mu<\lambda} P_{\mu}$. Let $\underset{\sim}{F}$ be the name of a function, $\Vdash_{P^{0} \times P_{\lambda}}$ " $\underset{\sim}{F}:{ }^{\lambda>} 2 \rightarrow 2$ ". $\operatorname{Dom}(\underset{\sim}{F})$ is in $V_{1}^{P^{0}}$, as P_{λ} adds no bounded subsets to λ. Since $P^{0} \times P_{\lambda}$ satisfies the λ^{+}-c.c., we can find a set $A \subseteq F(\lambda)$, satisfying $|F(\lambda) \backslash A|=\lambda$ such that $\underset{\sim}{F}$ and $\underset{\sim}{S}$ are $P^{0} \times\left(P_{\lambda} \upharpoonright A\right)$-names, where $P_{\lambda} \upharpoonright A \stackrel{\text { def }}{=}\left\{f \in P_{\lambda}: \operatorname{Dom}(f) \subseteq A\right\}$. (We can even find such A of size λ.)
Assume that $p \Vdash$ " there is no weak diamond on $\underset{\sim}{S}$ for $\underset{\sim}{F}$ ".
We may also assume $p \in P^{0} \times\left(P_{\lambda} \upharpoonright A\right)$, and for notational convenience assume $A=[\lambda, F(\lambda))$.

Let $\underset{\sim}{f}: F(\lambda) \rightarrow 2$ be the name for the generic function for P_{λ}. We claim that $\underset{\sim}{d} \stackrel{\text { def }}{=} \underset{\sim}{f} \upharpoonright \lambda$ is a weak diamond for F on $\underset{\sim}{S}$. So assume that $\underset{\sim}{\eta}$ is a $P^{0} \times P_{\lambda^{-}}$ name such that

$$
p \Vdash " \underset{\sim}{\eta} \in{ }^{\lambda} 2, C_{1} \stackrel{\text { def }}{=}\left\{\alpha: \underset{\sim}{F}(\underset{\sim}{\eta} \upharpoonright \alpha) \neq \underset{\sim}{f}{ }_{\lambda}(\alpha)\right\} \in \mathcal{D}_{\lambda} " .
$$

Let $\bar{N}=\left\langle N_{i}: i<\lambda\right\rangle$ be a continuous increasing sequence of elementary submodels of $H(\chi)$ (for some large enough χ) satisfying

$$
(\forall i<\lambda)\left[\bar{N} \upharpoonright(i+1) \in N_{i+1}\right]
$$

$$
C_{1}, p, \underset{\sim}{\eta}, \underset{\sim}{S}, \underset{\sim}{F}, \ldots \in N_{0} .
$$

Define a name ${\underset{\sim}{2}}_{2}$ by

$$
\Vdash " C_{2}=\left\{\alpha: N_{\alpha}\left[G_{P^{0} \times P_{\lambda}}\right] \cap \lambda=N_{\alpha} \cap \lambda=\alpha\right\} \text { ". }
$$

Since ${\underset{\sim}{C}}_{2}$ is the name of a club set, we can find an ordinal δ and a condition $q \geq p$ in $P^{0} \times P_{\lambda}$ such that

$$
q \Vdash \text { " } \delta \in \underset{\sim}{S} \cap{\underset{\sim}{2}}_{2} \text { ". }
$$

As $q \Vdash$ " $\delta \in \underset{\sim}{S}$ " clearly the set $\mathcal{J}_{\delta} \subseteq P^{0} \times P_{\lambda} \upharpoonright A$ is predense above q where

$$
\mathcal{J}_{\delta}=\left\{r \in P^{0} \times\left(P_{\lambda} \upharpoonright A\right): r \text { forces that } \delta \in \underset{\sim}{S}\right\}
$$

As $q \Vdash$ " $\delta \in{\underset{\sim}{C}}_{2}$ ", clearly for every $\alpha<\delta$ the set $\mathcal{I}_{\delta, \alpha} \subseteq P^{0} \times\left(P_{\lambda} \upharpoonright(\delta \cup A)\right)$ is predense above q, where

$$
\mathcal{I}_{\delta, \alpha}=\left\{r \in P^{0} \times\left(P_{\lambda} \upharpoonright(\delta \cup A)\right): \text { for some } \beta \in(\alpha, \delta) r \text { forces that } \beta \in{\underset{\sim}{C}}_{1}\right\}
$$

Why? Let $G \subseteq P^{0} \times P_{\lambda}$ be generic over V, and $g \in G$, so $\delta \in{\underset{\sim}{2}}_{2}[G]$ hence $N_{\delta}[G] \cap \lambda=\delta \subseteq N$, so there is $\beta \in(\alpha, \delta) \cap{\underset{\sim}{1}}_{1}[G]$ hence for some $p \in N_{\delta}[G] \cap G$ we have $p \Vdash$ " $\beta \in{\underset{\sim}{C}}_{1}$ ", so $p \in \mathcal{I}_{\delta, \alpha} \cap G$.

Define $q^{\prime} \in P^{0} \times P_{\lambda}$ by $q^{\prime} \upharpoonright P^{0}=q \upharpoonright P^{0}, q^{\prime} \upharpoonright P_{\lambda}=q \upharpoonright\left(P_{\lambda} \upharpoonright(\delta \cup A)\right)$. It is clear that also \mathcal{J}_{δ} and $\mathcal{I}_{\delta, \alpha}$ (for $\alpha<\delta$) are predense above q^{\prime} hence

$$
q^{\prime} \Vdash " \delta \in \underset{\sim}{S} \text { and } \delta=\sup \left({\underset{\sim}{C}}_{1} \cap \delta\right) \text { hence } \delta \in{\underset{\sim}{1}}_{1} " .
$$

(Alternatively for every $\left(P^{0} \times P_{\lambda}\right)$-name $\underset{\sim}{\tau} \in N_{\delta}$ of an ordinal $<\lambda$ the set

$$
\begin{gathered}
\mathcal{I}_{\tau}=\left\{p: p \in P^{0} \times P_{\lambda} \text { and } p \upharpoonright P_{\lambda} \in P_{\lambda} \upharpoonright(\delta \cup A) \text { and } p \text { forces a value to } \tau\right. \\
\text { which is } \left.\gamma_{\tau, p} \text { and is }<\delta\right\}
\end{gathered}
$$

is predense above q^{\prime}, hence

$$
q^{\prime} \Vdash " \delta \in \underset{\sim}{S} \cap{\underset{\sim}{2}}_{2} "
$$

So since \Vdash " $C_{1} \in N_{0}[G] \subseteq N_{\delta}[G]$ ", we also have $q^{\prime} \Vdash$ " $\delta \in{\underset{\sim}{1}}_{1}$ ".)
But now we can extend q^{\prime} to a condition $q^{\prime \prime}$ forcing a value to $\underset{\sim}{F}(\underset{\sim}{\eta} \upharpoonright \alpha)$, say ℓ^{*}, again by the choice of A w.l.o.g. $q^{\prime \prime} \in P_{0} \times P \upharpoonright(\delta \cup A)$. Now we can extend $q^{\prime \prime}$ to a condition forcing ${\underset{\sim}{f}}_{\lambda}(\alpha)=\ell^{*}$, a contradiction.

