XIII. Large Ideals on ω_{1}

§0. Introduction

Here we shall start with κ e.g. supercompact, use semiproper iteration to get results like ($S \subseteq \omega_{1}$ stationary costationary):
(a) $\mathrm{ZFC}+\mathrm{GCH}+\mathcal{P}\left(\omega_{1}\right) /\left(\mathcal{D}_{\omega_{1}}+S\right)$ is layered + suitable forcing axiom and note that by [FMSh:252] this implies the existence of a uniform ultrafilter on ω_{1} such that $\aleph_{0}^{\omega_{1}} / D=\aleph_{1}$ (which is stronger than " D is not regular").
(b) $\mathrm{ZFC}+\mathrm{GCH}+\mathcal{P}\left(\omega_{1}\right) /\left(\mathcal{D}_{\omega_{1}}+S\right)$ is Levy + suitable forcing axiom.
(c) ZFC $+\mathrm{GCH}+\mathcal{P}\left(\omega_{1}\right) /\left(\mathcal{D}_{\omega_{1}}+S\right)$ is Ulam + suitable forcing axiom.
where (a) Ulam means

$$
\left(\mathcal{D}_{\omega_{1}}+S\right)^{+}=\left\{A \subseteq \omega_{1}: A \cap S \neq \emptyset \bmod \mathcal{D}_{\omega_{1}}\right\}
$$

is the union of \aleph_{1}, \aleph_{1}-complete filters, hence on \mathbb{R} there are \aleph_{1} measures such that each $A \subseteq \mathbb{R}$ is measurable for at least one measure
(b) Levy means that, as a Boolean algebra, it is isomorphic to the completion of a Boolean algebra of the Levy collapse Levy $\left(\aleph_{0},<\aleph_{2}\right)$
(c) layered means that the Boolean algebra is $\bigcup_{\alpha<\aleph_{2}} B_{\alpha}$, where B_{α} are increasing, continuous, $\left|B_{\alpha}\right| \leq \aleph_{1}$, and $\operatorname{cf}(\alpha)=\aleph_{1} \Rightarrow B_{\alpha} \lessdot \mathcal{P}\left(\omega_{1}\right) /\left(\mathcal{D}_{\omega_{1}}+S\right)$. We also deal with reflectiveness (see 4.3).

This chapter is a rerepresentation of [Sh:253], we shall give some history later, and now just remark that this work was done (and reclaimed) after
[FMSh:240 §1, §2] and [W83] ([W83] starts with "ZFC+DC+ADR+日 regular" and forces "ZFC+CH+the club filter on some stationary $S \subseteq \omega_{1}$ is \aleph_{1} dense") but before Woodin obtained a similar result from a huge cardinal.

In this chapter we got results by semiproper iteration iterating collapses and sealing some maximal antichains of $\mathcal{P}\left(\omega_{1}\right) / \mathcal{D}_{\omega_{1}}$ up to some large κ. So it is a natural continuation of Chapter X . Our ability to do this to enough chains comes from reflection properties of κ, which is supercompact (or limit of enough supercompacts).

The first section contains preliminaries on semi-stationary sets, relevant reflection properties and what occurs to some such properties when we force. In the second section we deal more specifically with our iterations (S-suitable iterations). In the third section we deal with getting Levy algebra and layeredness, and in the fourth we deal with reflective ideals (see 4.3) and with the Ulam property. Note that for much of the chapter the iteration is of $S_{3}{ }^{-}$ complete forcing notion, for some (fixed) stationary $S_{3} \subseteq \omega_{1}$, and in this case the iteration is (equivalent to) a CS one; so we will stress less the names of conditions etc.

By Foreman, Magidor and Shelah [FMSh:240], CON(ZFC $+\kappa$ is supercompact) implies the consistency of $\mathrm{ZFC}+$ " $\mathcal{D}_{\omega_{1}}$ is \aleph_{2}-saturated" [i.e., if \boldsymbol{B} is the Boolean algebra $\mathcal{P}\left(\omega_{1}\right) / \mathcal{D}_{\omega_{1}}$, " $\mathcal{D}_{\omega_{1}}$ is \aleph_{2} saturated" means " \mathfrak{B} satisfies the \aleph_{2}-c.c."]. This in fact was deduced from the $\mathrm{MM}^{+}\left(=\right.$Martin Maximum ${ }^{+}$) by [FMSh:240] whose consistency was proved by RCS iteration of semiproper forcings (see Chapter X, Chapter XVII §1). Note that [FMSh:240] refutes the thesis: in order to get an elementary embedding j of V with small critical ordinal, into some transitive class M of some generic extension V^{P} of V, one should start with an elementary embedding of j of V^{\prime} into some M^{\prime} and then force over V^{\prime}. Previously, J. Steel and Van Wesep got the same result starting from $\mathrm{ZF}+\mathrm{AD}+\mathrm{AC}_{R}$ (see [StVW]).

This thesis was quite strongly rooted. Note that it is closely connected to the existence of normal filters D on λ which are λ^{+}-saturated or at least precipitous (use for P the set of nonzero members of $\mathcal{P}(\lambda) / D$ ordered by inverse inclusion, j the generic ultrapower). See [FMSh:240] for older history.

In fact, it was shortly proved directly that $\mathrm{MM}^{+} \equiv \mathrm{SPFA}^{+}$and much later it was proved that MM is equivalent to the Semi-Proper Forcing Axiom (in ZFC) (see XVIII §1).

The rsults of [FMSh:240, §1, §2] motivated much activity. Woodin proves from
$\mathrm{CON}\left(\mathrm{ZF}+\mathrm{ADR}+\theta\right.$ regular) the consistency of $\mathrm{ZFC}+$ " $\boldsymbol{B} \upharpoonright S$ is \aleph_{1}-dense", for some stationary $S \subseteq \omega_{1}$.

By Shelah and Woodin [ShWd:241], if there is a supercompact cardinal, then every projective set of reals is Lebesgue measurable (etc.). This was obtained by combining (A) and (B) below which were proved simultaneously:
(A) The conclusion holds if there is a weakly compact cardinal κ and a forcing notion $P,|P|=\kappa$, satisfying the κ-c.c., not adding reals and \Vdash_{P} "there is a normal filter D on $\omega_{1}, \boldsymbol{B}=\mathcal{P}\left(\omega_{1}\right) / D$ satisfying the \aleph_{2}-c.c."
(B) There is a forcing as required in (A) (see [FMSh:240, §3]).

This was improved for projective sets which are Σ_{n} using approximately n cardinals κ satisfying:
(*) for every forcing notion $P \in H(\kappa)$ and stationary costationary $S \subseteq \omega_{1}$ there is semiproper $\underset{\sim}{Q}$, not adding reals, $\Vdash_{P * \underset{P}{Q}}$ " $\mathcal{D}_{\omega_{1}}\lceil S$ is κ-saturated, $\kappa=\aleph_{2} "$ (and $\underset{\sim}{Q}$ is not too large).
A sufficient condition for $(*)$ is $\operatorname{Pr}_{a}(\kappa) \stackrel{\text { def }}{=} \kappa$ is strongly inaccessible, and for every $f: \kappa \rightarrow \kappa$ there is an elementary embedding $j: V \rightarrow M(M$ is a transitive class), κ the critical ordinal of j and $H(j(f)(\kappa)) \subseteq M$. Moreover it suffice (Woodin cardinals) $\operatorname{Pr}_{b}(\kappa) \dagger \stackrel{\text { def }}{=} \kappa$ is strongly inaccessible, and for every $f: \kappa \rightarrow \kappa$ there is $\kappa_{1}<\kappa,\left(\forall \alpha<\kappa_{1}\right), f(\alpha)<\kappa_{1}$ and for some elementary embedding $j: V \rightarrow M$ (M is a transitive class), κ_{1} is the critical ordinal of j and $H\left((j(f))\left(\kappa_{1}\right)\right) \subseteq M$.

By [Sh:237a] " $2^{\aleph_{0}}<2^{\aleph_{1}} \Rightarrow \mathcal{D}_{\omega_{1}}$ is not \aleph_{1}-dense", and by [Sh:270] if D is a layered filter on $\lambda=\lambda^{<\lambda}$ then $D^{+}=\{A \subseteq \lambda: A \notin D\}$ is the union of λ filters extending D.

[^0]This chapter is a representation of [Sh:253] which was done then, but was mistakenly held as incorrect for quite some time. The main change is that we replace part of the consistency proof of the Ulam statement, $\left(\mathcal{P}\left(\omega_{1}\right)\right.$ is the union of $\aleph_{1} \aleph_{1}$-complete nontrivial measures), by a deduction from a strong variant of layerness. Later Woodin proves from a huge cardinal CON(ZFC+ $\mathrm{GCH}+\mathcal{P}\left(\omega_{1}\right) /\left(\mathcal{D}_{\omega_{1}}+S\right)$ is \aleph_{1}-dense $)$.

0.1. Notation and Basic Facts.

(1) $\mathcal{P}(\mathrm{A})$ is the power set of $A, \mathcal{S}_{<\lambda}(A)=\{B: B \subseteq A,|B|<\lambda\},<_{\lambda}^{*}$ is a well ordering of $H(\lambda)$ which, for simplicity only, we assume is an end extension of $<_{\mu}^{*}$ for $\mu<\lambda$.
(2) \mathcal{D}_{λ} is the club filter on a regular $\lambda>\aleph_{0}$ and $\mathcal{D}_{<\lambda}(A)$ is the club filter on $\mathcal{S}_{<\lambda}(A)$.
(3) (a) \mathfrak{B} is the Boolean Algebra $\mathcal{P}\left(\omega_{1}\right) / \mathcal{D}_{\omega_{1}}$; we do not distinguish strictly between $A \in \mathcal{P}\left(\omega_{1}\right)$ and $A / \mathcal{D}_{\omega_{1}}$ and for stationary $S \subseteq \omega_{1}, \mathfrak{B} \upharpoonright S$ is defined naturally.
(b) \mathfrak{B} of course depends on the universe, so we may write $\mathfrak{B}^{V^{1}}$ or $\mathfrak{B}\left[V^{1}\right]$; instead of $\mathfrak{B}\left[V^{P}\right]$ we may write \boldsymbol{B}^{P} or $\boldsymbol{B}[P]$.
(c) If $V^{1} \subseteq V^{2}, \omega_{1}^{V^{1}}=\omega_{1}^{V^{2}}$, then $\mathfrak{B}\left[V^{1}\right]$ is a weak subalgebra of $\mathfrak{B}\left[V^{2}\right]$ (i.e., distinct elements in $\mathfrak{B}\left[V^{1}\right]$ may be identified in $\mathfrak{B}\left[V^{2}\right]$).
(d) If $P \in V$ is a forcing notion preserving stationary subsets of ω_{1}, then $\mathfrak{B}=\boldsymbol{B}[V]$ is a subalgebra of \mathfrak{B}^{P} (identifying $\left(A / \mathcal{D}_{\omega_{1}}\right)^{V}$ and $\left(A / \mathcal{D}_{\omega_{1}}\right)^{V^{P}}$ for $\left.A \in \mathcal{P}\left(\omega_{1}\right)^{V}\right)$. If $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\alpha\right\rangle$ is an iteration (with limit P_{α}, so $i<j<\alpha \Rightarrow P_{i} \lessdot P_{j}$), we let $\mathfrak{B}^{\bar{Q}}=\cup_{i<\alpha} \boldsymbol{B}^{P_{i+1}}$.
(4) (a) Let us say, for Boolean algebras B_{1} and B_{2}, that $B_{1} \lessdot B_{2}$ iff $B_{1} \subseteq B_{2}$ (i.e., B_{1} is a subalgebra of B_{2}) and every maximal antichain of B_{1} is a maximal antichain of B_{2}.
(b) Note that, for Boolean algebras B_{1} and $B_{2}, B_{1} \lessdot B_{2}$ iff $B_{1} \subseteq B_{2}$ and $\left(\forall x \in B_{2} \backslash\{0\}\right)\left(\exists y \in B_{1} \backslash\{0\}\right)\left(\forall z \in B_{1}\right)[z \cap y \neq 0 \rightarrow z \cap x \neq 0]$. Hence, if $B_{1} \lessdot B_{3}$ and $B_{1} \subseteq B_{2} \subseteq B_{3}$, then $B_{1} \lessdot B_{2}$.
(c) Hence, the satisfaction of " $B_{1} \lessdot B_{2}$ " does not depend on the universe of set theory, i.e., if $V \models B_{1} \lessdot B_{2}$ and $V \subseteq V^{1}$ then $V^{1} \models B_{1} \lessdot B_{2}$.
(d) By Solovay and Tennenbaum [ST], \prec is transitive, and if $\left\langle B_{i}: i<\alpha\right\rangle$ is <--increasing and continuous then $B_{i} \lessdot \bigcup_{j<\alpha} B_{j}$.
(e) Also, if $\left\langle B_{\zeta}: \zeta<\xi\right\rangle$ is a \subseteq-increasing sequence of Boolean algebras and $B_{0} \lessdot B_{\zeta}$ for $\zeta<\xi$, then $B_{0} \lessdot \bigcup_{\zeta<\xi} B_{\zeta}$.
(f) If $\left\langle B_{i}: i \leq \delta+1\right\rangle$ is an increasing continous sequence of Boolean algebras, $\operatorname{cf}(\delta)>\aleph_{0}$ and $\left[i<\delta \Rightarrow\left\|B_{i}\right\|<\delta\right]$, and $S \stackrel{\text { def }}{=}\left\{i<\delta: B_{i} \lessdot\right.$ $\left.B_{\delta+1}\right\}$ is a stationary subset of δ then $B_{\delta} \lessdot B_{\delta+1}$.
[Why? If $x \in B_{\delta+1} \backslash\{0\}$ then by clause (b) for each $\alpha \in S$ for some $y_{\alpha} \in B_{\alpha} \backslash\{0\}$ we have

$$
\left(\forall z \in B_{\alpha}\right)\left[z \cap y_{\alpha} \neq 0 \rightarrow z \cap x \neq 0\right] .
$$

So by Fodor lemma for some j,

$$
S_{1}^{*} \stackrel{\text { def }}{=}\left\{\alpha \in S: y_{\alpha} \in B_{j}\right\}
$$

is stationary. And so for some y the set $\left\{\alpha \in S_{1}^{*}: y_{\alpha}=y\right\}$ is stationary and y is as required.]
(g) For a Boolean algebra $B, X_{1} \lessdot X_{2}$ (in B) iff $X_{1} \subseteq X_{2} \subseteq B \backslash\left\{0_{B}\right\}$ and every predense subset of X_{1} is a predense subset of X_{2} where Y is a predense subset of X if $Y \subseteq X \& \forall x \in X \exists y \in Y(\exists z \in X)\left(z \subseteq_{B} x \cap y\right)$. If $0_{B} \in X_{2}$ we mean $X_{1} \backslash\left\{0_{B}\right\} \lessdot X_{2} \backslash\left\{0_{B}\right\}$.
This definition is compatible with the one in clause (a) and the iteration in clause (b) is still true; also clause (c) holds (the others are not needed here).
(5) If in V we have $P_{1} \lessdot P_{2} \lessdot P_{3}$, in $V^{P_{2}}$ we have $\mathfrak{B}^{P_{1}} \lessdot \mathfrak{B}^{P_{2}}$, and in $V^{P_{3}}, \mathfrak{B}^{P_{2}} \lessdot \mathfrak{B}^{P_{3}}$, then in $V^{P_{3}}, \mathfrak{B}^{P_{1}} \lessdot \mathfrak{B}^{P_{3}}$, [follows by (4)(c), (4)(d)]; similarly for $\mathfrak{B}^{P_{i}} \upharpoonright S$.
(6) For a set a and forcing notion P, G_{P} is the P-name of the generic set and $a\left[{\underset{\sim}{G}}_{P}\right]=a \cup\left\{\underset{\sim}{x}\left[{\underset{\sim}{G}}_{P}\right]: \underset{\sim}{x} \in a\right.$ is a P-name $\}$. So $a\left[{\underset{\sim}{G}}_{P}\right]$ is a P-name of a set, and for $G \subseteq P$ generic over V its interpretation is $a[G]=a \cup\{\underset{\sim}{x}[G]: \underset{\sim}{x} \in a$ is a P-name $\}(\underset{\sim}{x}[G]$ is the interpretation of the P-name $x)$.
(7) If $\lambda>\aleph_{0}$ is a cardinal, N a countable elementary submodel of $(H(\lambda)$, $\epsilon), P \in N$ and $G \subseteq P$ is generic over V, then $N[G] \prec\left(H(\lambda)^{V^{P}}, \epsilon\right)$ (as $H(\lambda)^{V^{P}}=\{\tau[G]: \underset{\sim}{\tau} \in H(\lambda)$ a P-name $\}$ and if $\Vdash_{P} "\left(H(\lambda)^{V^{P}}, \in\right) \models$ $\exists x \varphi(x, a)$ " then for some P-name $\underset{\sim}{\tau} \in H(\lambda)$ we have $\Vdash_{P} "\left(H(\lambda)^{V^{P}}, \in\right) \vDash$ $\varphi(\underset{\sim}{\tau}, \underset{\sim}{a}) ")$. See III 2.11, I 5.17(1).
(8) Also, if some $p \in G$ is (N, P)-generic then $(N, G) \prec\left(H(\lambda)^{V}, \in, G\right)$ (i.e., G is an extra predicate, so you may write $(N, G \cap|N|))$. Also, if R is any relation (or sequence of relations) on $H(\lambda)^{V}, N \prec\left(H(\lambda)^{V}, \in, R\right)$ (and $P \in N, G \subseteq P$ generic over V) and some $p \in G$ is (N, P)-generic then $(N, G) \prec\left(H(\lambda)^{V}, \in, R, G\right)$ and even $\left(N[G],|N|, R^{N}, G\right) \prec\left(H(\lambda)^{V^{P}}, \in\right.$, $\left.H(\lambda)^{V}, R, G\right)$. Usually we use a well ordering $<_{\lambda}^{*}$ of $H(\lambda)$.
(9) Let $N<_{\kappa} M$ mean $N \subseteq M$ and $N \cap \kappa$ is an initial segment of $M \cap \kappa$ and $N \prec M$; if we use it for sets (rather than models), the last demand is omitted. Note that if $N \prec M \prec(H(\mu), \in), \kappa<\mu$ and $N \cap \kappa=M \cap \kappa$ then $N<{ }_{\kappa}{ }^{+} M$.

§1. Semi-Stationarity

1.1. Definition.

(1) A forcing notion P is semiproper if: for every regular $\lambda>2^{|P|}$, any countable $N \prec(H(\lambda), \in)$ to which P belongs, and $p \in P \cap N$ there is q such that: $p \leq q \in P$ and q is (N, P)-semi-generic (see below).
(2) For a set a, forcing notion P and $q \in P$, we say q is (a, P)-semi-generic if: for every P-name $\underset{\sim}{\alpha} \in a$ of a countable ordinal, $q \Vdash_{P}$ " $\underset{\sim}{\alpha} \in a$ " [i.e., if: $q \Vdash$ $" a\left[{\underset{\sim}{G}}_{P}\right] \cap \omega_{1}=a \cap \omega_{1} "$ see $0.1(6) ;$ note $a\left[{\underset{\sim}{G}}_{P}\right]=\{\underset{\sim}{x}[\underset{\sim}{G} \underset{P}{ }]: \underset{\sim}{x} \in a$ a P-name $\}$ if a is closed enough, i.e. for $x \in a$ also $\dot{x} \in a$ where $\dot{x}[G]$ is $x]$.
(3) We call $W \subseteq \mathcal{S}_{<\aleph_{1}}(A)$ (where $\omega_{1} \subseteq A$) semi-stationary in A (or in $\mathcal{S}_{<\aleph_{1}}(A)$ or subset of A) if for every model M with universe A and countably many relations and functions, there is a countable $N \prec M$, such that $(\exists a \in$ $W)\left[N \cap \omega_{1} \subseteq a \subseteq N\right]$, [equivalently, $\left\{a \in \mathcal{S}_{<\aleph_{1}}(A):(\exists b \in W)\left[a \cap \omega_{1} \subseteq\right.\right.$
$b \subseteq a]\}$ is a stationary subset of $\mathcal{S}_{<\aleph_{1}}(A)$ (i.e., $\neq \emptyset \bmod \mathcal{D}_{<\aleph_{1}}(A)$). As we allow functions in M, we can require only $N \subseteq M]$.

1.2. Claim.

(1) If $W \subseteq \mathcal{S}_{<\aleph_{1}}(A)$ is stationary and $\omega_{1} \subseteq A$ then W is a semi-stationary subset of A. Also if $\omega_{1} \subseteq A, W \subseteq \mathcal{S}_{<\aleph_{1}}(A)$ is semi-stationary in A, $C \in \mathcal{D}_{<\aleph_{1}}(A)$ and $\left[a \in W \& b \in C \& b \cap \omega_{1} \subseteq a \subseteq b \Rightarrow b \in W\right]$ then W is stationary (subset of $\mathcal{S}_{<\aleph_{1}}(A)$).
(2) If $\omega_{1} \subseteq A \subseteq B$, and $W \subseteq \mathcal{S}_{<\aleph_{1}}(A)$ then: W is semi-stationary in A iff W is semi-stationary in B (so we can omit "in A ").
(3) If $W_{1} \subseteq W_{2} \subseteq \mathcal{S}_{<\aleph_{1}}(A)$, and W_{1} is semi-stationary, then W_{2} is semistationary.
(4) If $|A|=\aleph_{1}, \omega_{1} \subseteq A, A=\cup_{i<\omega_{1}} a_{i}, a_{i}$ increasing continuous in i, with a_{i} countable, then $W \subseteq \mathcal{S}_{<\aleph_{1}}(A)$ is semi-stationary iff $S_{W} \stackrel{\text { def }}{=}\{i:(\exists b \in$ $\left.W)\left[i \subseteq b \subseteq a_{i}\right]\right\}$ is stationary (as a subset of ω_{1}).
(5) If $p \in P$ is (b, P)-semi-generic, $b \cap \omega_{1} \subseteq a \subseteq b$ then p is (a, P)-semi-generic.
(6) If $W \subseteq \mathcal{S}_{<\aleph_{1}}(\lambda), \mu>\lambda, W \in N, N \prec(H(\mu), \in)$ (hence $|W|<\mu$), and for some $a \in W, N \cap \omega_{1} \subseteq a \subseteq N$ then W is semi-stationary.
(7) Assume A is an uncountable set, $W \subseteq \mathcal{S}_{<\aleph_{1}}(A), f_{1}, f_{2}$, are one to one functions from ω_{1} into A, and $W_{\ell} \stackrel{\text { def }}{=}\left\{a \cup\left\{\alpha<\omega_{1}: f_{\ell}(\alpha) \in a\right\}: a \in\right.$ $W\} \subseteq \mathcal{S}_{<\aleph_{1}}\left(A \cup \omega_{1}\right)$. Then W_{1} is semi-stationary iff W_{2} is semi stationary, so in Definition 1.1(3) (of semi stationarity) we can replace " $\omega_{1} \subseteq A$ " by " A uncountable".
(8) If A_{1}, A_{2} are uncountable sets, f is a one to one function from A_{1} to $A_{2}, W_{2} \subseteq \mathcal{S}_{<\aleph_{1}}\left(A_{2}\right), W_{1} \subseteq \mathcal{S}_{<\aleph_{1}}\left(A_{1}\right)$ and $\left[a \in W_{1} \Rightarrow f^{\prime \prime}(a) \in W_{2}\right]$ and $\left[b \in W_{2} \Rightarrow\left(\exists a \in W_{1}\right) b \cap f^{\prime \prime}\left(A_{1}\right)=f^{\prime \prime}(a)\right]$ then: W_{1} is semi-stationary iff W_{2} is semi-stationary. If f is onto A_{2}, necessarily $W_{1}=\left\{a \in \mathcal{S}_{<\mathcal{N}_{!}}\left(A_{1}\right)\right.$: $\left.f^{\prime \prime}(a) \in W_{2}\right\}$.

Proof. (1) - (5), (7), (8) Left to the reader.
(6) If not, some $M=\left(\lambda, \ldots, F_{n}, \ldots\right)$ exemplifies that W is not semistationary, so some such M belongs to N, hence $N \cap \lambda$ is a submodel of M (even an elementary submodel of M), a contradiction.
1.3. Claim. A forcing notion P is semiproper iff the set

$$
\begin{aligned}
W_{P}=\left\{a \in \mathcal{S}_{<\aleph_{1}}\left(P \cup P\left(\omega_{1}+1\right)\right):\right. & \text { for every } p \in P \cap a \text { there is } q, \\
& \text { such that } p \leq q \in P \text { and } \\
& q \text { is }(a, P) \text {-semi-generic }\}
\end{aligned}
$$

contains a club of $\mathcal{S}_{<\aleph_{1}}\left(P \cup{ }^{P}\left(\omega_{1}+1\right)\right)$ where each $h: P \rightarrow\left(\omega_{1}+1\right)$ is interpreted as a P-name α_{h} with the property that: if

$$
\alpha_{h}^{0}[G]=\min \{h(r): r \in G\},
$$

then ${\underset{\sim}{\alpha}}_{h}[G]$ is ${\underset{\sim}{\alpha}}_{h}^{0}[G]$ if the latter is $<\omega_{1}$ and zero otherwise.
Proof. Immediate.
1.4. Claim. The following are equivalent for a forcing notion P :
(1) P is semiproper.
(2) P preserves semi-stationarity.
(3) P preserves semi-stationarity of subsets of $\mathcal{S}_{<\aleph_{1}}\left(2^{|P|}\right)$.

Proof. (1) \Rightarrow (2). Let $\omega_{1} \subseteq A$, and $W \subseteq \mathcal{S}_{<\aleph_{1}}(A)$ be semi-stationary. Suppose $p \in P$ and $p \Vdash_{P}$ " W is not semi-stationary". So there are P-names of functions $\underset{\sim}{F} n(n<\omega)$ from A to $A, \underset{\sim}{F}{ }_{n}$ is n-place, and $p \Vdash$ "if $a \subseteq A$ is countable closed under $\underset{\sim}{F}{ }_{n}(n<\omega)$ then $\neg(\exists b)\left[a \cap \omega_{1} \subseteq b \subseteq a \& b \in W\right]$ ".

Let λ be regular large enough. Let $N \prec(H(\lambda), \in)$ be countable so that $A,\left\langle\underset{\sim}{F}{ }_{n}: n<\omega\right\rangle, p, P$ belong to N and there is $b \in W$ such that $N \cap \omega_{1} \subseteq b \subseteq N$ (such N, b exist as W is semi-stationary by $1.2(2)$). Let q be (N, P)-semigeneric, $p \leq q \in P$. So $q \Vdash_{P}$ " $N[\underset{\sim}{G}] \cap \omega_{1}=N \cap \omega_{1}$ and $N \subseteq N[G]$ " hence, for the b above,

$$
q \Vdash_{P} \text { " } N[G] \cap \omega_{1} \subseteq b \subseteq N[G] " .
$$

Also $q \Vdash_{P}$ " $N[G] \cap A$ is closed under the $\underset{\sim}{F}{ }_{n}$'s" (as $N[G] \prec(H(\lambda)[G], \in)$ and $\underset{\sim}{F}{ }_{n}[G] \in N[G]$, see Basic Fact $0.1(7)$ in $\left.\S 0\right)$, contradicting the choice of the $\underset{\sim}{F} n$'s.
$(2) \Rightarrow(3)$. Trivial.
$\neg(1) \Rightarrow \neg(3)$. Let $W=\mathcal{S}_{<\aleph_{1}}\left(P \cup^{P}\left(\omega_{1}+1\right)\right) \backslash W_{P}$ (where W_{P} is from 1.3). As $\neg(1), W$ is stationary, so for each $a \in W$ choose $p_{a} \in P \cap a$ which exemplifies $a \notin W_{p}$, i.e. there is no $q, p \leq q \in P$ and q is (a, P)-semi-generic. By the normality of the filter $\mathcal{D}_{<\mathcal{K}_{1}}\left(P \cup{ }^{P}\left(\omega_{1}+1\right)\right)$, for some $p(*) \in P$ the set $W_{1}=\left\{a \in W: p_{a}=p(*)\right\}$ is stationary. Hence W_{1} is semi-stationary (by $1.2(1))$. But by the choice of $\left\langle p_{a}: a \in W\right\rangle$ and W_{1}, easily $p(*) \Vdash$ " W_{1} is not semi-stationary". Clearly $\left|P \cup^{P}\left(\omega_{1}+1\right)\right|=2^{|P|}$ (as P is infinite w.l.o.g.), so let f be a one to one function from $2^{|P|}$ onto $P \cup^{P}\left(\omega_{1}+1\right)$ and let $W_{2}=\left\{a \in \mathcal{S}_{<\aleph_{1}}\left(2^{|P|}\right): f^{\prime \prime}(a) \in W_{1}\right\}$. By $1.3(8)$ we have W_{2} is semi-stationary and $p(*) \Vdash$ " W_{2} is not semi-stationary" so (3) fails.

1.5. Definition.

(1) $\operatorname{Rss}(\kappa, \lambda)$ (reflection for semi-stationarity) is the assertion that for every semi-stationary $W \subseteq \mathcal{S}_{<\aleph_{1}}(\lambda)$ there is $A \subseteq \lambda, \omega_{1} \subseteq A,|A|<\kappa$ such that $W \cap \mathcal{S}_{<\aleph_{1}}(A)$ is semi-stationary (in $S_{<\aleph_{1}}(\lambda)$).
(2) $\operatorname{Rss}(\kappa)$ is $\operatorname{Rss}(\kappa, \lambda)$ for every $\lambda \geq \kappa$.
(3) $\operatorname{Rss}^{+}(\kappa, \lambda)$ means that for every semiproper P of cardinality $<\kappa$ we have $\vdash_{P} " \operatorname{Rss}(\kappa, \lambda) "$.
(4) $\mathrm{Rss}^{+}(\kappa)$ is $\mathrm{Rss}^{+}(\kappa, \lambda)$ for every $\lambda \geq \kappa$.
1.5A Remark. In $1.5(3)$, we could strengthen the statement by replacing "semiproper" by "not collapsing \aleph_{1} " with no change below. If we use below forcing notion from a smaller class we could weaken the statement in 1.5(3) accordingly.

1.6. Claim.

(1) In Definition 1.5(1) we can replace λ by B, when $|B|=\lambda, \omega_{1} \subseteq B$.
(2) If $\kappa \leq \kappa_{1} \leq \lambda_{1} \leq \lambda$ and $\operatorname{Rss}(\kappa, \lambda)$, then $\operatorname{Rss}\left(\kappa_{1}, \lambda_{1}\right)$. If $\kappa \leq \lambda_{1} \leq \lambda$ and $\mathrm{Rss}^{+}(\kappa, \lambda)$ then $\mathrm{Rss}^{+}\left(\kappa, \lambda_{1}\right)$. Lastly, if $\mathrm{Rss}^{+}\left(\kappa_{i}, \lambda\right)$ (for $i<\alpha$) then $\mathrm{Rss}^{+}\left(\sup _{i<\alpha} \kappa_{i}, \lambda\right)$.
(3) If κ is a compact cardinal, then $\operatorname{Rss}(\kappa)$;
(4) If κ is a compact cardinal then $\mathrm{Rss}^{+}(\kappa)$.
(5) If κ is measurable, $W_{i} \subseteq \mathcal{S}_{<\aleph_{1}}(A)$ and $\cup_{i<\kappa} W_{i}$ is semi-stationary then for some $\alpha<\kappa, \cup_{i<\alpha} W_{i}$ is semi-stationary.
(6) If κ is a limit of compact cardinals, then $\operatorname{Rss}^{+}(\kappa)$.
(7) If κ is λ-compact, $\lambda=\lambda^{\aleph_{0}} \geq \kappa$ then $\operatorname{Rss}(\kappa, \lambda)$ and even $\operatorname{Rss}^{+}(\kappa, \lambda)$.

Proof. (1) Trivial.
(2) Use 1.2(2).
(3) Let $\kappa \subseteq A, W \subseteq \mathcal{S}_{<\aleph_{1}}(A)$, and: $W \cap \mathcal{S}_{<\aleph_{1}}(B)$ is not semi-stationary for every $B \subseteq A, \omega_{1} \subseteq B$, with $|B|<\kappa$.

Define the set of sentences Γ :

$$
\Gamma=\Gamma^{a} \cup \Gamma^{b} \cup \Gamma^{c}
$$

where (each $c \in A$ serves as an individual constant):

$$
\begin{gathered}
\Gamma^{a}=\left\{c_{1} \neq c_{2}: c_{1}, c_{2} \text { are distinct members of } A\right\} \\
\Gamma^{b}=\left\{R\left(c_{0}, c_{1}, \ldots, c_{l}, \ldots\right)_{l<\omega}: c_{l} \in A,\left\{c_{l}: l<\omega\right\} \in W\right\}
\end{gathered}
$$

Γ^{c} is the singleton with unique member (F_{n} is an n-place function symbol, remember $\omega_{1} \subseteq A$):

$$
\begin{aligned}
& \left(\forall x_{0}, x_{1}, \ldots,, x_{n}, \ldots\right)_{n<\omega}\left[\text { if }\left\{x_{0}, x_{1}, \ldots\right\} \text { is closed under } F_{n}(n<\omega),\right. \text { then } \\
& \neg\left(\exists y_{0}, y_{1}, \ldots\right)\left(R\left(y_{0}, \ldots, y_{n}, \ldots\right) \&\right. \\
& \left.\left.\left\{x_{l}: l<\omega, \vee_{i<\omega_{1}} x_{l}=i\right\} \subseteq\left\{y_{l}: l<\omega\right\} \subseteq\left\{x_{m}: m<\omega\right\}\right)\right] .
\end{aligned}
$$

Every subset of Γ of power $<\kappa$ has a model (if it mentions only $c \in B$ where $B \subseteq A$ and $|B|<\kappa$, then use a model witnessing " $W \cap \mathcal{S}_{<\aleph_{1}}\left(B \cup \omega_{1}\right)$ is not semi-stationary"). A model M of Γ exemplifies " W is not semi-stationary" (in $|M|$, hence in A by $1.2(2))$.
(4) As forcing notions of cardinality $<\kappa$ preserve the compactness of κ.
(5) Let Γ^{a}, Γ^{c} be as in the proof of 1.6(4), and:

$$
\Gamma_{i}^{b}=\left\{R\left(c_{0}, c_{1}, \ldots\right): c_{l} \in A,\left\{c_{l}: l<\omega\right\} \in W_{i}\right\}
$$

Now $\Gamma^{a} \cup \Gamma^{c} \cup \bigcup_{i<\kappa} \Gamma_{i}^{b}$ has no model, hence (using the Łoś theorem for $L_{\omega_{1}, \omega_{1}}$ and \aleph_{1}-complete ultrafilters) for some $\alpha<\kappa$, we have: $\Gamma^{a} \cup \Gamma^{c} \bigcup_{i<\alpha} \Gamma_{i}^{b}$ has no model.
(6) Easy (use last phrase of 1.6(2)).
(7) Same proof as $1.6(3)$, (4).

1.7. Claim.

(1) If $\operatorname{Rss}\left(\kappa, 2^{|P|}\right)$ and P is not semiproper, then P destroys the semi-stationarity of some $W \subseteq \mathcal{S}_{<\aleph_{1}}(A),|A|<\kappa$ (i.e. some $p \in P$ forces this)
[Why? By (1) \Leftrightarrow (3) from 1.4 , for some $p \in P$ and semi-stationary $W \subseteq$ $\mathcal{S}_{<\aleph_{1}}\left(2^{|P|}\right)$, we have $p \Vdash_{P}$ " W is not semi-stationary". By the assumption, for some $A \subseteq 2^{|P|}$ we have: $|A|<\kappa$ and $W_{1} \stackrel{\text { def }}{=} W \cap \mathcal{S}_{<\aleph_{1}}(A)$ is semistationary. Clearly by $1.2(3)$ we have $p \Vdash_{P}$ " W_{1} is not semi-stationary", as required].
(2) If P destroys the semi-stationarity of $W \subseteq \mathcal{S}_{<\aleph_{1}}(A),|A|=\aleph_{1}$, then P destroys the stationarity of $S_{W} \subseteq \omega_{1}$ [with S_{W} as defined in 1.2(4)], which means that S_{W} is stationary in V but not in V^{P}.
(3) If $\operatorname{Rss}\left(\aleph_{2}, 2^{|P|}\right)$ and P preserves stationarity of subsets of ω_{1}, then P is semiproper
[Why? By parts (1), (2) above].
(4) If $W \subseteq \mathcal{S}_{<\aleph_{1}}(A)$ exemplifies the failure of $\operatorname{Rss}\left(\aleph_{2},|A|\right)$, then there is a forcing notion P of power $|A|^{\aleph_{0}}$, not semiproper but not destroying stationarity of subsets of \aleph_{1}
[Why? Let P be $\left\{\bar{A}: \bar{A}=\left\langle A_{i}: \quad i \leq \alpha\right\rangle\right.$ is an increasing continuous countable sequence of countable subsets of A, each A_{i} satisfying $\neg(\exists a \in$ $\left.W)\left(A_{i} \cap \omega_{1} \subseteq a \subseteq A_{i}\right)\right\}$, ordered by being an initial segment. As forcing with P destroy the semi stationarity of W, clearly P is not semiproper; let us prove that forcing with P preserve the stationarity of subsets of ω_{1}. If $p \in P$ and $p \Vdash$ " S is not stationary" where S is a stationary set of limit ordinals $<\omega_{1}$, we can find an increasing continuous sequence $\left\langle N_{i}: i<\omega_{1}\right\rangle$ of countable elementary submodels of $\left(H\left(\beth_{7}^{+}\right), \in\right)$, with $\{W, p, A\} \in N_{0}, N_{i} \in N_{i+1}$. So $C=\left\{\delta<\omega_{1}: \delta\right.$ a limit ordinal and
$\left.N_{\delta} \cap \omega_{1}=\delta\right\}$ is a club of ω_{1}. By the choice of W, for some club $C_{1} \subseteq C$ of $\omega_{1}, \delta \in C_{1} \Rightarrow \neg(\exists a)\left(a \in W \cap \delta \subseteq a \subseteq N_{\delta}\right)$, hence we can find $\delta \in C_{1} \cap S$ and $q \geq p$ which is (N, P)-generic, an easy contradiction.].
(5) $\operatorname{Rss}\left(\aleph_{2}\right)$ is equivalent to the assertion: every forcing notion preserving stationarity of subsets of ω_{1} is semiproper.
[By parts (3), (4) above].
1.8. Definition. $\left\langle P_{i},{\underset{\sim}{e}}_{j}: i \leq \alpha, j<\alpha\right\rangle$ is a semiproper iteration if:
(A) it is an RCS iteration [see $\mathrm{Ch} . \mathrm{X}, \S 1$];
(B) if $i<j \leq \alpha$ are non-limit, then $\Vdash_{P_{i}}$ " P_{j} / P_{i} is semiproper";
(C) for every $i<\alpha$ we have, $\Vdash_{P_{i+1}} "\left(2^{\aleph_{1}}\right)^{V^{P_{i}}}$ is collapsed to \aleph_{1} " (we can use another variant instead).

We shall use not only $G_{P_{i}}$ (or $\underset{\sim}{P_{i}}$) but also G_{i} (or G_{i}) for the (name of the) generic subset of P_{i}.
1.9. Theorem. Suppose λ is measurable, $\left\langle P_{i},{\underset{\sim}{e}}_{j}: i \leq \lambda, j<\lambda\right\rangle$ is a semiproper iteration, $\left|P_{i}\right|<\lambda$ for $i<\lambda$, and $\left\{i<\lambda:{\underset{\sim}{Q}}_{i}\right.$ is semiproper $\}$ belongs to some normal ultrafilter D on λ. Then in $V^{P_{\lambda}}$, Player II wins $\partial=\partial\left(\left\{\aleph_{1}\right\}, \omega, \aleph_{2}\right)$.
1.9A. Remarks. On ∂ see Ch. XII, Def. 2.1. or see below.
(1) The game lasts ω moves; on the nth move Player I chooses $f_{n}: \aleph_{2} \rightarrow \omega_{1}$ and Player II chooses $\xi_{n}<\omega_{1}$. In the end Player II wins if $A \stackrel{\text { def }}{=}\left\{i<\aleph_{2}\right.$: $\left.\bigwedge_{n} \bigvee_{m} f_{n}(i)<\xi_{m}\right\}$ is unbounded in \aleph_{2}.
(2) We can modify the game by requiring $A \neq \emptyset \bmod E$ for a filter E on ω_{2}. We then denote the game by $\partial\left(\left\{\aleph_{1}\right\}, \omega, E\right)$. The result is true for $E=D$.
(3) By XII 2.5(2) we know the following: if Player II wins $\partial\left(\left\{\aleph_{1}\right\}, \omega, \aleph_{2}\right), \lambda>$ $2^{\aleph_{2}}, N$ a countable elementary submodel of $\left(H(\lambda), \in,<_{\lambda}^{*}\right)$, then for arbitrarily large $i<\omega_{2}$, there is $N^{\prime} \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right), N^{\prime}$ countable, $N \subseteq$ $N^{\prime}, i \in N^{\prime}$ and $N \cap \omega_{1}=N^{\prime} \cap \omega_{1}$ (hence $N<\omega_{\omega_{2}} N^{\prime}$; see Basic Fact 0.1(9) in §0).
If Player II wins $\partial\left(\left\{\aleph_{1}\right\}, \omega, E\right)$ (where E is a filter on $\left.\omega_{2}\right)$ then the set of such i is $\neq \emptyset \bmod E$; so we have equivalence.
(4) Can we demand in (3) (on both see XII $\S 2$ when we use E) that $N^{\prime} \cap i=$ $N \cap i$? If $\left\{\delta<\omega_{2}: \operatorname{cf}(\delta)=\aleph_{0}\right\} \in E$ the answer is No. If $\left\{\delta<\omega_{2}:\right.$ $\left.\operatorname{cf}(\delta)=\aleph_{1}\right\} \in E$ the answer is Yes provided that we can change the game to $\partial^{\prime}:$ Player I is also allowed to choose regressive functions $F_{n}: \aleph_{2} \rightarrow \aleph_{2}$, and Player II in the nth move has to choose also $\xi_{n}^{\prime}<\omega_{2}$, and in the end Player II wins if $S=\left\{\delta<\aleph_{2}\right.$: for $n<\omega$, we have $\delta \geq \xi_{n}^{\prime}$, and $\left.f_{n}(\delta)<\bigcup_{m} \xi_{m}, F_{n}(\delta)<\bigcup_{m} \xi_{m}^{\prime}\right\} \neq \emptyset \bmod E$.
(5) If in the theorem \Vdash_{P} " $\left\{\delta<\aleph_{2}: Q_{\delta}\right.$ is semiproper and $\left.\operatorname{cf}(\delta)^{V^{P}}=\aleph_{1}\right\} \neq$ $\emptyset \bmod D "$ then Player II wins also in this variant (from (4) above). The proof of 1.9 still works.
(6) We can replace \aleph_{1} by any regular $\theta, \aleph_{0}<\theta<\lambda$, (as the range of f_{n}) and use the game $\partial(\{\theta\}, \mu, E), E$ a normal filter on $\lambda,\left\langle P_{i}, Q_{i}: i<\lambda\right\rangle$ is a $(<\theta)$-revised support iteration (see Chapter XIV), such that the set of $i<\lambda$ satisfying the following belongs to D : "in $V^{P_{i}}$ for $p \in P_{\lambda} / P_{i}$ in the game $P G^{\omega}\left(p, P_{\lambda} / P_{i}, \lambda, \theta\right)$ (see below and Chapter XII, 1.7(3), 1.4), the second player has a winning strategy".
(7) We can replace in the assumption of 1.9, " D is a normal ultrafilter on κ " by " D is a normal filter on κ " and the second player wins in $\partial^{\prime}\left(\left\{\aleph_{1}\right\}, \omega, D\right)$.
(8) If we use the strong preservation version of theorems, we do not need 1.9 (a weaker version is then proved, e.g. for $\alpha<\lambda,\left(P_{\kappa} / P_{\alpha}\right) * \mathrm{Nm}_{\sim}$ is semi proper) and is really changed.

Proof of 1.9. Let D be a normal ultrafilter on λ (in V), $A \in D$ a set of (strongly) inaccessible cardinals such that: $(\forall \kappa \in A)\left[(\forall i<\kappa)\left(\left|P_{i}\right|<\kappa\right) \& Q_{\kappa}\right.$ is semiproper (in $V^{P_{\kappa}}$)].

For each $\kappa \in A$ the forcing notion P_{λ} / P_{κ} (in $V^{P_{\kappa}}$) is a semiproper forcing, hence for each $p \in P_{\lambda} / P_{\kappa}$ in the following game, $P \partial^{\omega}\left(p, P_{\lambda} / P_{\kappa}, \aleph_{1}\right)$, Player II has a winning strategy which we call $F_{p}\left(P_{\lambda} / P_{\kappa}\right)\left(\in V^{P_{\kappa}}\right)$; if $p=\emptyset_{P_{\lambda} / P_{\kappa}}$ we omit p [see Chapter XII, 1.7(3), Definition 1.4]: a play of the game lasts ω-moves, in the nth move Player I chooses a P_{λ} / P_{κ}-name ${\underset{\sim}{~}}_{n}$ of a countable ordinal and

Player II chooses a countable ordinal ξ_{n}. Player II wins a play if

$$
(\exists q)\left(p \leq q \in P_{\lambda} / P_{\kappa} \& q \Vdash \text { " } \bigwedge_{n}\left[\zeta_{n}<\bigcup_{m<\omega} \xi_{m}\right] "\right) ;
$$

without loss of generality the ξ_{n} are strictly increasing.
Let us describe a winning strategy for Player II in $\partial\left(\left\{\aleph_{1}\right\}, \omega_{1}, \aleph_{2}\right)$ in $V\left[G_{\lambda}\right]$, where $G_{\lambda} \subseteq P_{\lambda}$ is generic over V. In the nth move Player I chooses $f_{n}: \omega_{2} \rightarrow \omega_{1}$, Player II, in addition to choosing $\xi_{n}<\omega_{1}$, chooses $A_{n}, \underset{\sim}{f}, \alpha_{n}^{\prime}$ such that:
(0) $\alpha_{n}<\alpha_{n+1}<\lambda$; in stage n Player II works in $V\left[G_{\alpha_{n}}\right]$, so D is still an ultrafilter (pedantically: generates an ultrafilter);
(1) $A_{n} \in D, A_{n+1} \subseteq A_{n} \subseteq A$ and for all $\delta \in A_{n}$, we have $\alpha_{n}<\delta$;
(2) $\vdash_{P}{ }_{\sim}^{f}{\underset{n}{n}}_{\prime}: \omega_{2} \rightarrow \omega_{1}$ ";
(3) ${\underset{\sim}{n}}_{n}^{\prime}\left[G_{\lambda}\right]=f_{n} ; \underset{\sim}{f}{ }_{n}^{\prime}$ is the first such name so $\underset{\sim}{f}{ }_{n}^{\prime}$ is from V;
(4) for $\kappa \in A_{n},\left\langle\left\langle{\underset{\sim}{l}}_{l}^{\prime}(\kappa), \xi_{l}\right\rangle: l \leq n\right\rangle$ is (a P_{κ}-name of) an initial segment of a play of $P \partial^{\omega}\left(\emptyset_{P_{\lambda}}, P_{\lambda} / G_{\kappa}, \aleph_{1}\right)$ in which Player II uses his winning strategy $F\left(P_{\lambda} / G_{\kappa}\right)$, i.e. some condition in $G_{\alpha_{n}}$ forces this.

How can Player II carry out this strategy? Suppose he arrives at stage n and Player I has chosen $f_{n} \in V^{P_{\lambda}}, f_{n}: \lambda \rightarrow \omega_{1}$. Stipulate $\alpha_{0}=-1$. Let $B_{n}=A_{n-1}$ if $n>0$ and $B_{n}=A$ if $n=0$. Player II chooses for ${\underset{\sim}{f}}_{n}^{\prime} \in V$ the first (by $\left.<_{\chi}^{*}, \chi=\left(2^{\lambda}\right)^{+}\right) P_{\lambda}$-name $\underset{\sim}{f} n$ such that $\underset{\sim}{f}{ }_{n}^{\prime}\left[G_{\lambda}\right]=f_{n}$. Now for every $\kappa \in B_{n}$, working in $V\left[G_{\kappa}\right]$, he continues the play $\left\langle\left\langle f_{l}^{\prime}(\kappa), \xi_{l}^{0}\right\rangle: l<n\right\rangle$ of $P \partial^{\omega}\left(\emptyset_{P}, P_{\lambda} / G_{\kappa}, \aleph_{1}\right)$, letting the first player play ${\underset{\sim}{f}}_{n}^{\prime}(\kappa)$, and let $\xi_{n}^{0}(\kappa)$ be the choice of the second player according to the strategy $F\left(P_{\lambda} / G_{\kappa}\right)$. So $\xi_{n}^{0}(\kappa)=$ $\xi_{n}^{0}(\kappa)$ is a P_{κ}-name. Now (in $V\left[G_{\alpha_{n-1}}\right]$) for every $p \in P_{\lambda}$ and $\kappa \in B_{n}$ there is $q_{\kappa} \in P_{\kappa} / G_{\alpha_{n}}$ compatible with p and forcing a value to $\xi_{n}^{0}(\kappa)$. But as $B_{n} \subseteq A$, and by the choice of the set A (and X 1.6) we know that $P_{\kappa}=\bigcup_{i<\kappa} P_{i}$, so we can use the normality of D; so for some $\xi<\omega_{1}, A_{p}^{n} \in D, A_{p}^{n} \subseteq B_{n}$ and q, we have q is compatible with p in $P_{\lambda} / G_{\alpha_{n-1}}$ and $\left(\forall \kappa \in A_{p}^{n}\right)\left[q_{\kappa}=q\right.$ and $q \Vdash_{P_{\kappa}}$ " $\left.\xi_{n}^{0}(\kappa)=\xi^{\prime}\right]$. So there are such $q \in G_{\lambda}$, and ξ (which we call ξ_{n}) and a set which we call A_{n}. It is easy to choose α_{n}.

We should still prove that this is a winning strategy. We shall consider one play and work in V, so everything is a P_{λ}-name (as we are using RCS, no problems arise). I.e. we have $p^{*} \in P_{\lambda}$ such that $p^{*} \Vdash_{P_{\lambda}} "\left\langle{\underset{\sim}{f}}_{n},{\underset{\sim}{\xi}}_{n}: n<\omega\right\rangle$ is a play of the game with Player II using his strategy, choosing on the side $\left\langle{\underset{\sim}{f}}_{n}^{\prime},{\underset{\sim}{\alpha}}_{n},{\underset{\sim}{A}}_{n}: n<\omega\right\rangle$ ". Now $\underset{\sim}{f}{ }_{n}^{\prime},{\underset{\sim}{A}}_{n},{\underset{\sim}{\alpha}}_{n}$ are P_{λ}-names of members of $V\left(\underset{\sim}{f}{ }_{n}^{\prime}\right.$ a P_{λ}-name of a P_{λ}-name) so there is a maximal antichain \mathcal{J}_{n} of P_{λ} of conditions
 $P_{\lambda}=\bigcup_{\alpha<\lambda} P_{\alpha}$ so for some $\alpha(*)<\lambda, \bigwedge_{n<\omega} \mathcal{J}_{n} \subseteq P_{\alpha(*)}$. Also w.l.o.g. $\alpha(*)$ is bigger than every possible value α_{n}.

Work in $V\left[G_{\alpha(*)}\right]$. Now D is (essentially) an ultrafilter (on λ) in $V\left[G_{\alpha(*)}\right]$. Each A_{n} is a P_{λ}-name of a member of V so really there are $<\lambda$ candidates so we can find A_{ω}, such that for each n we have $\Vdash_{P_{\lambda} / G_{\alpha(*)}}$ " $A_{\omega} \subseteq \underset{\sim}{A} A_{n}, " A_{\omega} \in D$ (alternatively we can compute $\bigcap_{n<\omega} A_{n}$ in $\left.V\left[G_{\alpha(*)}\right]\right)$. Now for $\kappa \in A_{\omega}, \kappa>\alpha(*)$ the sequence $\left\langle\left\langle{\underset{\sim}{f}}_{l}(\kappa), \xi_{l}\right\rangle: l<\omega\right\rangle$ is a play of $P \partial^{\omega}\left(\emptyset_{P}, P_{\lambda} / P_{\kappa}, \aleph_{1}\right)$ where Player II uses his winning strategy (this is a P_{κ}-name, but fortunately $\left\langle\xi_{l}\left[G_{\kappa}\right]: l<\right.$ $\left.\omega\rangle \in V\left[G_{\alpha(*)}\right]\right)$. So there is $q_{\kappa} \in P_{\lambda} / P_{\kappa}$ so that

$$
q_{\kappa} \Vdash_{P_{\lambda} / P_{\kappa}} " \bigwedge_{l}{\underset{\sim}{l}}_{l}(\kappa)<\bigcup_{n} \xi_{n} "
$$

(more exactly:

$$
q_{\kappa} \Vdash_{\left(P_{\lambda} / G_{\alpha(*)}\right) /\left(P_{\kappa} / G_{\alpha(*)}\right)} " \bigwedge_{l}{\underset{\sim}{l}}_{l}(\kappa)<\bigcup_{n} \xi_{n} ",
$$

actually q_{κ} is a $P_{\kappa} / G_{\alpha(*)}$-name of a P_{λ} / P_{κ}-condition).
We can consider q_{κ} as a P_{λ}-condition with $\operatorname{Dom}\left(q_{\kappa}\right) \subseteq[\kappa, \lambda)$, because we use RCS iteration. Now easily $\left\langle q_{\kappa}: \kappa \in A_{\omega}\right\rangle \in V\left[G_{\alpha(*)}\right]$, and

$$
\Vdash_{P_{\lambda} / G_{\alpha(*)}} "\left\{\kappa \in A: q_{\kappa} \in G_{\lambda}\right\} \text { is unbounded in } \lambda "
$$

Why? As every $r \in P_{\lambda} / G_{\alpha(*)}$ has domain bounded in λ, we have: q_{κ} is compatible with it for κ large enough. This finishes the proof that the strategy works.
1.10. Claim. Suppose κ is measurable, \bar{Q} is a semiproper iteration, $\lg (\bar{Q})=$ $\kappa,\left|P_{i}\right|<\kappa$ for $i<\kappa$ and $\left\{i: Q_{i}\right.$ semiproper $\}$ belongs to some normal ultrafilter on κ (this holds e.g. if $\left\{i<\kappa\right.$: if i is strongly inaccessible and $(\forall j<i)\left[\left|P_{j}\right|<i\right]$, then ${\underset{\sim}{Q}}_{i}$ is semi proper $\} \in \mathcal{D}_{\kappa}$). Then:
(1) $\operatorname{Rss}^{+}(\kappa, \lambda)$ implies $\vdash_{P_{\kappa}}$ "Rss $(\kappa, \lambda) "$.
(2) If $\underset{\sim}{Q}$ is a P_{κ}-name of a forcing notion, $\left(P_{\kappa} / P_{i+1}\right) * \underset{\sim}{Q}$ is semiproper for each $i<\kappa$ (i.e. this is forced for P_{i+1}) then $\Vdash_{P_{\kappa}}$ " Q is semiproper".
(3) We can replace measurability of κ by: κ is strongly inaccessible and $\Vdash_{P_{\kappa}}$ "Player II wins $\partial\left(\left\{\aleph_{1}\right\}, \omega_{1}, \aleph_{2}\right)$ ".

Proof. (1) Let $\underset{\sim}{W}$ be a P_{κ}-name and $p \in P_{\kappa}$ be such that $p \Vdash_{P_{\kappa}} " \underset{\sim}{W} \subseteq \mathcal{S}_{<\aleph_{1}}(\lambda)$ is semi-stationary".

For $i<\kappa$, let $\underset{\sim}{W}=\left\{a: a \in V^{P_{i}}, a \in \mathcal{S}_{<\aleph_{1}}(\lambda)\right.$, and for some $q \in \underset{\sim}{G_{P_{i}}}, q \Vdash_{P_{\kappa}}$ " $a \in \underset{\sim}{W} "\}$. So ${\underset{\sim}{W}}_{i}$ is a P_{i}-name.

Let χ be regular and large enough, and $<_{\chi}^{*}$ a well ordering of $H(\chi)^{V}$.
Let $p \in G=G_{\kappa} \subseteq P_{\kappa}, G$ generic over V and $G_{i}=G \cap P_{i}$ for $i<\kappa$. In $V\left[G_{\kappa}\right]$, as $\underset{\sim}{W}\left[G_{\kappa}\right]$ is semi-stationary, there is a countable $\left(N, G_{\kappa} \cap N\right) \prec$ $\left(H(\chi)^{V}, \in,<_{\chi}^{*}, G_{\kappa}\right)$, such that for some $a \in \underset{\sim}{W}\left[G_{\kappa}\right]$ we have $N \cap \omega_{1} \subseteq a \subseteq$ $N \cap \lambda$, and $p, \underset{\sim}{W}, \lambda, \kappa, \bar{Q}$ belong to N (note: G_{κ} is considered a relation of those models).

So there are $q \in G_{\kappa}$ and P_{κ}-names $\underset{\sim}{N}, \underset{\sim}{a}$ such that $q \Vdash_{P_{\kappa}}$ " $\underset{\sim}{N}, \underset{\sim}{a}$ are as above", and as $p \in G_{\kappa}$, without loss of generality $p \leq q$. As N and a are countable subsets of $H(\chi)^{V}$ and λ respectively and $P_{\kappa}=\bigcup_{i<\kappa} P_{i}$ satisfies the κ-c.c. (by X 5.3(3)), for some $i<\kappa$ we have $\underset{\sim}{N}, \underset{\sim}{a}$ are P_{i}-names, $\Vdash_{P_{i}} " \underset{\sim}{N} \cap \kappa \subseteq i$ " and $q \in P_{i}$. Now by $1.9+1.9 \mathrm{~A}(3)$, in $V^{P_{\kappa}}$, for arbitrarily large ordinal $\theta<\kappa, N^{[\theta]} \cap \omega_{1}=N \cap \omega_{1}$, and Q_{θ} is semiproper (if not, replace it by $\theta+1$), where we let:

$$
N^{[\theta]} \stackrel{\text { def }}{=} \text { Skolem Hull }(N \cup\{\theta\})
$$

(in $\left(H(\chi)^{V}, \in,<_{\chi}^{*}, G_{\kappa}\right)$, working in the universe $V\left[G_{\kappa}\right]$ such that $q \in G_{\kappa}$).
Choose such a $\theta>i$. Now $\theta \in N^{[\theta]}$ and $\left(N^{[\theta]}, G_{\theta}\right) \prec\left(H(\chi)^{V}, \in,<_{\chi}^{*}, G_{\theta}\right)$, as $\theta>i$ clearly $\underset{\sim}{a}\left[G_{\theta}\right] \in \underset{\sim}{\underset{\theta}{W}}\left[G_{\theta}\right]$ and $\omega_{1} \cap N^{[\theta]} \subseteq \underset{\sim}{a}\left[G_{\theta}\right] \subseteq N^{[\theta]}$. Let $N_{[\theta]}$ be the

Skolem Hull of $N \cup\{\theta\}$ in $\left(H(\chi)^{V}, \in,<_{\chi}^{*}, G_{\theta}\right)$; note as $\underset{\sim}{N}$ is a P_{θ}-name, in $V\left[G_{\theta}\right]$ we can compute $\underset{\sim}{N}\left[G_{\theta}\right]=\underset{\sim}{N}\left[G_{\kappa}\right]=N$ (and $\underset{\sim}{\underset{\sim}{~}}\left[G_{\theta}\right]=\underset{\sim}{a}\left[G_{\kappa}\right]=a$). Clearly $N^{[\theta]} \cap \omega_{1} \subseteq \underset{\sim}{a}\left[G_{\theta}\right] \subseteq N \subseteq N_{[\theta]} \subseteq N^{[\theta]}$; hence by $1.2(6), V\left[G_{\theta}\right] \models$ " ${\underset{\sim}{W}}_{\theta}\left[G_{\theta}\right]$ is a semi-stationary subset of $\mathcal{S}_{<\aleph_{1}}(\lambda)^{\prime \prime}$ (remembering that in $\left(H(\chi)^{V}, \in,<_{\chi}^{*}, G_{\theta}\right.$) we can interprete $\left.\left(H(\chi)^{V\left[G_{\theta}\right]}, \in H(\chi)^{V},<_{\chi}^{*}, G\right)\right)$.

As $\operatorname{Rss}^{+}(\kappa, \lambda)$ clearly $V\left[G_{\theta}\right] \models \operatorname{Rss}(\kappa, \lambda)$, hence in $V\left[G_{\theta}\right]$ for some $A \subseteq$ $\lambda,|A|<\kappa$ and $\underset{\sim}{W}\left[G_{\theta}\right] \cap \mathcal{S}_{<\aleph_{1}}(A)$ is semi-stationary. As P_{κ} / P_{θ} is semiproper (by the choice of θ) it preserves the semi-stationary of $\underset{\sim}{W}\left[G_{\theta}\right] \cap \mathcal{S}_{<\aleph_{1}}(A)$ (see 1.4), hence $V\left[G_{\kappa}\right] \models "{\underset{\sim}{W}}_{\theta}\left[G_{\theta}\right] \cap \mathcal{S}_{<\mathcal{N}_{1}}(A)$ is semi-stationary", but $\underset{\sim}{W}\left[G_{\theta}\right] \subseteq$ $\underset{\sim}{W}\left[G_{\kappa}\right]$ hence $V\left[G_{\kappa}\right] \vDash$ " $\underset{\sim}{W}\left[G_{\kappa}\right] \cap \mathcal{S}_{<\aleph_{0}}(A)$ is semi-stationary".
(2) This is similar: suppose $p \Vdash_{P_{\kappa}} " \underset{\sim}{N} \prec\left(H(\chi)^{V}, \in,<_{\chi}^{*},{\underset{\sim}{G}}_{P_{\kappa}}\right)$ and $\underset{\sim}{p}{ }^{\prime} \in$ $Q \cap \underset{\sim}{N}$ are counterexample to semiproperness of Q ".

Let $G_{\kappa} \subseteq P_{\kappa}$ be generic over V and $p \in G_{\kappa}$. Let $\theta<\kappa$, with $\theta>$ $\sup \left(\underset{\sim}{N}\left[G_{\kappa}\right] \cap \kappa\right)$, be such that $\underset{\sim}{N}$ is a P_{θ}-name and $\sup (\underset{\sim}{N}[G] \cap \kappa)<\kappa$ and $\underset{\sim}{N}\left[G_{\kappa}\right]^{[\theta]} \cap \omega_{1}=\underset{\sim}{N}\left[G_{\kappa}\right] \cap \omega_{1}$. Now work in $V\left[G_{\kappa} \cap P_{\theta+1}\right]$ and use: $\Vdash_{P_{\theta+1}}$ " $\left(P_{\kappa} / P_{\theta+1}\right) * Q$ is semiproper". (Note that if $\operatorname{Rss}^{+}(\kappa)$ we can get the result by 1.7(3)). Alternatively prove that forcing with $\underset{\sim}{Q}\left[H_{\kappa}\right]$ preserve semi stationarity of sets.
(3) In the proof of (2) we use this only. In the proof of (1) we could have chosen θ to be a successor ordinal (so $\underset{\sim}{Q_{\theta}}$ is semiproper). So P_{κ} / G_{θ} preserves the semi-stationarity of $\underset{\sim}{W}$, hence $V\left[G_{\kappa}\right] \models$ " $\underset{\sim}{W}$ is semi-stationary". $\square_{1.10}$
1.11. Claim. Suppose $\operatorname{Rss}\left(\kappa, 2^{\kappa}\right), \kappa$ regular and: $\kappa=\aleph_{2}$ or $(\forall \mu<\kappa) \mu^{\aleph_{0}}<\kappa$. Then for $\lambda>2^{\kappa}$ for every countable $N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ to which κ belongs, for arbitrarily large $i<\kappa$, letting $N^{[i]}=$ Skolem $\operatorname{Hull}(N \cup\{i\})$, we have $N<_{\omega_{2}} N^{[i]}$ (note that we do not demand $N \cap \kappa \neq N^{[i]} \cap \kappa$).
1.12. Remark. (1) The " $\kappa=\aleph_{2} \ldots$ " can be omitted if we replace "for arbitrarily large i " by "for some $i<\kappa$ with $i>\sup (N \cap \kappa)$ ".
(2) We can replace " $\kappa=\aleph_{2}$, or \ldots. by
$(*)_{1}$ "if $\alpha<\kappa$, then there is a closed unbounded $C \subseteq \mathcal{S}_{<\aleph_{1}}(\alpha)$ of power $<\kappa$ " (see the proof).

It even suffices to assume
$(*)_{2}$ "for every stationary $W \subseteq \mathcal{S}_{<\aleph_{1}}(\alpha),(\alpha<\kappa)$ there is a semistationary $W^{\prime} \subseteq W$ of cardinality $<\kappa$ ".
(3) If in the conclusion we want to get $N<_{\kappa} N^{[i]}$, we have to replace " $\exists a \in$ $W)\left(N \cap \omega_{1} \subseteq a \subseteq N\right)$ " in the definition of semi-stationary (Definition 1.1) by " $(\exists a \in W)\left(N \cap \kappa \subseteq a<_{\kappa} N \cap \kappa\right)$ ".

Proof of 1.11. Let

$$
\begin{aligned}
& W=\left\{|N|: N \prec\left(H\left(\kappa^{+}\right), \in,<_{\kappa^{+}}^{*}\right), N\right. \text { countable and } \\
& \left.\quad \text { for some } i_{N}<\kappa \text {, for no } i \in\left[i_{N}, \kappa\right) \text { do we have } N<_{\omega_{2}} N^{[i]}\right\} .
\end{aligned}
$$

Assume first that W is a stationary subset of $H\left(\kappa^{+}\right)$. So, as $\operatorname{Rss}\left(\kappa, 2^{\kappa}\right)$ holds (and $\left|H\left(\kappa^{+}\right)\right|=2^{\kappa}$) there is $A \subseteq H\left(\kappa^{+}\right), \omega_{1} \subseteq A,|A|<\kappa$ such that: $W_{A} \stackrel{\text { def }}{=}\{a \in W: a \subseteq A\}$ is a semi-stationary subset of $\mathcal{S}_{<\aleph_{1}}(A)$. Without loss of generality (see 1.2(2))

$$
M \stackrel{\text { def }}{=}\left(A, \in \upharpoonright A,<_{\kappa^{+}}^{*} \upharpoonright A\right) \prec\left(H\left(\kappa^{+}\right), \in,<_{\kappa^{+}}^{*}\right)
$$

and $A \cap \kappa$ is an ordinal $<\kappa$ (remember κ is regular).
Remembering that (by the definition of W) for countable elementary submodels $N_{1} \subseteq N_{2}$ of $\left(H\left(\kappa^{+}\right), \epsilon,<_{\kappa^{+}}^{*}\right),\left|N_{1}\right| \in W, N_{1} \cap \omega_{1}=N_{2} \cap \omega_{1}$ implies $\left|N_{2}\right| \in W$; by $1.2(1)$ clearly W_{A} is stationary (as a subset of $\mathcal{S}_{<\aleph_{1}}(A)$). We know by assumption that for some closed unbounded $C \subseteq \mathcal{S}_{<\aleph_{1}}(A), C$ has cardinality $<\kappa$. So

$$
\zeta \stackrel{\text { def }}{=} \sup \left\{i_{N}:|N| \in C \cap W_{A}\right\}<\kappa .
$$

Now for some club $C_{1} \subseteq C$, for every $a \in C_{1}$, the set $a^{[\zeta]}=$ Skolem Hull of $a \cup\{\zeta\}$ (inside $\left(H\left(\kappa^{+}\right), \in,<_{\kappa^{+}}^{*}\right)$), satisfies $a^{[\zeta]} \cap A=a$, hence $a<_{\omega_{2}} a^{[\zeta]}$. But we can choose $a \in C_{1} \cap W_{A}$, contradiction.

So W is not stationary and let $C^{*} \subseteq \mathcal{S}_{<\aleph_{1}}\left(H\left(\kappa^{+}\right)\right)$be a club disjoint to W.

Let $\lambda>2^{\kappa}$, so $H\left(\kappa^{+}\right),<_{\kappa^{+}}^{*}, W \in H(\lambda)$, and let N be such that $\kappa \in$ $N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ and N is countable. So $H\left(\kappa^{+}\right) \in N\left(\right.$ and $\left.<_{\kappa^{+}}^{*}=<_{\lambda}^{*} \upharpoonright H\left(\kappa^{+}\right)\right)$ hence $W \in N$ and without loss of generality $C^{*} \in N$. Hence $N \cap H\left(\kappa^{+}\right) \in C^{*}$,
and so for arbitrarily large $i<\kappa$ there is N_{1}^{i} such that $N \upharpoonright H\left(\kappa^{+}\right) \prec N_{1}^{i} \prec$ $\left(H\left(\kappa^{+}\right), \in,<_{\kappa^{+}}^{*}\right), N \upharpoonright H\left(\kappa^{+}\right)<_{\omega_{2}} N_{1}^{i}$ and $i \in N_{1}^{i}$. Let N^{i} be the Skolem Hull of $N \cup\left(N_{1}^{i} \cap \kappa\right)$. We can easily check that $N^{i} \cap \kappa=N_{1}^{i} \cap \kappa$, so N^{i} is as required.
$\square_{1.11}$

§2. \boldsymbol{S}-Suitable Iterations and Sealing Forcing

2.1. Definition. We say $\bar{Q}=\left\langle P_{i}, \underset{\sim}{Q_{j}}, \mathbf{t}_{j}: i \leq \alpha, j<\alpha\right\rangle$ is S-suitable (iteration), where $S \subseteq \omega_{1}$ is stationary, if:
(A) \bar{Q} is an RCS iteration; (i.e. if we remove the \mathbf{t}_{j} 's);
(B) we denote $\left|\bigcup_{j<i} P_{j+1}\right|=\kappa_{i}=\kappa_{i}^{\bar{Q}}$ so $\kappa_{0}=1, \kappa_{i}$ increasing continuous.

We demand that κ_{i} is strictly increasing;
(C) for i successor κ_{i} is strongly inaccessible;
(D) for $i<j \leq \alpha$ non-limit, P_{j} / P_{i} is semiproper;
(E) ${\underset{\sim}{i}}_{i}$ satisfies the κ_{i+1}-c.c., $\aleph_{2}^{V^{P_{i+1}}}=\kappa_{i+1}$;
(F) if $\mathbf{t}_{i}=1, i<j \leq \alpha$ and j is a successor, then $\mathfrak{B}^{P_{i}} \upharpoonright S \lessdot \mathfrak{B}^{P_{j}} \mid S$ (see $0.1(3)(a)+(b))$.
Remark: We may, but do not, use \mathbf{t}_{β} which are names. Also the demand " Q_{i} satisfies the κ_{i+1}-c.c." is just for simplicity.
2.1A. Notation. $\alpha^{\bar{Q}}=\alpha, P_{i}^{\bar{Q}}=P_{i},{\underset{\sim}{Q}}_{j}^{\bar{Q}}={\underset{\sim}{j}}_{j}, \mathbf{t}_{j}^{\bar{Q}}=\mathbf{t}_{j}$ and (remember and recall $0.1(3)(\mathrm{d})): \mathfrak{B}^{\bar{Q}}=\cup\left\{\mathfrak{B}^{P_{i+1}}: i<\lg (\bar{Q})\right\}$.

2.2. Claim.

(1) Suppose $\bar{Q}=\left\langle P_{i},{\underset{\sim}{e}}_{j}: i \leq \alpha, j<\alpha\right\rangle$ is a semiproper iteration (see 1.8 for definition). Then:
(a) If $i<\alpha$ is non-limit or ${\underset{\sim}{Q}}_{i}$ is semiproper or ${\underset{\sim}{Q}}_{i}$ preserves stationarity of subsets of ω_{1} from $V^{P_{i}}$ or i is strongly inaccessible and $\bigwedge_{j<i}\left|P_{j}\right|<i$, then every stationary subset of ω_{1} in $V^{P_{i}}$ is also stationary in $V^{P_{\alpha}}$ (i.e., $\mathfrak{B}\left[P_{i}\right]$ is a subalgebra of $\mathfrak{B}\left[P_{\alpha}\right]$).
(b) $\aleph_{1}^{V}=\aleph_{1}^{V^{P_{\alpha}}}$.
(c) If $\alpha>\aleph_{0}$ is strongly inaccessible, and $\left|P_{i}\right|<\alpha$ for $i<\alpha$, then P_{α} satisfies the α-c.c. and so

$$
\mathcal{P}\left(\omega_{1}\right)^{V^{P_{\alpha}}}=\bigcup_{i<\alpha} \mathcal{P}\left(\omega_{1}\right)^{V^{P_{i}}} \text { and } V^{P_{\alpha}} \models " 2^{\aleph_{1}}=\aleph_{2} "
$$

(d) If $\omega_{1} \backslash S$ is stationary, each ${\underset{\sim}{Q}}_{i}$ is $\left(\omega_{1} \backslash S\right)$-complete [see V $\S 3$], then so is P_{α}, hence forcing by P_{α} preserve the stationarity of $\omega_{1} \backslash S$ and even subsets of it and does not add ω-sequences of ordinals, hence $V^{P_{\alpha}} \models$ " $C H$ ".
(e) If $\bar{Q} \in N_{1} \prec N_{2} \prec(H(\lambda), \in), N_{2}$ countable, $N_{1}<_{\alpha} N_{2}, \alpha$ strongly inaccessible and belongs to $N_{1}, \alpha>\left|P_{i}\right|$ for $i<\alpha$ and q is $\left(N_{1}, P_{\alpha}\right)$ -semi-generic and $i=\min \left(\alpha \cap N_{2} \backslash N_{1}\right)$ is regular, then q is $\left(N_{2}, P_{i}\right)$ -semi-generic.
(2) Any S-suitable iteration \bar{Q} is a semiproper iteration and $\mathbf{t}_{i}=1 \Rightarrow \boldsymbol{B}\left[P_{i}\right]\lceil S$ $\lessdot \mathfrak{B}\left[P_{j}\right]\lceil S]$ when: $j \geq i$, and j is: successor or strongly inaccessible satisfying $\left[\gamma<j \Rightarrow\left|P_{\gamma}\right|<j\right]$.
(3) If (in (1)) $\kappa<\alpha$ is strongly inaccessible, $\left|P_{i}\right|<\kappa$ for $i<\kappa$, and $\Vdash_{P_{\kappa}}$ " $\operatorname{Rss}\left(\aleph_{2}\right)$ " then Q_{κ} (and P_{j} / P_{κ} when $\kappa \leq j \leq \alpha$) are semiproper.

Proof. Left to the reader. For instance:
(1)(e) Clearly i is a strong limit [as $\{j<\kappa: j$ strong limit $\}$ is a club of κ which belongs to N_{1}, hence i necessarily belongs to it]. Also we have assumed i is regular hence i is strongly inaccessible; similarly $i>\aleph_{0}$ and $j<i \Rightarrow\left|P_{j}\right|<i$. If $\mathcal{I} \in N_{2}$ is a maximal antichain of P_{i}, then by $\mathrm{X} 5.3(3)$ for some $j<i$ we have $\mathcal{I} \subseteq P_{j}$, so that consequently there is such j in N_{2}, and hence $j \in N_{1}$ and also the rest is easy.
(2) If j is a successor ordinal use clause (F) of Definition 2.1, if j is strong inaccessible use 2.2(1)(c) and 0.1(4)(e).
(3) By $1.7(3)$ it is enough to prove that forcing with ${\underset{\sim}{~}}_{\kappa}$ does not destroy the stationarity of any $A \subseteq \omega_{1}, A \in V^{P_{\kappa}}$. However, by 2.2(1)(c) (and 2.2(2)) for some $\beta<\alpha, A \in V^{P_{\beta}}$. Clearly $A \in V^{P_{\beta}}$ and is a stationary subset of ω_{1} in
$V^{P_{\beta+1}}$. As $P_{\kappa+1} / P_{\beta+1}$ is semiproper, A is also stationary in $\left(V^{P_{\beta+1}}\right)^{P_{\kappa+1} / P_{\beta+1}}=$ $V^{P_{\kappa+1}}=\left(V^{P_{\kappa}}\right)^{Q_{\kappa}}$, as required.

2.2A. Remark. It follows that if κ is strongly inaccessible, and $\left|P_{i}\right|<\kappa$ for $i<\kappa$, and A is a stationary subset of ω_{1} in $V^{P_{\kappa}}$, then A is a stationary subset of ω_{1} in $V^{P_{\alpha}}$ for every large enough $\alpha<\kappa$.
2.3. Claim. Suppose $\bar{Q}=\left\langle P_{j}, Q_{i}, \mathbf{t}_{i}: j \leq \alpha, i<\alpha\right\rangle$ is an RCS iteration, α a limit ordinal and $S \subseteq \omega_{1}$ is stationary.
(1) If $\bar{Q} \upharpoonright \beta$ is S-suitable for $\beta<\alpha$, then \bar{Q} is S-suitable.
(2) If for $\beta<\alpha, \bar{Q} \upharpoonright \beta$ is a semiproper iteration, then \bar{Q} is a semiproper iteration.
(3) In (2), if $i<\alpha$ and $\underset{\sim}{\mathcal{A}}$ is a P_{i}-name then: $\Vdash_{P_{\alpha}}$ " $\mathcal{\sim}<\mathfrak{B}^{\bar{Q}}\left\lceil S^{\prime}\right.$ " if and only if $\alpha=\sup \left\{j<\alpha: \Vdash_{P_{j+1}} " \mathcal{A}<\mathfrak{B}^{P_{j+1}}\left\lceil S^{\prime}\right\}\right.$ if and only if for arbitrarily large $j<\alpha$ we have $\Vdash_{P_{j}}$ " $\mathcal{A} \lessdot \mathfrak{B}^{P_{j}}$ ".
(4) In (2), if $\alpha>\left|P_{i}\right|$ for $i<\alpha$, and α is strongly inaccessible, then $\mathfrak{B}^{\bar{Q}}=$ $\boldsymbol{B}^{P_{\alpha}}$.