The following variation of the weak diamond is also sufficient for our purposes (see more in [Sh:576, $\S 1, \S 3]$).
2.12 Definition. 1) We say $F:{ }^{\lambda>} 2 \rightarrow 2$ is " μ-definable" if for some $Y \subseteq \lambda$, for every $\delta<\lambda, \eta \in{ }^{\delta} 2$ we can compute $F(\eta)$ in $L[\eta, Y]$. If $\mu=\lambda$ we may omit it.
2) We say F is "weakly definable" if it is μ-definable for some $\mu<2^{\lambda}$.
2.13 Remark. 1) For the proof of 2.7 A it is enough to have the weak diamond for all weakly definable F. (We let the set Y code $G,\left\langle G_{\alpha}: \alpha<\lambda\right\rangle, H$, and for each α where $G_{\alpha+1} / G_{\alpha}$ is not free, Y computes a function $f \in$ Fact $\left(G_{\alpha+1}, H\right)$, $f \upharpoonright\left(G_{\alpha} \times G_{\alpha}=0\right.$, and in V there is no $g \in \operatorname{Trans}\left(G_{\alpha+1}, H\right), g \upharpoonright G_{\alpha}=0, f=\delta g$. See [MkSh:313] for a related argument.)
2) Now all Easton forcings P_{f} (not just the ones satisfying \otimes from Theorem 2.11 stating with universe satisfying GCH) satisfies: in $V^{P_{f}}$ the definable weak diamonds hold for $S \subseteq \lambda$ whenever λ is regular uncountable, S stationary.

§3. Weak Diamond for \aleph_{2} Assuming CH

3.1 Definition. Let λ be a cardinal and $S \subseteq \lambda$. The sequence $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S\right\rangle$ is called a ladder system if for all $\delta \in S, \eta_{\delta}=\left\langle\eta_{\delta}(i): i<\ell \mathrm{g}\left(\eta_{\delta}\right)\right\rangle$ is increasing and cofinal in δ. We say that $\bar{\eta}$ is continuous if each η_{δ} is continuous. $\bar{\eta}$ has the uniformization [alternatively: club uniformization] property if: Whenever $\bar{c}=\left\langle c_{\delta}: \delta \in S\right\rangle$ is a sequence of functions $c_{\delta}: \lg \left(\eta_{\delta}\right) \rightarrow 2$, then we can find a function $h: \lambda \rightarrow 2$ such that for each $\delta \in S$ the set

$$
\left\{i<\ell \mathrm{g}\left(\eta_{\delta}\right): c_{\delta}(i)=h\left(\eta_{\delta}(i)\right)\right\}
$$

is cobounded [alternatively: contains a closed unbounded set]. (In this case we say that h "uniformizes" \bar{c}.)

3.2 Remark.

(1) If $\bar{\eta}$ is a ladder system on S then we can thin out $\bar{\eta}$ to a ladder system $\bar{\eta}^{\prime}$ on S satisfying $\lg \left(\eta_{\delta}^{\prime}\right)=\operatorname{cf}(\delta)$ for all $\delta \in S$. Moreover, if $\bar{\eta}$ was continuous, and if $\bar{\eta}$ had the uniformization property, then also $\bar{\eta}^{\prime}$ will have it.
(2) If $2^{\aleph_{0}}<2^{\aleph_{1}}$, then no ladder system on $S_{0}^{1} \stackrel{\text { def }}{=}\left\{\delta<\aleph_{1}: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ has the uniformization property.

Proof of (2). ¿From $2^{\aleph_{0}}<2^{\aleph_{1}}$ we conclude that Unif ($\aleph_{1}, 2,2^{\aleph_{0}}$) fails (by 1.10). Let $={ }^{*}$ be the equivalence relation on ${ }^{\omega} 2$ defined by $f={ }^{*} g$ iff $\forall k \exists n \geq k$ such that $f(n)=g(n)$. Let $A \stackrel{\text { def }}{=} \omega_{2} /=^{*}$ be the set of equivalence classes. By the failure of Unif $\left(\aleph_{1}, 2,2^{\aleph_{0}}\right)$ we know that
$(*) \forall F: \omega_{1}>2 \rightarrow A \exists h: \omega_{1} \rightarrow A \forall g: \omega_{1} \rightarrow 2[\{\alpha: F(g \upharpoonright \alpha) \neq h(\alpha)\}$ stationary $]$.
Fix a ladder system $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S_{0}^{1}\right\rangle$. We will show that η does not have the uniformization property. Let

$$
F(s)=\left(s \circ \eta_{\delta} /=^{*}\right) \in A \text { for } s \in{ }^{\omega_{1}>} 2
$$

Let $h: \omega_{1} \rightarrow A$ be as in (*), and let $\bar{h}: \omega_{1} \rightarrow 2^{\omega}$ be such that

$$
h(\alpha)=\left(\bar{h}(\alpha) /=^{*}\right)
$$

Define $c_{\delta}: \omega \rightarrow 2$ by $c_{\delta}(n)=\bar{h}(\delta)(n)$. Now check that $\bar{c}=\left\langle c_{\delta}: \delta \in S_{0}^{1}\right\rangle$ witnesses the failure of the uniformization property of $\bar{\eta}$.

Recall that $S_{1}^{2} \stackrel{\text { def }}{=}\left\{i<\aleph_{2}: \operatorname{cf}(i)=\aleph_{1}\right\}$.
In this section we will consider continuous ladder systems on S_{1}^{2}, and we ask the following
3.3 Question. Can $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S_{1}^{2}\right\rangle$ have the (club) uniformization property (with η_{δ} increasing continuous with limit δ, of length $\mathrm{cf}(\delta)$)?

We shall answer this question negatively even for club uniformization property in Conclusion 3.7 assuming $2^{\aleph_{0}}=\aleph_{1}$.
3.4 Why only for continuous η_{δ} ?. The reader may ask what happens if we waive the restriction that η_{δ} be a continuous sequence and require just η_{δ} which is cofinal in δ ? By works of the author (see in [Sh:80], Steinhorn and King [SK] and [Sh:186] and very lately [Sh:587]) even assuming GCH a sequence $\left\langle\eta_{\delta}: \delta \in S_{1}^{2}\right\rangle$ may have the uniformization property. But if we require e.g. each c_{δ} to be eventually constant, for every η_{δ} which enumerates a club of δ, we have consistency. Also if we restrict ourselves to $\left\langle\eta_{\delta}: \delta \in S\right\rangle$ where $S \subseteq S_{1}^{2}, S_{1}^{2} \backslash S$ stationary we have consistency results.
3.4A Discussion. This shows the impossibility of some generalizations of $M A$ to \aleph_{1}-complete forcing notions. Why? Suppose $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S_{1}^{2}\right\rangle, \eta_{\delta}$ is increasing continuous with limit δ, and $\bar{c}=\left\langle c_{\delta}: \delta \in S_{1}^{2}\right\rangle, c_{\delta} \in{ }^{\omega_{1}} 2$. We define $P_{\bar{\eta}, \bar{c}}=\left\{p: p=(u, i, \bar{d}, f)=\left(u^{p}, i^{p}, \bar{d}^{p}, f^{p}\right)\right.$ where u is a countable subset of S_{1}^{2}, i a successor ordinal $<\omega_{1}, \bar{d}=\left\langle d_{\delta}: \delta \in u\right\rangle, d_{\delta}^{p}$ a closed subset of i, f is a function from $\operatorname{Dom}(f)=\left\{\eta_{\delta}(j): \delta \in u, j<i\right\}$ to $\{0,1\}$ such that $\left.j \in d_{\delta} \& \delta \in u \Rightarrow f\left(\eta_{\delta}(j)\right)=c_{\delta}(j)\right\}$ ordered by $p \leq q$ iff $u^{p} \subseteq u^{q}, i^{p} \leq i^{q}$, $\left[\delta \in u^{p} \Rightarrow d_{\delta}^{p}=d_{\delta}^{q} \cap i^{p}\right], f^{p} \subseteq f^{q}$, and $i^{p}<i^{q} \& \delta_{1} \in u^{p} \& \delta_{2} \in u^{p} \& \delta_{1} \neq \delta_{2} \Rightarrow$ $\left\{\eta_{\delta_{1}}(j): j \in\left[i^{q}, \omega_{1}\right)\right\} \cap\left\{\eta_{\delta_{2}(j)}: j \in\left[i^{q}, \omega_{1}\right)\right\}=\emptyset$.