Proof. (1) For clause (D) from Definition 2.1 use the semiproper iteration lemma. The other clauses are also obvious.
(2), (3), (4) are also easy.
$\square_{2.3}$
2.4. Definition. Let $\overline{\mathcal{A}}=\left\langle\mathcal{A}_{\zeta}: \zeta<\xi\right\rangle$ be a sequence of subalgebras or just subsets of $\mathfrak{B}\left(=\mathfrak{B}^{V}\right)$ such that S belongs to each \mathcal{A}_{ζ} where $S \subseteq \omega_{1}$ stationary.
(1) $\operatorname{Sm}(\overline{\mathcal{A}}, S)=\left\{A \subseteq S:\right.$ for some $\zeta<\xi, \quad\left\{x \in \mathcal{A}_{\zeta}: x \neq 0 \bmod \mathcal{D}_{\omega_{1}}\right.$ and $\left.x \cap A=\emptyset \bmod \mathcal{D}_{\omega_{1}}\right\}$ is pre-dense in $\left.\mathcal{A}_{\zeta}\right\}$ (we should have written $x / \mathcal{D}_{\omega_{1}} \in \mathcal{A}_{\zeta}$ for $x, x \subseteq \omega_{1} ; \Xi$ is predense in \mathcal{A}_{ζ} means that for every $y \in \mathcal{A}_{\zeta}$, such that $\mathcal{A}_{\zeta} \vDash$ " $y \neq 0$ " for some $x \in \Xi$ we have $\mathcal{A}_{\zeta} \vDash$ " $x \cap y \neq 0$ ").
(2) For $\Xi \subseteq \mathfrak{B}^{V}$ let $\operatorname{seal}(\Xi)=\left\{\left\langle a_{i}: i<\alpha\right\rangle: \alpha\right.$ is a countable ordinal, and letting $a_{\alpha}=\bigcup_{i<\alpha} a_{i}$ we have $a_{i} \in \mathcal{S}_{<\aleph_{1}}\left(\Xi \cup \omega_{1}\right), a_{i}(i \leq \alpha)$ is increasing continuous, each a_{i} countable and $a_{i} \cap \omega_{1}$ is an ordinal which belongs to $\left.\bigcup_{A \in \Xi \cap a_{i}} A\right\}$, ordered by being an initial segment.
(3) We define the sealing forcing $\operatorname{Seal}(\overline{\mathcal{A}}, S)$ as the product with countable support of $\left\{\operatorname{seal}(\Xi)\right.$: for some $\zeta<\xi, \Xi$ is a pre-dense subset of \mathcal{A}_{ζ} and
$\left.\omega_{1} \backslash S \in \Xi\right\}$. Let $\operatorname{Seal}^{\prime}(\overline{\mathcal{A}}, S)=\{\bar{c}: \bar{c}$ a partial function from $\operatorname{Sm}(\overline{\mathcal{A}}, S)$, with countable domain, and if $A \in \operatorname{Sm}(\overline{\mathcal{A}}, S) \cap \operatorname{Dom}(\bar{c})$, then \bar{c}_{A} is a continuously increasing function from some countable $\gamma+1$ to $\left.\omega_{1} \backslash A\right\}$, the ordering is defined by:

$$
\bar{c}^{1} \leq \bar{c}^{2} \text { if } A \in \operatorname{Dom}\left(\bar{c}^{1}\right) \text { implies } A \in \operatorname{Dom}\left(\bar{c}^{2}\right) \text { and } \bar{c}_{A}^{1} \subseteq \bar{c}_{A}^{2} .
$$

(4) If $\overline{\mathcal{A}}=\langle\mathcal{A}\rangle$ we write \mathcal{A} instead of $\overline{\mathcal{A}}$ in (1), (2) above and (5) below.
(5) For $\kappa\left(>\aleph_{0}\right)$ strongly inaccessible we define the strong sealing forcing $\operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ as P_{κ}, where $\left\langle P_{i},{\underset{\sim}{~}}_{j}: i \leq \kappa, j<\kappa\right\rangle$ is an RCS iteration with $Q_{j}=\operatorname{Seal}(\overline{\mathcal{A}}, S)^{P_{j}} \times \operatorname{Levy}\left(\aleph_{1}, 2^{\aleph_{1}}\right)^{V\left[P_{j}\right]}$.
(6) We call $\Xi \subseteq \mathfrak{B}^{V}$ semiproper iff $\operatorname{seal}(\Xi)$ is a semiproper forcing notion.
(7) WSeal (S) is the product, with countable support, of seal (Ξ), Ξ semiproper, $\omega_{1} \backslash S \in \Xi$.
(8) For κ not strongly inaccessible, but still $\overline{\mathcal{A}}$-inaccessible, which means:
$(*)(\forall \mu<\kappa)\left[\mu^{\aleph_{0}}<\kappa\right], \kappa=\operatorname{cf}(\kappa), \kappa^{\left|\mathcal{A}_{\varsigma}\right|}=\kappa$ for $\zeta<\xi$, and $\xi=\lg (\overline{\mathcal{A}}) \leq$ $\kappa, \kappa>\aleph_{1}$,
we define the strong sealing forcing $\operatorname{SSeal}^{*}(\overline{\mathcal{A}}, S, \kappa)$ as P_{κ} where $\left\langle P_{i},{\underset{\sim}{j}}_{j}\right.$: $i \leq \kappa, j<\kappa\rangle$ is an RCS iteration; $\underset{\sim}{Q_{j}}=\operatorname{seal}\left(\Xi_{j}, S\right)^{V^{P_{j}}}, \Xi_{j}$ is a maximal antichain of $\mathcal{A}_{\zeta(j)}$ to which $\omega_{1} \backslash S$ belongs for some $\zeta(j)<\xi$ (in $V^{P_{j}}$) and every maximal antichain Ξ of some \mathcal{A}_{ζ} from $V^{P_{\kappa}}$ is Ξ_{j} for some $j<\kappa$. $\left[P_{\kappa}\right.$ is not neccessarily well defined].
(9) If $\boldsymbol{\Xi} \subseteq\{\boldsymbol{\Xi}: \Xi \subseteq \boldsymbol{B}\}$ then $\operatorname{seal}(\boldsymbol{\Xi})$ is the product, with countable support, of $\operatorname{seal}(\Xi)$ for $\Xi \in \Xi$.

2.5. Remarks.

(1) We could have used CS iteration for SSeal and SSeal*.
(2) If every maximal antichain of \boldsymbol{B}^{V} is semiproper, the difference between $\operatorname{WSeal}(S) \times \operatorname{Levy}\left(\aleph_{1}, 2^{\aleph_{1}}\right)$ and $\operatorname{Seal}\left(\mathfrak{B}^{V}, S\right)$ defined in 2.4 (7), (3) respectively, is nominal (i.e. they are equivalent, i.e. have isomorphic completions).
(3) If $\mathcal{A}_{\zeta} \upharpoonright S<\mathfrak{B}^{V} \upharpoonright S$ and $\left|\mathcal{A}_{\zeta}\right| \leq \aleph_{1}$ for $\zeta<\lg (\overline{\mathcal{A}})$, then $\operatorname{Seal}(\overline{\mathcal{A}}, S)$ is equivalent to $\operatorname{Levy}\left(\aleph_{1}, 2^{\aleph_{1}}\right)$.
(4) If $\left|\mathcal{A}_{\zeta}\right| \leq \aleph_{1}$ (for every $\left.\zeta<\ell \mathrm{g}(\mathcal{A})\right)$ then the difference between $\operatorname{Seal}(\overline{\mathcal{A}}, S)$ and $\operatorname{Seal}^{\prime}(\overline{\mathcal{A}}, S)$ is nominal (i.e. they are equivalent i.e. have isomorphic completions).
(5) We use below mainly $\operatorname{SSeal}(\overline{\mathcal{A}}, S)$, we could use $\operatorname{SSeal}^{*}\left(\overline{\mathcal{A}}, S, \beth_{2}\right)$ instead. Also instead $\operatorname{SSeal}(\overline{\mathcal{A}}, S)$ we could use $\operatorname{SSeal}^{\prime}(\overline{\mathcal{A}}, S)$ by $0.1(4)(\mathrm{c})$ (and see $0.1(\mathrm{~g}))$.
(6) For convenience we shall use mostly $\operatorname{SSeal}(\overline{\mathcal{A}}, S)$. So in, e.g., $2.11,2.13$ we can deal with SSeal*.
2.6. Notation. We omit κ in $\operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ when it is the first strongly inaccessible. We omit S when $S=\omega_{1}$. We write \mathcal{A} instead of $\langle\mathcal{A}\rangle$.
2.7. Claim. If in V,

$$
\begin{aligned}
\overline{\mathcal{A}}_{l}= & \left\langle\mathcal{A}_{\zeta}^{l}: \zeta<\xi_{l}\right\rangle \text { for } l=1,2 \text { and } \\
& \left.\left(\forall \zeta_{1}<\xi_{1}\right)\left(\exists \zeta_{2}<\xi_{2}\right)\left[\mathcal{A}_{\zeta_{1}}^{1} \lessdot \mathcal{A}_{\zeta_{2}}^{2} \text { (inside } \mathfrak{B}^{V}\right)\right], \\
& \left.\left(\forall \zeta_{2}<\xi_{2}\right)\left(\exists \zeta_{1}<\xi_{1}\right)\left[\mathcal{A}_{\zeta_{2}}^{2} \lessdot \mathcal{A}_{\zeta_{1}}^{1} \text { (inside } \mathfrak{B}^{V}\right)\right]
\end{aligned}
$$

then

$$
\begin{gathered}
\operatorname{Sm}\left(\overline{\mathcal{A}}^{1}, S\right)=\operatorname{Sm}\left(\overline{\mathcal{A}}^{2}, S\right), \\
\operatorname{Seal}\left(\overline{\mathcal{A}}^{1}, S\right)=\operatorname{Seal}\left(\overline{\mathcal{A}}^{2}, S\right), \\
\operatorname{Seal}^{\prime}\left(\overline{\mathcal{A}}^{1}, S\right)=\operatorname{Seal}\left(\overline{\mathcal{A}}^{2}, S\right) \text { and } \\
\operatorname{SSeal}\left(\overline{\mathcal{A}}^{1}, S, \kappa\right)=\operatorname{SSeal}\left(\overline{\mathcal{A}}^{2}, S, \kappa\right) .
\end{gathered}
$$

Proof. Easy.

2.8. Claim.

(1) Let $\Xi \subseteq \mathfrak{B}^{V}$ be pre-dense. Then Ξ is semiproper iff. for λ regular large enough and countable $N \prec(H(\lambda), \epsilon)$ with $\Xi \in N$, there is a countable $N^{\prime}, N \prec N^{\prime} \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$, satisfying $N \cap \omega_{1}=N^{\prime} \cap \omega_{1} \in \bigcup_{A \in \Xi \cap N^{\prime}} A$. [Why? For the implication " \Rightarrow " let $q \in \operatorname{seal}(\Xi)$ be $(N$, seal (Ξ))-semigeneric. Let ${\underset{\sim}{i}}_{i}\left[G_{\text {seal }(\Xi)}\right]$ be a_{i} for any $\bar{a}=\left\langle a_{j}: j \leq \alpha\right\rangle \in G_{\text {seal }(\Xi)}$ whenever $\alpha>i$ so $\underset{\sim}{C}=\left\{\underset{\sim}{a} \cap \omega_{1}: i<\omega_{1}\right\}$ is forced to be a club of ω_{1}. So $\underset{\sim}{C} \in N$, hence
as q is $(N, \operatorname{seal}(\Xi))$ - semi-generic, necessarily $q \Vdash$ " $\delta \stackrel{\text { def }}{=} N \cap \omega_{1} \in \underset{\sim}{C}$ ". In fact $\delta=a_{\delta} \cap \omega_{1}=\bigcup_{i<\delta} a_{i} \cap \omega_{1}$, so possibly increasing q, for some $\left\langle b_{i}: i \leq \delta\right\rangle$ $q \Vdash$ " $a_{i}=b_{i}$ for $i \leq \delta$ ", so
$q \Vdash$ " $\delta=\omega_{1} \cap\left(\right.$ Skolem hull in $\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ of $\left.|N| \cup b_{\delta}=|N| \cup \bigcup_{i<\delta} b_{i}\right) "$.
So this Skolem hull is N^{\prime} as required. For the implication " \Leftarrow " use 2.8(4) below.]
(2) $\Vdash_{\text {seal }(\Xi)}$ " $\Xi \subseteq \mathfrak{B}^{[\text {seal }(\Xi)]}$ is absolutely pre-dense" (absolutely means for extensions not collapsing \aleph_{1}; more specifically in this chapter, there is a list $\left\langle A_{i}: i<\omega_{1}\right\rangle$ of members of Ξ and a club C of ω_{1} such that $\delta \in C \Rightarrow \delta \in \bigcup_{i<\delta} A_{i}$). [Why? Let $\left\langle{\underset{\sim}{a}}_{i}: i<\omega_{1}\right\rangle$ be as in the proof of 2.8(1), so let A_{i} be such that $\left\langle A_{i}: i<\delta\right\rangle$ lists the member of Ξ in a_{δ} for limit $\delta<\omega_{1}$.]
(3) $\mathrm{WSeal}(S)$ is semiproper and $\Vdash_{\mathrm{WSeal}(S)}$ "if $\Xi \in V$ is semiproper in \mathfrak{B}^{V} and $\left(\omega_{1} \backslash S\right) \in \Xi$, then Ξ is absolutely pre-dense in $\boldsymbol{B}^{[W S e a l(S)] " \text {. [Why? For }}$ semiproperness use 2.8(8) below; for absoluteness use 2.8(2) above.]
(4) $\operatorname{seal}(\Xi)$ is A-complete (see $\mathrm{V} \S 3$) for $A \in \Xi$; so $\mathrm{WSeal}(\mathrm{S})$ is $\left(\omega_{1} \backslash S\right)$ complete. [Why? Think.]
(5) If Ξ is pre-dense in $\mathfrak{B}[V]$, then $\operatorname{seal}(\Xi)$ preserves stationarity of subsets of ω_{1}; if $\mathcal{A} \subseteq \mathfrak{B}^{V}, \Xi$ a pre-dense subset of $\mathcal{A} \backslash\{\emptyset\}$ then seal (Ξ) preserves stationary of subsets of ω_{1} which belongs to \mathcal{A} or just are not in $\operatorname{Sm}(\mathcal{A}, S)$. [Why? Use $2.8(4)$ as any A-complete forcing notion surely preserve the stationarity of subsets of A.]
(6) The forcing notion $\operatorname{seal}(\Xi)$ forces $|\Xi| \leq \aleph_{1}$ and has cardinality $\leq(|\Xi|+$ $\left.\aleph_{1}\right)^{\aleph_{0}}$. The forcing notion $\operatorname{Seal}(\overline{\mathcal{A}}, S)$ is $\left(\omega_{1} \backslash S\right)$-complete; $\operatorname{SSeal}^{*}(\overline{\mathcal{A}}, S, \kappa)$ and even any initial segment of such iteration of length κ is $\left(\omega_{1} \backslash S\right)$ complete and if $\kappa>\aleph_{0}$ is $\overline{\mathcal{A}}$-inaccessible and $S \subseteq \omega_{1}$ is stationary then it satisfies the θ-c.c. if $\theta=\operatorname{cf}(\theta)>\left|\mathcal{A}_{\zeta}\right|$ for $\zeta<\ell g(\overline{\mathcal{A}})$ and $\bigwedge_{\alpha<\kappa}|\alpha|^{\aleph_{0}}<\theta$. If $\kappa>\aleph_{0}$ is strongly inaccessible then $\operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ satisfies the κ-c.c. and is $\left(\omega_{1} \backslash S\right)$-complete.
(7) If $\operatorname{Rss}\left(\aleph_{2}, \beth_{2}\left(\aleph_{1}\right)\right)$ then for every pre-dense $\Xi \subseteq \mathfrak{B}(V)$, seal (Ξ) is semiproper. [Why? By 1.7(3) and 2.8(5).]
In this case $\operatorname{Seal}\left(\mathfrak{B}^{V}, S\right), \operatorname{SSeal}\left(\mathfrak{B}^{V}, S, \kappa\right), \operatorname{SSeal}^{*}\left(\mathfrak{B}^{V}, S, \kappa\right)$ are semiproper.
(8) For λ regular large enough, and countable $N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ there is a countable $N^{\prime}, N \prec N^{\prime} \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ satisfying: $N \cap \omega_{1}=N^{\prime} \cap \omega_{1}$ and for every semiproper $\Xi \subseteq \mathfrak{B}^{V}$ we have: $\left[\Xi \in N \Rightarrow N^{\prime} \cap \omega_{1} \in \bigcup_{A \in \Xi \cap N^{\prime}} A\right.$ [use part (1) repeatedly ω-times] and even $\Xi \in N^{\prime} \Rightarrow N^{\prime} \cap \omega_{1} \in \bigcup_{A \in \Xi \cap N^{\prime}} A$ [use the previous statement repeatedly ω-times].
2.9. Claim. Suppose $\overline{\mathcal{A}}=\left\langle\mathcal{A}_{\zeta}: \zeta<\xi\right\rangle$ is an increasing sequence of subalgebras or just subsets of $\boldsymbol{B}, \kappa>\aleph_{0}$ is strongly inaccessible or just $\operatorname{SSeal}^{*}(\overline{\mathcal{A}}, S, \kappa)$ is well defined. Assume $\langle\overline{\mathcal{A}}, \kappa\rangle \in N \prec(H(\lambda), \in), N$ countable, $P \stackrel{\text { def }}{=} \operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ or $P=\operatorname{SSeal}^{*}(\overline{\mathcal{A}}, S, \kappa)$ respectively and
$\oplus_{\overline{\mathcal{A}}, S}^{N}$ if $\Xi \in N$ is a pre-dense subset of \mathcal{A}_{ζ} for some $\zeta \in N \cap \xi$ and $\omega_{1} \backslash S \in \Xi$, then $N \cap \omega_{1} \in \bigcup_{A \in \Xi \cap N} A$.
Then for every $p \in P \cap N$, there is $q \in P,(N, P)$-generic, $p \leq q, q$ force a value to $G_{P} \cap N$ and $q \Vdash{ }^{N} \oplus_{\mathcal{A}, S}\left[G_{P}\right]$ holds".

Proof. We have to find $q, p \leq q \in P$, which is (N, P)-generic. We first show:
(*) if $\underset{\sim}{\zeta}, \Xi \in N$ are P-names, \Vdash_{P} " Ξ is a pre-dense subset of $\mathcal{A}_{\underline{\zeta}}$ ", $p \in N \cap P$, then for some $p^{2}, p \leq p^{2} \in N \cap P$, and for some A, ζ we have $p^{2} \Vdash$ " $\zeta=\zeta$ and $A \in \Xi \cap N \cap \mathcal{A}_{\zeta} "$ (so $A \in V$, and $A \in N \cap \mathcal{A}_{\zeta}$ and $A \in V$) and $N \cap \omega_{1} \in A$.

Proof of (*). We can find $p^{0}, p \leq p^{0} \in N \cap P$, and ζ such that $p^{0} \Vdash$ " $\zeta=\zeta$ " (so necessarily $\zeta \in N$). Next define

$$
\Upsilon=\left\{A \in \mathcal{A}_{\zeta}: \text { for some } p^{1}, p \leq p^{1} \in P, \text { and } p^{1} \Vdash " A \in \underset{\Xi}{\Xi} "\right\}
$$

Clearly $\Upsilon \in N, \Upsilon \in V$, and Υ is a pre-dense subset of $\mathcal{A}_{\zeta}, \zeta \in N$.
By $\oplus_{\mathcal{A}, S}^{N}$ there is $A \in \Upsilon \cap N$ such that $N \cap \omega_{1} \in A$. By the definition of Υ there is $p^{2}, p^{0} \leq p^{2} \in P$ and $p^{2} \Vdash " A \in \underset{\sim}{\Xi}$ ". As p^{0}, A and $\underset{\sim}{\Xi}$ are all in N, we
can choose such p^{2} in N, thus finishing the proof of (*).
Now we continue with the proof of 2.9 . We define p_{n} for $n<\omega$ such that:
(a) $p_{0}=p, p_{n+1} \geq p_{n}$;
(b) $p_{n} \in P_{\kappa} \cap N$;
(c) for every dense subset \mathcal{J} of P_{κ} which belongs to N for some $n, p_{n+1} \in \mathcal{J}$;
(d) if $j \in \kappa \cap N, \Xi \underset{\sim}{\Xi}, \zeta$, are P_{j}-names from N and $\Vdash_{P_{j}}$ " $\zeta<\xi$ and $\underset{\sim}{\Xi} \subseteq \mathcal{A}_{\zeta}$ is pre-dense" then for some $n<\omega$ and $B \in \mathfrak{B}^{V} \cap N$, we have $N \cap \omega_{1} \in B$ and

$$
p_{n+1}\left\lceil j \Vdash_{P_{j}} \quad \text { " } B \in \Xi\right.
$$

This clearly suffices, as (using the notation of Definition 2.4(5)):
(α) for $j \in N \cap \kappa$ we have $\left(\bigcup_{n<\omega} p_{n}\right)(j)$ is in Q_{j} by (d), and
$(\beta) \bigcup_{n<\omega} p_{n}$ is (N, P)-generic by (c).
So we can assign the tasks, and for satisfying (b) and (c) there is no problem. For (d) use (*).

2.10 Claim. Suppose

(a) $\operatorname{seal}(\Xi)$ is semiproper for every maximal antichain Ξ of \boldsymbol{B}^{V} to which $\omega_{1} \backslash S$ belongs, $\overline{\mathcal{A}}=\left\langle\mathfrak{B}^{V}\right\rangle=\left\langle\mathcal{A}_{0}\right\rangle$
or
(a) $\bar{A}=\left\langle\overline{\mathcal{A}}_{\zeta}: \zeta<\xi\right\rangle, \mathcal{A}_{\zeta} \subseteq \mathfrak{B}^{V}$, and $\operatorname{seal}(\Xi)$ is semiproper for any predense subset Ξ of $\mathcal{A}_{\zeta}, \zeta<\xi$
and
(b) $\kappa>\aleph_{0}$ is strongly inaccessible
or at least
$(\mathrm{b})^{\prime} \kappa>\aleph_{0}$ is inaccessible or just $\left|\mathcal{A}_{\zeta}\right|$-inaccessible for $\zeta<\xi$ (see 2.4(5)).
Then $P \stackrel{\text { def }}{=} \operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ if (b) or $P \stackrel{\text { def }}{=} \operatorname{SSeal}^{*}(\overline{\mathcal{A}}, S, \kappa)$ if (b) (both well defined), is semiproper, have the κ-c.c., is $\left(\omega_{1} \backslash S\right)$-complete and \Vdash_{P} " $\left(\mathcal{A}_{\zeta} \backslash S\right) \lessdot$ $\left(\mathfrak{B}^{P} \upharpoonright S\right) "$ (and in case (b) $)^{\prime}$ if $\theta=\operatorname{cf}(\theta)>\left|\mathcal{A}_{\zeta}\right|^{\aleph_{0}}, \theta$-c.c.).

Remark. Some points in the proof are repeated in 2.11.

Proof. The $\left(\omega_{1} \backslash S\right)$-completeness is trivial by the definition of P and $\mathrm{Ch} . \mathrm{V}$, Def. 1.1 (and the preservation theorem there i.e. by $2.8(\mathrm{a})$).

For semiproperness let λ be regular and large enough, and $N \prec(H(\lambda), \in)$ countable, $P \in N$ and $p \in P \cap N$. Applying repeatedly 2.8(1) (or directly 2.8(8)), there is $N^{\prime}, N \prec N^{\prime} \prec(H(\lambda), \in), N \cap \omega_{1}=N^{\prime} \cap \omega_{1}, N^{\prime}$ countable, and for every maximal antichain $\Xi \subseteq \mathfrak{B}$ (or just pre-dense $\Xi \subseteq \mathfrak{B}^{V}$ if (a) or predense subset Ξ of \mathcal{A}_{ζ} for some $\zeta<\xi$, if $\left.(\mathrm{a})^{\prime}\right)$:

$$
\Xi \in N^{\prime}, N \cap \omega_{1} \in S \Rightarrow N \cap \omega_{1}=N^{\prime} \cap \omega_{1} \in \bigcup_{A \in \Xi \cap N^{\prime}} A .
$$

Now use 2.9. (with $\left\langle\mathfrak{B}^{V}\right\rangle, N^{\prime}$ here standing for $\left\langle\mathcal{A}_{\zeta}: \zeta<\xi\right\rangle, N$ there).
So we have proved that P is semiproper and by the present proof and the Δ-system lemma (alternativelly if κ is strongly inacessible by $2.2(1)(\mathrm{c})$ or $2.8(6)) P$ has the κ-c.c., hence \Vdash_{P} " $\left(\mathcal{A}_{\zeta} \mid S\right) \lessdot\left(\mathfrak{B}^{P}\lceil S)\right.$ " follows from the definition of P as every P_{κ}-name of a subset of some \mathcal{A}_{ζ} is a P_{j}-name for some $j<\kappa$ (as P_{κ} satisfies the κ-c.c.).
2.11. Claim. If $\overline{\mathcal{A}}=\left\langle\mathcal{A}_{\zeta}: \zeta<\xi\right\rangle, \mathcal{A}_{\zeta} \upharpoonright S \lessdot \mathfrak{B}^{V} \upharpoonright S$ for $\zeta<\xi$, each $\mathcal{A}_{\zeta} \upharpoonright S$ satisfies the \aleph_{2}-c.c. (e.g. has power $\leq \aleph_{1}$) and $\kappa>\aleph_{0}$ is strongly inaccessible, then
(1) $P_{\kappa} \stackrel{\text { def }}{=} \operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ is proper;
(2) $\vdash_{P_{\kappa}} " \mathcal{A}_{\zeta} \upharpoonright S \ll \mathfrak{B}^{P_{\kappa}} \upharpoonright S$ for $\zeta<\xi$ ";
(3) in fact, P_{κ} is $\left(\omega_{1} \backslash S\right)$-complete, strongly proper and satisfies the κ-c.c. and $\vdash_{P_{\kappa}} " \kappa=\aleph_{2}=2^{\aleph_{1} " ;}$
(4) if $\omega_{1} \backslash S$ is stationary, P_{κ} does not add ω-sequences of ordinals.

Proof. (1) Let λ be regular large enough and $N \prec(H(\lambda), \epsilon)$ countable, $\bar{Q} \in N$ (hence $P_{\kappa} \in N$) and $p \in P_{\kappa} \cap N$. We want to apply 2.9 , so we have (and it suffices) to verify \oplus there, i.e.
$(* *)$ if $\mathcal{A}_{\zeta} \upharpoonright S \lessdot \mathfrak{B}[V] \upharpoonright S, \mathcal{A}_{\zeta}$ satisfies the \aleph_{2}-c.c., $\mathcal{A}_{\zeta} \in N \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$, N countable, $\Xi \subseteq \mathcal{A}_{\zeta}$ is a pre-dense subset of \mathcal{A}_{ζ} and $\omega_{1} \backslash S \in \Xi$ then $N \cap \omega_{1} \in \bigcup\{A: A \in \Xi \cap N\}$.

Proof of $(* *)$. As $\mathcal{A}_{\zeta}\left\lceil S \models\right.$ " \aleph_{2} "-c.c., clearly without loss of generality $|\Xi| \leq \aleph_{1}$, so let $\Xi=\left\{A_{i}: i<\omega_{1}\right\}$ (as $\Xi \neq \emptyset$ this is possible) and say $A_{0}=\omega_{1} \backslash S$.

Since $\mathcal{A}_{\zeta} \upharpoonright S \lessdot \boldsymbol{B}^{V} \upharpoonright S$, clearly Ξ is pre-dense in \boldsymbol{B}^{V}, hence we know $\{\delta: \delta \in$ $\left.\bigcup_{i<\delta} A_{i}\right\} \in \mathcal{D}_{\omega_{1}}$ (otherwise the complement contradicts the pre-density of Ξ in $\left.\mathfrak{B}^{V}\right)$, so there is a closed unbounded $C \subseteq \omega_{1}$ such that $C \subseteq\left\{\delta: \delta \in \bigcup_{i<\delta} A_{i}\right\}$. As $\Xi \in N$ without loss of generality $\left\langle A_{i}: i<\omega_{1}\right\rangle \in N$ and without loss of generality $C \in N$. As $N \prec(H(\lambda), \in)$ clearly $C \cap N$ is unbounded in $N \cap \omega_{1}$, hence $N \cap \omega_{1}=\sup \left(C \cap N \cap \omega_{1}\right) \in C$, so $N \cap \omega_{1} \in \bigcup\left\{A_{i}: i \in N \cap \omega_{1}\right\}$, so for some $j \in N \cap \omega_{1}, N \cap \omega_{1} \in A_{j}$. But $\left\langle A_{i}: i<\omega_{1}\right\rangle \in N$ so $A_{j} \in N$, as required.
(2) If $A \in \mathcal{P}\left(\omega_{1}\right)^{V^{P_{\kappa}}}$ then as P_{κ} satisfies the κ-c.c. (by 2.10 or as by part (1), $\left\{p \in P_{\kappa}: \operatorname{Dom}(p)\right.$ is countable $\}$ is dense in P_{κ}, clearly we can apply the Δ-system lemma) for some $\alpha<\kappa, A \in \mathcal{P}\left(\omega_{1}\right)^{V^{P_{\alpha}}}$, and so by the definition of $\operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$, if $A / \mathcal{D}_{\omega_{1}}$ is disjoint to a dense subset of $x \in \mathcal{A}_{\zeta}, A \subseteq S, \zeta<\xi$ then we "shoot" a club through its completion in the $(\beta+1)$-th iterand in the iteration defining $\operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ for $\beta \in(\alpha, \kappa)$ large enough. Why? As $V^{P_{\kappa}} \models$ $"\left|\mathcal{A}_{\zeta}\right| \leq \aleph_{1}$ " (as P_{1} collapses $2^{\aleph_{1}}$ to \aleph_{1} see 2.4(5)) there is $\beta, \alpha<\beta<\kappa$ such that for every $x \in \mathcal{A}_{\zeta}$, if $x \cap A$ is not stationary in $V^{P_{\kappa}}$, then it is not stationary in $V^{P_{\beta}}$.
(3) Easy (strong properness hold by the proof of 2.9 and use IX 2.7, 2.7A for preservation of strong properness or prove directly).
(4) By 2.8(4) and V §3.
2.12. Claim. Let $\bar{Q}=\left\langle P_{i},{\underset{\sim}{~}}_{j}: i \leq \alpha, j<\alpha\right\rangle$ be a semiproper iteration, and α be a limit ordinal. Suppose $\Vdash_{P_{\alpha}}$ " $\Xi \subseteq \mathfrak{B}^{\bar{Q}}$ is pre-dense" and $i<\alpha$. Then (a) $\Leftrightarrow(\mathrm{b})^{+} \Rightarrow(\mathrm{b})$, where:
(a) $\left(P_{\alpha} / P_{i}\right) * \operatorname{seal}(\Xi)$ is semiproper (in $\left.V^{P_{i}}\right)$;
(b) If λ is regular large enough, $\bar{Q} \in N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right), N$ countable, $\Xi \underset{\sim}{\Xi} \in$ $N, p \in N \cap P_{\alpha}, i \in N \cap \alpha, q \in P_{i}$ is $\left(N, P_{i}\right)$-semi-generic, $p \upharpoonright i \leq q$ then there are $N^{1}, p^{1}, q^{1}, \underset{\sim}{A}$ and j such that:
(i) $N \prec N^{1} \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$,
(ii) N^{1} is countable, $N^{1} \cap \omega_{1}=N \cap \omega_{1}$,
(iii) $p \leq p^{1} \in N^{1} \cap P_{\alpha}$,
(iv) $i<j<\alpha, j$ a non-limit ordinal,
(v) $j \in N^{1}$,
(vi) $q \leq q^{1} \in P_{j}$,
(vii) q^{1} is $\left(N^{1}, P_{j}\right)$-semi-generic,
(viii) $p^{1} \upharpoonright j \leq q^{1}$,
(ix) $\underset{\sim}{A} \in N^{1}$ is a P_{j}-name,
(x) $q^{1} \Vdash " N^{1} \cap \omega_{1} \in \underset{\sim}{A}$ ",
(xi) $q^{1} \cup p^{1} \upharpoonright[j, \alpha) \Vdash_{P_{\alpha}}$ " $A \in \underset{\sim}{\Xi}$ ";
(b) ${ }^{+}$Like (b) but N is a P_{i}-name and N^{1} is a P_{i}-name.

Remark. There is not much difference if in clause (b) (or (b) ${ }^{+}$) we replace clause (ix) by
(ix) $\underset{\sim}{A} \in N$ is a P_{j}-name
but then j is allowed to be P_{i}-name.
Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})^{+}$Let $\underset{\sim}{Q} \stackrel{\text { def }}{=} \operatorname{seal}(\Xi)$ and let $q \in G_{i} \subseteq P_{i}, G_{i}$ generic over V. In $V\left[G_{i}\right]$, apply the definition of " $\left(P_{\alpha} / P_{i}\right) * \operatorname{seal}(\Xi)$ is semi porper" to the model $N=\underset{\sim}{N}\left[G_{i}\right]$ and the condition p, and get a condition q^{0}, so q^{0} is $\left(\underset{\sim}{N},\left(P_{\alpha} / P_{i}\right) * Q\right)$ -semi-generic. Let G be such that $q^{0} \in G \subseteq P_{\alpha} * \underset{\sim}{Q}, G_{i} \subseteq G$, and G is generic over V. So by the definition of $\underset{\sim}{Q}=\operatorname{seal}(\underset{\sim}{\Xi})$ for some $A \in \underset{\sim}{\Xi}\left[G_{\alpha}\right] \cap N[G]$ we have $N \cap \omega_{1}=N[G] \cap \omega_{1} \in A$. As $A \in \Xi\left[G_{\alpha}\right] \subseteq \mathfrak{B}^{\bar{Q}}=\bigcup_{j<\alpha} \boldsymbol{B}\left[P_{j+1}\right]$, for some $j_{0} \in \alpha \cap N, A \in \mathfrak{B}\left[P_{j_{0}+1}\right]$, and there is a $P_{j_{0}+1}$-name $\underset{\sim}{A} \in N[G]$ such that $\underset{\sim}{A}[G]=A$, and without loss of generality q^{0} forces this. Now

$$
\begin{gathered}
\mathcal{I}=\left\{r: r \in P_{\alpha} \text { and } r \text { is above } p \text { or incompatible with } p\right. \text { and } \\
\left.\quad r \Vdash_{P_{\alpha}} \text { "A } A \in \Xi_{\sim}^{\Xi} \text { or } r \Vdash_{P_{\alpha}} \text { "A } \notin \Xi \underset{\sim}{\Xi}\right\}
\end{gathered}
$$

is a dense subset of P_{α} and $\underset{\sim}{r}=$ the $<_{\lambda}^{*}$-least member of \mathcal{I} which belongs to ${\underset{\sim}{\alpha}}_{\alpha}$ is a P_{α}-name, and $\mathcal{I} \in N, \underset{\sim}{r} \in N$. Hence $\underset{\sim}{r}[G] \in N[G]$ and clearly $\underset{\sim}{r}[G]$ is compatible with $q^{0}, p \leq \underset{\sim}{r}[G]$ and $\underset{\sim}{r}[G] \vDash " A \in \Xi$ ", so w.l.o.g. $\underset{\sim}{r}[G] \leq q^{0}$. Let N^{1} be the Skolem hull of $N \cup\left\{j_{0}, \underset{\sim}{A}, \underset{\sim}{r}[G]\right\}$ in $\left(H(\lambda), \in,<_{\lambda}^{*}\right)$, let $j=j_{0}+1$, $q^{1}=q^{0} \upharpoonright j$ and $p_{1}=\underset{\sim}{r}[G]$.
(a) \Rightarrow (b) Similar proof.
$(\mathrm{b})^{+} \Rightarrow$ (a) Use (b) $)^{+}$. Specifically, for $i<\alpha$ let $G_{i} \subseteq P_{i}$ be generic over $V, i<\alpha$.

Assume the desired conclusion in clause (a) fails then this is exemplified by some $N,(p, \underset{\sim}{r})$ where $N \prec\left(H(\lambda)^{V\left[G_{i}\right]}, \in\right)$ is countable, $(p, \underset{\sim}{r}) \in\left(P_{\alpha} / G_{i}\right) *$ seal (Ξ) and $(p, \underset{\sim}{r}) \in N$ (where $N \in V\left[G_{i}\right]$). So for some $q_{0} \in G_{i}$ and $\underset{\sim}{x}$ we have: $\underset{\sim}{x}$ is a P_{i}-name, $\underset{\sim}{x}\left[G_{i}\right]=N$ and $q_{0} \Vdash_{P_{i}} " \underset{\sim}{x}$ and $(p, \underset{\sim}{r}) \in\left(P_{\alpha} / P_{i}\right) * \operatorname{seal}(\underset{\sim}{\Xi})$ form a counterexample to semiproperness".

Clause (b) ${ }^{+}$applied to $\underset{\sim}{x}, q_{0}, p$ gives $\underset{\sim}{N}{ }^{1}, p^{1}, q^{1}, \underset{\sim}{A}{\underset{q(*)}{ }}$ and j as there and w.l.o.g. $q^{1} \upharpoonright i \in Q_{i}$ and let $N^{1}=N_{\sim}^{1}\left[G_{i}\right]$.

As P_{α} / P_{j} is semiproper, there is $q^{2} \in P_{\alpha}$ which is (N^{1}, P_{α})-semigeneric, $p \leq q^{2}$ and $q^{1}=q^{2} \upharpoonright j$ and let G_{α} be such that $q^{2} \in G_{\alpha} \subseteq P_{\alpha}$ and G_{α} is generic over V. By the choice of q_{0} (which is $\leq q_{1} \leq q^{1} \leq q^{2} \in G_{\alpha}$) without loss of generality $G_{i}=G_{\alpha} \cap P_{i}$. So $\underset{\sim}{\Xi}, p, \underset{\sim}{r}, \underset{\sim}{A} \in N\left[G_{\alpha}\right]$, where on $\underset{\sim}{A}$ see clauses (ix), (x), (xi) and as $\operatorname{seal}\left(\Xi\left[G_{\alpha}\right]\right)$ is $\underset{\sim}{A}\left[G_{\alpha}\right]$-complete there is $r^{2} \in \operatorname{seal}\left(\Xi\left[G_{\alpha}\right]\right)$ which is $\left(N^{1}\left[G_{\alpha}\right]\right.$, seal $\left(\Xi\left[G_{\alpha}\right]\right)$-semiproper and above $\underset{\sim}{r}\left[G_{\alpha}\right]$. So for some ${\underset{\sim}{r}}^{*}$, $q^{2} \Vdash_{P_{\alpha} * \text { seal }(\Xi)}$ " ${\underset{\sim}{r}}^{*}$ is above $\underset{\sim}{r}$ and is $\left(N\left[G_{\alpha}\right],\left(P_{\alpha} / G_{i}\right) *\right.$ seal $\left.(\Xi)\right)$-semi generic". So $\left(q^{2}, r_{\sim}^{*}\right)$ contradict the choice of q_{0} and we are done.
$\square_{2.12}$
2.13 Claim. Let $\bar{Q}=\left\langle P_{i},{\underset{j}{ }}: i \leq \alpha, j<\alpha\right\rangle$ be a semiproper iteration and α be a limit ordinal.
(1) If we have P_{α}-name $\underset{\sim}{\underset{\sim}{\Xi}}$ satisfying $\underset{\sim}{\Xi} \subseteq \underset{\sim}{\Xi}{ }^{*}=\left\{\underset{\sim}{\Xi} \in V^{P_{\alpha}}: \underset{\sim}{\Xi}\right.$ is a P_{α}-name of a maximal antichain or just a pre-dense subset of $\boldsymbol{B}^{\bar{Q}}$, such that for every $i<\alpha,\left(P_{\alpha} / P_{i+1}\right) * \operatorname{seal}(\underset{\sim}{\Xi})$ is semiproper (i.e. this is $\left.\left.\Vdash_{P_{i+1}}\right)\right\}$ then $\left(P_{\alpha} / P_{i+1}\right) * \operatorname{Seal}(\underset{\sim}{\boldsymbol{\Xi}})$ is semiproper for every $i<\alpha$.
(2) If
$(*)\left(P_{\alpha} / P_{i+1}\right) * \operatorname{seal}(\Xi)$ is semiproper for every $i<\alpha$ and maximal antichain (or just a pre-dense subset) Ξ of $\mathfrak{B}^{\bar{Q}}$ (from $V^{P_{\alpha}}$) to which $\omega_{1} \backslash S$ belongs,
then for every $i<\alpha,\left(P_{\alpha} / P_{i+1}\right) * \operatorname{Seal}\left(\mathfrak{B}^{\bar{Q}}, S\right)$ is semiproper and for $\kappa>\left|P_{\alpha}\right|$ strongly inaccessible $\left(P_{\alpha} / P_{i+1}\right) * \operatorname{SSeal}\left(\mathfrak{B}^{\bar{Q}}, S, \kappa\right)$ is semiproper with κ-c.c.
(3) The hypothesis (*) of (2) holds if for arbitrarily large $i<\alpha$:
Q_{i} is semiproper and $\Vdash_{P_{i}} " \operatorname{Rss}\left(\aleph_{2}\right) "$.
(4) If $\left(\mathcal{A}\right.$ is a P_{α}-name and it is forced for P_{α} that) Ξ is a predense subset of $\mathcal{\sim}, \bigvee_{i<\alpha} \mathcal{A} \subseteq \mathfrak{B}^{P_{i+1}}$, and $\underset{\sim}{\mathcal{A}} \lessdot \mathfrak{B}^{\bar{Q}}$ (for this $\alpha=\sup \left\{i: \mathcal{A} \lessdot \mathfrak{B}^{P_{i+1}}\right\}$ suffice), then $\Xi \in{\underset{\sim}{\Xi}}^{*}\left({\underset{\sim}{\Xi}}^{*}\right.$ from part (1)).
(5) Assume
$(* *) \overline{\mathcal{A}}=\left\langle\overline{\mathcal{A}}_{\beta}: \beta<\beta^{*}\right\rangle$ and for $\beta<\beta^{*}$ we have: $\Vdash_{P_{\alpha}}$ " $\mathcal{A}_{\beta} \subseteq \mathfrak{B}^{P_{i+1}}$ for some $i<\alpha$ " and if $i<\alpha$ and Ξ is a P_{α}-name of a pre-dense subset of \mathcal{A}_{β} to which $\omega_{1} \backslash S$ belongs then $\Vdash_{P_{i+1}}$ "if $\mathcal{A}_{\beta} \subseteq \boldsymbol{B}^{P_{i+1}}$ then $\left(P_{\alpha} / P_{i+1}\right) * \operatorname{seal}(\Xi)$ is semiproper".
Then for every $i<\alpha,\left(P_{\alpha} / P_{i+1}\right) * \operatorname{Seal}(\overline{\mathcal{A}}, S)$ is semiproper and if $\kappa>\left|P_{\alpha}\right|$ is strongly inaccessible then $\left(P_{\alpha} / P_{i+1}\right) * \operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ is also semiproper, satisfies the κ-c.c., has cardinality κ, forces $\kappa=\aleph_{2}$ and forces $\underset{\sim}{A_{\beta}} \lessdot$ $\mathfrak{B}^{V\left[P_{\alpha} * \operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)\right]}$.