So:
$(*)$ if the answer to 3.3 is no as exemplified by \bar{c}, then there is no directed $G \subseteq P_{\bar{\eta}, \bar{c}}$ which intersect each $\mathcal{I}_{\delta, i}=\left\{p \in P_{\bar{\eta}, \bar{c}}: \delta \in u^{p}\right.$ and $i \leq i^{p}$ and $\left.d_{\delta}^{p} \backslash i \neq \emptyset\right\}$ which is dense.

So any generalization of MA as above necessarily does not include $P_{\bar{\eta}, \bar{c}}$, which is a quite nice forcing notion: it is \aleph_{1}-complete, and can be divided to \aleph_{1} formulas, each \aleph_{1}-directed.
3.5 Convention. Let F denote a function from
$\left\{h: h\right.$ a function, $\operatorname{Dom}(h) \subseteq \omega_{2}$ is countable, $\left.\operatorname{Rang}(h) \subseteq 2\right\}$ into $2=\{0,1\}$.
3.6 Theorem. 1) $\left(2^{\aleph_{0}}=\aleph_{1}\right)$: For any function F and $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S_{1}^{2}\right\rangle$ as in 3.1 there is $\left\langle d_{\delta}: \delta \in S_{1}^{2}\right\rangle, d_{\delta} \in{ }^{\omega_{1}} 2$, (we can call it a weak diamond sequence) such that for any $h: \omega_{2} \rightarrow 2$, for stationarily many $\delta \in S_{1}^{2}$, for stationarily
many $i<\omega_{1}$,

$$
d_{\delta}(i)=F\left(h \upharpoonright\left\{\eta_{\delta}(j): j \leq i\right\}\right)
$$

2) Suppose
(a) $\theta<\kappa=\operatorname{cf}(\kappa), 2^{\theta}=2^{<\kappa}=\kappa$ (so $\kappa=\kappa^{<\kappa}$).
(b) $S=\left\{\delta<\kappa^{+}: \operatorname{cf}(\delta)=\kappa\right\}$.
(c) for each $\delta \in S, \eta_{\delta}$ is a strictly increasing continuous function from κ to δ with limit δ.
(d) F is a function with domain $\left\{h: h\right.$ a partial function from κ^{+}to $\{0,1\}$ of cardinality $<\kappa\}$ with range $\{0,1\}$.

Then we can find $\left\langle d_{\delta}: \delta \in S\right\rangle, d_{\delta} \in{ }^{\kappa} 2$ such that for any $h: \kappa^{+} \rightarrow\{0,1\}$ for stationarily many $\delta \in S$ for stationarily many $i<\kappa$ we have

$$
d_{\delta}(i)=F\left(h \upharpoonright \operatorname{Rang}\left(\left\{\eta_{\delta}(j): j \leq i\right\}\right)\right)
$$

3.6A Remark. Note the " $j \leq i$ " rather than " $j<i$ " in part (1).
3.7 Conclusion. (CH) $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S_{1}^{2}\right\rangle$ does not have the club uniformization property.

Proof of 3.7. Let $F(h)$ be $h(\operatorname{Max} \operatorname{Dom}(h))$ if defined, zero otherwise. By 3.6 there are for F, η_{δ} a sequence $\left\langle d_{\delta}: \delta \in S_{1}^{2}\right\rangle$ as there; let $c_{\delta}(i)=1-d_{\delta}(i)$.

Proof of 3.6. We prove part (1) as (2) has essentially the same proof. Let λ be big enough (e.g., $\left(2^{\aleph_{2}}\right)^{+}$), and M^{*} be an expansion of $(H(\lambda), \epsilon)$ by Skolem functions (if it has a definable well ordering it suffices).

Suppose $\bar{\eta}, F$ form a counterexample. It is known that there is a function G from $\left\{A: A \subseteq \omega_{2},|A| \leq \aleph_{0}\right\}$ to ω_{1} such that $G(A)=G(B)$ implies A, B have the same order type and their intersection is an initial segment of both (e.g. if $h_{\alpha}: \alpha \rightarrow \omega_{1}$ is one-to-one for $\alpha<\omega_{1}$, we let $G_{0}(A) \stackrel{\text { def }}{=}$ $\left\{\left(\operatorname{otp}(A \cap \alpha), \operatorname{otp}(A \cap \beta), h_{\beta}(\alpha)\right): \alpha \in A\right.$ and $\left.\beta \in A\right\}$. Now G_{0} is as required except that $\operatorname{Rang}\left(G_{0}\right) \nsubseteq \omega_{1}$ but $\left|\operatorname{Rang}\left(G_{0}\right)\right| \leq \aleph_{1}$ so we can correct this).

We now define a procedure for defining for any $p \in H(\lambda),\left\langle c_{\delta}^{p}: \delta \in S_{1}^{2}\right\rangle$ where $c_{\delta}^{p}: \omega_{1} \rightarrow H\left(\omega_{1}\right)$, which we shall use later.

For every $\delta \in S_{1}^{2}, i<\omega_{1}$, let $N_{\delta, i}^{p}$ be the Skolem hull of $\{\delta, i, p\}$ in M^{*}, and let
$\oplus c_{\delta}^{p}(i) \stackrel{\text { def }}{=}\left\langle\right.$ isomorphism type $\left.\left(N_{\delta, i}^{p}, p, \delta, i\right), G\left(N_{\delta, i}^{p} \cap \aleph_{2}\right)\right\rangle$.

Remarks. 1) The model of ($N_{\delta, i}^{p}, p, \delta, i$) is not in $H\left(\aleph_{1}\right)$, but since $N_{\delta, i}^{p}$ is countable we can assume its isomorphism type does belong.
2) $\left(N_{\delta, i}^{p}, p, i, \delta\right)$ is $N_{\delta, i}^{p}$ expanded by three individual constants.

Now remember we have assumed $F, \bar{\eta}$ form a counterexample. So for every $c_{\delta} \in{ }^{\omega_{1}} 2\left(\delta \in S_{1}^{2}\right)$ there is $h_{\delta}: \omega_{2} \rightarrow 2$ such that for a closed unbounded set of $\delta \in S_{1}^{2}$, for a closed unbounded set of $i<\omega_{1}, c_{\delta}(i)=F\left(h_{\delta} \upharpoonright\left\{\eta_{\delta}(j): j \leq i\right\}\right)$.

Now we can easily replace 2 by the set ${ }^{\omega} 2$ as follows.
For h a function into ${ }^{\omega} 2$, let $h^{[n]}$ be $h^{[n]}(i)=(h(i))(n)$ for $i \in \operatorname{Dom}(h)$. Define F^{*} by: $F^{*}(h)=\left\langle F\left(h^{[n]}\right): n<\omega\right\rangle$; now if we are given $\left\langle c_{\delta}: \delta \in S_{1}^{2}\right\rangle$ where $c_{\delta} \in{ }^{\omega_{1}}\left({ }^{\left({ }^{2}\right.}\right)$, i.e., $c_{\delta}: \omega_{1} \rightarrow{ }^{\omega} 2$, so $c_{\delta}^{[n]} \in{ }^{\omega_{1}} 2$ is well defined for each $\delta \in S_{1}^{2}$ and let $h^{[n]}: \aleph_{2} \rightarrow 2$ be such that for a club of $\delta \in S_{1}^{2}$ for a club of $i<\omega_{1}$ we have

$$
c^{[n]}(i)=F\left(h^{[n]}(i) \upharpoonright\left\{\eta_{\delta}(j): j \leq i\right\}\right)
$$

Define $h: \aleph_{2} \rightarrow{ }^{\omega} 2$ by $h(i)=\left\langle h^{[n]}(i): n<\omega\right\rangle$, it is as required.
Now as $\left|{ }^{\omega} 2\right|=2^{\aleph_{0}}=\left|H\left(\aleph_{1}\right)\right|$, we conclude:
(*) for every $c_{\delta} \in{ }^{\omega_{1}} H\left(\aleph_{1}\right)\left(\delta \in S_{1}^{2}\right)$ there is $h: \omega_{2} \rightarrow H\left(\aleph_{1}\right)$ such that for a club of $\delta \in S_{1}^{2}$ for a club of $i<\omega_{1}, c_{\delta}(i)=F^{*}\left(h \upharpoonright\left\{\eta_{\delta}(j): j \leq i\right\}\right)$.