Proof. (1) Use Claim 2.12ω times and the definition of RCS (note that in 2.12(b) we do not get $q^{1} \upharpoonright i=q$, but we can replace q by any $q^{\prime}, q \leq q^{\prime} \in P_{i}$).
(2) For the first phrase use 2.13(1). For the SSeal case, use also 2.9 with $\overline{\mathcal{A}}=\left\langle\mathfrak{B}^{\bar{Q}}\right\rangle$ (so $\xi=1$), where the assumption of 2.9 can be gotten by the first phrase; the κ-c.c. is proved as in 2.11(3) using models N as in 2.9.
(3) By $1.7(5)$ the statement $\operatorname{Rss}\left(\aleph_{2}\right)$ implies that semiproperness and preserving stationarity of subsets of ω_{1} are equivalent. Suppose $i<\alpha, Q_{i}$ is semiproper and $\Vdash_{P_{i}}$ "Rss $\left(\aleph_{2}\right)$ ". As by $2.8(5)$, $\operatorname{seal}(\Xi)$ (for $\Xi \subseteq \mathfrak{B}^{\bar{Q}}$ a maximal antichain) preserves stationarity of subsets of ω_{1} from $V^{P_{i}}$ which are stationary in $V^{P_{\alpha}}$ (and this property is preserved by composition (though not by limit)) and $P_{\alpha} / P_{i}=Q_{i} *\left(P_{\alpha} / P_{i+1}\right)$ is semiproper hence preserve stationarity of subsets of ω_{1}, we get that $\left(P_{\alpha} / P_{i}\right) * \operatorname{seal}(\Xi)$ preserves stationarity of subsets of ω_{1} hence is semiproper (in $V^{P_{i}}$ of course). This holds for arbitrarily large $i<\alpha$, hence (by the composition of semiproperness) for every non-limit i, which is the demand $(*)$ of (2).
4) As in the proof of $(* *)$ from the proof of $2.11(1)$, it suffices to prove clause (b) ${ }^{+}$of 2.12 for successor $i<\alpha$, so let $\underset{\sim}{\mathcal{A}}, \Xi$ be as in the assumption of 2.13(4), $q \Vdash$ " $\{\mathcal{\sim}, \Xi\} \in \underset{\sim}{N}$ " and $\underset{\sim}{N}, i, p, q$ be as in the assumption of $2.12(\mathrm{~b})^{+}$. We know that for some $i_{0} \geq i$ we have $\underset{\sim}{\mathcal{A}} \subseteq \mathfrak{B}^{P_{i_{0}+1}}$, so without loss of generality
(possibly increasing p and q) for some $i_{0}, p \Vdash$ " $\mathcal{A} \subseteq \boldsymbol{B}_{i_{0}+1}$ ", by the preservation of semiproperness by composition without loss of generality $i_{0}=i+1$. Let G_{i} be such that $q \in G_{i} \subseteq P_{i}, G_{i}$ generaic over V and $N=\underset{\sim}{N}\left[G_{i}\right]$; in $V\left[G_{i}\right]$ we define $\Upsilon \stackrel{\text { def }}{=}\left\{A \in \mathfrak{B}^{P_{i_{0}+1}}: p \nVdash_{P_{\alpha} / G_{i}} " A \notin \underset{\sim}{\Xi}\right.$ " $\}$. So $\Upsilon \in N\left[G_{i}\right]$ and $V\left[G_{i}\right] \models "|\Upsilon| \leq \aleph_{1} ", \Upsilon \neq \emptyset$ so let, in $V\left[G_{i}\right], \Upsilon=\left\{A_{\zeta}: \zeta<\omega_{1}\right\}$ and without loss of generality $\left\langle A_{\zeta}: \zeta<\omega_{1}\right\rangle \in N\left[G_{i}\right]$. Let $B=\left\{\delta<\omega_{1}: \delta\right.$ limit and $\left.\delta \notin \bigcup_{i<\delta} A_{i}\right\}$, so $B \subseteq \omega_{1}, B \in V\left[G_{i}\right]$, and (in $V\left[G_{i}\right]$) we have: $B \cap A_{\zeta}=\emptyset \bmod \mathcal{D}_{\omega_{1}}$. So in $V^{P_{\alpha}}, B$ cannot be stationary (as $B \in \mathfrak{B}^{\bar{Q}}, \underset{\sim}{\mathcal{A}} \lessdot \mathfrak{B}^{\bar{Q}}$) so as P_{α} / G_{i} is semiproper also in $V\left[G_{i}\right]$ we know that B is not stationary, and we finish as in the proof of $(* *)$ from the proof of $2.11(1)$.
5) The proof of 2.13(2) (and see 2.16).
2.14 Claim. Suppose $\bar{Q}=\left\langle P_{i}, Q_{j}, \mathbf{t}_{j}: i \leq \alpha+1, j<\alpha+1\right\rangle$ is an RCS iteration, $\bar{Q} \upharpoonright \alpha$ is S-suitable, and $\kappa>\left|P_{\alpha}\right|$ is strongly inaccessible.
(1) If $\mathbf{t}_{\alpha}=0,{\underset{\sim}{\alpha}}_{\alpha}=\operatorname{SSeal}\left(\left\langle\boldsymbol{B}\left[P_{j}\right]: j<\alpha, \mathbf{t}_{j}=1\right\rangle, S, \kappa\right)$ then \bar{Q} is S-suitable and also: for α successor or $\alpha=\operatorname{cf}(\alpha)>\left|P_{i}\right|$ for $i<\alpha$ even Q_{α} is proper.
(2) If α is a limit ordinal, $\overline{\mathcal{A}}=\left\langle\mathcal{A}_{\zeta}: \zeta<\xi\right\rangle$ is a sequence of $\left(P_{\alpha}\right.$-names of) subalgebras of $\mathfrak{B}^{\bar{Q} \upharpoonright \alpha}$ with $\bigwedge_{\zeta} \bigvee_{i<\alpha} \mathcal{A}_{\zeta} \subseteq \mathfrak{B}^{P_{i+1}}$, and for every $\zeta<\xi$, $\Vdash_{P_{\alpha}}$ "for $\zeta<\xi$ the set $\left\{i<\alpha:{\underset{\sim}{\mathcal{A}}}_{\zeta} \upharpoonright S \ll \mathfrak{B}\left[P_{i+1}\right]\lceil S\}\right.$ is unbounded below α ", and $\Vdash^{P_{\alpha}}$ "for every $j<\alpha$ satisfying $\mathbf{t}_{j}=1$ for some $\zeta, \mathfrak{B}^{P_{j}} \upharpoonright S \lessdot \mathcal{A}_{\zeta} \upharpoonright S$ " and $\mathbf{t}_{\alpha}=0$, and $Q_{\alpha}=\operatorname{SSeal}(\overline{\mathcal{A}}, S, \kappa)$ then \bar{Q} is S-suitable.

Proof. (1) First assume α is non-limit or $\alpha=\operatorname{cf}(\alpha)>\left|P_{i}\right|$ for $i<\alpha$. We have to check clauses (A) - (F) of Definition 2.1. Clause (D) holds by Claim 2.11(1); clause (E) holds by Claim 2.11(3); clause (F) holds by 2.11(2); the other parts of Definition 2.1 hold trivially. Lastly the conclusion concerning " Q_{α} is proper" holds by $2.11(3)$.
If α is limit, then this follows from 2.14(2) which is proved below.
2) Let $\underset{\sim}{\Xi}=\left\{\underset{\sim}{\Xi}: \Xi\right.$ is a P_{α}-name of a pre-dense subset of $\mathfrak{B}\left[P_{i+1}\right]$ to which $\omega_{1} \backslash S$ belongs for some $i<\alpha$ and $\left(P_{\alpha} / P_{j+1}\right) * \operatorname{seal}(\Xi)$ is semiproper for every $\left.j<\alpha\right\}$. By 2.13(4) above: if Ξ is a P_{α}-name of a maximal antichain of $\mathcal{A}_{\zeta}(\zeta<\xi)$ then
$\Xi \in \underset{\sim}{\Xi}$. So by 2.13(5) clauses (D),(E),(F) of Definition 2.1 hold (the others are trivial).
2.15 Claim. 1) Suppose $\overline{\mathcal{A}}=\left\langle\mathcal{A}_{\zeta}: \zeta<\xi\right\rangle$ is an increasing sequence of subalgebras (or just subsets) of \mathfrak{B}, χ regular, N a countable elementary submodel of $\left(H(\chi), \epsilon,<_{\chi}^{*}\right)$ and $\oplus_{\overline{\mathcal{A}}, S}^{N}$ from $2.9(1)$ holds, i.e.
$\oplus_{\mathcal{A}, S}^{N}$ if $\zeta \in \xi \cap N$ and $\Xi \in N$ is a pre-dense subset of \mathcal{A}_{ζ} and $\omega_{1} \backslash S \in \Xi$ then $N \cap \omega_{1} \in \bigcup_{A \in N \cap \Xi} A$.

If $Q \in N$ is a strongly proper forcing notion, $p \in Q \cap N$ then there is $q \in Q, p \leq q, q$ is (N, Q)-generic and $q \Vdash$ " $\oplus_{\overline{\mathcal{A}}, S}^{N\left[G_{P}\right] " \text {. }}$
2) In 2.10 we can conclude also that for a strongly proper Q which is $\left(\omega_{1} \backslash S\right)$ complite and satisfies $|Q|<\kappa$, the forcing notion $Q * \operatorname{SSeal}\left(\mathfrak{B}^{V}, S, \kappa\right)^{V^{Q}}$ is semiproper $\left(\omega_{1} \backslash S\right)$-complete.
3) Parallel strengthenings of $2.11,2.13$ (see mainly $2.13(1)$) and 2.14 hold.
2.15A Remark. This claim can be used in $\S 3, \S 4$ to get appropriate axioms: it gives a comprehensive family of forcing notions which we can use quite freely in the iterations, without making problems for what is already accomplished there.

For a more general property: see 4.6 .
Proof. Straightforward (reread the proof of 2.11).
2.16 Claim. Assume $\overline{\mathcal{A}}=\left\langle\mathcal{A}_{\zeta}: \zeta<\xi\right\rangle, \mathcal{A}_{\zeta} \upharpoonright \zeta \subseteq \mathfrak{B}^{V} \upharpoonright S$,
$W=W_{\overline{\mathcal{A}}}=\left\{a: a \subseteq H\left(\beth_{2}\left(\aleph_{1}\right)\right), a\right.$ is countable, $a \cap \omega_{1}$ is an ordinal and:
if $\zeta<\xi, \Xi \subseteq \mathcal{A}_{\zeta}, \Xi$ is a pre-dense subset of \mathcal{A}_{ζ}, $\omega_{1} \backslash S$ belongs to Ξ and $\{\zeta, \Xi\} \in a$ then $\left.a \cap \omega_{1} \in \bigcup\{A: A \in \Xi \cap a\}\right\}$
is a stationary subset of $H\left(\beth_{2}\left(\aleph_{1}\right)\right)$ and $\kappa>\aleph_{0}$ is strongly inaccessible. Then
(1) $P_{\kappa} \stackrel{\text { def }}{=} \operatorname{SSeal}(\bar{A}, S, \kappa)$ is W-proper.
(2) $\vdash_{P_{\kappa}}$ " $\mathcal{A}_{\zeta} \upharpoonright S \ll B^{V}\left\lceil S^{\prime}\right.$ " for $\zeta<\xi$.
(3) In fact, P_{κ} is $\left(\omega_{1} \backslash S\right)$-complete strongly W-proper and satisfies the κ-c.c.
(4) If $\omega_{1} \backslash S$ is stationary then P_{κ} does not add ω-sequences of ordinals.
(5) If $\xi=\zeta+1, \mathcal{A}_{\zeta}=\mathfrak{B}^{V}$ and $\operatorname{Rss}\left(\aleph_{2}\right)$ then P_{κ} is semiproper.
(6) If $\lambda>\kappa$, $\operatorname{Rss}^{+}(\kappa, \lambda)$ then $V^{P_{\kappa}} \models \operatorname{Rss}\left(\aleph_{2}, \lambda\right)$.

Proof. 1) W-properness is proved as in the proof of 2.11(1) (and 2.9) restricting ourselves to models N such that $N \cap H\left(\beth_{2}\left(\aleph_{1}\right)\right) \in W$.
$2), 3), 4)$ As in the proof of $2.11(2),(3),(4)$.
5) W-properness implies semiproperness by $2.8(7)$, (8), (note: we can ignore $\mathcal{A}_{\varepsilon}$ when $\varepsilon+1<\xi$ as $\left.W_{\left\langle\mathcal{A}_{\xi-1}\right\rangle}=W_{\overline{\mathcal{A}}}\right)$.
6) Should be clear.

2.17 Claim.

Assume $\bar{Q}=\left\langle P_{i},{\underset{\sim}{P}}_{j}: i \leq \kappa, j<\kappa\right\rangle$ is an RCS-iteration, κ is strongly inaccessible $\left(i<\kappa \Rightarrow\left|P_{i}\right|<\kappa\right)$ and, for stationarily many $i<\kappa$, for arbitrarily large $j \in(i, \kappa), \mathfrak{B}^{\bar{Q} \upharpoonright i} \lessdot \mathfrak{B}^{P_{j}}$. Then in $V^{P_{\kappa}}$, for $\overline{\mathcal{A}}=\left\langle B\left[P_{\kappa}\right]\right\rangle, W=W_{\overline{\mathcal{A}}}$ contains a club of $\mathcal{S}_{<\aleph_{1}}\left(H\left(\beth_{2}\left(\aleph_{1}\right)\right)\right.$.

Proof. By Fodor's Lemma, $\mathfrak{B}^{P_{\kappa}}$ satisfies the \aleph_{2}-c.c., hence we can apply 2.11 .

$\S 3$. On $\mathcal{P}\left(\omega_{1}\right) / \mathcal{D}_{\omega_{1}}$ Being Layered or the Levy Algebra

On layered ideals see [Sh:237a], Foreman Magidor Shelah [FMSh:252] and [Sh:270]. A reader can read sepeately $3.1-3.3,3.4-3.8,3.4-3.10$. Here in $3.1,3.2,3.3$ we deal with " $\mathfrak{B}\lceil S$ being layered"; in $3.4,3.5,3.6$ we prepared the ground for " $\mathfrak{B}\lceil S$ being the Levy algebra" and in $3.7,3.9$ we deal with " $\mathfrak{B} \upharpoonright S$ being the Levy algebra". We deal also with getting forcing axioms and try to present some approaches (rather than saving in consistency strength around "ZFC+ there is a supercompact cardinal").
3.1. Theorem. Suppose κ is supercompact. Then for some forcing notion P :
(i) P satisfies the κ-c.c., has cardinality κ, does not collapse \aleph_{1}, but collapses every $\lambda \in\left(\aleph_{1}, \kappa\right)$ and $\Vdash_{P_{\kappa}} " \kappa=\aleph_{2}$, and $2^{\aleph_{0}}=2^{\aleph_{1}}=\aleph_{2} "$,
(ii) $\mathfrak{B}[P]$ is S^{*}-layered (see $3.1 \mathrm{~A}(4)$ below), for some stationary $S^{*} \subseteq\{\delta<\kappa$: $\operatorname{cf}(\delta)=\aleph_{1}\left(\right.$ in $\left.\left.V^{P}\right)\right\}$,
(iii) in $V^{P}, A x^{+}\left[Q\right.$ semiproper collapsing \aleph_{2} and $\left.\mathfrak{B}\left[\left(V^{P}\right)\right] \lessdot \mathfrak{B}\left[\left(V^{P}\right)^{Q}\right]\right]$.
3.1A Remark. 1) In (iii), of course if we have $A x$ rather than $A x^{+}$, we can replace the condition on the forcing Q by:
for some $R, Q \lessdot \prec R, R$ is semiproper, $\mathfrak{B}\left[V^{P}\right] \lessdot \mathfrak{B}\left[\left(V^{P}\right)^{R}\right]$ and R collapses \aleph_{2} (of V^{P}).
2) Note for 3.1 (iii) that, in V^{P}, we have $|\boldsymbol{B}|=2^{\aleph_{1}}=\aleph_{2}$.
3) In (iii) of 3.1 we can replace $A x^{+}$by $A x_{\omega_{1}}$; similarly in $3.2,3.3(1)$ (iii).
4) A Boolean algebra B of regular cardinality λ is S^{*}-layered (for $S^{*} \subseteq \lambda$) if: letting $B=\bigcup_{i<\lambda} B_{i}, B_{i}$ increasing continuous in $i,\left|B_{i}\right|<\lambda$, we have $\left\{\delta<\lambda: \delta \in S^{*} \Rightarrow B_{\delta} \lessdot<B\right\} \in \mathcal{D}_{\lambda}$.
5) We say that a filter \mathcal{D} on a set A is S-layered if $\mathcal{P}(A) / D$ is S-layered.

Proof. Let $S=\omega_{1}$ and let $h: \kappa \rightarrow H(\kappa)$ be a Laver diamond (see Definition VII2.8; later we may say: repeat this proof for other stationary $S \subseteq \omega_{1}$ and $h: \kappa \rightarrow H(\kappa))$. By induction on $i<\kappa$ we define $P_{i}, Q_{i}, \mathbf{t}_{i}$ such that:
(A) $\bar{Q}^{\alpha}=\left\langle P_{i}, Q_{j}, \mathbf{t}_{j}: i \leq \alpha, j<\alpha\right\rangle$ is an S-suitable iteration.
(B) Q_{α} is defined by cases:

CASE a: Assume $(*)_{1}+(*)_{2}$ where
$(*)_{1} \alpha$ is measurable and $\bigwedge_{i<\alpha}\left[\left|P_{i}\right|<\alpha\right]$ and $\left[i<\alpha \quad \& \quad \mathbf{t}_{i}=1 \Rightarrow\right.$ $\left.\mathfrak{B}\left[P_{i}\right] \ll \mathfrak{B}\left[P_{\kappa}\right]\right]$, and $\operatorname{Rss}^{+}\left(\alpha, 2^{\alpha}\right)$ and
$(*)_{2} h(\alpha)$ is a P_{α}-name of a semiproper forcing notion, and $\Vdash_{P_{\alpha} * h(\alpha)}$ " $\mathfrak{B}\left[P_{\alpha}\right] \lessdot \boldsymbol{B}\left[P_{\alpha} * h(\alpha)\right]$ and $\alpha=\aleph_{2}^{V\left[P_{\alpha}\right]}$ is collapsed".
Then $\mathbf{t}_{\alpha}=1$ and ${\underset{\sim}{\alpha}}_{\alpha}=h(\alpha) * \operatorname{SSeal}^{V\left[P_{\alpha} * h(\alpha)\right]}\left(\left\langle\mathfrak{B}\left[P_{i}\right]: i \leq \alpha, \mathbf{t}_{i}=1\right\rangle, S\right)$. CASE b: Assume ($*)_{1}$ but not $(*)_{2}$, then $\mathbf{t}_{\alpha}=1$ and $Q_{\alpha}=\operatorname{SSeal}\left(\left\langle\mathfrak{B}\left[P_{i}\right]: i \leq \alpha, \mathbf{t}_{i}=1\right\rangle, S\right)$.
CASE c: Assume not $(*)_{1}$.

Then $\mathbf{t}_{\alpha}=0$ and $Q_{\alpha}=\operatorname{SSeal}^{V\left[P_{\alpha}\right]}\left(\left\langle\boldsymbol{B}\left[P_{i}\right]: i<\alpha, \mathbf{t}_{i}=1\right\rangle, S\right)$.
3.1B Observation. \bar{Q} is S-suitable and $\beta<\kappa \Rightarrow \bar{Q} \upharpoonright \beta \in H(\kappa)$ and: $\underset{\sim}{Q_{\beta}}$ is semiproper when $\beta=\operatorname{cf}(\beta)>\left|P_{i}\right|$ for $i<\beta$ (or β successor).

Proof of 3.1B. We prove by induction on $\beta \leq \kappa$ that $\bar{Q} \upharpoonright \beta$ is S-suitable and when $\beta<\kappa$, then $\bar{Q} \upharpoonright \beta$ belongs to $H(\kappa)$ and if $\beta=\alpha+1, \alpha=\operatorname{cf}(\beta)>\left|P_{i}\right|$ for $i<\alpha$ then ${\underset{\sim}{\alpha}}$ is semiproper.

For $\beta=0$: trivial.
For β limit: by 2.3(1).
For $\beta=\alpha+1$ and for $\alpha,(*)_{1}$ above fails: By the induction hypotheses $\bar{Q} \upharpoonright \alpha=$ $\left\langle P_{i}, Q_{j}, \mathbf{t}_{j}: i \leq \alpha, j<\alpha\right\rangle$ is S-suitable, hence it is a semiproper iteration and by our choice $\bar{Q} \upharpoonright \beta=\bar{Q} \upharpoonright(\alpha+1)$ is an RCS iteration and letting κ_{α} be the first strongly inaccessible $>\left|P_{\alpha}\right|$, we have $Q_{\alpha}=\operatorname{SSeal}\left(\left\langle\boldsymbol{B}\left[P_{i}\right]: i<\alpha, \mathbf{t}_{i}=\right.\right.$ $\left.1\rangle, S, \kappa_{\alpha}\right)$.

Now by $2.14(1)$ we are done (in particular Q_{α} is semiproper if: α is a successor or $\alpha=\operatorname{cf}(\alpha)>\left|P_{i}\right|$ for $\left.i<\alpha\right)$.

For $\beta=\alpha+1$ and for $\alpha,(*)_{1}$ above holds but $(*)_{2}$ fails
By the induction hypothesis $\bar{Q} \upharpoonright \alpha=\left\langle P_{i}, \underset{\sim}{Q_{j}}: i \leq \alpha, j<\alpha\right\rangle$ is S-suitable, hence a semiproper iteration and by our choice $\bar{Q} \upharpoonright \beta=\bar{Q} \upharpoonright(\alpha+1)$ is an RCSiteration and letting κ_{α} be the first strongly inaccessible $>\left|P_{\alpha}\right|$, we have:

$$
\mathbf{t}_{\alpha}=1 \text { and in } V^{P_{\alpha}} \text { we have } Q_{\alpha}=\operatorname{SSeal}\left(\left\langle\mathfrak{B}\left[P_{i}\right]: i \leq \alpha, \mathbf{t}_{i}=1\right\rangle, S, \kappa_{\alpha}\right) .
$$

Note that, as $(*)_{1}$ holds, α is measurable so $\{\gamma<\alpha$: case (c) applies and $\gamma=\operatorname{cf}(\gamma)>\left|P_{i}\right|$ for $\left.i<\gamma\right\}$ includes all strongly inaccessible non-measurable cardinals in C, for some club C of α. It is well known that there is a normal ultrafilter on α to which this set belongs so 1.10 applies.

By $1.10(1)$ and, as $V \vDash$ " $\operatorname{Rss}^{+}\left(\alpha, 2^{\alpha}\right)$ " holds by $(*)_{1}$, we know that in $V^{P_{\alpha}}, \operatorname{Rss}\left(\aleph_{2}, 2^{\aleph_{2}}\right)$ holds. So by $2.8(7)$ every maximal antichain Ξ of $\mathfrak{B}\left[P_{\alpha}\right]$ (in $V^{P_{\alpha}}$) is semiproper. Hence by $2.10 \operatorname{SSeal}\left(\mathfrak{B}, S, \kappa_{\alpha}\right)$ is semiproper. Now $\mathfrak{B}^{\bar{Q} \upharpoonright \alpha}=\boldsymbol{B}^{P_{\alpha}}\left[\right.$ as α is (by $\left.(*)_{1}\right)$ strongly inaccessible, $\bigwedge_{i<\alpha}\left|P_{i}\right|<\kappa$, now use
$2.2(1)(\mathrm{c})]$, and $\operatorname{SSeal}\left(\boldsymbol{B}^{\bar{Q} \upharpoonright \alpha}, S, \kappa_{\alpha}\right)=\operatorname{SSeal}\left(\left\langle\boldsymbol{B}\left[P_{i}\right]: i \leq \alpha, \mathbf{t}_{i}=1\right\rangle, S, \kappa_{\alpha}\right)$ by claim 2.7, as $\mathbf{t}_{\alpha}=1$ and $\left[i<\alpha \& \mathbf{t}_{i}=1 \Rightarrow \mathfrak{B}\left[P_{i}\right]\left\lceil S \lessdot \mathfrak{B}\left[P_{\alpha}\right]\right]\right.$. Together, Q_{α} is semiproper and we can check that $\bar{Q} \upharpoonright \beta$ is S-suitable.

For $\beta=\alpha+1$, and for $\alpha,(*)_{1}+(*)_{2}$ above holds.
Similar to the previous case, but now we use the statement in $(*)_{2}$ to note that $h(\alpha)$ is (in $V^{P_{\alpha}}$) a semiproper forcing. Now by $(*)_{2}$ we know that $\mathfrak{B}\left[P_{\alpha}\right] \lessdot \mathfrak{B}\left[P_{\alpha} * h(\alpha)\right]$ and $V^{P_{\alpha} * h(\alpha)} \vDash$ " $\mathfrak{B}\left[P_{\alpha}\right]$ has cardinality \aleph_{1} " hence we can use 2.11 to show that $\operatorname{SSeal}^{V\left[P_{\alpha} * h(\alpha)\right]}\left(\mathfrak{B}^{P_{\alpha}}, S\right)$ is semiproper. $\square_{3.1 B}$

Remark. Note that we could use only semiproper Q_{α} 's (so demand in $(*)_{2}$ that $h(\alpha)$ is semiproper).
3.1C. Observation. (1) If $\alpha<\kappa$, and $\mathbf{t}_{\alpha}=1$ (equivalently $(*)_{1}$ holds) then in $V^{P_{\kappa}}$ we have $\mathfrak{B}\left[P_{\alpha}\right] \upharpoonright S \lessdot \mathfrak{B}\left[P_{\kappa}\right] \upharpoonright S$.
2) If \mathcal{D} is a normal ultrafilter on $\mathcal{S}_{<\kappa}\left(H\left(\beth_{8}(\kappa)\right)\right.$, then $\left\{a: a \in \mathcal{S}_{<\kappa}\left(H\left(\beth_{8}(\kappa)\right)\right)\right.$ and $(*)_{1}$ is satisfied by $\left.a \cap \kappa\right\} \in \mathcal{D}$.

Proof of 3.1C. Should be clear.
Letting $P=P_{\kappa}$ and $S^{*}=\left\{\alpha<\kappa:(*)_{1}+\neg(*)_{2}\right.$ holds for α or at least $\left.(*)_{1}+V^{P_{\kappa}} \models " c f(\alpha)=\aleph_{1} "\right\}$, we easily finish, note that for $\alpha \in S^{*} \cup\{\kappa\}$: $\mathfrak{B}\left[P_{\alpha}\right]=\bigcup_{i<\alpha} \boldsymbol{B}\left[P_{i}\right]$ and for $\alpha \in S^{*}: \mathbf{t}_{\alpha}=1$. As κ is supercompact S^{*} is a stationary subset of κ (by 3.1 C) and forcing with P_{κ} preserves it (as P_{κ} satisfies the κ-c.c.) and $\alpha \in S^{*} \Rightarrow \Vdash_{P_{\kappa}} " \operatorname{cf}(\alpha)=\aleph_{1} "\left(\operatorname{check} Q_{\alpha}\right)$. Also the other requirement causes no problems.
3.2 Theorem. 1) In 3.1 we can weaken " P satisfies the κ-c.c" to " P does not collapse \aleph_{2} and has cardinality κ " but add that we have $\mathfrak{B}[P]$ is layered, which means it is S^{*}-layered for $S^{*} \stackrel{\text { def }}{=}\left\{\delta<\aleph_{2}: \operatorname{cf}(\delta)=\aleph_{1}\left(\right.\right.$ in $\left.\left.V^{P}\right)\right\}$.
2) In 3.1 we can add to the conclusion $\left(P=P_{\kappa}, \bar{Q}=\left\langle P_{i},{\underset{\sim}{j}}_{j}, \mathbf{t}_{j}: i \leq \kappa, j<\kappa,\right\rangle\right.$ is S suitable and):
(iv) In $V^{P}, A x\left[Q\right.$ is semiproper and $\left.i<\kappa \& \mathbf{t}_{i}=1 \Rightarrow \boldsymbol{B}^{P_{i}} \lessdot \boldsymbol{\mathfrak { B }}\left[\left(V^{P}\right)^{Q}\right]\right]$.
3) In $3.2(1)$ we can add to the conclusion $\left(P=P_{\kappa}, \bar{Q}\right.$ as above and):
(iv) ${ }^{-}$In V^{P} we have $\mathrm{Ax}^{+}\left[Q\right.$ is semiproper changing the cofinality of \aleph_{2} to \aleph_{0}, and $\left.i<\kappa \& \mathbf{t}_{i}=1 \Rightarrow \boldsymbol{B}^{P_{i}} \lessdot \mathfrak{B}\left[\left(V^{P}\right)^{Q}\right]\right]$.
Proof. 1) Force as in 3.1, and then let $P=P_{\kappa} *{\underset{\kappa}{ }}_{Q_{\kappa}}$ where in $V^{P_{\kappa}}, Q_{\kappa}=$ $\operatorname{club}\left(S^{*} \cup\left\{\delta: \operatorname{cf}^{V^{P}}(\delta)=\aleph_{0}\right\}\right)$, where for $S, \operatorname{club}(S)=\{h: h$ a strictly increasing continuous function h from some $\gamma+1<\sup (S)$ to $S\}$.

As, in $V^{P_{\kappa}}$, the set $S^{*}=\left\{\alpha<\kappa:(*)_{1}+\neg(*)_{2}\right.$ from the proof of 3.1 hold $\} \subseteq\left\{\delta<\aleph_{2}: \operatorname{cf}(\delta)=\aleph_{1}\right\}$ is stationary, moreover $\alpha \in S^{*}$ implies: there is, in $V^{P_{\kappa}}$, a subset b_{α} of α of order type ω_{1} such that $\gamma<\alpha \Rightarrow b_{\alpha} \cap \gamma \in$ $\bigcup_{\beta<\alpha} V^{P_{\beta}}$. As $\left\langle\bigcup_{\beta<\alpha}\left(\mathcal{P}(\beta) \cap V^{P_{\beta}}\right): \alpha<\kappa\right\rangle$ is increasing and continuous and $V^{P_{\kappa}} \vDash "\left|\mathcal{P}(\beta) \cap V^{P_{\beta}}\right|=\aleph_{1}$ ", clearly Q_{κ} adds no bounded subsets to κ and $\kappa=\aleph_{2}^{V\left[P_{\kappa}\right]}$, so $\mathfrak{B}\left[P_{\kappa}\right]=\mathfrak{B}\left[P_{\kappa} *{\underset{\sim}{*}}^{Q_{\kappa}}\right.$ and $\Vdash_{Q_{\kappa}}$ " $\left\{\delta<\kappa: \operatorname{cf}(\delta)=\aleph_{1}\right.$ but not $\mathfrak{B}\left[P_{\delta}\right]\left\lceil S<\prec \mathfrak{B}\left[P_{\kappa}\right]\lceil S\}\right.$ is not stationary.
Why does (iii) of 3.1 continue to hold? Suppose, in $V^{P * Q_{\kappa}}, R$ is a semiproper forcing collapsing \aleph_{2} such that $\left(V^{P}\right)^{Q_{\kappa}} \models\left[\vdash_{R}\right.$ " $\left.\mathfrak{B} \lessdot \mathfrak{B}[R] "\right]$. Let $\underset{\sim}{R}$ be a $P_{\kappa} *{\underset{\sim}{\kappa}}$-name of such a forcing notion and $(p, \underset{\sim}{q}) \in P_{\kappa} * Q_{\kappa}$. Apply (iii) to $Q_{\kappa} * \underset{\sim}{R}$ in $V\left[P_{\kappa}\right]$ (strictly speaking, its proof). I.e. by the properties of the Laver diamond, for some $\chi, 2^{\left|Q_{\kappa} * R\right|}<\chi$, and $M \prec\left(H(\chi), \in,<_{\chi}^{*}\right)$ to which $\bar{Q}, Q_{\kappa}, \underset{\sim}{R}$, and (p, q) belong and M isomorphic to some $\left(H\left(\chi_{1}\right), \in,<_{\chi_{1}}^{*}\right)$, by the Mostowski collapsing isomorphism g, taking P_{κ} to $P_{\kappa_{1}}$ where $\kappa_{1}=M \cap \kappa$, and $h\left(\kappa_{1}\right)=g\left(Q_{\kappa} * \underset{\sim}{R}\right)$. Clearly κ_{1} satisfies $(*)_{1}$ and without loss of generality also $(*)_{2}$, hence $\mathbf{t}_{\kappa_{1}}=1$. So we could have increased ($p, \underset{\sim}{q}$) to guarantee the existence of the generic enough subset of R (i.e. we use the generic subset of $g\left(Q_{\kappa}\right)$ to increase $\left.\underset{\sim}{q}\right)$.
(2) In the proof of 3.1 , case b is now divided into subcases b_{1} and b_{2};
case $\mathrm{b}_{1}:(*)_{1}, \operatorname{not}(*)_{2}$ but
$(*)_{1.5} h(\alpha)$ is a P_{α}-name of a semiproper forcing notion such that $i<\alpha$, $\mathbf{t}_{i}=1 \Rightarrow \boldsymbol{B}^{P_{\alpha}} \lessdot \boldsymbol{B}^{P_{\alpha} * h(\alpha)}$.
Then we let $\mathbf{t}_{\alpha}=0,{\underset{\sim}{Q}}_{\alpha}=h(\alpha) * \operatorname{SSeal}^{V\left[P_{\alpha} * h(\alpha)\right]}\left(\left\langle\boldsymbol{\mathcal { B }}\left[P_{i}\right]: i \leq \alpha, \mathbf{t}_{i}=1\right\rangle, S, \kappa_{\alpha}\right)$, where κ_{α} is the first strongly inaccessible $>\left|P_{\alpha} * h(\alpha)\right|$. $\underline{\text { case } \mathrm{b}_{2}}:(*)_{1}$, not $(*)_{2}$ and not $(*)_{1.5}$.

Then (as in the old case b) $\mathbf{t}_{\alpha}=1, Q_{\alpha}=\operatorname{SSeal}^{V\left[P_{\alpha}\right]}\left(\left\langle\boldsymbol{B}\left[P_{i}\right]: i \leq \alpha, \mathbf{t}_{i}=1\right\rangle, S\right)$.
3) Should be clear.
3.3 Theorem. In 3.1, 3.2 we can add, as a parameter (from V), $\bar{S}=\left\langle S_{1}, S_{2}, S_{3}\right\rangle$ a partition of $\omega_{1}, S=S_{1}$ is a stationary and restrict ourselves to pseudo ($*, S_{3}$)complete forcing, see X 3.10, (so if S_{3} is not stationary this is not a restriction) so if S_{3} is stationary the forcing notions will not be adding reals; i.e.

1) There is a forcing notion P such that:
(i) P satisfies the κ-c.c., does not collapse \aleph_{1}, but collapses every $\lambda \in$ $\left(\aleph_{1}, \kappa\right), \Vdash_{P} " \kappa=\aleph_{2}$ and $2^{\aleph_{0}} \leq \aleph_{2}, 2^{\aleph_{1}}=\aleph_{2}$ and if $S_{3}=\emptyset \bmod \mathcal{D}_{\omega_{1}}$ then $2^{\aleph_{0}}=\aleph_{2} "$ and P is pseudo ($*, S_{3}$)-complete,
(ii) $\mathfrak{B}[P] \mid S_{1}$ is S^{*}-layered, for some stationary $S^{*} \subseteq\left\{\delta<\kappa: \operatorname{cf}(\delta)=\aleph_{1}\right.$ (in $\left.\left.V^{P_{\kappa}}\right)\right\}$,
(iii) in $V^{P}, A x^{+}\left[Q\right.$ semiproper, pseudo $\left(*, S_{3}\right)$-complete collapsing \aleph_{2} and $\left.\mathfrak{B}\left[\left(V^{P_{\kappa}}\right)\right] \lessdot \mathfrak{B}\left[\left(V^{P_{\kappa}}\right)^{Q}\right]\right]$,
(iv) if S_{3} is stationary, the forcing P adds no new reals (so $V^{P} \models C H$).
2) In $3.3(1)$ we can replace " P satisfies the κ-c.c." by " P does not collapse $\kappa "$ and have $\mathfrak{B}\left[P_{1}\right]$ is layered, i.e. $S^{*}=\left\{\delta<\aleph_{2}: \operatorname{cf}(\delta)=\aleph_{1}\right\}\left(\right.$ in $\left.V^{P}\right)$.
3) We can add in 3.3(1): $(P=P_{\kappa}, \bar{Q}=\langle P_{i}, \underbrace{}_{j}, \mathbf{t}_{j}: i \leq \kappa, j<\kappa\rangle$ is S_{1}-suitable and)
(v) in $V^{P}, A x\left[Q\right.$ semiproper, pseudo $\left(*, S_{3}\right)$-complete and $i<\kappa \& \mathbf{t}_{i}=$ $\left.1 \Rightarrow \boldsymbol{B}\left[V^{P_{i}}\right] \lessdot \boldsymbol{\mathfrak { B }}\left[\left(V^{P}\right)^{Q}\right]\right]$.
4) Actually in (3) it suffices "for $i<\kappa,\left(P_{\kappa} / P_{i+1}\right) * \underset{\sim}{Q}$ is semiproper, pseudo $\left(*, S_{3}\right)$-complete and: $j \leq i \& \mathbf{t}_{j}=1 \Rightarrow \mathfrak{B}^{P_{j}} \lessdot V^{P_{\kappa} \times Q}$.
3.3A. Remark. 1) In $3.2(2)(i v)$ and in $3.3(3)(v)$, if we deal with $\mathrm{Ax}\left(\mathrm{Ax}^{+}\right)$it is enough that $Q \lessdot Q^{\prime}, Q^{\prime}$ as there, or more directly, for each $i<\kappa$, there are enough models N as in 2.9.
5) The "solution" of $x / 3.3(3),(4)=3.2(3) / 3.2(2)$ holds.

Proof. 1) Like the proof of 3.1 but we seal only $\mathfrak{B}^{V\left[P_{i}\right]} \upharpoonright S_{1}$ when $\mathbf{t}_{i}=1$ and in $(*)_{2}$ we add " $h(\alpha)$ is pseudo $\left(*, S_{3}\right)$-complete", but we have to check that all
forcing notions Q_{α} are pseudo ($*, S_{3}$)-complete (and use the iteration lemma X 3.11). Now all the sealing forcing notions which we use satisfies this trivially.
2), 3), 4) Similar.
$\square_{3.3}$
3.4. Claim. Suppose $\bar{Q}=\left\langle P_{i},{\underset{\sim}{e}}_{j}: i \leq \kappa, j<\kappa\right\rangle$ is a semiproper iteration, κ strongly inaccessible with $\kappa>\left|P_{i}\right|$ for $i<\kappa$, and lastly $S \subseteq \omega_{1}$ is stationary. Suppose further
(*) (a) for $i<\kappa$, in $V^{P_{i+1}}$, Player II wins $\partial\left(\left\{\aleph_{1}\right\}, \omega, \mathcal{D}_{\kappa}+E_{i}^{+}\right)$where $E_{i}^{+}=$ $\left\{\delta<\kappa: \delta>i, \delta\right.$ strongly inaccessible, $(\forall \alpha<\delta)\left[\left|P_{\alpha}\right|<\delta\right]$ and $\Vdash_{P_{\delta} / P_{i+1}}$ " Q_{δ} is semiproper" $\}$; (for a definition of the game see $1.9 \mathrm{~A}(2)$) so we are assuming $E_{i}^{+} \neq \emptyset \bmod \mathcal{D}_{\kappa}$ in $V^{P_{i+1}}$ for each $i<\kappa$; and let $E^{+}=E_{0}^{+}$.
(b) $E^{*}=\left\{i<\kappa: \Vdash_{P_{i}} " \operatorname{Rss}\left(\aleph_{2}\right)\right.$ and ${\underset{\sim}{2}}_{i}$ semiproper" $\}$ is unbounded in κ.

Then $R_{i+1} \stackrel{\text { def }}{=}\left(P_{\kappa} / P_{i+1}\right) * \operatorname{Nm} * \operatorname{SSeal}\left(\boldsymbol{B}\left[P_{\kappa}\right], S\right)$ is (in the universe $V^{P_{i+1}}, \mathrm{Nm}$ in $V^{P_{\kappa}}$, SSeal in $V^{P_{\kappa} * N m}$ of course) is semiproper for every $i<\kappa$.
3.4A. Remark. (1) Remember that $\mathrm{Nm}=\left\{T: T \subseteq{ }^{\omega>}\left(\aleph_{2}\right)\right.$ is closed under initial segments, is nonempty, and for every $\eta \in T$ we have $|\{\nu: \eta \unlhd \nu \in T\}|=$ $\left.\aleph_{2}\right\}$; ordered by the inverse of inclusion. Clearly $\left\{T\right.$: for $\eta \in T$, $\operatorname{Suc}_{T}(\eta)$ is a singleton or has power $\left.\aleph_{2}\right\}$ is a dense subset, so usually we restrict ourselves to it. For such T_{1} the trunk is the $\eta \in T$ of minimal length such that $\left|\operatorname{Suc}_{T}\left(\eta^{\prime}\right)\right|>1$.
(2) We can use $\mathrm{Nm}(D)$ instead of Nm and even $\mathrm{Nm}^{\prime}, \mathrm{Nm}^{\prime}(D)$.
(3) We can replace Nm by any forcing notion satisfying, e.g. pseudo $(*, S)$ completeness (see X $3.9,10$) or the \mathbb{I}-condition (see Chapter XI) where $\mathbb{I} \in V$ is a family of κ-complete normal ideals or even $U P(\mathbb{I})$, see Chapter XV.
(4) Instead of $(*)(\mathrm{b})$ we can have "largeness" demands on κ. We need it to make $\left(P_{\kappa} / P_{j}\right) * \operatorname{seal}(\Xi)$ semiproper for $j \in E^{+}, \Xi$ a maximal antichain of \mathfrak{B} from $V^{P_{\kappa}}$.
(5) Note that $\vdash_{P_{\kappa}} " \operatorname{cf}(\delta)=\aleph_{0}$ " is not forbidden in the definition of E_{i}^{+}; we can in clause (a) of $(*)$ of 3.4 in the game allow pressing down functions (see $1.9 \mathrm{~A}(4))$, add $\Vdash_{P_{\delta+1}} " \operatorname{cf}(\delta)=\aleph_{1}$ "; in the proof below we strengthen the
definition of $j \in E_{\eta}^{0}$ by $j=\min \left(N_{\eta, j} \cap \kappa \backslash N_{\eta}\right)$ and demand E_{η}^{0} to be stationary and this somewhat simplify the proof.

Proof. We work in $V^{P_{i+1}}$ so let $G_{i+1} \subseteq P_{i+1}$ be generic over V. Let λ be regular and large enough, $N \prec\left(H(\lambda)\left[G_{i+1}\right], \in,<_{\lambda}^{*}\right)$ countable, $i \in N, \kappa \in N, \kappa \in$ $N, \bar{Q} \in N$ and $\left(p^{a},{\underset{\sim}{p}}^{b},{\underset{\sim}{p}}^{c}\right) \in R_{i+1} \cap N$.

We shall choose below $q_{\langle \rangle} \in P_{\kappa} / P_{i+1}$ which is $\left(N, P_{\kappa} / P_{i+1}\right)$-semi-generic, $p^{a} \leq q_{(\rangle}$and $G_{\kappa} \subseteq P_{\kappa}$ generic over V containing $G_{i+1} \cup\left\{q_{(\rangle}\right\}$.

We now, in $V\left[G_{\kappa}\right]$ (but G_{κ} is defined only during the definition for $n=0$) define by induction on $n, T_{n}, N_{\eta}\left(\eta \in T_{n}\right)$ such that:
(A) $T_{n} \subseteq{ }^{n \geq} \kappa$,
(B) $T_{0}=\{\langle \rangle\}$,
(C) $\left(\forall \nu \in T_{n+1}\right)\left[\nu\left\lceil n \in T_{n}\right]\right.$ and $T_{n+1} \cap{ }^{n \geq} \kappa=T_{n}$,
(D) $\left(\forall \eta \in T_{n}\right)\left[\left\{i: \eta^{\wedge}\langle i\rangle \in T_{n+1}\right\}\right.$ has power $\left.\kappa\right]$,
(E) $N\left[G_{\kappa}\right] \cap H(\lambda)\left[G_{i+1}\right]<_{\omega_{2}} N_{\langle \rangle} \prec\left(H(\lambda)\left[G_{i+1}\right], \in,<_{\lambda}^{*}, G_{\kappa}\right)$ and $N_{\langle \rangle}$is countable and $\left(p^{a},{\underset{\sim}{p}}^{b},{\underset{\sim}{p}}^{c}\right) \in N_{\langle \rangle}$and $\bar{Q} \in N_{\langle \rangle}$, (note, abusing notation we do not distinguish strictly between $N_{\langle \rangle}$and ($\left.N_{\langle \rangle}, G_{\kappa} \cap N_{\langle \rangle}\right)$and similarly for N_{η})
(F) for $\eta \in T_{n+1}$ the model $N_{\eta} \prec\left(H(\lambda)\left[G_{i+1}\right], \in,<_{\lambda}^{*}, G_{\kappa}\right)$ is countable, extends $N_{\eta \upharpoonright n}$, and $N_{\eta \upharpoonright n}<_{\kappa} N_{\eta}$,
(G) $\eta \in N_{\eta}$,
(H) If Ξ is a P_{κ} / P_{i+1}-name of a dense subset of $\mathfrak{B}\left(P_{\kappa}\right), \Xi \in N_{\eta}$ and $\eta \in T_{n}$, then for some natural number $k=k(\Xi, \eta)$ and every ν : if $\eta \unlhd \nu \in T_{n+k}$ then:

$$
\left(\exists \underset{\sim}{A} \in N_{\nu}\right)\left[\underset{\sim}{A} \in \underset{\sim}{\Xi} \& \underset{\sim}{A} \mathrm{a}\left(P_{\kappa} / P_{i+1}\right) \text { - name } \& N \cap \omega_{1} \in \underset{\sim}{A}\left[G_{\kappa}\right]\right],
$$

(I) E_{η}^{0} is a stationary subset of κ, where

$$
\begin{aligned}
E_{\eta}^{0} \stackrel{\text { def }}{=}\{j<\kappa: & N_{\eta}<_{\kappa} N_{\eta, j} \text { where } N_{\eta, j} \text { is the Skolem Hull } \\
& \text { of } N_{\eta} \cup\{j\} \text { in }\left(H(\lambda)\left[G_{i+1}\right], \in,<_{\lambda}^{*}, G_{\kappa}\right) \text { and } \\
& j \text { is strongly inaccessible in } V \text { and } \\
& \left.(\forall i<j)\left[\left|P_{i}\right|<j\right] \text { and } \Vdash_{P_{j}} \text { " } Q_{j}\left[G_{j}\right] \text { is semiproper }\right\} " .
\end{aligned}
$$

Now in carrying out the definition, (H) involves standard bookkeeping.
For $n=0$ (we start to work in $V\left[G_{i+1}\right]$) our main problem is satisfying (I). We shall now define $q_{\langle \rangle}$. For $j<\kappa$, let N_{j} be the Skolem Hull of $N \cap\{j\}$ in $\left(H(\lambda)\left[G_{i+1}\right], \in,<_{\lambda}^{*}\right)$. By $(*)($ a $)$ and XII 2.6.
$E^{1}=\left\{j<\kappa: N<_{\omega_{2}} N_{j}, j\right.$ strongly inaccessible, $\left|P_{i}\right|<j$ for every $i<j$ and $\vdash_{P_{j} / P_{i+1}}$ " Q_{j} is semiproper" $\}$
is a stationary subset of κ. So by the Fodor lemma [as $\delta \in E^{1} \Rightarrow \operatorname{cf}(\delta)>\aleph_{0}$ in $V\left[G_{i+1}\right]$ and $\left.\mu<\kappa \Rightarrow \mu^{\aleph_{0}}<\kappa\right]$ we know that for some stationary $E^{2} \subseteq$ $E^{1},\left\langle N_{j}: j \in E^{2}\right\rangle$ form a Δ-system; let $\cap\left\{N_{j}: j \in E^{2}\right\}$ be $N_{(\rangle}^{\prime}$. For $j \in E^{2}$ let $q_{j} \in P_{\kappa} / P_{i+1}$ be $\left(N_{j}, P_{\kappa} / P_{i+1}\right)$-semi-generic and above p^{a}. Now we know that $P_{j}=\bigcup_{\zeta<j} P_{\zeta}$, hence by the Fodor Lemma w.l.o.g. $q_{j} \upharpoonright j$ is constant, so let this constant value be called $q_{\langle \rangle}$. Clearly $q_{(\rangle}$is $\left(N_{\langle \rangle}^{\prime}, P_{\kappa} / P_{i+1}\right)$-semi-generic and it is the $q_{\langle \rangle}$which we promised. Now we actually choose G_{κ} i.e. a subset of P_{κ} generic over V and including $G_{i+1} \cup\left\{q_{\langle \rangle}\right\}$. Let $N_{\langle \rangle}=N_{\langle \rangle}^{\prime}\left[G_{\kappa}\right] \cap H(\lambda)\left[G_{i+1}\right]$. So $N_{\langle \rangle} \prec\left(H(\lambda)\left[G_{i+1}\right], \in,<_{\lambda}^{*}\right)$, moreover $\left(N_{\langle \rangle}, G_{\kappa} \cap N_{\langle \rangle}\right) \prec\left(H(\lambda)\left[G_{i+1}\right], \in,<_{\lambda}^{*}\right.$,$\left.G_{\kappa}\right)$ so $N_{\langle \rangle}$) is as required in clause (E). As for clause (I), by the genericity of G_{κ} we have $\left\{j \in E^{2}: q_{j} \in G_{\kappa}\right\}$ is unbounded in κ (even stationary) and it include E_{η}^{0} (think).
For $n>0$ assume N_{η} are defined, $\ell g(\eta)=n-1$. Clearly, as P_{κ} satisfies the κ-c.c., for some $\varepsilon_{\eta}<\kappa$ we have $\left\langle N_{\eta \upharpoonright \ell}: \ell \leq \ell g(\eta)\right\rangle$ belongs to $V\left[G_{\varepsilon_{\eta}}\right]$ and ε_{η} is a successor ordinal $>\sup \left(N_{\eta} \cap \kappa\right)$. By (I), E_{η}^{0} is a stationary subset of κ, and we shall define $E_{\eta}^{1} \supseteq E_{\eta}^{0}$ stationary and will let

$$
T_{\ell g(\eta)+1} \cap\left\{\nu: \eta \triangleleft \nu \in{ }^{(n+1)} \kappa\right\}=\left\{\eta^{\wedge}\langle j\rangle: j \in E_{\eta}^{1}\right\}
$$

So $T_{\ell g(\eta)+1}$ will really be constructed as required.

Actually E_{η}^{0} is the interpretation of some $P_{\kappa} / G_{\varepsilon_{\eta}}$-name $\underset{\sim}{E}{ }_{\eta}^{0}$ forced to be as above: just read the definition in clause (I). W.l.o.g. some member of $G_{\varepsilon_{\eta}}$ force $\left(\Vdash_{P_{\kappa}}\right)$ that $N, \underset{\sim}{E}{ }_{\eta}^{0}$ are as above.

In $V\left[G_{\kappa}\right]$ for each $\gamma \in E_{\eta}^{0}=\underset{\sim}{E}\left[G_{\kappa}^{0} / G_{\varepsilon_{\eta}}\right]$ there is $q_{\eta, \gamma}^{1} \in G_{\kappa} / G_{\varepsilon_{\eta}}$ such that $q_{\eta, \gamma}^{1} \Vdash " \gamma \in \underset{\sim}{E}{ }_{\eta}^{0}$ ". So in $V\left[G_{\kappa}\right]$, for some $q_{\eta}^{2} \in G_{\kappa}$ we have $\left\{\gamma \in E_{\eta}^{0}: q_{\eta, \gamma}^{1}\left\lceil\gamma=q_{n}^{2}\right\}\right.$ is stationary. As we can increase ε_{η} w.l.o.g. $q_{\eta}^{2} \in G_{\varepsilon_{\eta}}$. In $V\left[G_{\varepsilon_{\eta}}\right]$ we define

$$
\begin{gathered}
E_{\eta}^{1}=\left\{\gamma: \text { there is } q=q_{\eta, \gamma}^{3} \text { such that } q_{\eta, \gamma}^{3} \upharpoonright \gamma=q_{\eta}^{1}\right. \text { and } \\
\left.\qquad q_{\eta, \gamma}^{3} \vdash_{P_{\kappa} / G_{\varepsilon_{\eta}}} " \gamma \in \underset{\sim}{E}{ }_{\eta}^{0 "}\right\},
\end{gathered}
$$

so $E_{\eta}^{1} \in V\left[G_{\varepsilon_{\eta}}\right], E_{\eta}^{1} \supseteq E_{\eta}^{0}$ hence E_{η}^{1} is stationary.
So, in $V\left[G_{\kappa}\right], N_{\eta, \gamma}^{0}=$ the Skolem Hull of $N_{\eta} \cup\{\gamma\}$ in $\left(H(\lambda)\left[G_{i+1}\right], \in\right.$ $,<_{\lambda}^{*}, G_{\kappa}$), clearly $N_{\eta, \gamma}^{0} \subseteq N_{\eta, \gamma}$ (as G_{γ} is definable from G_{κ} and γ) hence $N_{\eta}<{ }_{\kappa} N_{\eta, \gamma}^{0}$. Also for every $x \in N_{\eta, \gamma}^{0}$ for some function $f \in N_{\eta}, \operatorname{Dom}(f)=\kappa$, $f(\gamma)$ is a P_{γ}-name of a member of $H(\lambda)$ and $x=f(\gamma)\left[G_{\gamma}\right]$.

But P_{γ} satisfies the γ-c.c., hence $f(\gamma)$ is a P_{β}-name for some $\beta<\gamma$ and let $h_{f}(\gamma)<\gamma$ be minimal such β so $h_{f}(\gamma) \in N_{\eta, \gamma}^{0}$, but as $N_{\eta}<_{\kappa} N_{\eta, \gamma}^{0}$, it follows that $h_{f}(\gamma) \in N_{\eta}$, so $\sup _{f \in N_{\eta}}\left(h_{f}(\gamma)\right)<\gamma$, hence, increasing ε_{η} and decreasing E_{η}^{1} (preserving their properties) w.l.o.g. we have $N_{\eta, \gamma}^{0} \in V\left[G_{\varepsilon_{\eta}}\right]$.

For $\gamma \in E_{\eta}^{1}$, choose any $G_{\gamma+1}^{\prime}$ such that $q_{\eta, \gamma}^{3} \upharpoonright(\gamma+1) \in G_{\gamma+1}^{\prime}, G_{\gamma} \subseteq G_{\gamma+1}^{\prime}$ and $G_{\gamma+1}^{\prime}$ is generic over V. Let our bookkeeping give us $\Xi_{\eta} \in N_{\eta} \subseteq N_{\eta, \gamma}^{0}$, a P_{κ}-name of a pre-dense subset of $\boldsymbol{B}\left[P_{\kappa}\right]$.
We shall now prove that condition (a) of 2.12 holds for the iteration

$$
\left\langle P_{j} / G_{\gamma+1}^{\prime},{\underset{\sim}{2}}_{j}: \gamma+1 \leq j<\kappa\right\rangle
$$

and any non-limit ordinal (denoted by i in 2.12) in the universe $V\left[G_{\gamma+1}^{\prime}\right]$.
Let $\xi \in[\gamma+1, \kappa)$ be a non-limit (or just ${\underset{\sim}{\xi}}_{\xi}$ semiproper). By (*)(b) from the assumptions of 3.4 we can find $\gamma(\xi) \in E^{*}, \xi<\gamma(\xi)<\kappa$, such that:

$$
\Vdash_{P_{\gamma(\xi)}} " \operatorname{Rss}\left(\aleph_{2}^{V_{\gamma(\xi)}}\right) \text { and } Q_{\gamma(\xi)} \text { is semiproper". }
$$

Now $\left(P_{\kappa} / P_{\gamma(\xi)}\right) * \operatorname{seal}(\Xi)$ does not destroy stationary subsets of ω_{1} (as $P_{\kappa} / P_{\gamma(\xi)}$ is semiproper and Ξ is pre-dense so that $\operatorname{seal}(\underset{\sim}{\Xi})$ preserves stationary subsets of $\left.\omega_{1}\right)$; so because $\gamma(\xi) \in E^{*}$ this forcing is semiproper by $1.7(3)$. As Q_{ξ} is semiproper, $P_{\gamma(\xi)} / P_{\xi}$ is semiproper. Hence $\left(P_{\kappa} / P_{\xi}\right) *$ seal (Ξ) is semiproper. So condition (a) of 2.12 holds, hence condition (b) of 2.12 holds. Let $N_{\eta, \gamma}^{1}$ be the Skolem hull of $N_{\eta, \gamma}^{0}$ in $\left(H(\lambda)^{V\left[G_{i+1}\right]}, \in,<_{\lambda}^{*}, G_{\gamma+1}^{\prime}\right)$. Note that $q_{\gamma, \eta}^{3} \Vdash$ " $N_{\eta, \gamma}^{0} \prec N_{\eta, \gamma}^{1} \subseteq N_{\eta, \gamma}$ ", hence $q_{\eta, \gamma}^{3} \Vdash$ " $N_{\eta} \prec N_{\eta, \gamma}^{0} \prec N_{\eta, \gamma}^{1} \prec N_{\eta, \gamma}$ and $N_{\eta} \cap \kappa=N_{\eta, \gamma}^{0} \cap \gamma=N_{\eta, \gamma}^{1} \cap \sup \left(N_{\eta} \cap \kappa\right) \subseteq \kappa \prime$.
Now by 2.12(b) applied in $V\left[G_{\gamma+1}^{\prime}\right]$, there is countable model $N_{\eta, \gamma}^{2}$ satisfying $N_{\eta, \gamma}^{2} \prec\left(H(\lambda)^{V\left[G_{i+1}\right]}, \in,<_{\lambda}^{*}, G_{\gamma+1}^{\prime}\right)$ such that $N_{\eta, \gamma}^{1}<_{\gamma+1} N_{\eta, \gamma}^{2}$ (remember $0.1(9)$, and $\Vdash_{P_{\gamma+1}}$ " $\gamma<\aleph_{2}$ ") and $q_{\eta, \gamma}^{4} \in P_{\kappa} / G_{\gamma+1}$ and $j_{\eta, \gamma}<\kappa$ successor such that:
(i) $q_{\eta, \gamma}^{4} \dot{\in} P_{j_{\eta, \gamma}} / G_{\gamma+1}^{\prime}, \gamma<j_{\eta, \gamma} \in N_{\eta, \gamma}^{2}$,
(ii) $q_{\eta, \gamma}^{4} \geq q_{\eta, \gamma}^{3}$,
(iii) $q_{\eta, \gamma}^{4}$ is $\left(N_{\eta, \gamma}^{2}, P_{j_{\eta, \gamma}}\right)$-semi-generic, and
(iv) $q_{\eta, \gamma}^{4} \vdash_{P_{j_{\eta}, \gamma} / P_{\gamma+1}}$ "for some $\underset{\sim}{A} \in N_{\eta, \gamma}^{2}$ we have: $\underset{\sim}{A} \in \Xi_{\underset{\sim}{\Xi}}^{\eta}$ and $N \cap \omega_{1} \in \underset{\sim}{A}$ " and $\underset{\sim}{A}$ is a $P_{j_{n, \gamma}}$-name.
Also by $(*)(\mathrm{a})$ of the assumption of 3.4 , there is $\xi_{\eta, \gamma}>\sup \left(N_{\eta, \gamma}^{2} \cap \kappa\right)>\gamma$ strongly inaccessible, such that $\bigwedge_{\xi<\xi_{\eta, \gamma}}\left|P_{\xi}\right|<\xi_{\eta, \gamma}$, and $N_{\eta, \gamma}^{3}=$ Skolem Hull of $N_{\eta, \gamma}^{2} \cup\left\{\xi_{\eta, \gamma}\right\}$ in $\left(H(\lambda)\left[G_{\gamma+1}\right], \in, G_{\gamma+1}^{\prime}<_{\lambda}^{*}\right)$ satisfyies $N_{\eta, \gamma}^{2}\left[G_{\gamma+1}^{\prime}\right]<_{\kappa} N_{\eta, \gamma}^{3}$ and $q_{\eta, \gamma}^{4} \in P_{\xi_{\eta, \gamma}}$. Back to $V\left[G_{\gamma}\right]$, let $N_{\eta, \gamma}^{4}$ be the Skolem Hull of $N_{\eta, \gamma}^{1} \cup\left\{\gamma, \xi_{\eta, \gamma}\right\}$ in $\left(H(\lambda)\left[G_{i+1}\right], \in,<_{\lambda}^{*}, G_{\varepsilon_{\eta}}\right)$, and $q_{\eta, \gamma}^{5} \in P_{\xi_{\eta, \gamma}} / G_{\varepsilon_{\eta}}$ forces all the above and in particular is above q_{η}^{3} and $q_{\eta, \gamma}^{4}$. In addition $q_{\eta, \gamma}^{5} \upharpoonright[\gamma+1, \kappa)=q_{\eta, \gamma}^{4} \upharpoonright[\gamma+1, \kappa)=$ $q_{\eta, \gamma}^{4} \upharpoonright\left\lceil\gamma+1, \xi_{\eta, \gamma}\right)$, and $q_{\eta, \gamma}^{5} \upharpoonright(\gamma+1) \in G_{\gamma+1}^{\prime}$, so $q_{\eta, \gamma}^{4} \upharpoonright \varepsilon_{\eta} \in G_{\varepsilon_{\eta}}$ and $N_{\eta} \prec N_{\eta, \gamma}^{4}$, $\gamma \in N_{\eta, \gamma}^{4}, N_{\eta} \cap \kappa=N_{\eta} \cap \gamma=N_{\eta, \gamma}^{4} \cap \sup \left(N_{\eta} \cap \kappa\right)$, and

$$
\begin{aligned}
& q_{\eta, \gamma}^{4} \Vdash \text { "the Skolem Hull } N_{\eta, \gamma}^{5} \text { of } N_{\eta, \gamma}^{4} \text { in }\left(H(\lambda)^{V\left[G_{i+1}\right]}, \in,<_{\lambda}^{*},{\underset{\gamma}{\gamma+1}}^{G_{\gamma}}\right) \\
& \text { satisfies } N_{\eta, \gamma}^{5} \cap \sup \left(N_{\eta} \cap \kappa\right)=N_{\eta} \cap \kappa \text { ", }
\end{aligned}
$$

hence

$$
\begin{aligned}
& q_{\eta, \gamma}^{5} \text { ॥ "the Skolem Hull } N_{\eta, \gamma}^{6} \text { of } N_{\gamma, \gamma}^{4} \text { in }\left(H(\lambda)^{V\left[G_{i+1}\right]}, \in,<_{\lambda}^{*}, G_{\gamma+1}\right) \\
& \quad \text { satisfies } N_{\eta, \gamma}^{6} \cap \sup \left(N_{\eta} \cap \kappa\right)=N_{\eta} \cap \kappa\left(\text { as } V\left[G_{\gamma+1}\right] \vDash|\gamma|=\aleph_{1}\right) \text { ". }
\end{aligned}
$$

(looking at the definition of $\underset{\sim}{E} 0$ in clause (I) above). As we can increase ε_{η} and decrease E^{2}, w.l.o.g. $q_{\eta}^{5}\left\lceil\gamma \in G_{\varepsilon_{\eta}}\right.$ and $q_{\eta}^{5}\left\lceil\gamma\right.$ is the same for all $\gamma \in E^{2}$.

Now as $q_{\eta, \gamma}^{5} \in P_{\kappa} / G_{\varepsilon_{\eta}}$ and $q_{\eta, \gamma}^{5} \upharpoonright \gamma \in G_{\varepsilon_{\eta}}$, easily $\Vdash_{P_{\kappa} / G_{\varepsilon_{\eta}}}$ " ${\underset{\sim}{\eta}}_{1} \stackrel{\text { def }}{=}\left\{\gamma: q_{\eta, \gamma}^{5} \in\right.$ \left.${\underset{\sim}{*}}_{\kappa}\right\}$ is a stationary subset of κ ", so we have defined at least $\underset{\sim}{E}{ }_{\eta}^{1}$. Now in $V\left[G_{\kappa}\right]$, if $\gamma \in \underset{\sim}{E}{ }_{\eta}^{1}\left[G_{\kappa}\right]$ then $\gamma \in E_{\eta}^{0}$ (see above). We still have to define $N_{\eta}{ }^{\wedge}\langle\gamma\rangle$ and $E_{\eta^{\wedge}\langle\gamma\rangle}^{0}\left(\right.$ for $\left.\gamma \in \underset{\sim}{E} \eta_{\eta}^{1}\left[G_{\kappa}\right]\right)$. For each such γ we repeat the proof in the case $n=0$ with universe $V\left[G_{\xi_{\eta, \gamma}}\right]$ and Skolem Hull of $N_{\eta, \gamma}^{4}$ in $\left(H(\lambda)^{V\left[G_{i+1}\right]}, \in,<_{\lambda}^{*}, G_{\xi_{\eta, \eta}}\right)$ here standing for $V\left[G_{i+1}\right], N$ there.

We have carried out the construction.
We now define by induction on n, for every $\eta \in T \cap{ }^{n} \kappa$, a condition $p_{\eta}^{b} \in \mathrm{Nm}$ and $m_{\eta}<\omega$ such that (note $N_{\eta}\left[G_{\kappa}\right] \prec\left(H(\lambda)\left[G_{\kappa}\right], \in,<_{\kappa}^{*}\right), N_{\eta}\left[G_{\kappa}\right] \cap$ $\left.H(\lambda)\left[G_{i+1}\right]=N_{\eta}\right):$
(a) $p_{\eta}^{b} \in N_{\eta}\left[G_{\kappa}\right], m_{\eta}<\omega$ and $p_{\langle \rangle}^{b}={\underset{\sim}{p}}_{b}^{b}\left[G_{\kappa}\right]$,
(b) $p_{\eta}^{b} \in \mathrm{Nm}$, and $\operatorname{tr}\left(p_{\eta}^{b}\right)$ (the trunk of p_{η}^{b}) has length $\geq \ell \mathrm{g}(\eta)$ (and has κ immediate successors in p_{η}^{b}),
(c) $p_{\eta \upharpoonright \ell}^{b} \leq p_{\eta}^{b}$ and $m_{\eta \upharpoonright \ell} \leq m_{\eta}$ when $\ell \leq \ell g(\eta)$; and if $p_{\eta \upharpoonright \ell}^{b}$ has a trunk of length $>\ell \mathrm{g}(\eta)$ or $m_{\eta \upharpoonright \ell}>\ell \mathrm{g}(\eta)$ then: $p_{\eta}^{b}=p_{\eta \upharpoonright \ell}^{b} \& m_{\eta}=m_{\eta \upharpoonright \ell}$,
(d) if $\eta \in T_{n}, \underset{\sim}{\alpha}$ is a Nm-name for a countable ordinal, $\underset{\sim}{\alpha} \in N_{\eta}[G]$, then for some $k=k^{1}(\underset{\sim}{\alpha}, \eta)$, and every $\nu \in \underset{m<\omega}{\bigcup_{m}} T_{m}$, for some ordinal $\beta=\beta(\underset{\sim}{\alpha}, \nu) \in$ N_{ν} we have
$k+1=\left|\left\{\ell<\ell \mathrm{g}(\nu): m_{\nu \upharpoonright \ell}<m_{\nu \mid(\ell+1)}\right\}\right| \& \eta \unlhd \nu \Rightarrow p_{\nu}^{b} \Vdash_{\mathrm{Nm}} \quad$ " $\alpha=\beta(\underset{\sim}{\alpha}, \nu) "$,
(e) if $\eta \in T_{n}$ and Ξ is a Nm-name for a pre-dense subset of $\boldsymbol{B}\left[P_{\kappa}\right]$ and $\Xi \in N_{\eta}\left[G_{\kappa}\right]$, then for some $k=k^{2}(\Xi, \eta)$, for every $\nu \in \bigcup_{m<\omega} T_{m}$ we have:
$\left[k+1 \leq\left|\left\{\ell<\ell \mathrm{g}(\nu): m_{\nu \mid \ell}<m_{\nu \upharpoonright(\ell+1)}\right\}\right| \& \eta \unlhd \nu\right]$
\Rightarrow [for some $A \in N_{\nu}\left[G_{N_{m}}\right]$ we have $N \cap \omega_{1} \in A \& p_{\nu}^{b} \Vdash_{\mathrm{Nm}}$ " $\left.A \in \underset{\sim}{\Xi} "\right]$.
(f) if p_{η}^{b} has a trunk of length $\leq \ell g(\eta)$, say ν_{η}, and $m_{\eta} \leq \ell g(\eta)$ and if h_{η} is a one-to-one function from κ onto $\left\{j<\kappa: \nu_{\eta}{ }^{\wedge}\langle j\rangle \in p_{\eta}^{b}\right\}, h_{\eta} \in N_{\eta}\left[G_{\kappa}\right]$, then
for $\eta^{\wedge}\langle i\rangle \in \bigcup_{n} T_{n}$ we have:

$$
\left.\left(\forall \rho \in p_{\eta}^{b} \wedge\langle i\rangle\right)[\ell g(\rho)>\ell g(\eta)) \Rightarrow \rho(\ell g(\eta))=h_{\eta}(i)\right],
$$

(g) for $\eta \in T_{n}$ we have: the sequences $\left\langle k^{1}(\underset{\sim}{\alpha}, \eta): \underset{\sim}{\alpha} \in N_{\eta}\left[G_{\kappa}\right]\right.$ is a Nm-name of a countable ordinal \rangle and $\left\langle k^{2}(\underset{\sim}{\Xi}, \eta): \underset{\sim}{\Xi} \in N_{\eta}\left[G_{\kappa}\right]\right.$ is a Nm-name of a predense subset of $\left.\boldsymbol{B}\left[P_{\kappa}\right]\right\rangle$ are with no repetitions, with disjoint ranges whose union is a co-infinite subset of ω [Why the m_{η} 's? just as below Υ depend on p_{η}^{b}].

There is no problem to do this. [For (e), when we come to deal with $\underset{\sim}{\Xi}$, say at η, where p_{η}^{b} has trunk of length $\leq \ell g(\eta)$ and $m_{\eta} \leq \ell g(\eta)$, we let

$$
\Upsilon=\left\{A:(\exists p)\left(p_{\eta}^{b} \leq p \in \operatorname{Nm} \& p \vdash_{\mathrm{Nm}} \text { " } A \in \underset{\Xi}{\Xi} \text { " }\right)\right\} .
$$

So $\Upsilon \in N_{\eta}\left[G_{\kappa}\right]$ is a pre-dense subset of $\mathfrak{B}\left(P_{\kappa}\right)$, and by (H) above there is $k(\underset{\sim}{\boldsymbol{Y}}, \rho)$ as there, choose it as $k^{2}(\underset{\sim}{\Xi}, \eta)$, so we shall have $p_{\nu}^{b}=p_{\rho}^{b}$ if $\nu \triangleleft \rho \in$ $\left.T_{\ell g(\rho)}^{\prime}, \ell \mathrm{g}(\rho) \leq \ell \mathrm{g}(\nu)+k^{2}(\Xi, \eta).\right]$

Now in $V^{P_{\kappa}}$ let:

$$
\begin{gathered}
q^{b}=\left\{\rho \in{ }^{\omega>} \kappa: \rho \in{\underset{\sim}{p}}^{b}\left[G_{\kappa}\right] \text { and for some } \eta \in \bigcup_{n} T_{n}, \rho\right. \text { is an initial segment } \\
\text { of the trunk of } \left.p_{\eta}^{b}\right\} .
\end{gathered}
$$

We can easily see that $p^{b} \leq q^{b} \in \mathrm{Nm}$ (in $V\left[G_{\kappa}\right]$). Also (in $V\left[G_{\kappa}\right]$) q^{b} is $\left(N\left[G_{\kappa}\right], \mathrm{Nm}\right)$-semi-generic and moreover

$$
q^{b} \Vdash_{\mathrm{Nm}} \quad " \kappa \cap N\left[G_{\kappa}\right]\left[G_{N \mathrm{Nm}}\right]=\kappa \cap \bigcup_{l<\omega} N_{\underline{\nu} \mid \iota}\left[G_{\kappa}\right] ",
$$

where G_{Nm} is the (canonical name of the) generic subset of Nm and $\underset{\sim}{\eta}$ is the Nm-name of the ω-sequence in ${ }^{\omega} \kappa$ which it defines naturally and $\underset{\sim}{\nu}$ is the Nmname of the ω-sequence in ${ }^{\omega} \kappa$ such that $\nu\left\lceil\eta \in T_{n}\right.$ and the trunk of $p_{\nu \upharpoonright \eta}^{b}$ is $\triangleleft \eta$. [Remember that if $N_{1}, N_{2} \prec(H(\lambda), \in), N_{1} \cap \omega_{1}=N_{2} \cap \omega_{1}$, and $i \in N_{1} \cap N_{2}, i<$ \aleph_{2}, then $N_{1} \cap i=N_{2} \cap i$.] Hence $q^{b} \Vdash_{N_{m}} " \mathcal{P}\left(\omega_{1}\right)^{V\left[G_{\kappa}\right]} \cap N\left[G_{\kappa}\right]\left[G_{N m}\right]=$ $\mathcal{P}\left(\omega_{1}\right)^{V\left[G_{\kappa}\right]} \cap \bigcup_{l<\omega} N_{\underline{\nu} \mid l[}\left[G_{\kappa}\right] "$.

Now clearly by the above and (e) we have
$q^{b} \Vdash_{\mathrm{Nm}}$ "for every pre-dense subset Ξ of $\mathfrak{B}\left[P_{\kappa}\right]$ in $N\left[G_{\kappa}\right]\left[G_{\mathrm{Nm}}\right]$,

$$
N \cap \omega_{1} \in \bigcup_{A \in \Xi}\left\{A: A \in \Xi \cap N\left[G_{\kappa}\right]\left[G_{N \mathrm{Nm}}\right]\right\} "
$$

So we can apply Claim 2.9 to get q^{c}, which is $\left(N\left[G_{\kappa}\right]\left[G_{\mathrm{Nm}}\right]\right.$, $\left.\operatorname{SSeal}\left(\boldsymbol{B}\left[P_{\kappa}\right], S\right)\right)$ -semi-generic $\geq \underset{\sim}{p}{ }^{c}\left[G_{\kappa}\right][{\underset{\sim}{N m}}]$. Let $q^{a}=q_{(\rangle}$so we are assuming just $q^{a} \in$ $G_{\kappa} \subseteq P_{\kappa}, G_{\kappa}$ generic over V and so for some P_{κ}-name $\underset{\sim}{q}$, we have: $q^{a} \Vdash^{\vdash_{P_{\kappa}}}$ " $\tilde{\sim}^{b}$ is as above ". Similarly for some $q^{c},\left(q^{a},{\underset{\sim}{q}}^{b}\right) \Vdash_{\left(P_{\kappa} / P_{i+1}\right) * \mathrm{Nm}} " q^{c}$ is as above". Now $\left(q^{a}, q_{\sim}^{b}, q^{c}\right)$ is as required (i.e., $\left(R_{i+1}, N\right)$-semi-generic).
3.4B Remark. It seems that we can weaken clause (a) of $(*)$ of 3.1 to $(\mathrm{a})^{\prime}$ for $i<\kappa$ in $V^{P_{i+1}}$, player II wins in the game $\partial\left(\left\{\aleph_{1}\right\}, \omega, \kappa\right)$.

See [Sh:311]
3.5 Claim. Suppose $\bar{Q}=\left\langle P_{i},{\underset{\sim}{~}}_{j}: i \leq \kappa, j<\kappa\right\rangle$ is a semiproper iteration, $\kappa>\left|P_{i}\right|$ for $i<\kappa$ and $S \subseteq \omega_{1}$ is stationary. Suppose further that
$(*)$ (a) for $i<\kappa$, in $V^{P_{i}}$, Player II wins in $\partial\left(\left\{\aleph_{1}\right\}, \omega, \mathcal{D}_{\kappa}+E_{i}^{+}\right)$where $E_{i}^{+}=\{\delta<$ $\kappa: \delta>i, \delta$ strongly inaccessible, $\Vdash_{P_{\delta} / P_{i}}$ " Q_{δ} is semiproper" $\}$,
(b) $E=\left\{i<\kappa: \Vdash_{P_{i}} " \operatorname{Rss}\left(\aleph_{2}\right)\right.$ and ${\underset{\sim}{i}}_{i}$-semiproper" $\}$ is unbounded,
(c) It is forced $\left(\Vdash_{P_{\kappa}}\right)$ that $\underset{\sim}{W} \subseteq\left\{\delta<\kappa: V^{P_{\kappa}} \models " \operatorname{cf}(\delta)=\aleph_{0} "\right\}$ is stationary ($\underset{\sim}{W}$ a P_{κ}-name).

Then $\left(P_{\kappa} / P_{i+1}\right) * \operatorname{club}_{\aleph_{1}}(\underset{\sim}{W}) * \operatorname{SSeal}\left(\boldsymbol{B}\left(P_{\kappa}\right), S\right)$ is semiproper for $i<\kappa$ where $\operatorname{club}_{\mu}(W) \stackrel{\text { def }}{=}\{f:$ for some non-limit $\gamma<\mu, f$ is an increasing continuous function from γ into W \}.