Now we define by induction on $n<\omega, p(n) \in H(\lambda)$, and $h_{n}: \omega_{2} \rightarrow H\left(\aleph_{1}\right)$.
Let $p(0)=\langle\bar{\eta}\rangle$. If we have defined $p(n)$, let $c_{\delta}^{p(n)}: \omega_{1} \rightarrow H\left(\aleph_{1}\right)$ be as we have defined before (in \oplus), so by $(*)$ there is a suitable $h_{n}: \aleph_{2} \rightarrow H\left(\aleph_{1}\right)$; i.e., there is a closed unbounded $W^{n} \subseteq \aleph_{2}$ such that for every $\delta \in W^{n} \cap S_{1}^{2}$, there
is a closed unbounded $W_{\delta}^{n} \subseteq \omega_{1}$ such that for $i \in W_{\delta}^{n}, \delta \in W^{n} \cap S_{1}^{2}$ we have: $c_{\delta}^{p(n)}(i)=F^{*}\left(h_{n} \upharpoonright\left\{\eta_{\delta}(j): j \leq i\right\}\right)$.

Let $p(n+1) \stackrel{\text { def }}{=}$
$\left\langle p(n), h_{n}, W^{n},\left\langle W_{\delta}^{n}: \delta \in W^{n} \cap S_{1}^{2}\right\rangle,\left\langle\left\langle N_{\delta, i}^{p(n)}: i<\omega_{1}\right\rangle: \delta \in S_{1}^{2}\right\rangle\right\rangle$.
Now let $W=\bigcap_{n<\omega} W^{n}$, and for $\delta \in W$ let $W_{\delta}=\bigcap_{n<\omega} W_{\delta}^{n}$. Clearly W is a closed unbounded subset of \aleph_{2}, and W_{δ} is a closed unbounded subset of ω_{1}. So for every $\delta \in W \cap S_{1}^{2}$, there is $i(\delta) \in W_{\delta}$; so as $\eta_{\delta}(i(\delta))<\delta$ by Fodor lemma, for some $i<\aleph_{2}$ and $i^{*}<\aleph_{1}$ the set $\left\{\delta \in W \cap S_{1}^{2}: \eta_{\delta}(i(\delta))=i\right.$ and $\left.i(\delta)=i^{*}\right\}$ is stationary. As CH holds there are δ_{1}, δ_{2} in $W \cap S_{1}^{2}$ and $\xi<\omega_{1}$ such that
A) $\eta_{\delta_{1}}(\xi)=\eta_{\delta_{2}}(\xi)$ moreover $\eta_{\delta_{1}} \upharpoonright(\xi+1)=\eta_{\delta_{2}} \upharpoonright(\xi+1)$
B) $\delta_{1}<\delta_{2}$
C) $\xi \in W_{\delta_{\ell}}$ for $\ell=1,2$.

So clearly we can assume
D) there are no $\delta_{1}^{\dagger}, \delta_{2}^{\dagger}$ satisfying (A), (B) and (C) such that $\delta_{1}^{\dagger} \leq \delta_{1}, \delta_{2}^{\dagger} \leq \delta_{2}$ and $\left(\delta_{1}^{\dagger}, \delta_{2}^{\dagger}\right) \neq\left(\delta_{1}, \delta_{2}\right)$.
Now as $\delta_{1}<\delta_{2}$, for some $i>\xi, \eta_{\delta_{1}}(i) \neq \eta_{\delta_{2}}(i)$, and there is a minimal such i; but as $\eta_{\delta_{1}}, \eta_{\delta_{2}}$ are increasing and continuous, such minimal i should be a succesor ordinal, so there is a maximal ζ among those satisfying $\zeta<\omega_{1}, \eta_{\delta_{1}} \upharpoonright \zeta=$ $\eta_{\delta_{2}} \upharpoonright \zeta, \eta_{\delta_{1}}(\zeta)=\eta_{\delta_{2}}(\zeta)$ and $\zeta \in W_{\delta_{1}} \cap W_{\delta_{2}}$. So $\omega_{1}>\zeta^{\dagger}>\zeta, \bigwedge_{\ell=1,2} \zeta^{\dagger} \in W_{\delta_{\ell}}$ implies $\eta_{\delta_{1}}\left(\zeta^{\dagger}\right) \neq \eta_{\delta_{2}}\left(\zeta^{\dagger}\right)$ or at least $\eta_{\delta_{1}} \upharpoonright\left(\zeta^{\dagger}+1\right) \neq \eta_{\delta_{2}}\left\lceil\left(\zeta^{\dagger}+1\right)\right.$.

So for every n
$(\alpha) \quad c_{\delta_{1}}^{p(n)}(\zeta)=c_{\delta_{2}}^{p(n)}(\zeta)$
as both are equal to $F^{*}\left(h_{n} \upharpoonright\left\{\eta_{\delta_{\ell}}(j): j \leq \zeta\right\}\right)$. Looking at the definition of $c_{\delta}^{p(n)}(\zeta)($ see $\oplus)$ we see that $N_{\delta_{1}, \zeta}^{p(n)}$ is isomorphic to $N_{\delta_{2}, \zeta}^{p(n)}$, and let the isomorphism be called g_{n}. Note that the isomorphism is unique (as \in in those models is transitive well founded).

By the definition of $c_{\delta}^{p(n)}(\zeta)$, clearly without loss of generality

$$
g_{n}[p(n)]=p(n), g_{n}\left(\delta_{1}\right)=\delta_{2}, g_{n}(\zeta)=\zeta
$$

Looking at $p(n)$'s definition we see that $g_{n}\left(\eta_{\delta_{1}}\right)=\eta_{\delta_{2}}$ and for $n>0$ $g_{n}\left(W^{n-1}\right)=W^{n-1}$ and $g_{n}\left(W_{\delta_{1}}^{n-1}\right)=W_{\delta_{2}}^{n-1}$ and $g_{n}\left(N_{\delta_{1}, \zeta}^{p(n-1)}\right)=N_{\delta_{2}, \zeta}^{p(n-1)} \in$ $N_{\delta_{2}, \zeta}^{p(n)}$.

As $N_{\delta_{\ell}, \zeta}^{p(n-1)}$ is countable and belongs to $N_{\delta_{\ell}, \zeta}^{p(n)}$, it is also included in it, hence $g_{n} \upharpoonright N_{\delta_{1}, \zeta}^{p(n-1)}$ is an isomorphism from $N_{\delta_{1}, \zeta}^{p(n-1)}$ onto $N_{\delta_{2}, \zeta}^{p(n-1)}$ hence (by the uniqueness of g_{n})

$$
g_{n} \supseteq g_{n-1}
$$

For $\ell=1,2$ let $N_{\ell}=\bigcup_{n<\omega} N_{\delta_{\ell}, \zeta}^{p(n)}$ and $g=\bigcup_{n<\omega} g_{n}$; so g is an isomorphism from N_{1} to N_{2}.
By the definition of $c_{\delta_{\ell}}^{p(n)}(\zeta)$, clearly the second coordinates are the same, thus:

$$
G\left(N_{\delta_{1}, \zeta}^{p(n)} \cap \omega_{2}\right)=G\left(N_{\delta_{2}, \zeta}^{p(n)} \cap \omega_{2}\right),
$$

hence those sets have their intersection an initial segment of both hence also $N_{1} \cap \omega_{2}, N_{2} \cap \omega_{2}$ have their intersection an initial segment of both (as usually, we are not strictly distinguishing between a model and its universe), hence g is the identity on $N_{1} \cap N_{2} \cap \omega_{2}$.