Proof. Like the previous claim, only after defining N_{η} for a set $G_{\kappa} \subseteq P_{\kappa}$ generic over $V, q_{(\rangle)} \in G_{\kappa}$, in $V\left[G_{\kappa}\right]$ there is $\eta \in{ }^{\omega} \kappa, \bigwedge_{n}\left(\eta \upharpoonright n \in T_{n}\right)$ such
that $\eta(\ell)>\sup \left(N_{\eta \upharpoonright \ell} \cap \kappa\right)$ and $\sup \{\eta(\ell): \ell<\omega\}$ belong to $\underset{\sim}{W}\left[G_{\kappa}\right]$ and then in $V\left[G_{\kappa}\right]$ continue with $\bigcup_{\ell} N_{\eta \mid \ell}[G]$.
3.5A Remark. 3.5, 3.4 are cases of a more general theorem, see XV.
3.6 Claim. In 3.4, 3.5, if we add to the hypothesis:
(*) player II wins in $V^{P_{i}}(i<\kappa)$, for \mathcal{D}_{κ} in the game of "divide and choose" i.e. X 4.9 for $S=\left\{2, \aleph_{0}, \aleph_{1}\right\}, \alpha=\omega$,
$(*)^{\prime}$ for $i<j<\kappa$ non-limit, P_{j} / P_{i} is pseudo ($*, \omega_{1} \backslash S^{*}$)-complete, then $\left(P_{\kappa} / P_{i+1}\right) * N \mathrm{Nm}$ and $\left(P_{\kappa} / P_{i+1}\right) * \underline{\operatorname{club}}_{\mathrm{N}_{1}}(\underset{\sim}{W})$ are pseudo $\left(*, \omega_{1} \backslash S^{*}\right)$ complete.

Proof. Left to the reader.
3.7 Theorem. 1) Suppose $\{\mu<\kappa: \mu$ supercompact $\}$ is unbounded below κ and κ is 3-Mahlo.

If $\left\langle S_{1}, S_{2}, S_{3}\right\rangle$ is a partition of ω_{1} with S_{1} stationary, then for some semiproper pseudo ($*, S_{3}$)-complete forcing notion P satisfying the κ-c.c., we have:
$\vdash_{P}{ }^{"} \mathfrak{B}\left[P_{\kappa}\right]\left\lceil S_{1}\right.$ has a dense subset which is (up to isomorphism) Levy $\left(\aleph_{0},<\right.$ $\left.\aleph_{2}\right)$ ".

Proof. We define by induction on $i, P_{i},{\underset{\sim}{i}}_{i}, \mathbf{t}_{i}$ such that
(A) $\bar{Q}^{\alpha}=\left\langle P_{i},{\underset{\sim}{e}}_{j}, \mathbf{t}_{j}: i \leq \alpha, j<\alpha\right\rangle$ is S_{1}-suitable,
(B) there is no strongly inaccessible Mahlo $\lambda, i<\lambda \leq\left|P_{i}\right|$,
(C) if i is a singular ordinal or $(\exists j<i)\left[\left|P_{j}\right|>i\right]$ or i inaccessible not a limit of supercompacts or i inaccessible not Mahlo then $\mathbf{t}_{i}=0,{\underset{\sim}{i}}^{Q_{i}}=$ $\operatorname{SSeal}\left(\left\langle\boldsymbol{B}\left[P_{j}\right]: j \leq i, \mathbf{t}_{j}=1\right\rangle, S_{1}\right)$ (as defined in $V^{P_{i}}$, of course),
(D) if i is supercompact, not limit of supercompacts then $\mathbf{t}_{i}=1,{\underset{\sim}{Q}}_{i}=$ $\operatorname{SSeal}\left(\boldsymbol{B}\left[P_{i}\right], S_{1}\right)$,
(E) if $(\forall j<i)\left[\left|P_{j}\right|<i\right], i$ limit of supercompacts and i is inaccessible 1-Mahlo but not 2-Mahlo, we let $\mathbf{t}_{i}=1, \underset{\sim}{Q_{i}}=\operatorname{Nm} * \operatorname{SSeal}\left(\boldsymbol{B}\left[P_{i}\right]\right)$ (the SSeal in $V^{P_{i} * \mathrm{Nm}}$ of course),
(F) if $(\forall j<i)\left[\left|P_{j}\right|<i\right], i$ is 2-Mahlo and a limit of supercompacts then $W_{i} \stackrel{\text { def }}{=}\{\delta<i: \delta=\operatorname{cf}(\delta)$ is Mahlo and a limit of supercompacts and $\left.(\forall j<\delta)\left[\left|P_{j}\right|<\delta\right]\right\}$ is a stationary subset of i, then we let:

$$
\mathbf{t}_{i}=1, \quad{\underset{\sim}{e}}_{i}=\operatorname{club}_{\aleph_{1}}\left(W_{i}\right) * \operatorname{SSeal}\left(\boldsymbol{B}\left[P_{i}\right], S_{1}\right)
$$

Why is $\bar{Q} S_{1}$-suitable? We shall prove by induction on i that $\bar{Q} \upharpoonright i$ is S_{1}-suitable.

Note that the use of SSeal guarantees (F) of Definition 2.1, as well as (E) (see $2.11(3), 2.13(2))$. Remembering $2.3(2)$, it suffices to show by induction on i that $j<i \Rightarrow\left(P_{i} / P_{j+1}\right) *{\underset{\sim}{Q}}_{i}$ is semiproper (actually the only problematic case is when i is inaccessible limit of supercompacts, but then for arbitrarily large $j<i$ we have $\operatorname{Rss}^{+}(j)$ (by $1.10,1.6(2), 1.6(4)$), so in $V^{P_{j}}$, every forcing notion preserving stationary sets is semiproper, but we check by cases:

For $i=0$: trivial.
For $i+1$, and i satisfies clause (C) above (in the definition of \bar{Q}) the result follows by Claim 2.14.

For $i+1$, and i satisfies (D) above: first note that $\left|P_{j}\right|<i$ for $j<i$, hence $j<i \& \mathbf{t}_{j}=1 \Rightarrow \mathfrak{B}\left[P_{j}\right] \lessdot \mathfrak{B}\left[P_{i}\right]$, hence by Claim 2.7 we have $Q_{i}=\operatorname{SSeal}\left(\mathfrak{B}^{P_{i}}, S_{1}\right)=\operatorname{SSeal}\left(\left\langle\mathfrak{B}^{P_{j}}: j \leq i, \mathbf{t}_{j}=1\right\rangle, S_{1}\right)$. Now for a club C of $i, j \in C \& j=\operatorname{cf}(j) \Rightarrow Q_{j}$ is semi proper (see the previous case), so by $1.6(4)+1.10$ we have $\Vdash_{P_{i}} " \operatorname{Rss}(\kappa)$ i.e. $\operatorname{Rss}\left(\aleph_{2}\right)$ ". Hence by claim 2.10, $\operatorname{SSeal}\left(\boldsymbol{B}\left[P_{\kappa}\right], S_{1}\right)$ is semiproper in $V^{P_{\kappa}}$.

For $i+1$, and i satisfying clause (E) above: we shall apply 3.4 with i here standing for κ there. Note that condition (*)(a) (of 3.4) holds for $E_{j, i}^{+} \stackrel{\text { def }}{=}\{\delta<$ $i: \delta>j, \delta$ strongly inaccessible, not Mahlo, $\delta>\left|P_{\zeta}\right|$ for $\zeta<\delta, Q_{\delta}$ semiproper $\}$. Why does the second player win $\partial\left(\left\{\aleph_{1}\right\}, \omega, \mathcal{D}_{i}+E_{j, i}^{+}\right)$in the universe $V^{P_{j+1}}$? By $1.6(6)$ clearly for $j<i, V^{P_{j}} \models " \mathrm{Rss}^{+}(i) "$ and use 1.11 , (and $1.9 \mathrm{~A}(3)$, i.e. XII, 2.5(2)) but this give just winning in $\partial\left(\left\{\aleph_{1}\right\}, \omega, \kappa\right)$. However for $\mu<i$, there is a μ-complete filter on i containing the clubs of i and $E_{j, i}^{+}$, so winning the game is easy, and lastly if $j<i$ is strongly inaccessible not Mahlo and $(\forall \varepsilon<j)\left(\left|P_{\varepsilon}\right|<j\right)$ then Q_{j} is even proper by 2.11. Condition $(*)(\mathrm{b})$ of 3.4
holds by the definition of case (E): if $\lambda<i$ is supercompact then $\operatorname{Rss}^{+}(\lambda), Q_{\lambda}$ semiproper by the induction hypothesis (see previous case) so any $\lambda<i$ which is supercompact satisfies the requirement on E^{*}.

For $i+1$, and i satisfying clause (F) above: similar to the previous case by replacing 3.4 by Claim 3.5 (and remember $0.1(5)$ of the Notation).

Also each Q_{i} is pseudo ($*, S_{3}$)-complete (by 3.6), hence P_{κ} is pseudo ($*, S_{3}$)complete so when S_{3} is stationary,

$$
\vdash_{P_{\kappa}} " 2^{\aleph_{0}}=\aleph_{1}, 2^{\aleph_{1}}=\aleph_{2} "
$$

and in any case $\vdash_{P_{\kappa}} " 2^{\aleph_{1}}=\kappa=\aleph_{2}^{\left(V^{P_{\kappa}}\right)}$ ".
Let $\mathfrak{B}_{i}=\boldsymbol{B}\left[P_{i}\right]$, so $\mathbf{t}_{i}=1 \Rightarrow \boldsymbol{B}_{i} \upharpoonright S_{1} \lessdot \prec \mathfrak{B}\left[P_{\kappa}\right] \upharpoonright S_{1}$. Let

$$
W^{*} \stackrel{\text { def }}{=}\left\{i<\kappa: \mathfrak{B}_{i} \upharpoonright S_{1} \lessdot \mathfrak{B}\left[P_{\kappa}\right]\left\lceil S_{1}\right\} .\right.
$$

So in $V^{P_{\kappa}}$ (as case (F) occurs stationarily often),

$$
W^{* *} \stackrel{\text { def }}{=}\left\{\delta \in W^{*}: \operatorname{cf}(\delta)=\aleph_{1} \text { and } W^{*} \text { contains a club of } \delta\right\}
$$

is stationary. Hence it is well known that in $V^{P_{\kappa}}$,

$$
\begin{gathered}
\operatorname{club}_{\kappa}\left(W^{*}\right)=\{h: h \text { an increasing continuous function } \\
\text { from some } \left.\alpha+1<\kappa \text { to } W^{*}\right\}
\end{gathered}
$$

does not add bounded subsets to $\kappa\left(=\aleph_{2}\right)$. (More exactly, if CH holds this is straightforward. If CH fails, this holds if we can find $\overline{\mathcal{P}}=\left\langle\mathcal{P}_{\alpha}: \alpha<\kappa\right\rangle$, $\mathcal{P}_{\alpha} \subseteq \mathcal{S}_{<\aleph_{1}}(\alpha),\left|\mathcal{P}_{\alpha}\right| \leq \aleph_{1}\left(\bar{P} \in V^{P_{\kappa}}\right.$ of course $)$ such that $\left\{\delta \in W^{* *}:\right.$ for some unbounded C of δ we have that $C \subseteq W^{*}, \operatorname{otp}(C)=\omega_{1}$ and $\alpha \in C \Rightarrow C \cap \alpha \in$ $\left.\bigcup_{\beta<\alpha} \mathcal{P}_{\beta}\right\}$ and this holds (with $\mathcal{P}_{\alpha}=\left(\mathcal{S}_{<\aleph_{1}}(\alpha)\right)^{V^{P_{\alpha}}}$ in fact $\alpha \in C \Rightarrow C \cap \alpha \in P_{\alpha}$).) So forcing will give us a universe as required.
3.8 Remarks. The proof of 3.1, 3.7 exemplifies two constructions which we may interchange. Another variation is 3.9 below.
3.9 Theorem. Suppose $\{\mu<\kappa: \mu$ supercompact $\}$ is unbounded below κ, κ is strongly inaccessible, $h: \kappa \rightarrow H(\kappa)$, and $\left\langle S_{1}, S_{2}, S_{3}\right\rangle$ is a partition of ω_{1}, and S_{1} is stationary. Then for some forcing notion P :
(i) P satisfies the κ-c.c., is pseudo ($*, S_{3}$)-complete, has cardinality κ, does not collapse \aleph_{1} and κ but collapses every $\lambda \in\left(\aleph_{1}, \kappa\right)$ and in $V^{P_{\kappa}}, \kappa=\aleph_{2}, 2^{\aleph_{1}}=\aleph_{2}$, and $2^{\aleph_{0}}=\aleph_{1} \Longleftrightarrow S_{3}$ stationary,
(ii) $\mathfrak{B}[P]\left\lceil S_{1}\right.$ has a dense subset isomorphic to Levy $\left(\aleph_{0},<\aleph_{2}\right)$,
(iii) in V^{P}, an axiom holds as strong as h is a diamond, i.e.
(a) If h is a Laver diamond for $x \in H\left(2^{\lambda}\right)$ then in $V^{P}, A x[Q$ is a pseudo $\left(*, S_{3}\right)$-complete, semiproper ${ }^{*\left[S_{1}\right]}$ (see definition below), $\left.Q \in H(\lambda)\right]$ (see 3.9A below) and $A x^{+}\left[Q\right.$ is pseudo ($*, S_{3}$)-complete, semiproper* ${ }^{*}\left[S_{1}\right], Q \in H(\lambda)$ and $\mathfrak{B}\left[V^{P}\right] \lessdot \mathfrak{B}\left[\left(V^{P}\right)^{Q}\right]$.
(b) When $\lambda=\kappa$, then we can weaken the demand on h to: for every $x \subseteq \kappa$ satisfying a Σ_{1}^{1}-sentence ψ (i.e. $(\exists z \subseteq \mathcal{P}(\kappa)$ such that $\ldots)$) then $\{i<\kappa$: $h(i)=x \cap i,(H(i), \in, x \cap i) \models \psi\}$ is stationary. Then a conclusion similar to the one in clause (a) holds for $Q \subseteq H(\kappa)$
where
3.9A Definition. Let $\overline{\mathcal{A}}=\left\langle\mathcal{A}_{\zeta}: \zeta<\xi\right\rangle, \mathcal{A}_{\zeta} \lessdot \mathfrak{B}[V]$.

1) A forcing notion Q is semiproper ${ }^{*[\overline{\mathcal{A}}]}$ if χ regular large enough, $N \prec$ $\left(H(\chi), \in,<_{\chi}^{*}\right)$ is countable, $Q \in N, \overline{\mathcal{A}} \in N, p \in Q \cap N$ satisfies " $(\forall \Xi, \zeta)[\Xi \in$ N a pre-dense subset of $\left.\mathcal{A}_{\zeta} \& \zeta \in N \cap \xi \Rightarrow N \cap \omega_{1} \in \bigcup_{A \in \Xi} A\right]$ " (if \mathcal{A}_{ζ} satisfies the \aleph_{2}-c.c. this always holds) then there is $q \in Q$ which is (N, Q)-semigeneric and $q \Vdash$ "if $\zeta \in \xi \cap N\left[G_{Q}\right]$ and $\Xi \in N\left[G_{Q}\right]$ is a pre-dense subset of \mathcal{A}_{ζ}, then $N \cap \omega_{1} \in \cup\left\{A: A \in N\left[G_{Q}\right]\right\}$ ".
2) If $\xi=1, \mathcal{A}_{\zeta}=\left\{A \subseteq \omega_{1}: A \cap\left(\omega_{1} \backslash S\right) \in\left\{\emptyset, \omega_{1} \backslash S\right\}\right\}$, write $*[S]$ instead $*[\overline{\mathcal{A}}]$. We do not strictly distinguish between $\mathfrak{B}[V]\lceil S$ and $\{A \in \mathfrak{B}[V]:$ $\left.A \cap\left(\omega_{1} \backslash S\right) \in\left\{\emptyset, \omega_{1} \backslash S\right\}\right\}$.

Proof. We define by induction on $\alpha<\kappa, P_{i}, Q_{i}, \mathbf{t}_{i}$ for $i<\alpha$ such that:
(A) $\bar{Q}^{\alpha}=\left\langle P_{i}, Q_{j}, \mathbf{t}_{j}: i \leq \alpha, j<\alpha\right\rangle$ is S_{1}-suitable, $\left|P_{i}\right|<\kappa$ for $i<\kappa$, and for $\alpha<\kappa, \bar{Q}^{\alpha} \in H(\kappa)$ and $\mathbf{t}_{i}=1 \Leftrightarrow$ (i successor or i strongly inaccessible
$\& \bigwedge_{j<i}\left|P_{j}\right|<i$), (note that for i limit we are trying to get $\mathfrak{B}^{\bar{Q} \backslash i} \lessdot \mathfrak{B}^{P_{\kappa}}$, not $\mathfrak{B}^{P_{i}} \lessdot \mathfrak{B}^{P_{k}}$). Let \mathcal{A}_{j} be the following P_{j}-name: if $j=0$ we let \mathcal{A}_{j} be trivial, if $j>0$ we let it be $\boldsymbol{B}^{\bar{Q} \upharpoonright j}=\bigcup \bigcup_{\beta<j} \boldsymbol{B}\left[P_{\beta+1}\right]$.
(B) For i non-limit, let κ_{i} be the first supercompact $>\left|P_{i}\right|$,

$$
\begin{aligned}
& \text { if } i=0, \text { let } Q_{i}=\operatorname{Levy}\left(\aleph_{1},<\kappa_{0}\right), \\
& \text { if } i>0, \text { let } Q_{i}=\operatorname{SSeal}\left(\left\langle\mathcal{A}_{j}: j \leq i\right\rangle, S_{1}, \kappa_{i}\right) .
\end{aligned}
$$

(C) For i limit $<\kappa$ such that $h(i)$ is a P_{i}-name of a pseudo $\left(*, S_{3}\right)$-complete semiproper ${ }^{*\left[\mathcal{A}^{i}\right]}$, where $\overline{\mathcal{A}}^{i} \xlongequal{\text { def }}\left\langle\mathcal{A}_{j}: j \leq i\right\rangle$, remember $\mathcal{A}_{i}=\mathfrak{B}^{\bar{Q} \upharpoonright i}$.
Let $\kappa_{i+1}<\kappa$ be such that $h(i) \in H\left(\kappa_{i+1}\right), \kappa_{i+1}$ supercompact and $Q_{i}=h(i) * \operatorname{SSeal}\left(\left\langle\overline{\mathcal{A}}^{i}, S_{1}, \kappa_{i+1}\right)\right.$.
(D) For i limit, but (C) does not hold, let $Q_{i}=\operatorname{SSeal}\left(\left\langle\mathcal{A}_{j}: j \leq i\right\rangle, S_{1}, \kappa_{i+1}\right)$, κ_{i+1} as before.
We can prove by induction on α that \bar{Q}^{α} is S_{1}-suitable and Q_{α} is semiproper, and if $i<\kappa$ is successor, then $\Vdash_{P_{i}}$ " $\operatorname{Rss}\left(\aleph_{2}\right)$ ". If α is limit ordinal use 2.3(1) and for $\alpha=0$ this should be clear. If $\alpha=\beta+1, \beta$ not limit by 2.11 we can see that \bar{Q}^{α} is S_{1}-suitable, i.e. the first phrase holds. For the second, clearly by 2.7 we have ${\underset{\sim}{\beta}}=\operatorname{SSeal}\left(\mathfrak{B}\left[P_{\beta}\right], S_{1}, \kappa_{\beta+1}\right)$, and by the induction hypothesis $V^{P_{\beta}} \vDash " \operatorname{Rss}\left(\aleph_{2}\right), \aleph_{2}=\kappa_{\beta+1}$ ", hence by $2.8(7)$, $\Vdash_{P_{\beta}}$ " Q_{β} is semiproper". Moreover in $V^{P_{\beta}}, Q_{\beta}$ is an iteration (see Definition 2.4(5)) $\left\langle P_{i}^{\beta}, Q_{j}^{\beta}: i \leq \kappa_{\beta+1}, j<\kappa_{\beta+1}\right\rangle$ and for every strongly inaccessible $j<\kappa_{\beta}, Q_{j}^{\beta}$ and even $P_{\kappa_{\beta}}^{\beta} / P_{j}^{\beta}$ are proper by 2.11 . So by 1.10 we have $\Vdash_{P_{\alpha}}$ " $\operatorname{Rss}\left(\kappa_{\beta}\right)$ ". For $\alpha=\beta+1, \beta$ limit use 4.9 from the next section and 2.11 for the first phrase (if clause (D) apply then use 2.13), the second is proved as in the previous case. Remembering strong preservation of pseudo ($*, S_{3}$)-completeness we have no problems.
3.9B Remark. We can wave in the proof some $\mathbf{t}_{i}=1$, more acurately some \mathcal{A}_{ζ} 's and then get stronger forcing axioms.

§4. $\mathcal{P}\left(\omega_{1}\right) /\left(\mathcal{D}_{\omega_{1}}+S\right)$ is Reflective or Ulam

In 4.3 we deal with reflectiveness: if $A_{i} \subseteq S \subseteq \omega_{1}$ is stationary for $i<\aleph_{2}$ then for some $W \subseteq \aleph_{2}$ of cardinality $\aleph_{2},\left[w \subseteq W \&|w| \leq \aleph_{0} \Rightarrow \bigcap_{i \in w} A_{i}\right.$ is stationary]. Claims 4.1, 4.2 prepare the ground. In 4.4 we deal with the Ulam property, for this we prove in ZFC a sufficient condition for a filter to satisfy the Ulam property (see 4.5A-4.5F, Definition 4.6 and the proof of the consistency of the Ulam property (i.e. 4.4) in 4.7). The rest of the section deal with the forcing.
4.1 Claim. Suppose $S \subseteq \omega_{1}$ is stationary $\bar{Q}=\left\langle P_{i},{\underset{\sim}{j}}: i \leq \alpha, j<\alpha\right\rangle$ is a semiproper iteration, $\mu<\alpha$ ($\mu=0$ is allowed), and $\Vdash_{P_{\mu}} " \operatorname{Rss}\left(\aleph_{2}\left[V^{P_{\mu}}\right]\right)$ " (e.g., if μ is supercompact, $\left[i<\mu \Rightarrow\left|P_{i}\right|<\mu\right]$ and $\left\{i<\mu:{\underset{\sim}{Q}}_{i}\right.$ is semiproper (i.e. $\vdash_{P_{i}}$ " Q_{i} is semiproper") \} belongs to some normal ultrafilter on μ); note that $\vdash_{P_{\mu}}$ " $\mu=\aleph_{2}$ " if μ is strongly inaccessible, $\left|P_{i}\right|<\mu$ for $i<\mu$.

Let $\underset{\sim}{A}$ be a P_{α}-name for a subset of S and $\underset{\sim}{B}$ a P_{α}-name for a member of $\mathfrak{B}\left[P_{\mu}\right]$ such that:

$$
\left.\Vdash_{P_{\alpha}} "\left(\forall X \in \mathfrak{B}^{P_{\mu}}\right)\left[0<X \leq \underset{\sim}{B} \Rightarrow X \cap \underset{\sim}{A} \neq 0 \text { (in } \mathfrak{B}^{P_{\alpha}}\right)\right] " .
$$

Then
\otimes if λ is regular and large enough, $N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ is countable, and $\bar{Q}, \lambda, p, \underset{\sim}{A}, \underset{\sim}{B}$ and μ belong to $N, p \in P_{\alpha} \cap N$ and $q \in P_{\mu}$ is $\left(N, P_{\mu}\right)$ generic, $p \upharpoonright \mu \leq q$ and $q \cup p \upharpoonright[\mu, \alpha) \Vdash_{P_{\alpha}}$ " $N \cap \omega_{1} \in \underset{\sim}{B}$ " (if $\underset{\sim}{B}$ is a P_{μ}-name this means $q \Vdash_{P_{\mu}}$ " $N \cap \omega_{1} \in \underset{\sim}{B}$ "), then there is a $\left(N, P_{\alpha}\right)$-semi generic condition $q^{\prime} \in P_{\alpha}$ satisfying $q^{\prime} \upharpoonright \mu=q$ such that $q^{\prime} \Vdash_{P_{\alpha}} " N \cap \omega_{1} \in \underset{\sim}{A}$ ".
4.1A Remark. (1) If \bar{Q} is S-suitable, $\mathbf{t}_{\mu}=1$, and $\underset{\sim}{A} \neq \emptyset \bmod \mathcal{D}_{\omega_{1}}, \underset{\sim}{A}$ is a P_{β}-name for some $\beta<\alpha$, then we know that such $\underset{\sim}{B}$ exists as $\mathbf{t}_{\mu}=1$ (by definition 2.1).
(2) Note, e.g., for S-suitable $\bar{Q}, \lg (\bar{Q})=\alpha=\bigcup_{n<\omega} \alpha_{n}, \alpha_{n}<\alpha_{n+1}, \mathbf{t}_{\alpha_{n}}=1$, we can use $Q_{\alpha}=\operatorname{SSeal}\left(\mathfrak{B}^{\bar{Q}}, S\right)$ and not only $\operatorname{SSeal}\left(\boldsymbol{B}^{P_{\alpha}}, S\right)$ [because in 2.13 we had demanded " $\left(P_{\alpha} / P_{i+1}\right) *$ seal (Ξ) is semiproper"].

Proof. As we can increase p, without loss of generality p forces $\underset{\sim}{B}$ to be equal to some P_{μ}-name, so without loss of generality $\underset{\sim}{B}$ is a P_{μ}-name.

Let us fix $p, \underset{\sim}{A}, \underset{\sim}{B}, \mu$ and work in $V\left[G_{\mu}\right], G_{\mu} \subseteq P_{\mu}$ generic over V such that $q \in G_{\mu}$. Let

$$
\begin{aligned}
W_{\lambda} \stackrel{\text { def }}{=}\{N \prec(& \left.H(\lambda)^{V\left[G_{\mu}\right]}, \in,<_{\lambda}^{*}\right): N \text { is countable and } N \cap \omega_{1} \in \underset{\sim}{B}\left[G_{\mu}\right], \text { but } \\
& \text { there is no } r \in P_{\alpha} / G_{\mu} \text { such that: } \\
r & \text { is }\left(N, P_{\alpha} / G_{\mu}\right) \text {-semi-generic, } p \upharpoonright[\mu, \alpha) \leq r \text { and } \\
& \left.r \Vdash_{P_{\alpha} / G_{\mu}} \text { " } N \cap \omega_{1} \in \underset{\sim}{A} \text { " }\right\} .
\end{aligned}
$$

If $W_{\lambda}=\emptyset \bmod \mathcal{D}_{<\aleph_{1}}\left(H(\lambda)^{V\left[P_{\mu}\right]}\right)$, we can easily get the desired result (as in the proof of 1.11)): let λ_{1} be such minimal that $2^{\lambda_{1}}<\lambda$, and $\bar{Q} \in H\left(\lambda_{1}\right)$. Clearly also $W_{\lambda_{1}}=\emptyset \bmod \mathcal{D}_{<\aleph_{1}}\left(H(\lambda)^{V\left[P_{\mu}\right]}\right)$ and let $W_{\lambda_{1}}^{\prime} \subseteq \mathcal{S}_{<\aleph_{1}}\left(H\left(\lambda_{1}\right)^{V\left[P_{\mu}\right]}\right.$ be closed unbound disjoint to it. So if N is as in the assumption of \otimes, then necessarily $\lambda_{1} \in N$ hence $W_{\lambda_{1}} \in N$ and w.l.o.g. $W_{\lambda_{1}}^{\prime} \in N$. Then clearly $N \cap H\left(\lambda_{1}\right) \in W_{\lambda_{1}}^{\prime}$, hence $N \cap H\left(\lambda_{1}\right) \notin W_{\lambda_{1}}$, hence $N \notin W_{\lambda}$, which suffices. So (in $\left.V\left[G_{\mu}\right]\right)$ the set W is a stationary subset of $\mathcal{S}_{<\aleph_{1}}(H(\lambda))$, hence semi-stationary. As $V\left[G_{\mu}\right] \models$ " $\operatorname{Rss}\left(\aleph_{2}\right)$ " there is $u \subseteq H(\lambda)$ such that $\omega_{1} \subseteq u,|u|<\aleph_{2}$ (in $V\left[G_{\mu}\right]$) and $W \cap \mathcal{S}_{<\aleph_{1}}(u)$ is semi-stationary; now by $1.2(2)$ without loss of generality $\left(u, \in,<_{\lambda}^{*} \upharpoonright u\right) \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$. Let $u=\bigcup_{\zeta<\omega_{1}} u_{\zeta}$, with each u_{ζ} countable and u_{ζ} is increasing and continuous. So

$$
B_{1}=\left\{\zeta<\omega_{1}:(\exists N \in W)\left(\omega_{1} \cap u_{\zeta} \subseteq N \subseteq u_{\zeta}\right)\right\}
$$

is a stationary subset of ω_{1} (see $1.2(4)$) which belongs to $\boldsymbol{B}\left[P_{\mu}\right]$, and obviously:

$$
\begin{equation*}
p \Vdash_{P_{\alpha} / G_{\mu}} \quad \text { " } A \cap B_{1} \text { is not stationary". } \tag{*}
\end{equation*}
$$

[Why? For $\zeta \in B_{1}$ let $\omega_{1} \cap u_{\zeta} \subseteq N_{\zeta} \subseteq u_{\zeta}, N_{\zeta} \in W$ and for $\xi<\omega_{1}$ let N_{ξ}^{\prime} be the Skolem Hull in $\left(H(\lambda)^{V\left[G_{\mu}\right]}, \in,<_{\lambda}^{*}\right)$ of $\{\zeta: \zeta<\xi\} \cup\left\{p,\left\langle u_{\zeta}, N_{\zeta}: \zeta \in B_{1}, \zeta<\xi\right\rangle\right\}$, and

$$
\underset{\sim}{C}=\left\{\xi<\omega_{1}: N_{\xi}^{\prime}\left[{\underset{\sim}{P}}_{P_{\alpha}}\right] \cap \omega_{1}=\xi \text { and } N_{\xi}^{\prime}\left[G_{P_{\alpha}}\right] \cap u=u_{\xi}\right\}
$$

As $\left\langle N_{\xi}^{\prime}\left[{\underset{\sim}{P}}_{P_{\alpha}}\right]: \xi<\omega_{1}\right\rangle$ is increasing continuous, clearly $\underset{\sim}{C}$ is a P_{α} / G_{μ}-name of a club of ω_{1}. Now $\underset{\sim}{C} \cap \underset{\sim}{A}$ is necessarily disjoint to B_{1} by the definition of W : if $\zeta<\omega_{1}, q \in P_{\alpha} / G_{\mu}$, and $q \Vdash_{P_{\alpha} / G_{\mu}}$ " $\zeta \in \underset{\sim}{C} \cap \underset{\sim}{A} \cap B_{1}$ ", then $N_{\zeta} \in W$ is defined (because $\zeta \in B_{1}$) and q_{α} is $\left(N_{\zeta}, P_{\alpha} / G_{\mu}\right)$-semi-generic, and $q_{\alpha} \Vdash_{P_{\alpha} / G_{\mu}}$ " $N_{\zeta} \cap \omega_{1} \in \underset{\sim}{A}$ ", contradicting " $N_{\zeta} \in W$ " so (*) holds]. Also

$$
\begin{equation*}
B_{1} \subseteq B \tag{**}
\end{equation*}
$$

by the clause " $N \cap \omega_{1} \in \underset{\sim}{B}\left[G_{\mu}\right]$ " in the definition of W.
Of course $B_{1} \in V^{P_{\mu}}$ and as said after the definition of B_{1}, it is stationary so we get a contradiction to an assumption on $\underset{\sim}{A}, \underset{\sim}{B}$.
4.2 Claim. (1) Suppose $\bar{Q}=\left\langle P_{i},{\underset{\sim}{e}}_{j}: i \leq \alpha, j<\alpha\right\rangle$ is a semiproper iteration, $\left\langle\mu_{\zeta}: \zeta<\xi\right\rangle$ an increasing sequence of strongly inaccessible cardinals $\leq \alpha$, $\bigwedge_{\zeta<\xi}\left[\left(\forall i<\mu_{\zeta}\right)\left(\left|P_{i}\right|<\mu_{\zeta}\right)\right.$ and $\left.\Vdash_{P_{\mu_{\zeta}}} " \operatorname{Rss}\left(\mu_{\zeta}\right) "\right]$ and
$(*)$ every countable set of ordinals from $V^{P_{\alpha}}$ is included in a countable set of ordinals from V.

Suppose further that $\underset{\sim}{B}$ is a $P_{\mu_{0}}$-name of a subset of $\omega_{1},{\underset{\sim}{~}}_{\zeta}$ is a $P_{\mu_{\zeta+1}}$-name of a subset of ω_{1} (if $\zeta+1=\xi$ we stipulate $\mu_{\zeta+1}=\alpha$) and $p \in P$ satisfies:
$p \upharpoonright \mu_{0} \Vdash_{P_{\mu_{0}}}$ "B is stationary",
$p\left\lceil\mu_{\zeta+1} \Vdash_{P_{\mu_{\zeta+1}}}\right.$ " for every $X \in \mathfrak{B}\left[P_{\mu_{\zeta}}\right] \backslash\{0\}$, if $X \subseteq \underset{\sim}{B}$ then $\underset{\sim}{A} \cap X$ is stationary".
Then $p \Vdash_{P_{\alpha}}$ "the intersection of any countable subset of $\left\{A_{\zeta}: \zeta<\xi\right\}$ is stationary".
(2) In 4.2(1) we can replace the assumption (*) by:
$(*)^{-}$if $\delta \in\left(\mu_{0}, \alpha\right)$ is strongly inaccessible and $\left[i<\delta \Rightarrow\left|P_{i}\right|<\delta\right]$, then $\vdash_{P_{\alpha}} " \operatorname{cf}(\delta)>\aleph_{0} "$.

Proof. 1) Let $\underset{\sim}{w}$ be a P_{α}-name for a countable subset of ξ. So without loss of generality $\underset{\sim}{w}=w$ and let $w=\{\zeta(n): n<\omega\}$. Let Y be the closure of $\left\{\mu_{\zeta}: \zeta<\xi\right\} \cup\{\alpha\}$ (in the order topology on the ordinals). If the conclusion of 4.2
fails then (as we can increase p) without loss of generality $p \Vdash_{P_{\alpha}}$ " $\bigcap_{n<\omega} A_{\zeta(n)}$ is disjoint to $\underset{\sim}{C}$ where $\underset{\sim}{C}$ is a club of ω_{1} ".

We now prove by induction on $j \in Y$:
\otimes_{j} if $\mu_{0} \leq i<j$, both in Y, λ regular and large enough, $N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ countable, $\underset{\sim}{C} \in N, \underset{\sim}{B} \in N,\left\langle\mu_{\zeta}, \underset{\sim}{A} A_{\zeta}: \zeta<\xi\right\rangle \in N$ and $\{i, j, \bar{Q}\} \in N$, $p \leq p^{\prime} \in N \cap P_{\alpha}$ and $q \in P_{i}$ is $\left(N, P_{i}\right)$-semi-generic, $p^{\prime} \upharpoonright i \leq q$, and
$q \Vdash_{P_{i}}$ " $N \cap \omega_{1} \in \underset{\sim}{B}$ and for $n<\omega$ we have $\left[\mu_{\zeta(n)} \leq i \Rightarrow N \cap \omega_{1} \in \underset{\sim}{A} A_{\zeta(n)}\right]$ ", then there is $q^{\prime} \in P_{j},\left(N, P_{j}\right)$-semi-generic, $p^{\prime} \upharpoonright j \leq q^{\prime}, q^{\prime} \upharpoonright i=q$ and $q^{\prime} \Vdash_{P_{j}}$ " $N \cap \omega_{1} \in \underset{\sim}{B}$ and for $n<\omega$ we have $\left[\mu_{\zeta(n)} \leq j \Rightarrow N \cap \omega_{1} \in \underset{\sim}{A_{\zeta(n)}}\right]$ ".
Clearly this is enough (apply it with $p^{\prime}=p, i=\mu_{0}, j=\alpha$, and there are N, q as required and $\underset{\sim}{B}$ is a $P_{\mu_{0}}$-name of a stationary subset of $\subseteq \omega_{1}$).

Case 1. $j=\mu_{0}$. Trivial.
Case 2. j is an accumulation point of Y (hence is of countable cofinality). As in the proof of the iteration lemma for semiproperness.

Case 3. $j=\mu_{\zeta+1}$.
Apply the previous claim 4.1 (for $\bar{Q} \upharpoonright \mu_{\zeta+1}$ and μ_{ζ}).
2) The proof is similar but $\underset{\sim}{w}$ is P_{α}-name of a countable subset of ζ, and for $j \in\left[\mu_{0}, \alpha\right]$ the statement \otimes_{j} is now for every $\underset{\sim}{w}$ which is a P_{j}-name (not $P_{\alpha^{-}}$ name) of a countable subset of $\left\{\zeta: \mu_{\zeta}<j\right\}$. So proving it we increase $p \upharpoonright[i, j]$ also for this purpose and $i \in\left[\mu_{0}, j\right)$. Cases 1,3 remain as before. Note that we can replace $\underset{\sim}{w}$ by a larger set

Case 2A. $j>\sup \left[j \cap\left\{\mu_{\zeta}: \zeta<\xi\right\}\right]$
Trivial
Case 2B. $j=\sup \left[j \cap\left\{\mu_{\zeta}: \zeta<\xi\right\}\right]$.
W.l.o.g. p force a value to $\sup \underset{\sim}{w} \cap\left\{\mu_{\zeta}: \zeta<\xi\right\}$, call it ξ^{*}.

Subcase $\alpha . \xi^{*}<j$: the proof is as in case 2A, as increasing $\underset{\sim}{w}$ w.l.o.g. it is $P_{\xi^{*}+1}$-name.

Subcase $\beta . \xi^{*}=j$: for some $i_{1}<j, p \upharpoonright i_{1} \Vdash_{P_{i_{1}}} " \operatorname{cf}(j)=j "$ is easy too. W.l.o.g. $i_{1}<i$ (by the induction hypothesis), $p \upharpoonright i_{1} \Vdash " c f(j)<j$ ". So in $V^{P_{i}}$ we know $\operatorname{cf}(j)$, and it is \aleph_{0} or \aleph_{1}. Now \aleph_{1} is impossible (as $\xi^{*}=j$) and if it is \aleph_{0} act as in the old case 2.
But by $(*)^{-}$of $4.2(2)$, one of the subcases occurs.
4.3 Theorem. Suppose $\{\mu<\kappa: \mu$ supercompact $\}$ is a stationary subset of $\kappa,\left\langle S_{1}, S_{2}, S_{3}\right\rangle$ is a partition of ω_{1} with each S_{i} stationary. Let $h: \kappa \rightarrow H(\chi)$ and assume $\{\mu<\kappa: \mu$ supercompact, $h(\mu)=0\}$ is stationary. Then for some forcing notion P :
(i) $P=P_{\kappa}\left(=R \operatorname{Lim} \bar{Q}\right.$ for some S_{1}-suitable $\left.\bar{Q}\right)$ is S_{3}-complete, or at least S_{3}-proper and satisfies the κ-c.c.
(ii) In $V^{P_{\kappa}}$, from any \aleph_{2} stationary subsets of $S_{1} \subseteq \omega_{1}$, there are \aleph_{2} of them such that the intersection of any countably many of them is stationary (and $\boldsymbol{B}^{P_{\kappa}}$ is layered, of course). We then call $\mathfrak{B}\left[V^{P_{\kappa}}\right]$ reflective.
(iii) A forcing axiom as strong as h holds (see the proof and 3.9).
4.3A Remark. 1) We really use a weaker assumption
(a) $\{\mu<\kappa: \mu$ measurable $\}$ is stationary;
(b) $\{\mu<\kappa$: for $\chi<\kappa, \mu$ is χ-compact $\}$ is unbounded; use 1.6(2), 1.6(3), 1.10(1). See more in XVI§2.
2) The situation is similar in 4.4, where we get better bound (i.e. using smaller large cardinals) for a stronger result (but lose in forcing axiom.)
3) We can demand only " S_{1} is stationary" etc. if we use $4.1(2)$ instead of $4.1(1)$, but then we should satisfy $(*)^{-}$of $4.1(2)$.