Note that clearly $\delta_{1} \notin N_{2}$ as $g\left(\delta_{1}\right)=\delta_{2} \neq \delta_{1}$, hence $\delta_{2} \notin N_{1}$.
Let $\delta_{\ell}^{*} \stackrel{\text { def }}{=} \operatorname{Min}\left(\omega_{2} \cap N_{\ell} \backslash\left(N_{1} \cap N_{2}\right)\right)$, so clearly $\delta_{\ell}^{*} \leq \delta_{\ell}, g\left(\delta_{1}^{*}\right)=\delta_{2}^{*}$ and so $\operatorname{cf}\left(\delta_{1}^{*}\right)=\operatorname{cf}\left(\delta_{2}^{*}\right)$.
($\delta) \quad \operatorname{cf}\left(\delta_{\ell}^{*}\right)=\aleph_{1}$.

Why? Otherwise $\operatorname{cf}\left(\delta_{1}^{*}\right)=\aleph_{0}$, and as $\delta_{1}^{*} \in N_{1}$ for some $n, \delta_{1} \in N_{\delta_{1}, \zeta}^{p(n)}$, hence there is $\left\{\beta_{m}: m<\omega\right\} \subseteq \delta_{1}^{*} \cap N_{\delta_{1}, \zeta}^{p(n)}$ cofinal in δ_{1}^{*}. By the choice of $\delta_{1}^{*}, \beta_{m} \in N_{1} \cap N_{2}$, hence $g\left(\beta_{m}\right)=\beta_{m}$; let $\beta^{*}=\min \left(N_{\delta_{2}, \zeta}^{p(n)} \backslash \bigcup_{m} \beta_{m}\right)$, so $\beta^{*} \in N_{\delta_{2}, \zeta}^{p(n)} \subseteq N_{\delta_{2}, \zeta}^{p(n+1)}$, so $\delta_{1}^{*}=\operatorname{Sup}\left\{\beta_{m}: m<\omega\right\}=\sup \left(\beta^{*} \cap N_{\delta_{2}, \zeta}^{p(n)}\right) \in N_{2}$, contradiction.

So we have proved (δ).

Now let for $\ell=1,2, \alpha_{\ell} \stackrel{\text { def }}{=} N_{\ell} \cap \omega_{1}$, (it is an initial segment) and $\beta_{\ell} \stackrel{\text { def }}{=}$ $\sup \left(N_{\ell} \cap \delta_{\ell}^{*}\right)$ hence $\beta_{1}=\beta_{2}$ (by δ_{ℓ}^{*} definition) and call it β. As $\operatorname{cf}\left(\delta_{\ell}^{*}\right) \geq \aleph_{1}$ clearly $\delta_{\ell}^{*} \geq \omega_{1}$, and so clearly by g 's existence $\alpha_{1}=\alpha_{2}$ and call it α (also as $\omega_{1} \in N_{1} \cap N_{2} \cap \omega_{2}$, necessarily $\left.N_{1} \cap \omega_{1}=N_{2} \cap \omega_{1}\right)$.

As $\eta_{\delta_{1}^{*}}$ is a one to one function (being increasing) from ω_{1}, clearly

$$
\eta_{\delta_{1}^{*}}(i) \in N_{1} \text { iff } i<\alpha
$$

Also $N_{1} \models$ " $\left\langle\eta_{\delta_{1}^{*}}(i): i<\omega_{1}\right\rangle$ is unbounded below $\delta_{1}^{* "}$ (remember $N_{1} \prec M^{*}$ as $N_{\delta_{1}, \zeta}^{p(n)} \prec M^{*}$ for each $\left.n\right)$.

So clearly $\beta=\operatorname{Sup}\left\{\eta_{\delta_{1}^{*}}(i): i<\alpha\right\}$; but $\eta_{\delta_{1}^{*}}$ is increasing continuous and α is a limit ordinal (being $N_{\ell} \cap \omega_{1}$), hence $\beta=\eta_{\delta_{1}^{*}}(\alpha)$.

For the same reasons $\beta=\eta_{\delta_{2}^{*}}(\alpha)$.
Now $\eta_{\delta_{1}^{*}} \upharpoonright \alpha=\eta_{\delta_{2}^{*}} \upharpoonright \alpha$ because $g\left(\eta_{\delta_{1}^{*}}\right)=\eta_{\delta_{2}^{*}}$, and $\alpha \in W_{\delta_{\ell}^{*}}^{n}$ for each $n<\omega(\ell=$ $1,2)$ as $N_{\ell} \models$ " $W_{\delta_{\ell}^{*}}^{n}$ is a closed unbounded subset of ω_{1} ". For similar reasons $\delta_{\ell}^{*} \in W_{n}$ for each n : as $W_{n} \in N_{\delta_{\ell}, \zeta}^{p(n+1)}$ hence $W_{n} \in N_{\ell}$ hence $W_{n} \in N_{1} \cap N_{2}$, and as $N_{1}, N_{2} \prec M^{*}, M^{*}$ has Skolem functions, clearly $N_{1} \cap N_{2} \prec M^{*}$, so W_{n} is an unbounded subset of $N_{1} \cap N_{2} \cap \omega_{2}$. So in N_{ℓ}, W_{n} is unbounded in $\delta_{\ell}^{*}=\operatorname{Min}\left[\left(\omega_{2} \cap N_{\ell}\right) \backslash\left(N_{1} \cap N_{2}\right)\right]$, hence $N_{\ell} \models " \delta_{\ell}^{*} \in W_{n}$ " hence $\delta_{\ell}^{*} \in W_{n}$.

We can conclude that $\delta_{1}^{*}, \delta_{2}^{*}, \beta$ satisfy the requirements (A), (B), (C) on $\delta_{1}, \delta_{2}, \xi$. Hence by requirement (D) on them, $\delta_{1}=\delta_{1}^{*}, \delta_{2}=\delta_{2}^{*}$. But, $\zeta \in N_{\delta_{\ell}, \zeta}^{p(n)} \subseteq N_{\ell}$ hence $\zeta<\omega_{1} \cap N_{1} \cap N_{2}$ hence $\zeta<\alpha$, so clause (α) contradicts the choice of ζ, so we get a contradiction, thus finishing the proof of the theorem (3.6).
3.8 Concluding Remarks. 1) If $\lambda=\kappa^{+}, \kappa$ is strongly inaccessible then the conclusion of $3.6(2)$ may fail (see [Sh:186], we repeat the proof in [Sh:64], see more in [Sh:587]).
2) If $2^{\aleph_{0}}=2^{\aleph_{2}}$, then it follows that for some F and $\bar{\eta}$ we have uniformization. Just choose $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S_{1}^{2}\right\rangle$ such that $\left\langle\eta_{\delta} \mid \omega: \delta \in S_{1}^{2}\right\rangle$ are pairwise distinct and for every $\delta \in S_{1}^{2}$ and non successor $i<\omega_{1}$ and $n<\omega$ for some non successor $j<\omega_{2}$ we have $\eta_{\delta}(i+n)=j+n$. Now let $\left\langle\left\langle c_{\delta}^{\gamma}: \delta \in S_{1}^{2}\right\rangle: \gamma<2^{\aleph_{2}}\right\rangle$ list the set
of sequences $\left\langle c_{\delta}: \delta \in S_{1}^{2}\right\rangle, c_{\delta} \in{ }^{\omega_{1}} 2$. Let $\left\langle r_{\alpha}: \alpha<2^{\aleph_{0}}\right\rangle$ list distinct reals, and we let $h^{\gamma} \in{ }^{\omega_{2}} 2$ be: $h^{\gamma}(i+n)=r_{\gamma}(n)$ for any non-successor ordinal $i<\omega_{1}$. Now define F by: $F(h)=c_{\delta}^{\gamma}(i)$ if $\operatorname{Dom}(h)=\left\{\alpha_{j}: j \leq i\right\}$ with α_{j} increasing, $i \geq \omega,\left\langle h\left(\alpha_{n}\right): n<\omega\right\rangle=r_{\gamma}$.
3) In 3.6(2) we may demand that (e) $F\left(h \uparrow \operatorname{Rang}\left(\eta_{\delta} \upharpoonright(i+1)\right)\right.$) only depend on $h\left(\eta_{\delta}(i)\right)$ and i. Then we can weaken clause (a) there as follows.