Proof. We define by induction on $\alpha \leq \kappa$ the iteration $\bar{Q}^{\alpha}=\left\langle P_{i},{\underset{\sim}{Q}}_{i}, \mathbf{t}_{j}: i \leq\right.$ $\alpha, j<\alpha\rangle$ such that:
(A) \bar{Q}^{α} is S_{1}-suitable.
(B) Each Q_{i} is S_{3}-proper.
(C) $\bar{Q}^{\alpha}, P_{\alpha} \in H(\kappa)$ when $\alpha<\kappa$.
(D) If $h(i)=\langle\mathbf{t}, \underset{\sim}{R}\rangle, i$ measurable, \mathbf{t} a truth value, $\underset{\sim}{R}$ a P_{i}-name and $[\mathbf{t}=$ $1 \Rightarrow \boldsymbol{B}\left[P_{i}\right]\left\lceil S_{1} \lessdot \boldsymbol{B}\left[P_{i} * \underset{\sim}{R}\right]\left\lceil S_{1}\right]\right.$ and $\left[j<i \& \mathbf{t}_{j}=1 \Rightarrow \boldsymbol{B}\left[P_{j}\right]\left\lceil S_{1} \lessdot\right.\right.$ $\mathfrak{B}\left[P_{i} * \underset{\sim}{R}\right]\left\lceil S_{1}\right]$ and $\left(P_{i} / P_{j+1}\right) * \underset{\sim}{R}$ is semiproper and S_{3}-proper for $j<i$ then $\mathbf{t}_{i}=\mathbf{t},{\underset{\sim}{Q}}_{i}=\underset{\sim}{R} *$ SSeal $\left(\left\langle\boldsymbol{B}\left[P_{j}\right]: j \leq i, \mathbf{t}_{j}=1\right\rangle\right)$.
(E) If $\operatorname{not}(\mathrm{D}), i$ is inaccessible, $\left|P_{j}\right|<i$ for $j<i, h(i)=0$, and $\Vdash_{P_{i}} " \operatorname{Rss}\left(\aleph_{2}\right)$," then $\mathbf{t}_{i}=1$ and ${\underset{\sim}{Q}}_{i}=\operatorname{SSeal}\left(\left\langle\mathfrak{B}\left[P_{j}\right]: j \leq i, \mathbf{t}_{j}=1\right\rangle, S\right)$.
(F) If neither (D) nor (E) then $\mathbf{t}_{i}=0$, and

$$
Q_{i}=\operatorname{SSeal}\left(\left\langle\boldsymbol{B}\left[P_{j}\right]: j \leq i, \mathbf{t}_{j}=1\right\rangle, S\right) .
$$

We can carry out the construction and prove by induction on α that \bar{Q}^{α} is S_{1}-suitable.
$\alpha=0$. Trivial.
α limit. By Claim 2.3(1).
$\alpha=\beta+1$, (F) applies to β. By 2.14(1).
$\alpha=\beta+1$, (D) applies to β. By Claim 2.11.
$\alpha=\beta+1$, (E) applied to β. By 2.16 note:
$(*)$ if $i \in B=\left\{i: i\right.$ inaccessible, $\left.j<i \Rightarrow\left|P_{j}\right|<i\right\}$ then: if for i clause (E) or clause (F) occur then Q_{i} is semiproper. [Why? If $\Vdash_{P_{i}} " \operatorname{Rss}\left(\aleph_{2}\right)$ " by $1.7(5)$, otherwise clause (F) applies, $\mathbf{t}_{i}=0$ and we can use 2.11.]
But clause (D) does not apply to i non-measurable so
$(* *)$ for i non measurable $\Vdash_{P_{i}}$ " ${\underset{\sim}{Q}}_{i}$ is semiproper".
Now suppose $p \in P_{\kappa},\langle\underset{\sim}{A} i=i<\kappa\rangle$ a P_{κ}-name and $p \Vdash$ " ${\underset{\sim}{A}}_{i} \subseteq S_{1}$ is stationary".
Let $Y=\left\{\mu<\kappa: \mu\right.$ strongly inaccessible, $\bigwedge_{i<\mu}\left|P_{i}\right|<\mu$ and $\Vdash_{P_{i}} " \operatorname{Rss}\left(\aleph_{2}\right) "$ and $\left.\mathbf{t}_{\mu}=1\right\}$. Note that in $V^{P_{\kappa}}, Y \subseteq\left\{\delta<\kappa: \operatorname{cf}^{V\left[P_{\kappa}\right]}(\delta)=\aleph_{1}\right\}$ is stationary because if $\mu<\kappa$ is measurable, limit of supercompacts, $\bigwedge_{j<\mu}\left|P_{j}\right|<\mu$ and D is a normal filter on μ, concentrating on non-measurable so $X_{\mu}=\{i<\mu: i$ inaccessible, not measurable, $\left.\bigwedge_{j<i}\left|P_{j}\right|<\mu\right\} \in D$. We use 1.10(1) (noting Rss ${ }^{+}(\mu)$ holds, by $\left.1.6(6)\right)$ to get $\mu \in Y$. Now for each $\mu \in Y$ choose $p_{\mu} \in P_{\kappa}$ and a P_{μ}-name $\underset{\sim}{B}{ }_{\mu}$ such that:

$$
\begin{aligned}
& p \leq p_{\mu}, \\
& p_{\mu} \upharpoonright \mu \Vdash \stackrel{\text { " }}{\underset{\sim}{B}} \mu \subseteq S_{1} \text { is stationary, } \underset{\sim}{B}{ }_{\mu} \in \mathfrak{B}\left[P_{\mu}\right] ", \\
& p_{\mu} \Vdash \vdash_{P_{\kappa}} \text { "for every nonzero } X \in \mathfrak{B}\left[P_{\mu}\right], \\
& \quad \text { if } X \leq \underset{\sim}{B_{\mu}} \text { then } X \cap \underset{\sim}{A} A_{\mu} \text { is stationary". }
\end{aligned}
$$

Why does such a p_{μ} exist? As $\boldsymbol{B}\left[P_{\mu}\right] \lessdot \mathfrak{B}\left[P_{\kappa}\right]$ (and see $0.1(4)(\mathrm{b})$). Remember that P_{μ} satisfies μ-c.c. so ${\underset{\sim}{B}}_{\mu} \in H\left(\chi_{\mu}\right)$ for some $\chi_{\mu}<\mu$ and without loss
of generality $\underset{\sim}{B}$ is a $P_{\chi_{\mu}}$-name and $\mathbf{t}_{\chi_{\mu}}=1$ (i.e. by increasing χ_{μ}; also, Y is stationary by a hypothesis).

By Fodor's lemma, for some stationary $Y_{1} \subseteq Y$, there are p and $\underset{\sim}{B}$ such that for $\mu \in Y_{1}: p_{\mu}\left\lceil\mu=p\right.$, and ${\underset{\sim}{B}}_{\mu}=\underset{\sim}{B}$.
As each ${\underset{\sim}{C}}^{A_{\zeta}}$ is a P_{λ}-name for some $\lambda>\zeta, \lambda \in Y$, without loss of generality [$\mu_{1}<\mu_{2}$ in $Y_{1} \Rightarrow \underset{\sim}{A} \mu_{\mu_{1}}$ is a $P_{\mu_{2}}$-name]. Now, for $\mu \in Y_{1}$ let $\underset{\sim}{A}{ }_{\mu}^{\prime}$ be $\underset{\sim}{A} A_{\mu}$ if $p_{\mu} \in G_{P_{\kappa}}$ and S otherwise.

Note that $Y_{1} \in V$ and every countable subset of Y_{1} is contained in a countable set from V [Why? Remembering S_{3} is stationary, by S_{3}-properness.] Now we apply the previous Claim 4.2 to $\underset{\sim}{B},\left\langle\underset{\sim}{\underset{\sim}{A}}{ }_{\mu}^{\prime}: \mu \in Y_{1}\right\rangle$.
4.4. Theorem. Suppose $\kappa=\sup \{\lambda<\kappa: \lambda$ a compact cardinal $\}$ and $\left\langle S_{1}, S_{2}, S_{3}\right\rangle$ is a partition of ω_{1} to stationary sets. Then for some forcing notion $P \in V$:
(i) V^{P} is a model of: ZFC $+2^{\aleph_{0}}=\aleph_{1}+2^{\aleph_{1}}=\aleph_{2}$,
(ii) in V^{P}, the statement $\operatorname{Ulam}\left(\mathcal{D}_{\omega_{1}}+S_{1}\right)$ holds, where, for a uniform filter D on $\lambda, \operatorname{Ulam}(D)$ means: there are many $\lambda \lambda$-complete filters extending D, such that every D-positive set belongs to at least one of them (A is D-positive if $A \subseteq \lambda$, and $(\lambda \backslash A) \notin D)$.

Remark. So in V^{P}, Ulam's problem has a positive solution: there are \aleph_{1} measures on $[0,1]_{\mathbb{R}}$, each countably additive, such that every $A \subseteq[0,1]_{\mathbb{R}}$ is measurable with respect to at least one of them.

Proof. Before we do the forcing, we work out some combinatorics, which will tell us what will suffice.

4.5A. Context and Notation.

(1) $\lambda=\lambda^{<\lambda}$ is a fixed regular uncountable cardinal.
(2) W denotes a fixed class of ordinals (in the actual case $W \subseteq \lambda^{+}$), $0 \in W$, for every $i, i+1 \in W$, and

$$
\aleph_{0} \leq \operatorname{cf}(i)<\lambda \Rightarrow i \notin W
$$

(3) B will denote a Boolean algebra.
(4) For a Boolean Algebra B, let $B^{+}=B \backslash\{0\}$.
(5) $\operatorname{Pr}\left(a_{1}, a_{2}, B_{1}, B_{2}\right)$ means: B_{1}, B_{2} are Boolean algebras, $B_{1} \subseteq B_{2}, a_{1} \in$ $B_{1}^{+}, a_{2} \in B_{2}^{+}$, and $(\forall x)\left[x \in B_{1}^{+} \& x \leq a_{1} \rightarrow x \cap a_{2} \neq 0\right]$.
(6) If the identity of B_{2} is clear (when dealing with one Boolean Algebra and its subalgebras) we just write $\operatorname{Pr}\left(a_{1}, a_{2}, B_{1}\right)$.

4.5B. Observation.

(a) $\operatorname{Pr}\left(1, x, B_{1}, B_{2}\right)$ for $x \in B_{2}^{+},\left|B_{1}\right|=2$;
(b) if $B_{a} \subseteq B_{b} \subseteq B, x \in B_{a}^{+}, y \in B_{b}^{+}, z \in B$ and $\operatorname{Pr}\left(x, y, B_{a}\right), \operatorname{Pr}\left(y, z, B_{b}\right)$ then $\operatorname{Pr}\left(x, z, B_{a}\right)$;
(c) if $\operatorname{Pr}\left(x, y, B_{1}, B_{2}\right), 0<x^{\prime} \leq x, x^{\prime} \in B_{1}, y \leq y^{\prime} \in B_{2}$ then $\operatorname{Pr}\left(x^{\prime}, y^{\prime}, B_{1}\right)$ and $\operatorname{Pr}\left(x^{\prime}, y \cap x, B_{1}\right)$.

4.5C. Notation and Definition.

(1) We call \bar{B} 1-o.k. (for W) if $\bar{B}=\left\langle B_{i}: i<\alpha\right\rangle$ is an increasing continuous sequence, each B_{i} a Boolean Algebra of cardinality $\leq \lambda,[i, j \in \alpha \cap W$ and $\left.i<j \Rightarrow B_{i} \lessdot B_{j},\right]$ and $\left[i \in W \cap \alpha \Rightarrow B_{i}\right.$ is λ-complete $]$.
(2) We call $w \subseteq W \cap \alpha$ closed (subset of $W \cap \alpha$) if
(i) for every accumulation point $\delta<\alpha$ of the closure of w (that is $\delta=\sup (w \cap \delta) \& \delta<\alpha)$ we have
(a) $\delta \notin W \& \delta+1<\alpha \Rightarrow \delta+1 \in w$
(b) $\delta \in W \& \delta+1<\alpha \Rightarrow \delta \in w$,
(ii) for every $\delta<\alpha$ we have: $\operatorname{Min}(w)<(\delta+1) \in w \& \aleph_{0} \leq \operatorname{cf}(\delta)<\lambda \Rightarrow$ $\delta=\sup (\delta \cap w)$,
(iii) if $\operatorname{Min}(w)<\beta \in W, \beta+1 \in w$ then $\beta \in w$.
(3) Let $\operatorname{CSb}(\alpha)=\{w: w$ a closed subset of $W \cap \alpha$ of power $<\lambda\}$, $\operatorname{CSb}_{u}(\alpha)=\{w \in \operatorname{CSb}(\alpha): w$ unbounded below $\alpha\}$.
(Clearly $\left.\operatorname{CSb}_{u}(\alpha) \neq \emptyset \Rightarrow \aleph_{0} \leq \operatorname{cf}(\alpha)<\lambda\right)$.
(4) For $w \in \operatorname{CSb}(\alpha)$ and $\bar{B}=\left\langle B_{i}: i<\beta\right\rangle$ which is 1 -o.k. such that $\beta>\alpha$, let (i) $\operatorname{Seq}_{w}(\bar{B})=\left\{\left\langle a_{i}: i \in w\right\rangle: a_{i} \in B_{i}^{+}, a_{i}\right.$ is decreasing;
if $i \in w, i=\delta+1, \delta$ limit of course, $\delta \notin W, i>\operatorname{Min}(w)$ then $a_{i}=\bigcap_{j \in w \cap i} a_{j} ;$
if $i \in w, i>\operatorname{Min}(w), \operatorname{cf}(i) \geq \lambda$, then $a_{i}=a_{j} \in B_{j}$ for some $j \in i \cap w$; and if $i<j$ are in $w(\subseteq W)$ then $\left.\operatorname{Pr}\left(a_{i}, a_{j}, B_{i}, B_{j}\right)\right\}$.
(ii) Let $\operatorname{Seq}(\bar{B}) \stackrel{\text { def }}{=} \bigcup\left\{\operatorname{Seq}_{w}(\bar{B}):\right.$ for some $\alpha(\leq \ell g(\bar{B})), \alpha=\ell g(\bar{B})$ or α is successor of a member of W, we have $w \in \operatorname{CSb}(\alpha)\}$.
Let $\operatorname{Seq}_{u}(\bar{B}) \stackrel{\text { def }}{=} \bigcup\left\{\operatorname{Seq}_{w}(\bar{B}): w \in \operatorname{CSb}_{u}(\lg (\bar{B}))\right\}$.
It is naturally ordered by $\bar{a}^{1} \leq \bar{a}^{2}$ if letting $\bar{a}^{\ell}=\left\langle a_{i}^{\ell}: i \in w_{\ell}\right\rangle$ then $w^{1} \subseteq w^{2}$ and $\left[\zeta \in w^{1} \Rightarrow a_{\zeta}^{1} \geq a_{\zeta}^{2}\right]$.
(iii) When $\alpha=\delta+1 \leq \ell \operatorname{g}(\bar{B}), w \in \operatorname{CSb}(\delta)$ let

$$
Z_{w}(\bar{B}) \stackrel{\text { def }}{=}\left\{\bigcap_{i \in w} a_{i}:\left\langle a_{i}: i \in w\right\rangle \in \operatorname{Seq}_{w}(\bar{B}\lceil(\delta+1))\}\right.
$$

$Z^{\delta}(\bar{B}) \stackrel{\text { def }}{=} \bigcup\left\{Z_{w}(\bar{B}): w \in \operatorname{CSb}_{u}(\delta)\right\}$.
If $\lg (\bar{B})=\delta+2$, we may omit δ.
(5) We call \bar{B} 2-o.k. if for every limit $\delta<\ell \mathrm{g}(\bar{B}), 0 \notin Z^{\delta}(\bar{B})$ and \bar{B} is 1-o.k.
(6) We call $\bar{B} 3$-o.k. if it is 2-o.k. and for limit $\delta<\ell g(\bar{B})$ of cofinality $<\lambda$ we have: $Z^{\delta}(\bar{B})$ is a dense subset of $B_{\delta+1}$.
(7) If \bar{B} is not continuous, we identify it with the obvious correction for the purpose of our definitions.
(8) We call $\Upsilon \subseteq \operatorname{Seq}_{u}(\bar{B})$ dense if for every $\bar{a} \in \operatorname{Seq}_{u}(\bar{B})$ for some $\bar{a}^{\prime} \in \Upsilon$ we have $\bar{a} \leq \bar{a}^{\prime}$. We say Υ^{\prime} refines Υ if $(\forall \bar{a} \in \Upsilon)\left(\exists \bar{a}^{\prime} \in \Upsilon^{\prime}\right)\left[\bar{a} \leq \bar{a}^{\prime}\right]$. We say $\Upsilon \subseteq \operatorname{Seq}_{u}(\bar{B})$ is open if $\bar{a} \leq \bar{a}^{\prime}\left(\right.$ in $\left.\operatorname{Seq}_{u}(\bar{B})\right), \bar{a} \in \Upsilon$ implies $\bar{a}^{\prime} \in \Upsilon$.
4.5D. Fact. Suppose \bar{B} is 2-o.k., $\bar{B}=\left\langle B_{i}: i \leq \delta+1\right\rangle, \aleph_{0} \leq \operatorname{cf}(\delta)<\lambda$. Then:
(0) (i) $\operatorname{CSb}_{u}(\delta) \neq \emptyset$, moreover for every $\alpha \leq \delta+1$ and $v \subseteq \alpha$ of cardinality $<\lambda$ we have:
$\aleph_{0} \leq \operatorname{cf}(\alpha)<\lambda \Rightarrow$ there is $w \in \operatorname{CSb}_{u}(\alpha)$ such that $v \subseteq w$ and
$\operatorname{cf}(\alpha) \geq \lambda \Rightarrow$ there is $w \in \operatorname{CSb}(\alpha)$, such that $v \subseteq w$ and
$\alpha=i+1 \& i \in W \Rightarrow$ there is $w \in \operatorname{CSb}(\alpha)$ such that $v \subseteq w$ and $i \in w$.
(ii) If $w \in \operatorname{CSb}_{u}(\delta), \alpha<\delta$, then $w \backslash \alpha \in \operatorname{CSb}_{u}(\delta)$; similarly for $\operatorname{CSb}(\alpha)$.
(iii) If $\alpha<\delta$ and $w \in \operatorname{CSb}_{u}(\alpha)$ and $\alpha=\varepsilon+1$ and $\aleph_{0} \leq \operatorname{cf}(\varepsilon)<\lambda$ then $w \cup\{\alpha\} \in \operatorname{CSb}(\delta)$.
(iv) If $w \in \operatorname{CSb}_{u}(\delta), \alpha \in w$ then there is $\beta \in w \backslash \alpha$ such that $\beta \notin\{\varepsilon+1$: $\left.\aleph_{0} \leq \operatorname{cf}(\varepsilon)<\lambda\right\} ;$ in fact $\beta=\min (w \backslash(\alpha+1))$ is as required.
(v) If $w \in \operatorname{CSb}(\alpha)$ and $\beta<\alpha$, then $w \cap \beta \in \operatorname{CSb}(\beta)$.
(1) If $w \in \operatorname{CSb}(\delta+1)$ then $Z_{w}(\bar{B})$ includes $B_{\operatorname{Min}(w)}$, hence: $\aleph_{0} \leq \operatorname{cf}(\delta)<\lambda \Rightarrow$ $B_{\delta} \subseteq Z^{\delta}(\bar{B})$.
(2) (i) If $w_{1}, w_{2} \in \operatorname{CSb}(\delta)$ and $\operatorname{Min}\left(w_{\ell}\right)<\operatorname{Min}\left(w_{3-\ell}\right) \Rightarrow \operatorname{Min}\left(w_{3-\ell}\right) \in w_{\ell}$ then $w_{1} \cup w_{2} \in \operatorname{CSb}(\delta)$.
(ii) Similarly for $\operatorname{CSb}_{u}(\delta)$.
(3) (i) If $w_{1} \subseteq w_{2}$ are both in $\operatorname{CSb}(\alpha), \min \left(w_{1}\right)=\min \left(w_{2}\right),\left\langle a_{i}: i \in w_{1}\right\rangle \in$ $\operatorname{Seq}_{w_{1}}(\bar{B})$ then $\left\langle a_{i}: i \in w_{2}\right\rangle \in \operatorname{Seq}_{w_{2}}(\bar{B})$ provided that for $i \in w_{2} \backslash w_{1}$ we define $a_{i}=a_{\max \left(i \cap w_{1}\right)}$ which is well defined.
(ii) If $\alpha<\sup (w)$, and $w \in \operatorname{CSb}(\delta)$, and $\left\langle a_{i}: i \in w\right\rangle \in \operatorname{Seq}_{w}(\bar{B})$ then $\left\langle a_{i}: i \in w \backslash \alpha\right\rangle \in \operatorname{Seq}_{w \backslash \alpha}(\bar{B})$ and $\left\langle a_{i}: i \in w \cap \alpha\right\rangle \in \operatorname{Seq}_{w \cap \alpha}(\bar{B})$.
(iii) If $w_{1} \subseteq w_{2}$ are both in $C S b(\delta)$ and $\left\langle a_{i}: i \in w_{2}\right\rangle \in \operatorname{Seq}_{w_{2}}(\delta)$ and $\left[i \in w_{2} \& \operatorname{cf}(i) \geq \lambda \& \operatorname{Min}\left(w_{1}\right)<i \Rightarrow(\exists j)\left(j \in w_{1} \cap i \& a_{j}=a_{i}\right)\right]$ then $\left\langle a_{i}: i \in w_{1}\right\rangle \in \operatorname{Seq}_{w_{1}}(\delta)$.
(iv) If $\beta<\delta, \beta$ is a successor of a limit ordinal, $w \in \operatorname{CSb}_{u}(\beta-1)$, $\operatorname{Min}(w)<\beta \leq \varepsilon+1, w_{1}=w \cup\{\beta\}$ and $\left\langle a_{i}: i \in w\right\rangle \in Z_{w}(\bar{B})$ then we can find a_{β} such that $\left\langle a_{i}: i \in w_{1}\right\rangle \in Z_{w_{1}}(\bar{B})$.
(4) If $w_{1} \subseteq w_{2}$ are both in $\operatorname{CSb}_{u}(\delta)$ and $\min \left(w_{1}\right)=\min \left(w_{2}\right)$ then $Z_{w_{1}}(\bar{B}) \subseteq$ $Z_{w_{2}}(\bar{B})$.
(5) If $\left\langle a_{i}: i \in w_{1}\right\rangle,\left\langle b_{j}: j \in w_{2}\right\rangle$ are in $\operatorname{Seq}_{w_{1}}(\bar{B}), \operatorname{Seq}_{w_{2}}(\bar{B})$ respectively, and $\left(\forall i \in w_{1}\right)\left(\exists j \in w_{2}\right) a_{i} \leq b_{j}$ then $\bigcap_{i \in w_{1}} a_{i} \leq \bigcap_{j \in w_{2}} b_{j}$.
(6) If $\left\langle a_{i}: i \in w\right\rangle \in \operatorname{Seq}_{w}(\bar{B}), 0<b<a_{\min (w)}$ and $b \in B_{\min (w)}$ then $\left\langle a_{i} \cap b: i \in w\right\rangle \in \operatorname{Seq}_{w}(\bar{B})$.
(7) If $\bar{B}=\left\langle B_{i}: i \leq \alpha\right\rangle$ is l-o.k. $(l=1,2,3), \gamma_{i} \leq \alpha$ (for $\left.i \leq i(*)\right)$ is strictly increasing continuous and $\left[i \in W \Leftrightarrow \gamma_{i} \in W\right]$ and $\left[\aleph_{0} \leq \operatorname{cf}(i)<\lambda \Rightarrow\right.$ $\left.\gamma_{i+1}=\gamma_{i}+1\right]$ then $\left\langle B_{\gamma_{i}}: i \leq i(*)\right\rangle$ is l-o.k.
(8) Assume $\bar{B}=\left\langle B_{i}: i \leq \alpha\right\rangle$ is 1-o.k.
(i) if $\beta<\gamma<\alpha, \beta \in W, \gamma \in W, b \in B_{\gamma}$ then for at most one a we have:
(*) $a \in B_{\beta}$ and $B_{\gamma} \vDash " a \geq b "$ and $\operatorname{Pr}\left(a, b, B_{\beta}, B_{\gamma}\right)$,
(ii) if $\bar{a}^{\ell} \in \operatorname{Seq}_{w_{\ell}}(\bar{B})$ for $\ell=1,2$, then $\left\{\beta: \beta \in w_{1} \cap w_{2}\right.$ and $\left.a_{\beta}^{1}=a_{\beta}^{2}\right\}$ is an initial segment of $w_{1} \cap w_{2}$.
(9) Assume $\bar{B}=\left\langle B_{i}: i \leq \alpha\right\rangle$ is 3-o.k., $[\delta<\alpha \& \operatorname{cf}(\delta) \geq \lambda \Rightarrow \delta \in W]$.
(i) If $v \in \operatorname{CSb}(\beta), \beta \leq \alpha+1$ is a successor of a member of W, and $\gamma \in v$ and $d \in B_{\gamma}$ then the set $\Gamma=\Gamma_{\alpha, v, \gamma, d}=\{\bar{a} \in \operatorname{Seq}(\bar{B}): v \subseteq \operatorname{Dom}(\bar{a})$ and $\left[a_{\gamma} \cap d=0\right.$ or $\left.\left.a_{\gamma} \leq d\right]\right\}$ is a dense and open subset of $\operatorname{Seq}(\bar{B})$.
(ii) If $\aleph_{0} \leq \operatorname{cf}(\alpha)<\lambda, v \in \operatorname{CSb}_{u}(\alpha), \gamma \in v$ and $d \in B_{\gamma}$ then the set $\Gamma=\Gamma_{\alpha}=\left\{\bar{a} \in \operatorname{Seq}_{u}(\bar{B}): v \subseteq \operatorname{Dom}(\bar{a})\right.$ and $\left[a_{\gamma} \cap d=0\right.$ or $\left.\left.a_{\gamma} \leq d\right]\right\}$ is a dense open subset of $\operatorname{Seq}(\bar{B})$.
(iii) If $\beta \leq \alpha, d \in B_{\beta} \backslash\{0\}$ and $v \subseteq \beta+1,|v|<\lambda$ then there is w satisfying $v \subseteq w \in \operatorname{CSb}(\beta+1), \beta \in w$ and $\bar{a} \in \operatorname{Seq}_{w}(\bar{B})$ such that $a_{\beta} \leq d$.

Proof. Easy, e.g.,
0)(i) We prove it by induction on α. For α non-limit the result is trivial so assume α is a limit. So for every $j<\alpha$ there is w_{j} such that: $v \cap j \subseteq w_{j}$ and $\left[\aleph_{0} \leq \operatorname{cf}(j)<\lambda \Rightarrow w_{j} \in \operatorname{CSb}_{u}(j)\right]$ and $\left[\operatorname{cf}(j) \notin\left[\aleph_{0}, \lambda\right) \Rightarrow[\operatorname{cf}(j) \geq\right.$ $\left.\left.\lambda \vee(\exists i)(j=i+1 \& i \in W) \Rightarrow w_{j} \in \operatorname{CSb}(j)\right]\right]$. Let $\left\langle j_{\varepsilon}: \varepsilon<\operatorname{cf}(\alpha)\right\rangle$ be an increasing continuous sequence of ordinals $<\alpha$ with limit α. If $\operatorname{cf}(\alpha)=\aleph_{0}$ then w.l.o.g. $j_{n}+2 \in v$ for $n<\omega$ and then $w \stackrel{\text { def }}{=} \bigcup\left\{w_{j_{n+1}+3} \backslash\left(j_{n}+3\right): n<\omega\right\} \cup w_{j_{0}+3}$ is as required (remember $i+1 \in W$ for any ordinal i by $4.5 \mathrm{~A}(2)$). If $\operatorname{cf}(\alpha) \geq \lambda$ then for some $j<\alpha$, we have $v \subseteq j$ and we can use the induction hypothesis. If $\operatorname{cf}(\alpha)>\aleph_{0}$ but still it is $<\lambda$, without loss of generality each j_{ε} is a limit ordinal with cofinality $<\operatorname{cf}(\alpha)<\lambda$. Let $w=\left\{j_{\varepsilon}+1: \varepsilon<\operatorname{cf}(\alpha)\right\} \cup \bigcup_{\varepsilon<\operatorname{cf}(\alpha)}$ $\left(w_{j_{\varepsilon+1}+3} \backslash\left(j_{\varepsilon}+3\right)\right) \cup w_{j_{0}+3}$ and note that it belongs to $\operatorname{CSb}_{u}(\alpha)$ and includes v, as required.
(0)(iv) See the last phrase of $4.5 \mathrm{C}(2)$.
(1) For the first phrase note that for $a \in B_{\min (w)}, \bar{b}_{a}=\langle a: i \in w\rangle \in \operatorname{Seq}_{w}(\bar{B})$ (see Definition 4.5C(4)(i), (iii)).
The second phrase follows by the definition of $Z^{\delta}(\bar{B})$ and $4.5 \mathrm{D}(0)(\mathrm{i})$.
(3)(i) Why is $\max \left(i \cap w_{1}\right)$ well defined?

First note: $i \cap w_{1} \neq \emptyset$ as $i \notin w_{1}$ implies $i \neq \min \left(w_{1}\right)$, but $\min \left(w_{1}\right)=\min \left(w_{2}\right)$
so $i>\min \left(w_{1}\right)$ hence $\min \left(w_{1}\right) \in i \cap w_{1}$.
Second note: if $i \cap w_{1}$ has no last element, let $\beta=\sup \left(i \cap w_{1}\right)$, so $\beta \leq i$ and $\aleph_{0} \leq \operatorname{cf}(\beta) \leq\left|w_{1}\right|<\lambda$, hence $\beta \notin W$, so $\beta \notin w_{2}$ and $\beta<i$. Also $\beta+1 \in w_{1}$ (as w_{1} is closed and $\beta<i<\alpha$ so $\beta+1<\delta$), so $\beta+1$ cannot be in $i \cap w_{1}$, hence $i=\beta+1 \in w_{1}$, contradicting the assumption on i (i.e. $i \in w_{2} \backslash w_{1}$).
(3)(iv) Note that, as $w \in \operatorname{CSb}_{u}(\beta-1)$, necessarily $\operatorname{cf}(\beta-1)<\lambda$. Also $w_{1} \in \operatorname{CSb}(\delta+2)$, so $Z_{w}(\bar{B})$ is well defined. Also $a_{\beta} \stackrel{\text { def }}{=} \bigcap_{i \in w} a_{i}$ is well defined as B_{β} is λ-complete, and $|w|<\lambda$ as $w \in \subseteq \operatorname{CSb}_{u}(\beta) \subseteq \operatorname{CSb}(\beta)$ (see Definition $4.5 \mathrm{C}(3)$). As \bar{B} is 2-o.k. (see Definition $4.5 \mathrm{C}(5)), 0_{B_{\delta+1}} \notin Z^{\delta}(\bar{B})$, but clearly $a_{\beta} \in Z_{w}(\bar{B}) \subseteq Z^{\beta}(\bar{B})$ hence $a_{\beta} \neq 0_{B_{\delta+1}}$. The order requirements for $\left\langle a_{i}: i \in\right.$ $\left.w_{1}\right\rangle \in \operatorname{Seq}_{w_{1}}(\bar{B})$ are easy too.
(4) Use (3)(i).
(6) Let for $i \in w, c_{i} \stackrel{\text { def }}{=} a_{i} \cap b$ and $\beta=\min (w)$. So
(i) $c_{i}=a_{i} \cap b \in B_{i}\left[\right.$ as $\left.a_{i} \in B_{i}, b \in B_{\beta} \subseteq B_{i}\right]$;
(ii) for $i<j$ from $w, c_{j} \leq c_{i}$ [as $a_{j} \leq a_{i}$, clearly $\left.a_{j} \cap b \leq a_{i} \cap b\right]$;
(iii) for $i<j$ from $w, \operatorname{Pr}\left(c_{i}, c_{j}, B_{i}\right)$.
[Why? Let $0<d \leq c_{i}, d \in B_{i}$ then $0<d \leq a_{i}, d \in B$, hence (by $\left.\operatorname{Pr}\left(a_{i}, a_{j}, B_{i}\right)\right) d \cap a_{j} \neq 0$ and $d \leq c_{i}=a_{j} \cap b \leq b$ so $d \cap b=d$, hence

$$
d \cap c_{j}=d \cap\left(a_{j} \cap b\right)=(d \cap b) \cap a_{j}=d \cap a_{j}
$$

so $d \cap c_{j} \neq 0$ as required.]
The other conditions are easy too.
So $\left\langle c_{j}: j \in w\right\rangle \in \operatorname{Seq}_{w}(\bar{B})$.
(9) We prove this by induction on α ((i), (ii) and (iii) together). In parts (i) and (ii), Γ being open is immediate, so let us prove density. So assume $\bar{c}=\left\langle c_{i}: i \in v_{0}\right\rangle$ belongs to $\operatorname{Seq}(\bar{B})\left(\right.$ for $9(\mathrm{i})$) or $\operatorname{Seq}_{u}(\bar{B})$ (for $9(\mathrm{ii})$), $v \subseteq \alpha$, $\gamma \in v, d \in B_{\gamma}$ as there and we shall find $\bar{b}, \bar{c} \leq \bar{b} \in \Gamma$ (see end of $4.5 \mathrm{C}(4)(\mathrm{ii})$). In the cases below for 9 (iii) only the assumption on α is relevant.

Case 1: $\alpha=0$
Trivial.

Case 2: $\alpha=\varepsilon+1, \varepsilon \in W$.
For 9(iii) note that by the induction hypothesis we have to prove only the case $\beta=\alpha=\varepsilon+1$ and $d \in B_{\beta}=B_{\alpha}$ is given. Let $d_{1} \in B_{\beta}^{+}$be such that $\operatorname{Pr}_{1}\left(d_{1}, d, B_{\varepsilon}, B_{\alpha}\right)$. By the induction hypothesis we can find $w_{1} \in \operatorname{CSb}(\varepsilon+1)$, such that $\varepsilon \in w_{1}$, and $\bar{a} \in \operatorname{Seq}_{w_{1}}(\bar{B})$ such that $a_{\varepsilon} \leq d_{1}$. Let $w \stackrel{\text { def }}{=} w_{1} \cup\{\alpha\}, a_{\alpha} \stackrel{\text { def }}{=} a_{\beta} \cap d \in B^{+}$(not zero as $a_{\beta} \leq d_{1}$ and the choice of $\left.d_{1}\right)$. So $\left\langle a_{i}: i \in w\right\rangle \in \operatorname{Seq}_{w}(\bar{B})$ is as required.

Now as α is a successor only $9(\mathrm{i})$ is left, by the induction hypothesis $\beta=\alpha+1$ and by the assumptions of $9(\mathrm{i}), \beta$ is a successor of a member of W so $\alpha \in W$ hence v_{0} has a last element. Let d_{0} be: $c_{\max \left(v_{0}\right)} \cap d$ if not zero and $c_{\max \left(v_{0}\right)}$ otherwise and as we have proved 9(iii), there is $\left\langle a_{i}: i \in w\right\rangle \in \operatorname{Seq}_{w}(\bar{B})$ satisfying $w \in \operatorname{CSb}(\alpha+1)$ such that: $v_{0} \cup v \cup\{\varepsilon, \alpha\} \subseteq w$, and $a_{\alpha} \leq d_{0}$. So $a_{\alpha} \leq d$ or $a_{\alpha} \cap d=0$; by 4.5 D (8)(ii) we are done.

Case 3: $\alpha=\varepsilon+1, \varepsilon \notin W$ (so only $9(\mathrm{i})+$ (iii) apply and ε is a limit ordinal) (as $\beta \notin W, \operatorname{cf}(\varepsilon)<\lambda)$.
For 9 (i) as in case 2 it follows from 9(iii), so let us prove 9(iii), by the induction hypothesis w.l.o.g. $\beta=\alpha$. As \bar{B} is 3-o.k. by Definition $4.5 \mathrm{C}(6)$ there are $w_{0} \in \operatorname{CSb}_{u}(\varepsilon)$ and $\left\langle b_{i}^{0}: i \in w_{0}\right\rangle \in \operatorname{Seq}_{w_{0}}(\bar{B})$ such that $\bigcap_{i \in w_{0}} b_{i}^{0}$ is not zero and is $d_{0} \leq d$.

By the induction hypothesis we can apply $4.5 \mathrm{D}(9)(\mathrm{ii})$ to $\varepsilon, \operatorname{CSb}_{u}(\varepsilon)$, $\left\langle b_{i}^{0}: i \in w_{0}\right\rangle$ and so we can find $\left\langle b_{i}: i \in w_{1}\right\rangle$ such that $\left\langle b_{i}^{0}: i \in w_{0}\right\rangle \leq$ $\left\langle b_{i}: i \in w_{1}\right\rangle \in \operatorname{Seq}(\bar{B} \upharpoonright \alpha)$ and $v \subseteq w_{1}$. As \bar{B} is 2-o.k., $b_{\alpha} \stackrel{\text { def }}{=} \bigcap_{i \in w_{1}} b_{i} \in B_{\alpha}$ is not zero. Let $w=w_{1} \cup\{\alpha\}$, so $w \in \operatorname{CSb}(\alpha+1)$ and $\left\langle b_{i}: i \in w\right\rangle \in \operatorname{Seq}_{u}(\bar{B})$ is as required.

Case 4: α is a limit ordinal, $\operatorname{cf}(\alpha) \geq \lambda$ (so $\alpha \in W$ by an assumption of $4.5 \mathrm{D}(9)$). As $B_{\alpha}=\bigcup_{\beta<\alpha} B_{\beta}$ and the third requirement in the definition of $\bar{a} \in$ Seq (see $4.5 \mathrm{C}(4)(\mathrm{i}))$ it is easy.

Case 5: α is a limit ordinal, $\operatorname{cf}(\alpha)<\lambda$.
So 9(i), 9(iii) does not apply. First as for 9(ii) we can assume $v \backslash \min \left(v_{0}\right)=v_{0}$.
[Why? By $4.5 \mathrm{D}(0)$ (i) w.l.o.g. $0 \in v \& v_{0} \subseteq v$. But $\sup \left(v_{0} \cup v\right) \geq \sup \left(v_{0}\right)=\alpha$, so $v=v_{0} \cup v \in \operatorname{CSb}_{u}(\alpha)$, and lastly apply $4.5 \mathrm{D}(3)$ (i) to replace v_{0} by $v \backslash \min \left(v_{0}\right)$.] Second we are given $\gamma \in v, d \in B_{\gamma}$ (so, as we can increase γ w.l.o.g. $\gamma \in v_{0}$). Now $v_{0} \cap(\gamma+1) \in \operatorname{CSb}(\gamma+1)$ and so $\left\langle c_{i}: i \in v_{0} \cap(\beta+1)\right\rangle \in \operatorname{Seq}(\bar{B})$, and by the induction hypothesis (on 9(i)) we can find $\left\langle b_{i}^{0}: i \in w_{0}\right\rangle \in \operatorname{Seq}(B \upharpoonright(\beta+1))$ such that $\left\langle c_{i}: i \in v_{0} \cap(\beta+1)\right\rangle \leq\left\langle b_{i}^{0}: i \in w_{0}\right\rangle$ and $b_{\beta}^{0} \leq d \vee b_{\beta}^{0} \cap d=0$. Define $w=w_{0} \cup v_{0}$,

$$
b_{i}= \begin{cases}b_{i}^{0} & \text { if } i \leq \beta\left(\text { so } i \in w_{0}\right) \\ b_{\beta}^{0} \cap c_{i} & \text { if } i>\beta\left(\text { so } i \in v_{0}\right)\end{cases}
$$

Now $\left\langle b_{i}: i \in w\right\rangle$ is as required.
4.5E. Claim. If $\bar{B}=\left\langle B_{i}: i \leq \lambda^{+}\right\rangle$is 3-o.k. and $\left[i<\lambda^{+} \& \operatorname{cf}(i) \geq \lambda \Rightarrow i \in W\right]$ then $B_{\lambda^{+}}^{+}$is the union of λ many λ-complete filters.