3.9 Theorem. Suppose

(a) $\aleph_{0}<\operatorname{cf}(\theta)=\theta<\kappa=2^{\theta}$,
(b) $S=\left\{\delta<\kappa^{+}: \operatorname{cf}(\delta) \geq \theta^{+}\right\}$.
(c) for each $\delta \in S, \eta_{\delta}$ is a strictly increasing continuous function from $\mathrm{cf}(\delta)$ to δ with limit δ.
(d) F is a function with domain $\left\{h: h\right.$ a partial function from κ^{+}to κ such that $|\operatorname{Dom}(h)| \leq \theta\}$ with range $\{0,1\}$.
(e) $\bar{a}=\left\langle a_{i}^{\delta}: \delta \in S, i<\operatorname{cf}(\delta)\right\rangle, a_{i}^{\delta} \subseteq \eta_{\delta}(i)+1$ and $\left|a_{\alpha}\right| \leq \theta$,

Then we can find $\left\langle d_{\delta}: \delta \in S\right\rangle, d_{\delta} \in{ }^{\kappa} 2$ such that for any $h: \kappa^{+} \rightarrow \kappa$ for stationarily many $\delta \in S$ for stationarily many $i<\operatorname{cf}(\delta), d_{\delta}(i)=F\left(h\left\lceil a_{i}^{\delta}\right)\right.$.
3.10 Conclusion. If $\theta, \kappa, \bar{\eta}$ as above then $\bar{\eta}=\left\langle\eta_{\delta}: \delta \in S\right\rangle$ does not have the club uniformization property.

Proof of 3.10. Let $F(h)=h(\operatorname{MaxDom}(h))$ if defined, zero otherwise. By 3.6 there are for F, η_{δ} a sequence $\left\langle d_{\delta}: \delta \in S_{1}^{2}\right\rangle$; let $c_{\delta}(i)=1-d_{\delta}(i)$.

The proof of 3.10 is very similar to that of 3.6 .
Proof of 3.9. Let λ be big enough (e.g., $\left.\left(\beth_{3}(\kappa)\right)^{+}\right)$, and M^{*} be an expansion of $(H(\lambda), \in, \bar{\eta}, \bar{a}, i)_{i \leq \theta}$ be Skolem functions (if it has a definable well ordering it suffices).

Suppose $\bar{\eta}, F$ form a counterexample. It is known that there is a function G from $\left\{A: A \subseteq \kappa^{+},|A| \leq \theta\right\}$ to κ such that $G(A)=G(B)$ implies $A \cap \kappa=B \cap \kappa$, A, B have the same order type and their intersection is an initial segment of both (e.g. if $h_{\alpha}: \alpha \rightarrow \kappa$ is one-to-one for $\alpha<\kappa^{+}$, we let $G_{0}(A) \stackrel{\text { def }}{=}$
$\left\{\left(\operatorname{otp}(A \cap \alpha), \operatorname{otp}(A \cap \beta), h_{\beta}(\alpha)\right): \alpha \in A\right.$ and $\left.\beta \in A\right\}$. Now G_{0} is as required except that $\operatorname{Rang}\left(G_{0}\right) \nsubseteq \kappa$ but $\left|\operatorname{Rang}\left(G_{0}\right)\right| \leq \kappa^{\theta}=\kappa$ so we can correct this).

We now define a procedure for defining for any $p \in H(\lambda),\left\langle c_{\delta}^{p}: \delta \in S\right\rangle$, $c_{\delta}^{p}: \operatorname{cf}(\delta) \rightarrow H\left(\theta^{+}\right)$, which we shall use later.

For every $\delta \in S, i<\omega_{1}$, let $N_{\delta, i}^{p}$ be the Skolem hull of $\{\delta, i, p\} \cup\{\alpha: \alpha \leq \theta\}$ in M^{*}, and let
$\oplus c_{\delta}^{p}(i) \stackrel{\text { def }}{=}\left\langle\right.$ isomorphism type $\left.\left(N_{\delta, i}^{p}, p, \delta, i\right), G\left(N_{\delta, i}^{p} \cap \theta\right)\right\rangle$.

Remarks. 1) The model of $\left\langle N_{\delta, i}^{p}, p, \delta, i\right\rangle$ is not in $H\left(\theta^{+}\right)$, but since $N_{\delta, i}^{p}$ has cardinality $\leq \theta$ we can assume its isomorphism type does belong.
$2)\left(N_{\delta, i}^{p}, p, i, \delta\right)$ is $N_{\delta, i}^{p}$ expanded by three individual constants.
Now remember we have assumed
$\otimes F, \bar{a}, \bar{\eta}$ form a counterexample.

So for every $c_{\delta} \in{ }^{\mathrm{cf}(\delta)} 2$ (for $\delta \in S$) there is $h_{\delta}: \kappa^{+} \rightarrow \kappa$ such that for a closed unbounded set of $\delta \in S$, for a closed unbounded set of $i<\operatorname{cf}(\delta)$, $c_{\delta}(i)=F\left(h_{\delta} \upharpoonright\left\{\eta_{\delta}(j): j \leq i\right\}\right)$.

Now we can easily replace 2 by the set ${ }^{\theta} 2$ as follows.
For $\varepsilon<\theta$ and h a function into ${ }^{\theta} 2$, let $h^{[\varepsilon]}$ be $h^{[\varepsilon]}(i)=(h(i))(\varepsilon)$ for $i \in \operatorname{Dom}(h)$. Define F^{*} by: $F^{*}(h)=\left\langle F\left(h^{[\varepsilon]}\right): \varepsilon<\theta\right\rangle$; now if $c_{\delta} \in{ }^{\mathrm{cf}(\delta)}\left({ }^{\theta} 2\right)$ for $\delta \in S$, i.e., $c_{\delta}: \operatorname{cf}(\delta) \rightarrow{ }^{\theta} 2$ (so $c_{\delta}^{[\varepsilon]}$ are well defined for $\varepsilon<\theta$). So by the assumption " F, \bar{a} and $\bar{\eta}$ form a counterexample" for each $\varepsilon<\theta$ there is $h^{[\varepsilon]}: \kappa^{+} \rightarrow 2$ be such that for a club of $\delta \in S$ for a club of $i<\operatorname{cf}(\delta)$

$$
c^{[\varepsilon]}(i)=F\left(h^{[\varepsilon]}(i) \upharpoonright\left\{a_{i}^{\delta}\right\}\right)
$$

Define the function $h: \kappa^{+} \rightarrow{ }^{\theta} 2$ by $h(i)=\left\langle h^{[\varepsilon]}(i): \varepsilon<\omega\right\rangle$.

Now as $\left|{ }^{\theta} 2\right|=\kappa=\left|H\left(\theta^{+}\right)\right|$, we conclude:
(*) for every $c_{\delta} \in{ }^{\operatorname{cf}(\delta)} H\left(\theta^{+}\right)(\delta \in S)$ there is $h: \kappa^{+} \rightarrow H\left(\theta^{+}\right)$such that for a club of $\delta \in S$ for a club of $i<\operatorname{cf}(\delta)$ we have $c_{\delta}(i)=F^{*}\left(h \upharpoonright a_{i}^{\delta}\right)$.