Proof. Note that by 4.5D(9) we have:
(*) for every $\alpha \in W$ and $x \in B_{\alpha}^{+}$for some $w \in \operatorname{CSb}(\alpha+1)$ and $\left\langle a_{i}: i \in\right.$ $w\rangle \in \operatorname{Seq}_{w}\left(\left\langle B_{i}: i<\alpha+1\right\rangle\right)$ we have $0<\bigcap_{i \in w} a_{i} \leq x, 0 \in w$, and w is closed and has a last element α.

Now remember that $\operatorname{Seq}(\bar{B})=\bigcup\left\{\operatorname{Seq}\left(\left\langle B_{i}: i \leq \alpha\right\rangle\right): \alpha<\lambda^{+}\right.$is a successor of a member of $W\}$.

It is well known that there is $H:\left\{w \subseteq \lambda^{+}:|w|<\lambda\right\} \rightarrow \lambda$ such that: $H(w)=H(u), \alpha \in w \cap u$ implies $\alpha \cap w=\alpha \cap u$; also $H(w)=H(u)$ implies that w, u have the same order type (let $f_{\alpha}: \alpha \rightarrow \lambda$ be one to one, $H^{0}(w)=\left\{\left\langle\operatorname{otp}(w \cap \alpha), \operatorname{otp}(w \cap \beta), f_{\beta}(\alpha)\right\rangle: \alpha<\beta\right.$ in $\left.w\right\}$. Now H^{0} is as required except that $\operatorname{Rang}\left(H^{0}\right) \nsubseteq \lambda$, but $\left|\operatorname{Rang}\left(H^{0}\right)\right|=\lambda$, so we can correct this).

Let F_{i} be a one-to-one function from B_{i+1} into λ. We say $\left\langle a_{i}^{1}: i \in w_{1}\right\rangle,\left\langle a_{i}^{2}\right.$: $\left.i \in w_{2}\right\rangle \in \operatorname{Seq}(\bar{B})$ (hence w_{1}, w_{2} have last element) are equivalent if:
(a) $H\left(w_{1}\right)=H\left(w_{2}\right)$ and
(b) if $\alpha_{1} \in w_{1}$ and $\alpha_{2} \in w_{2}$, and $w_{1} \cap \alpha_{1}, w_{2} \cap \alpha_{2}$ have the same order type and $\alpha_{1}=\gamma_{1}+1, \alpha_{2}=\gamma_{2}+1$, then

$$
F_{\gamma_{1}}\left(a_{\alpha_{1}}^{1}\right)=F_{\gamma_{2}}\left(a_{\alpha_{2}}^{2}\right) .
$$

Now the number of equivalence classes is $\leq \lambda^{<\lambda}=\lambda$. So it is enough to show that if $\left\langle a_{i}^{\zeta}: i \in w_{\zeta}\right\rangle \in \operatorname{Seq}(\bar{B})$ are equivalent for $\zeta<\zeta(*)<$ $\lambda, 0 \in w_{\zeta}, \quad \max \left(w_{\zeta}\right) \in w_{\zeta}$, then $\bigcap_{\zeta<\zeta(*)} a_{\max \left(w_{\zeta}\right)} \neq 0$ (see $\left.(*)\right)$. Note that if $\alpha \in w_{\zeta_{1}} \cap w_{\zeta_{2}}$, then $a_{\alpha}^{\zeta_{1}}=a_{\alpha}^{\zeta_{2}}$.

Toward this end we prove by induction on $\alpha \in W$:
$(*)(1) x_{\alpha} \stackrel{\text { def }}{=} \bigcap_{\zeta<\zeta(*)} a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\alpha+1)\right)}$ is not zero (and belongs to B_{α});
(2) if $\gamma<\alpha$ (and $\gamma \in W$) then $\operatorname{Pr}\left(x_{\gamma}, x_{\alpha}, B_{\beta}\right)$;
(3) if $\gamma \leq \alpha$ is a limit ordinal then:
(a) $\operatorname{cf}(\gamma)<\lambda \Rightarrow x_{\gamma+1}=\cap\left\{x_{\varepsilon}: \varepsilon \in \gamma \cap W\right\}$,
(b) $\operatorname{cf}(\gamma) \geq \lambda \Rightarrow x_{\gamma}=x_{\varepsilon}$ for every large enough $\varepsilon<\gamma$.

Clearly x_{α} is decreasing (as a_{α}^{ζ} is decreasing in α for each ζ) and well defined as $\max \left(w_{\zeta} \cap(\alpha+1)\right)$ belongs to w_{ζ} when $\alpha \in W$ (remembering $0 \in w_{\zeta}$).

Case 1. $\alpha=0$
Then $\max \left(w_{\zeta} \cap(\alpha+1)\right)=0$ and $a_{0}^{\zeta}=a_{0}^{0} \in B_{0}^{+}$for every $\zeta<\zeta(*)$. So $(*)(1)$ holds and $(*)(2),(3)$ do not apply.

Case 2. $\alpha=\beta+1, \beta \in W$
Note that if $(\zeta<\zeta(*)$ and $) \alpha=\beta+1 \notin w_{\zeta}$ then $a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\alpha+1)\right)}=$ $a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\beta+1)\right)}$.

So if $\alpha \notin w_{\zeta}$ for every $\zeta<\zeta(*)$ then $x_{\alpha}=x_{\beta}$, so $(*)(1)$ holds. As for $(*)(2)$: for $\gamma<\beta$ use the induction hypothesis; for $\gamma=\beta$ this is easy. Similarly for $(*)(3)$.

If for some $\zeta<\zeta(*)$ we have $\alpha \in w_{\zeta}$, let $v=\left\{\zeta<\zeta(*): \alpha \in w_{\zeta}\right\}$. So $x_{\alpha}=\bigcap_{\zeta \notin v} a_{\max \left(w_{\zeta} \cap(\beta+1)\right)}^{\zeta} \cap \bigcap_{\zeta \in v} a_{\alpha}^{\zeta}$. By the definition of the equivalence relation and the F_{i} 's, for some a we have $\left[\zeta \in v \Rightarrow a_{\alpha}^{\zeta}=a \leq a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\beta+1)\right)}\right]$ and $\left[\zeta, \xi \in v \Rightarrow w_{\zeta} \cap(\alpha+1)=w_{\xi} \cap(\alpha+1)\right]$. Clearly

$$
\begin{aligned}
x_{\alpha} & =\bigcap_{\zeta \notin v} a_{\max \left(w_{\zeta} \cap(\beta+1)\right)}^{\zeta} \cap \bigcap_{\zeta \in v} a_{\alpha}^{\zeta} \\
& =\bigcap_{\zeta<\zeta(*)} a_{\max \left(w_{\zeta} \cap(\beta+1)\right)}^{\zeta} \cap \bigcap_{\zeta \in v} a_{\alpha}^{\zeta} \\
& =x_{\beta} \cap a .
\end{aligned}
$$

Now as $\beta \in W, B_{\beta}$ is λ-complete, hence $x_{\beta} \in B_{\beta}$. Now $a \in B_{\alpha}$ and let $\zeta(0)=\min (v), \gamma(0)=\max \left(w_{\zeta(0)} \cap(\beta+1)\right)$, the maximum exists as said above. Clearly $\gamma(0)=\beta$ (see $4.5 \mathrm{C}(2)(\mathrm{iii})), a \leq a_{\gamma(0)}^{\zeta(0)}$ and $\operatorname{Pr}\left(a_{\gamma(0)}^{\zeta(0)}, a, B_{\beta}\right)$ by the last clause in the definition of $\left\langle a_{i}^{\zeta(0)}: i \in w_{\zeta(0)}\right\rangle \in \operatorname{Seq}_{w_{\zeta(0)}}(\bar{B})$ (see $4.5 \mathrm{D}(4)(\mathrm{i})$). As $x_{\beta} \in B_{\beta}$, and easily $a_{\gamma(0)}^{\zeta(0)} \geq x_{\beta}>0$, clearly $x_{\beta} \cap a \neq 0$. So (*)(1) holds. As for $(*)(2)$, by $4.5 \mathrm{~B}(\mathrm{~b})$ as there is a maximal $\gamma \in w \cap \alpha$, i.e. $\beta=\gamma(0)$ (see above) it is enough to prove $(*)(2)$ for $\gamma=\beta=\gamma(0)$. So let $d \in B_{\beta}, 0<d \leq x_{\beta}$. Then $d \leq a_{\gamma(0)}^{\zeta(0)}$, hence by $\operatorname{Pr}\left(a_{\gamma(0)}^{\zeta(0)}, a, B_{\beta}\right), a \cap d \neq 0$, but $a \cap d=d \cap x_{\beta} \cap a=d \cap x_{\alpha}$, so we are done. Lastly $(*)(3)$ holds by the induction hypothesis.

Case 3. $\alpha=\beta+1, \beta \notin W$
By an assumption of $4.5 \mathrm{E}, \aleph_{0} \leq \operatorname{cf}(\beta)<\lambda$ so by $4.5 \mathrm{D}(0)(\mathrm{i})$ there is $w \in \operatorname{CSb}_{u}(\beta)$ such that $\zeta<\zeta(*) \Rightarrow w_{\zeta} \subseteq w$ and $i \in w \& \operatorname{cf}(i)=\lambda \Rightarrow$ $(\exists j)\left(\sup \left(\bigcup_{\zeta} w_{\zeta} \cap i\right)<j<i \& j \in w\right)$. Note that

$$
a_{\max \left(w_{\zeta} \cap(\alpha+1)\right)}^{\zeta}=\bigcap_{\gamma<\beta} a_{\max \left(w_{\zeta} \cap(\gamma+1)\right)}^{\zeta}
$$

[Why? If $\alpha \notin w_{\zeta}$, as $\left\langle a_{\max \left(w_{\varsigma} \cap(\gamma+1)\right)}: \gamma<\beta\right\rangle$ is nonincreasing and eventually constant (because $\left\langle\max \left(w_{\zeta} \cap(\gamma+1)\right): \gamma<\beta\right\rangle$ is eventually constant), it is equal to

$$
a_{\max \left(w_{\zeta} \cap(\alpha+1)\right)}^{\zeta}=\bigcap_{\gamma<\beta} a_{\max \left(w_{\varsigma} \cap(\gamma+1)\right)}^{\zeta}
$$

If $\alpha \in w_{\zeta}$, as $\left\langle a_{\gamma}^{\zeta}: \gamma \in w_{\zeta}\right\rangle \in \operatorname{Seq}(B)$ (see in Definition 4.5C(4)(i) the second clause in the definition of $\left.\bar{a}^{\zeta} \in \operatorname{Seq}(\bar{B})\right)$.] Now:

$$
\begin{gathered}
x_{\alpha}=\bigcap_{\zeta<\zeta(*)} a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\alpha+1)\right)}=\bigcap_{\zeta<\zeta(*) \gamma<\beta} \bigcap_{\max \left(w_{\zeta} \cap(\gamma+1)\right)} a^{\zeta}{ }_{\gamma<\beta}\left(\bigcap_{\zeta<\zeta(*)} a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\gamma+1)\right)}\right)=\bigcap_{\gamma<\beta} x_{\gamma} .
\end{gathered}
$$

So (*)(3) holds (as $\gamma=\beta$ is the only new case). Also it can be checked that $\left\langle x_{\varepsilon}: \varepsilon \in w\right\rangle \in \operatorname{Seq}_{w}(\bar{B})$ (in Definition $4.5 \mathrm{C}(4)(\mathrm{i})$, the first clause by the definition of x_{α} and $(*)(1)$, the second clause (x_{ε} decreasing) is shown above, the third clause (continuity) by $(*)(3)$, the fourth clause by the choice of w and
the definition of x_{ε}, the fifth clause by $(*)(2)$). As \bar{B} is 2 -o.k. (see 4.5 C (5)) (as $(*)(2)$ holds below β) we get that $x_{\alpha}=\bigcap\left\{x_{\varepsilon}: \varepsilon \in u \cap \beta\right\} \neq 0$. Similarly, using $4.5 \mathrm{D}(6)$, we can check $(*)(2)$.

Case 4. α limit
As $\alpha \in W$, necessarily $\operatorname{cf}(\alpha)=\lambda$. But then, by the definition of $\operatorname{Seq}_{w}(\bar{B})$, if $\alpha \in w_{\zeta}$ though necessarily $\max \left(w_{\zeta} \cap(\alpha+1)\right) \neq \max \left(w_{\zeta} \cap(\gamma+1)\right)$ for $\gamma<\alpha$, still for $\gamma<\alpha$ large enough $a_{\alpha}^{\zeta}=a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\gamma+1)\right)}$, hence $a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\alpha+1)\right)}=$ $\bigcap_{\gamma<\beta} a^{\zeta}{ }_{\max \left(w_{\zeta} \cap(\gamma+1)\right)}$ for every large enough $\beta<\alpha$. If $\alpha \notin w_{\zeta}$ this holds on simpler grounds. But $\zeta(*)<\lambda=\operatorname{cf}(\alpha)$. So $x_{\alpha}=x_{\gamma}$ for every large enough $\gamma<\alpha$, and we can finish easily.
4.5F Remark. The proof is written such that it will be easy to change it for $\bar{B}=\left\langle B_{i}: i<\gamma\right\rangle, \gamma<\left(2^{\lambda}\right)^{+}$, so $\left|B_{i}\right|=|i|+\lambda, B_{i+1}$ is generated by $B_{i} \cup B_{i}^{\prime},\left|B_{i}^{\prime}\right|=\lambda, B_{i}^{\prime}$ is λ-complete and in the definition of $\operatorname{Seq}_{w}(\bar{B})$ add: if $i=\beta+1, \beta \in w$ then $\left(\exists x \in B_{\beta}^{\prime}\right)\left[a_{i}=a_{\beta} \cap x\right]$.

Just use $H:\left\{a: a \subseteq 2^{\lambda},|a|<\lambda\right\} \rightarrow \lambda$ such that $H(a)=H(b) \& \alpha \in$ $a \cap b \Rightarrow \operatorname{otp}(a \cap \alpha)=\operatorname{otp}(b \cap \alpha)$ which exists by Engelking and Karlowic [EK]. But it is not clear whether there is interest in this.
4.6 Definition. 1) We say $\bar{Q}=\left\langle P_{i},{\underset{\sim}{e}}_{j}, \mathbf{t}_{j},{\underset{\sim}{\mathcal{A}}}_{i}: i \leq \alpha, j<\alpha\right\rangle$ is an \bar{S}-o.k. sequence for $\underset{\sim}{W}$ (where $\bar{S}=\left\langle S_{1}, S_{2}, S_{3}\right\rangle$, a partition of ω_{1}) if:
(A) \bar{Q} is a S_{1}-suitable iteration (forgetting the $\mathcal{A}_{i}{ }^{\prime}$'s).
(B) Each Q_{i} is S_{3}-complete.
(C) \mathcal{A}_{i} is a P_{i}-name of a subalgebra (or just subset) of $\mathfrak{B}^{P_{i}}$.
(D) \mathcal{A}_{i} is increasing continuous.
(E) $\mathbf{t}_{j} \in\{0,1\}$ and: if $\mathbf{t}_{i}=1$, then $\Vdash_{P_{i}} " \mathcal{A}_{i} \lessdot \prec \mathfrak{B}^{P_{i}} \upharpoonright S_{1}$ ".
(F) $\mathbf{t}_{i}=1$ for every successor ordinal i.
(G) $\vdash_{P_{i}}$ " $\left(\mathcal{A}_{j}: j \leq i, j \in \underset{\sim}{W}\right\rangle$ is 3-o.k. for $\underset{\sim}{W}$ " where on $\underset{\sim}{W}$ see clause (H) below and λ from $4.5 \mathrm{~A}(1)$ is chosen as \aleph_{1} (see below and $4.5 \mathrm{C}(1),(5)$, (6)).
(H) If i is successor or zero then $i \in \underset{\sim}{W}$. If, in $V^{P_{i+1}}, i$ is a limit of cofinality \aleph_{0} then $i \notin \underset{\sim}{W}$. Also " $i \in \underset{\sim}{W}$ " is a P_{i+1}-name and $\underset{\sim}{W} \subseteq \alpha$.
(I) $\vdash_{P_{i+1}} " \operatorname{Rss}\left(\aleph_{2}\right)$ ".
(J) If i is neither a limit nor a successor of a limit ordinal, then $\mathcal{A}_{i}=$ $\mathfrak{B}^{P_{i}} \upharpoonright S_{1}$.
2) If $\underset{\sim}{W}$ is not given we mean $\left\{i<\alpha\right.$: if i is limit then (in $\left.\left.V^{P_{i+1}}\right) \operatorname{cf}(\alpha) \geq \aleph_{1}\right\}$.
4.6A Remark. Note that $\underset{\sim}{W}$ determines $\left\langle\mathbf{t}_{\alpha}: \alpha<\kappa\right\rangle$ in Definition 4.6, so we could in 4.7 below forget it.
4.7 Proof of 4.4. Let $h: \kappa \rightarrow H(\kappa)$. We define $\bar{Q}^{\alpha}=\left\langle P_{i},{\underset{\sim}{Q}}_{j}, \mathbf{t}_{j}, \mathcal{A}_{i}: i \leq \alpha, j<\right.$ $\alpha\rangle$ by induction on $\alpha \leq \kappa$ such that in stage α, the objects $\underset{\sim}{Q_{j}}(j<\alpha), P_{j}(j \leq \alpha)$, $\mathbf{t}_{j}(j+1 \leq \alpha+1)$ and $\mathcal{A}_{j}(j \leq \alpha)$ (and the truth value of " $j \in \underset{\sim}{W}$ " is as in 4.6(2)) have already been defined and for successor $i, \mathfrak{B}^{P_{i}} \lessdot \mathcal{N}_{i+1}$ and:
(A) \bar{Q}^{α} is \bar{S}-o.k. (and increases with α).
(B) $\bar{Q}^{\alpha} \in H(\kappa)$ for $\alpha<\kappa$.
(C) If α is non-limit, let $\kappa_{\alpha+1}$ be the first compact cardinal $>\left|P_{\alpha}\right|$, and $\underline{Q}_{\alpha}=\operatorname{SSeal}\left(\mathfrak{B}^{P_{\alpha}}, S_{1}, \kappa_{\alpha+1}\right)$ if α is successor and $\operatorname{Levy}\left(\aleph_{1},<\kappa_{\alpha+1}\right)$ if α is zero and $\mathcal{A}_{\alpha+1}=\mathfrak{B}^{P_{\alpha+1}} \upharpoonright S_{1}$ (and \mathcal{A}_{0} the trivial algebra). Lastly of course $\mathbf{t}_{\alpha+1}=1$ and " $\alpha \in \underset{\sim}{W}$ " is true also $\mathbf{t}_{0}=0$ and " $0 \in \underset{\sim}{W}$ ".
(D) If α is a limit ordinal, $h(\alpha)=\langle\mathbf{t}, \underset{\sim}{Q}, \mathcal{A}\rangle, \underset{\sim}{Q}$ a P_{α}-name of a forcing notion, $\mathcal{\sim}$ a $P_{\alpha} * Q$-name, and for some $\underset{\sim}{R} \in H(\kappa)$ we have $\Vdash_{P_{i}}$ " $Q<\overbrace{\sim}^{R}$ " and by the following choices for $\bar{Q}^{\alpha+1}$ we get a \bar{S}-o.k., then so we choose $\bar{Q}^{\alpha+1}$; where the choices are: $\mathbf{t}_{\alpha}=\mathbf{t},{\underset{\sim}{\alpha}}_{\alpha}=\underset{\sim}{R}$, and $\mathcal{A}_{\alpha}=\mathfrak{B}^{\bar{Q} \upharpoonright \gamma} \upharpoonright S_{1}, P_{\alpha+1}=P_{\alpha} * \underset{\sim}{R}$ and $\mathcal{A}_{\alpha+1}=\mathfrak{B}\left[P_{\alpha+1}\right]$. If possible we choose $\underset{\sim}{R}=\underset{\sim}{Q}$.
(E) If clauses (C), (D) do not produce a definition of $\bar{Q}^{\alpha+1}$, let $\kappa_{\alpha+1}$ be the first compact cardinal $>\left|P_{\alpha}\right|$, and then:
first case if in $V^{P_{\alpha}}, \operatorname{cf}(\alpha)>\aleph_{0}$ then

$$
\begin{aligned}
\mathcal{A}_{\alpha} & \stackrel{\text { def }}{=} \mathfrak{B}^{\bar{Q} \upharpoonright \alpha} \upharpoonright S_{1} \text { i.e. } \mathcal{A}_{\alpha} \stackrel{\text { def }}{=} \bigcup_{j<\alpha} \mathfrak{B}^{P_{j+2}} \upharpoonright S_{1}=\bigcup_{j<\alpha} \mathcal{A}_{j} \\
{\underset{\sim}{Q}}_{\alpha} & =\operatorname{SSeal}\left(\left\langle\mathcal{A}_{j}: j \leq \alpha\right\rangle, S_{1}, \kappa_{\alpha+1}\right)= \\
& =\operatorname{SSeal}\left(\left\langle\mathfrak{B}^{P_{j+2}}: j<\alpha\right\rangle^{\wedge}\left\langle\mathcal{A}^{P_{\alpha}}\right\rangle, S_{1}, \kappa_{\alpha+1}\right) \\
\mathcal{A}_{\alpha+1} & =\mathfrak{B}^{P_{\alpha+1}}, \\
\mathbf{t}_{\alpha} & =\mathbf{t}_{\alpha+1}=1
\end{aligned}
$$

second case if in $V^{P_{\alpha}}, \operatorname{cf}(\alpha)=\aleph_{0}$ (i.e. $\alpha \notin W$) then

$$
{\underset{\sim}{A}}_{\alpha}=\mathfrak{B}^{\bar{Q} \upharpoonright \alpha} \upharpoonright S_{1},
$$

(in $V^{P_{\alpha}}$) let $\mathcal{A}_{\alpha+1}^{\prime}$ be $Z^{\alpha}=Z^{\alpha}\left(\left\langle\mathcal{A}_{j}: j \leq \alpha\right\rangle^{\wedge}\left\langle\mathfrak{B}^{P_{\alpha}} \upharpoonright S_{1}\right\rangle\right.$) (a subset of $\mathfrak{B}^{P_{\alpha}}\left\lceil S_{1}\right.$, see Definition $\left.2.4(2)\right)$ and $\mathcal{A}_{\alpha+1}$ be the subalgebra of $\mathfrak{B}^{P_{\alpha+1}} \uparrow S_{1}$ which $\mathcal{A}_{\alpha+1}^{\prime}$ generates. We let

$$
\begin{gathered}
\underset{\sim}{Q_{\alpha}}=\operatorname{SSeal}\left(\left\langle\boldsymbol{B}^{P_{j+2}}: j<\alpha\right\rangle^{\wedge}\left\langle\mathcal{A}_{\alpha+1}\right\rangle, S_{1}, \kappa_{\alpha+1}\right), \\
\mathbf{t}_{\alpha}=0, \quad \mathbf{t}_{\alpha+1}=1 .
\end{gathered}
$$

If we succeed to carry the induction, then letting $G \subseteq P_{\kappa}$ be generic over V we know:
(a) $\aleph_{1}^{V[G]}=\aleph_{1}^{V}$ and $\left\langle S_{1}, S_{2}, S_{3}\right\rangle$ is a partition of ω_{1} to stationary subsets (as P_{κ} is semiproper by clause (A) of Definition 4.6).
(b) $\aleph_{2}^{V[G]}=\kappa$ (similarly, noting that P_{κ} satisfies the κ-c.c.).
(c) Every countable set of ordinals from $V^{P_{\kappa}}$ is included in one from V (see (e) below).
(d) $\left\langle\mathcal{A}_{i}[G]: i<\kappa\right\rangle$ is 3-o.k. (by clause (G) of Definition 4.6).
(e) P_{κ} is S_{3}-complete (see clause (B) of Definition 4.6) hence, as S_{3} is sationary, P_{κ} adds no reals so $V\left[G_{\kappa}\right] \models{ }^{\prime} 2^{\aleph_{0}}=\aleph_{1}$, so $\lambda=\lambda<\lambda "$.
(f) $\mathfrak{B}^{V[G]} \upharpoonright S_{1}$ is Ulam i.e., omitting 0 , it is the union of $\lambda=\aleph_{1}$ many λ complete filters. [Why? By $4.5(\mathrm{E})$ and (d) above (as $W=\{\alpha<\kappa: \alpha$ zero, successor or has cofinality $\geq \aleph_{1}$ (in V, equivalently in $\left.\left.V\left[G_{\kappa}\right]\right)\right\}$).]
To carry the induction it is enough to show that when clause (E) in the construction is applied, we get an \bar{S}-o.k. iteration; this is dealt by 4.9 below $+2.13+2.16$ for $\left\langle\overline{\mathfrak{B}}^{\bar{Q}} \upharpoonright S\right\rangle$ for the first case, and by 4.10 below $+2.13+2.16$ for W defined by 4.10 for the second case.
4.8 Remarks. 1) We could have allowed in clause (D) during the proof 4.7 (of 4.4) to decide if $i \in \underset{\sim}{W}$, i.e. decide $\underset{\sim}{W} i=\underset{\sim}{W} \cap i$, i.e. demand $h(\alpha)=\langle\mathbf{t}, \underset{\sim}{\mathbf{s}}, \underset{\sim}{Q}, \underset{\sim}{A}\rangle$, and try to define $\bar{Q}^{\alpha+1}$ as there with the following addition: the truth value of " $\alpha \in \underset{\sim}{W}$ " is $\underset{\sim}{\mathbf{s}}$, a $P_{a} * \underset{\sim}{Q}$-name, and at the end shoot a suitable club of κ through the "good" places.
2) We could have gotten a forcing axiom, as before.
3) In fact we can weaken the large cardinals demand to " $\kappa=\sup \{\lambda<\kappa: \lambda$ strongly inaccessible and $\operatorname{Rss}^{+}(\lambda)$ or at least $\left.\bigwedge_{\mu<\kappa} \operatorname{Rss}^{+}(\lambda, \mu)\right\}^{\prime \prime}$.
4.9 Claim. Suppose $S \subseteq \omega_{1}$ is stationary, $\bar{Q}=\left\langle P_{i},{\underset{\sim}{~}}_{j}: i \leq \alpha, j<\right.$ $\alpha\rangle$ is a semiproper iteration, α a limit ordinal, and, for simplicity, $\Vdash_{P_{i+1}}$ $" \operatorname{Rss}\left(\aleph_{2}\left[V^{P_{i+1}}\right]\right)$ " for $i<\alpha$. Let $\underset{\sim}{\boldsymbol{\Upsilon}}$ be a P_{α}-name of a dense subset of $\overline{\mathfrak{B}}^{\bar{Q}}\left\lceil S=\bigcup_{i<\alpha} \mathfrak{B}^{P_{i}} \upharpoonright S\right.$ for $i \in W^{*}$.
Then
\otimes if λ is regular and large enough, $N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ is countable, and $\bar{Q}, \lambda, p, \underset{\sim}{r}$, belong to $N, p \in P_{\alpha} \cap N, \beta \in \alpha \cap N$ a successor ordinal and $q \in P_{\beta}$ is $\left(N, P_{\beta}\right)$-semi-generic, $p \upharpoonright \beta \leq q$ and $N \cap \omega_{1} \in S$, then there is a countable $N^{\prime}, N \leq_{\beta} N^{\prime} \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right), N \cap \omega_{1}=N^{\prime} \cap \omega_{1}$, successor $\gamma \in[\beta, \alpha), P_{\gamma}$-name $\underset{\sim}{A} \in N^{\prime}$ and q^{\prime}, p^{\prime} satisfying $p \leq p^{\prime} \in P_{\alpha} \cap N^{\prime}, q^{\prime} \in P_{\gamma}$, $p^{\prime}\left\lceil\gamma \leq q^{\prime}, q^{\prime} \uparrow \beta=q\right.$ and $p^{\prime} \upharpoonright \beta=p \upharpoonright \beta$ such that $q^{\prime} \Vdash_{P_{\alpha}}$ " $N \cap \omega_{1} \in \underset{\sim}{A}$ " and $p^{\prime} \Vdash " \underset{\sim}{A} \in \underset{\sim}{\gamma} "$ 。
4.9A Remark. 1) Note that $\boldsymbol{B}^{P_{i+1}}\left\lceil S \lessdot \mathfrak{B}^{\bar{Q}} \upharpoonright S\right.$ for $i<\alpha$.
2) The claim gives more chains than used in 4.7.
3) This is naturally used together with 2.13 .

Proof. Let us fix $p, \underset{\sim}{\boldsymbol{\sim}}, \beta$ and work in $V\left[G_{\beta}\right]$ where $G_{\beta} \subseteq P_{\beta}$ generic over V and $q \in G_{\beta}$. Let λ be large enough and

$$
\begin{aligned}
\mathbf{W} \stackrel{\text { def }}{=}\{M \prec & \left(H(\lambda), \in,<_{\lambda}^{*}\right): M \text { is countable, } M \cap \omega_{1} \in S \text {, but } \\
& \text { there are no successor } \gamma \in M \cap[\beta, \alpha), r \in P_{\gamma} / G_{\beta} \text { and } \\
& \underset{\sim}{A} \in M\left(\text { a } P_{\gamma} \text {-name }\right) \text { and } p^{\prime} \in P_{\alpha} / G_{\beta} \cap N \text { such that: } \\
& r \text { is }\left(M, P_{\gamma} / G_{\beta}\right) \text {-semi-generic, } p \leq p^{\prime}, p^{\prime} \upharpoonright \gamma \leq r \text { and } \\
& \left.r \Vdash_{P_{\alpha} / G_{\beta}} " M \cap \omega_{1} \in \underset{\sim}{A} ", p^{\prime} \Vdash " A \in \underset{\sim}{\gamma} "\right\} .
\end{aligned}
$$

If $\mathbf{W}=\emptyset \bmod \mathcal{D}_{<\aleph_{1}}(H(\lambda))$, we can easily get the desired result (as in the proof of 1.11)).

So (in $V\left[G_{\beta}\right]$) the set \mathbf{W} is a stationary subset of $\mathcal{S}_{<\aleph_{1}}(H(\lambda)$), hence semistationary. As $V\left[G_{\beta}\right] \models " \operatorname{Rss}\left(\aleph_{2}\right) "$ (remember β is a successor ordinal and clause (I) of Definition 4.6) there is $u \subseteq H(\lambda)$ such that $\omega_{1} \subseteq u$ and $|u|<\aleph_{2}$ (in $V\left[G_{\beta}\right]$) and $W \cap \mathcal{S}_{<\aleph_{1}}(u)$ is semi-stationary. Now without loss of generality $\left(u, \in,<_{\lambda}^{*} \upharpoonright u\right) \prec\left(H(\lambda), \epsilon,<_{\lambda}^{*}\right)$. Let $u=\bigcup_{\zeta<\omega_{1}} u_{\zeta}, u_{\zeta}$ is countable, increasing and continuous. So

$$
B_{1} \stackrel{\text { def }}{=}\left\{\zeta \in S:(\exists M \in \mathbf{W})\left(\omega_{1} \cap u_{\zeta} \subseteq M \subseteq u_{\zeta}\right)\right\}
$$

is a stationary subset of $S \subseteq \omega_{1}$ (see $1.2(4)$), it belongs to $\mathfrak{B}\left[P_{\beta}\right]$, and we shall prove:
(*) $\quad p \Vdash_{P_{\alpha} / G_{\beta}}$ " for every $X \in \underset{\sim}{\underset{\sim}{r}}$ the set $X \cap \underset{\sim}{A} \cap B_{1}$ is not stationary".
[Why (*)? If not then for some p^{\prime} and P_{α}-name $\underset{\sim}{A}, p \leq p^{\prime} \in P_{\alpha} / G_{\beta}$ and $p^{\prime} \Vdash_{P_{\alpha} / G_{\beta}} \quad$ " $A \in \underset{\sim}{\boldsymbol{\Upsilon}}$ and $\underset{\sim}{A} \cap B_{1}$ is stationary". As $\underset{\sim}{\boldsymbol{\Upsilon}} \subseteq \mathfrak{B}^{\bar{Q}}$, for some $\gamma<\alpha$, $\underset{\sim}{A}\left[G_{P_{\alpha}}\right]$ is in $\mathfrak{B}^{P_{\gamma}}$, so (possibly increasing p) without loss of generality for some successor $\gamma \in[\beta, \alpha), \underset{\sim}{A}$ is a P_{γ}-name of a member of $\mathfrak{B}^{P_{\gamma}}$. For $\zeta \in B_{1}$, let the model M_{ζ} be any member of \mathbf{W} which satisfies $\omega_{1} \cap u_{\zeta} \subseteq M_{\zeta} \subseteq u_{\zeta}$ (see the definition of B_{1}). For $\xi<\omega_{1}$, let N_{ξ}^{\prime} be the Skolem Hull (in $\left(H(\lambda), \in,<_{\lambda}^{*}\right)$) of $\{\zeta: \zeta<\xi\} \cup\left\{p, p^{\prime}, \underset{\sim}{A}, W,\left\langle u_{\zeta}, M_{\zeta}: \zeta \in B_{1}\right\rangle\right\}$, and

$$
\underset{\sim}{C}=\left\{\xi<\omega_{1}: N_{\xi}^{\prime}\left[G_{P_{\alpha}}\right] \cap \omega_{1}=\xi \text { and } N_{\xi}^{\prime}\left[G_{P_{\alpha}}\right] \cap u=u_{\xi}\right\} .
$$

As $\left\langle N_{\xi}^{\prime}\left[G_{P_{\alpha}}\right]: \xi<\omega_{1}\right\rangle$ is increasing continuous, $\underset{\sim}{C}$ is a P_{α} / G_{β}-name of a club of ω_{1}. Clearly $\underset{\sim}{C} \cap \underset{\sim}{A}$ is necessarily disjoint to B_{1} by the definition of W : if $\zeta<\omega_{1}, q \in P_{\alpha} / G_{\beta}$, and $q \Vdash_{P_{\alpha} / G_{\beta}}$ " $\zeta \in \underset{\sim}{C} \cap \underset{\sim}{A} \cap \underset{\sim}{B}$ ", then $N_{\zeta} \in W$ is defined, q_{α} is $\left(N_{\zeta}, P_{\alpha} / G_{\beta}\right)$-semi-generic, and $q_{\alpha} \Vdash_{P_{\alpha} / G_{\beta}} " N_{\zeta} \cap \omega_{1} \in \underset{\sim}{A}$ ", contradicting " $N_{\zeta} \in W$ " so (*) holds.]

But $(*)$ contradicts $p \Vdash_{P_{\alpha} / G_{\beta}} \stackrel{\sim}{\sim} \subseteq \mathfrak{B}^{\bar{Q}}$ is dense " as $B_{1} \in \mathfrak{B}^{P_{\beta}} \subseteq \mathfrak{B}^{\bar{Q}}$.
4.10 Claim. Suppose $S \subseteq \omega_{1}$ is stationary, $\bar{Q}=\left\langle P_{i},{\underset{\sim}{~}}_{j}, \mathbf{t}_{j}, \mathcal{A}_{i}: i \leq j, j<\alpha\right\rangle$ 3-o.k. sequence for W, S-suitable iteration, α limit ordinal and (for simplicity) $\operatorname{cf}(\alpha)=\aleph_{0}$ and let $\underset{\sim}{\mathcal{A}} \mathcal{A}_{\alpha}=\mathfrak{B}^{\bar{Q}}$ (a P_{α}-name). Let $\overline{\mathcal{A}}=\left\langle\mathcal{A}_{i}: i \leq \alpha\right.$ and $\left.i \in \underset{\sim}{W}\right\rangle$. Then:
\otimes if λ is regular large enough, $N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ countable and \bar{Q}, λ, p belong to $N, p \in P_{\alpha} \cap N, \beta \in \alpha \cap N$ a successor ordinal and $q \in P_{\beta}$ is $\left(N, P_{\beta}\right)$-semi generic, $p \upharpoonright \beta \leq q$ and $N \cap \omega_{1} \in S$ then there is an $\left(N, P_{\alpha}\right)$-semigeneric $q^{\prime} \in P_{\alpha}, q^{\prime}\left\lceil\beta \geq q\right.$ and $q^{\prime} \Vdash_{P_{\alpha}}$ " for every dense open $\Upsilon \subseteq \operatorname{Seq}_{u}(\overline{\mathcal{A}})$ (see $4.5 \mathrm{~A}(4)(\mathrm{ii}),(9))$ which belongs to $N\left[G_{\alpha}\right]$, for some $\left\langle A_{i}: i \in w\right\rangle \in$ $N\left[G_{\alpha}\right] \cap \Upsilon$ we have $N \cap \omega_{1} \in \bigcap_{i \in w} A_{i}$ ".
4.10A Remark. 1) If " $\operatorname{cf}(\alpha) \neq \aleph_{0}$ " we can still assume p forces $\operatorname{cf}(\alpha)=\aleph_{0}$ or p forces $\operatorname{cf}(\alpha)=\aleph_{1}$ or " α is inaccessible, $\bigwedge_{i<\alpha}\left|P_{i}\right|<\alpha$ " and in the first case prove 4.10 with minimal changes.
2) Note that $Z^{\alpha}\left[\left\langle\mathcal{A}_{i}: i \leq \alpha\right\rangle\right]$ is a subset of $\mathfrak{B}^{P_{\alpha}}$ extending $\mathfrak{B}^{\bar{Q}}, 0$ is not in it, but there is no reason for it to be closed under differences.

Proof. Standard, by now. Let $\left\langle\beta_{\ell}: \ell<\omega\right\rangle \in N$ be an increasing sequence of successor ordinals with $\beta_{0}=\beta, \bigcup_{\ell<\omega} \beta_{\ell}=\alpha$. Let $\underset{\sim}{\underset{\Upsilon}{~}}=\left\langle{\underset{\sim}{\Upsilon}}_{n}: n<\omega\right\rangle$ list the sets $\underset{\sim}{\Upsilon} \in N$ which are P_{α}-names (forced to be) pre-dense subsets of $\operatorname{Seq}_{u}(\overline{\mathcal{A}})$. We choose by induction $p_{n}, q_{n}, N_{n}, \bar{a}^{n}, G_{\beta_{n}}$ such that:
(a) $G_{\beta_{n}} \subseteq P_{\beta_{n}}$ generic over $V, G_{\beta_{n}} \subseteq G_{\beta_{n+1}}$,
(b) $N_{0}=N, p_{0}=p, q_{0}=q$,
(c) $N_{n} \leq \omega_{\omega_{2}} N_{n+1}, N_{n} \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ and $N_{n} \in V\left[G_{\beta_{n}}\right]$,
(d) $p_{n} \leq p_{n+1}, p_{n} \in N \cap P_{\alpha} / G_{\beta_{n}}$,
(e) $q_{n} \in G_{\beta_{n}} \subseteq P_{\beta_{n}}$ is $\left(N_{n}, P_{\beta_{n}}\right)$-semi-generic,
(f) $p_{n} \upharpoonright \beta_{n} \leq q_{n}\left(\right.$ in $\left.P_{\beta_{n}}\right)$,
(g) $\bar{a}^{n}=\left\langle{\underset{\sim}{\zeta}}_{n}^{n}: \zeta \in w_{n}\right\rangle \in \operatorname{Seq}\left(\left\langle\mathcal{A}_{i}: i<\alpha\right\rangle\right) \cap \Upsilon_{n}$,
(h) $w_{n} \subseteq w_{n+1}$ and $a_{\zeta}^{n+1} \leq a_{\zeta}^{n}$ for $\zeta \in w_{n}$,
(i) $\left\{\beta_{\ell}: \ell<n\right\} \subseteq w_{n}$,
(j) $N_{n} \cap \omega_{1} \in \underset{\sim}{a}{\underset{\beta}{n}}_{n}^{n}$ that is $q_{n} \cup p_{n} \upharpoonright\left[\beta_{n}, \alpha\right)$ forces this.

The induction step is by 4.1 (and $4.5 \mathrm{D}(9)$). As we are using RCS iteration, this suffices (i.e. we can make the $G_{\beta_{n}}$ disappear).
The details are left to the reader. This induction suffices as we can use RCS iteration, so we can find q^{\prime} as required.

[^0]: \dagger Later results of Martin, Steel and Woodin clarify the connection between determinacy and large cardinals.