Now we define by induction on $n<\omega, p(n) \in H(\lambda)$, and $h_{n}: \kappa^{+} \rightarrow H\left(\theta^{+}\right)$.
Let $p(0)=\langle\bar{\eta}, \bar{a}, F\rangle$. If we have defined $p(n)$, let $c_{\delta}^{p(n)}: \operatorname{cf}(\delta) \rightarrow H\left(\theta^{+}\right)$be as we have defined before (in \oplus), so by $(*)$ there is a suitable $h_{n}: \kappa^{+} \rightarrow H\left(\theta^{+}\right)$; i.e., there is a closed unbounded $W^{n} \subseteq \kappa^{+}$such that for every $\delta \in W^{n} \cap S$, there is a closed unbounded $W_{\delta}^{n} \subseteq \operatorname{cf}(\delta)$ such that for $i \in W_{\delta}^{n}, \delta \in W^{n} \cap S$ we have: $c_{\delta, i}^{p(n)}(i)=F^{*}\left(h_{n} \upharpoonright a_{i}^{\delta}\right)$.

Let

$$
p(n+1) \stackrel{\text { def }}{=}\left\langle p(n), h_{n}, W^{n},\left\langle W_{\delta}^{n}: \delta \in W^{n} \cap S\right\rangle,\left\langle\left\langle N_{\delta, i}^{p(n)}: i<\operatorname{cf}(\delta)\right\rangle: \delta \in S\right\rangle\right\rangle
$$

Now let $W=\bigcap_{n<\omega} W^{n}$, and for $\delta \in W, W_{\delta}=\bigcap_{n<\omega} W_{\delta}^{n}$. Clearly W is a closed unbounded subset of κ^{+}, and if $\delta \in W \cap S$ then W_{δ} is a closed unbounded subset of $c f(\delta)$. So for every $\delta \in W \cap S$, there is $i(\delta) \in W_{\delta}$; so as $\eta_{\delta}(i(\delta))<\delta$ for some $i<\kappa^{+}$and $i^{*}<\kappa$ and $\delta=\operatorname{cf}(\delta) \leq \kappa$ the set $\left\{\delta \in W \cap S: \eta_{\delta}(i(\delta))=i, i(\delta)=i^{*}\right.$ and $\left.\operatorname{cf}(\delta)=\delta\right\}$ is stationary. As $\kappa=\kappa^{\theta}$ holds there are δ_{1}, δ_{2} in $W \cap S$ and $\xi<\operatorname{cf}\left(\delta_{1}\right)$ such that
A) $\eta_{\delta_{1}}(\xi)=\eta_{\delta_{2}}(\xi)$ and $\operatorname{cf}\left(\delta_{1}\right)=\operatorname{cf}\left(\delta_{2}\right)$
B) $\delta_{1}<\delta_{2}$ (so both in $W \cap S$)
C) $\xi \in W_{\delta_{\ell}}$ for $\ell=1,2$ (so $\xi<\operatorname{cf}(\delta)$).

So clearly we can assume
D) there are no $\delta_{1}^{\dagger}, \delta_{2}^{\dagger}$ satisfying (A), (B) and (C) such that $\delta_{1}^{\dagger} \leq \delta_{1}, \delta_{2}^{\dagger} \leq \delta_{2}$ and $\left(\delta_{1}^{\dagger}, \delta_{2}^{\dagger}\right) \neq\left(\delta_{1}, \delta_{2}\right)$.
Now as $\delta_{1}<\delta_{2}$ for every large enough $i<\operatorname{cf}\left(\delta_{1}\right), \eta_{\delta_{2}}(i)>\delta_{1}$, hence $\left\{\zeta<\operatorname{cf}(\delta): \zeta \in W_{\delta_{1}}, \zeta \in W_{\delta_{2}}\right.$ and $\left.\eta_{\delta_{1}}(\zeta)=\eta_{\delta_{2}}(\zeta)\right\}$ is a bounded subset of $\operatorname{cf}\left(\delta_{1}\right)$. As $W_{\delta_{1}}, W_{\delta_{2}}$ are clubs of $\operatorname{cf}\left(\delta_{1}\right)$ and $\eta_{\delta_{1}}, \eta_{\delta_{2}}$ are increasing continuous, the set above is closed hence it has a last element. So there is $\zeta<\operatorname{cf}\left(\delta_{1}\right)$ such
that $\eta_{\delta_{1}}(\zeta)=\eta_{\delta_{2}}(\zeta)$ and $\zeta \in W_{\delta_{1}} \cap W_{\delta_{2}}$, but $\zeta^{\dagger}>\zeta, \bigwedge_{\ell=1,2} \zeta^{\dagger} \in W_{\delta_{\ell}}$ implies $\eta_{\delta_{1}}\left(\zeta^{\dagger}\right) \neq \eta_{\delta_{2}}\left(\zeta^{\dagger}\right)$.

So for every n
$(\alpha) c_{\delta_{1}}^{p(n)}(\zeta)=c_{\delta_{2}}^{p(n)}(\zeta)$
as both are equal to $F^{*}\left(h_{n} \upharpoonright a_{\eta_{\delta_{\ell}}}^{\delta_{\ell}}(\zeta)\right)$, which do not depend on ℓ as $\eta_{\delta_{1}}(\zeta)=$ $\left.\eta_{\delta_{2}}(\zeta)\right)$ and they are equal to $h_{n+1}\left(\eta_{\delta_{\ell}}(\zeta)\right)$. Looking at the definition of $c_{\delta}^{p(n)}(\zeta)$ (see \oplus above) we see that $N_{\delta_{1}, \zeta}^{p(n)}$ is isomorphic to $N_{\delta_{2}, \zeta}^{p(n)}$, and let the isomorphism be g_{n}. Note that the isomorphism is unique (as \in in those models is transitive well founded).

By the definition of $c_{\delta}^{p(n)}(\zeta)$, clearly without loss of generality

$$
g_{n}(p(n))=p(n), g_{n}\left(\delta_{1}\right)=\delta_{2}, g_{n}(\zeta)=\zeta
$$

Looking at the definition of M^{*} and $p(n), p(0)$ we see that $g_{n}\left(\eta_{\delta_{1}}\right)=\eta_{\delta_{2}}$ and for $n>0$ we have $g_{n}\left(W^{n-1}\right)=W^{n-1}$ and $g_{n}\left(W_{\delta_{1}}^{n-1}\right)=W_{\delta_{2}}^{n-1}$ and $g_{n}\left(N_{\delta_{1}, \zeta}^{p(n-1)}\right)=N_{\delta_{2}, \zeta}^{p(n-1)} \in N_{\delta_{2}, \zeta}^{p(n)}$.

As $N_{\delta_{\ell}, \zeta}^{p(n-1)}$ is of cardinality θ and belongs to $N_{\delta_{\ell}, \zeta}^{p(n)}$, and $\theta+1 \subseteq N_{\delta_{i}}^{p(n)}$ clearly $N_{\delta_{\ell}, \zeta}^{p(n-1)}$ is also included in it, hence $g_{n} \mid N_{\delta_{1}, \zeta}^{p(n-1)}$ is an isomorphism from $N_{\delta_{1}, \zeta}^{p(n-1)}$ onto $N_{\delta_{2}, \zeta}^{p(n-1)}$ hence (by the uniqueness of g_{n} and the previous sentence)
(β) $g_{n} \supseteq g_{n-1}$.

For $\ell=1,2$ let $N_{\ell}=\bigcup_{n<\omega} N_{\delta_{\ell}, \zeta}^{p(n)}$ and $g=\bigcup_{n<\omega} g_{n}$; so g is an isomorphism from N_{1} to N_{2}.
By the definition of $c_{\delta_{\ell}}^{p(n)}(\zeta)$, clearly:
$(\gamma) G\left(N_{\delta_{1}, \zeta}^{p(n)} \cap \kappa^{+}\right)=G\left(N_{\delta_{2}, \zeta}^{p(n)} \cap \kappa^{+}\right)$,
hence sets $N_{1} \cap \kappa^{+}, N_{2} \cap \kappa^{+}$have the same intersection with κ and have
their intersection an initial segment of both (as usually, we are not strictly distinguishing between a model and its universe), hence g is the identity on $N_{1} \cap N_{2} \cap \kappa^{+}$.

Note that clearly $\delta_{1} \notin N_{2}$ as $g\left(\delta_{1}\right)=\delta_{2} \neq \delta_{1}$, hence $\delta_{2} \notin N_{1}$.
Let $\delta_{\ell}^{*} \stackrel{\text { def }}{=} \operatorname{Min}\left(\kappa^{+} \cap N_{\ell} \backslash\left(N_{1} \cap N_{2}\right)\right)$, so clearly $\delta_{\ell}^{*} \leq \delta_{\ell}, g\left(\delta_{1}^{*}\right)=\delta_{2}^{*}$. Note $\operatorname{cf}\left(\delta_{\ell}^{*}\right) \leq \kappa\left(\right.$ as $\left.\delta_{\ell}^{*}<\kappa^{+}\right)$so $\operatorname{cf}\left(\delta_{\ell}^{*}\right) \in N_{\ell}^{*} \cap(\kappa+1) \subseteq N_{1} \cap N_{2} \cap \kappa^{+}$and so $\operatorname{cf}\left(\delta_{1}^{*}\right)=\operatorname{cf}\left(\delta_{2}^{*}\right)$. Call it σ, so $\sigma \in N_{1} \cap N_{2} \cap(\kappa+1)$ is regular.
($\delta) \operatorname{cf}\left(\delta_{\ell}^{*}\right)>\theta$.
[Why? Otherwise $\operatorname{cf}\left(\delta_{1}^{*}\right) \leq \theta$, and as $\delta_{1}^{*} \in N_{1}$ for some $n, \delta_{1} \in N_{\delta_{1}, \zeta}^{p(n)}$, hence there is $b \in N_{\delta_{1}, \zeta}^{p(n)}, b=\left\{\beta_{\varepsilon}: \varepsilon<\sigma\right\} \subseteq \delta_{1}^{*}$ cofinal in δ_{1}^{*}. As $|b|=\sigma \leq \theta$, $b \in N_{\delta_{1}, \zeta}^{p(n)}$ and $\theta+1 \subseteq N_{\delta_{1}, \zeta}^{p(n)}$ necessarily $b=\left\{\beta_{\varepsilon}: \varepsilon<\sigma\right\} \subseteq N_{\delta_{1}, \zeta}^{p(n)}$. By the choice of $\delta_{1}^{*}, \beta_{\varepsilon} \in N_{1} \cap N_{2} \cap \kappa^{+}$, hence $g\left(\beta_{\varepsilon}\right)=\beta_{\varepsilon}$. Easily $g(b)=\left\{g\left(\beta_{\varepsilon}\right): \varepsilon<\right.$ $\sigma\}=\left\{\beta_{\varepsilon}: \varepsilon<\sigma\right\}=b\left(\right.$ as $\left.\theta+1 \subseteq N_{1} \cap N_{2}\right)$ and $N_{1} \vDash " \delta_{1}^{*}=\sup (b)$ " hence $N_{2} \vDash " g\left(\delta_{1}^{*}\right)=\sup (g(b)) "$ that is $N_{2} \vDash " \delta_{2}^{*}=\sup (b) "$ so $\delta_{1}^{*}=\delta_{2}^{*}$, contradiction.]

So we have proved (δ).

Now for $\ell=1,2$ let $\alpha_{\ell} \stackrel{\text { def }}{=} \sup \left[N_{\ell} \cap \operatorname{cf}\left(\delta_{1}\right)\right]$, so as $N_{1} \cap \kappa=N_{2} \cap \kappa$ clearly $\alpha_{1}=\alpha_{2}$ call it α. Let $\beta_{\ell} \stackrel{\text { def }}{=} \sup \left(N_{\ell} \cap \delta_{\ell}^{*}\right)$ hence $\beta_{1}=\beta_{2}$ (by δ_{ℓ}^{*} 's definition) and call it β.

As $\eta_{\delta_{1}^{*}}$ is a one to one function (being increasing) from σ, clearly

$$
\eta_{\delta_{1}^{*}}(i) \in N_{1} \text { iff } i \in \sigma \cap N_{1}
$$

Also $N_{1} \models$ " $\left\langle\eta_{\delta_{1}^{*}}(i): i<\sigma\right\rangle$ is unbounded below $\delta_{1}^{* "}$ (remember $N_{1} \prec M^{*}$ as $N_{\delta_{1}, \zeta}^{p(n)} \prec M^{*}$ for each $\left.n\right)$.

So clearly $\beta=\operatorname{Sup}\left\{\eta_{\delta_{1}^{*}}(i): i<\alpha\right\}$; but $\eta_{\delta_{1}^{*}}$ is increasing continuous and α is a limit ordinal (being $\sup \left(N_{\ell} \cap \sigma\right)$), hence $\beta=\eta_{\delta_{1}^{*}}(\alpha)$.

For the same reasons $\beta=\eta_{\delta_{2}^{*}}(\alpha)$.

So $\eta_{\delta_{1}^{*}}(\alpha)=\eta_{\delta_{2}^{*}}(\alpha)$ and $\alpha \in W_{\delta_{\ell}^{*}}^{n}$ for each $n<\omega(\ell=1,2)$ as $N_{\ell} \models$ " $W_{\delta_{\ell}^{*}}^{n}$ is a closed unbounded subset of σ ". For similar reasons $\delta_{\ell}^{*} \in W_{n}$ for each n : as $W_{n} \in N_{\delta_{\ell}, \zeta}^{p(n+1)}$ hence $W_{n} \in N_{\ell}$, hence $W_{n} \in N_{1} \cap N_{2}$, and as $N_{1}, N_{2} \prec M^{*}, M^{*}$ has Skolem functions, clearly $N_{1} \cap N_{2} \prec M^{*}$, so W_{n} is an unbounded subset of $N_{1} \cap N_{2} \cap \kappa^{+}$. So in N_{ℓ}, W_{n} is unbounded in $\delta_{\ell}^{*}=\operatorname{Min}\left[\left(\kappa^{+} \cap N_{\ell}\right) \backslash\left(N_{1} \cap N_{2}\right)\right]$, hence $N_{\ell} \models " \delta_{\ell}^{*} \in W_{n}$ " hence $\delta_{\ell}^{*} \in W_{n}$.

We can conclude that $\delta_{1}^{*}, \delta_{2}^{*}, \beta$ satisfy the requirements (A), (B), (C) on $\delta_{1}, \delta_{2}, \xi$. Hence by require-mint (D) on them, $\delta_{1}=\delta_{1}^{*}, \delta_{2}=\delta_{2}^{*}$. But, $\zeta \in N_{\delta_{\ell}, \zeta}^{p(n)} \subseteq N_{\ell}$ hence $\zeta \in \kappa \cap N_{1} \cap N_{2}$ hence $\zeta<\alpha$, so clause (α) contradicts the choice of ζ, so we get a contradiction, thus finishing the proof of the theorem (3.9). $\square_{3.9}$
3.11 Remark. We can replace in the conclusion of $3.9, F\left(h \upharpoonright a_{i}^{\delta}\right)$ by $F_{i}^{\delta}(h)$, so F is replaced by $\left\langle F_{i}^{\delta}: \delta \in S, i<\operatorname{cf}(\delta)\right\rangle$, where F_{i}^{δ} is a function from ${ }^{\kappa^{+}} \kappa$ to $\{0,1\}$. Also we may weaken $a_{i}^{\delta} \subseteq \eta_{0}(i)+1$ to $a_{i}^{\delta} \subseteq \lambda^{+}$.

