V. a-Properness and

Not Adding Reals

§0. Introduction

Next to not collapsing R;, not adding reals seems the most natural requirement
on a forcing notion. There are many works deducing various assertions from
CH and many others which do it from diamond of R;. If we want to show that
the use of diamond is necessary, we usually have to build a model of ZFC in
which CH holds but the assertion fails, by iterating a suitable forcing. A crucial
part in such a proof is showing that the forcing notions do not add reals even
when we iterate them. So we want a reasonable condition on Q; (in VP which
ensures that forcing with P, does not add reals when (Pi,Qi i< a)is a
CS iterated forcing system. Another representation of the problem is “find a
parallel of MA consistent with G.C.H.”.

The specific question which drew my attention to the above was whether
there may be a non-free Whitehead group of power X; (from [Sh:44] we know
that there is no such group if V = L or even if Qg holds for every stationary
S C wy, and that there is such a group if MA +2% > R; holds). This is
essentially equivalent to: “Is there a stationary S C wp, and for each § € §
an unbounded subset Aj of order-type w, such that A = (A5 : § € S) has the
uniformization property” (see II 4.1, i.e. if h = (hs : § € S), hs a function

from As to 2 = {0,1} then for some h : |J As — 2 for every 6, hs C* h ie.
€S
{a € As : hs() # h(a)} is finite). It is easy to see that Qg implies (4; : i € 5)



§1. £-Completeness-a Sufficient Condition for Not Adding Reals 195

does not have the uniformization property (and in II 4.3, we proved, from ZFC
+ MA +2% > X;, that A has the uniformization property).

The solution was surprising. By Devlin and Shelah [DvSh:65] (see AP §1
here), there is a weak form ®2_ of Ox, which follows from CH; in fact is equiv-
alent to 280 < 281 This statement implies many consequences of the diamond
(see on it in Appendix §1; see [Sh:87a], [Sh:87b], [Sh:88] and a systematic de-
velopment in Abraham and Shelah [AbSh:114] and [Sh:192] and lately [Sh:576],
[Sh:600]). In particular (As : § € S) does not have the uniformization property
when S € D,,, i.e. S contains a closed unbounded subset of w;. This still leaves
open the question for S a stationary costationary subset of w;. Now for such
sets it was proved in [Sh:64] that the uniformization property may hold for a
fixed stationary costationary subset S of wy, i.e. for all (45 : 6 € S), As C 4§
unbounded of order type w. However $,,,\s (and even 0:1\ g) may still hold.
On the situation for A > X; see [Sh:186], Mekler and Shelah [MkSh:274] and
[Sh:587]. More information on the connection between unifomization and group
theoretic questions see [Sh:98] or see the book [EM] and lately Eklof, Mekler,
Shelah [EMSh:441], [EMSh:442], Eklof, Shelah [EkSh:505].

We also deal with “when does a CS iteration of proper forcing add no new
reals?” For this we need two properties. One is D-completeness (see §5) which
is a way to exclude the impossible cases, and another is a-proper for a < wy,
where we replace a countable elementary submodel by tower of height o of
such models (in §3, and in §2 for more general case). The iteration theorem
is proved in §7, but to apply it to the classical problem of SH we need “good
forcing notion”, this is done in §6; Jensen’s original proof use a different forcing.
Lastly, in §8 we deal with KH giving a proof in our context to results of Silver
and Devlin. We also start investigating preservation of additional property: in

§4 we deal with “w-bounding.

Notation. In this chapter A,u will stand for uncountable cardinals, if not

explicitly stated otherwise.
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§1. £-Completeness — a Sufficient Condition for
Not Adding Reals

1.1 Definition. Let £ be a family of subsets of Sy,(1) (we assume always
Sy, (1) € €, so p is reconstructible from £ but using specific £ we may forget to
write Sy, (). In an abuse of notation, instead of a singleton {E}, E C Sy, (1),
we write E. When € = {a € Sy,(1) : a Nw; € S} we write {S} or S (here
S C Sy, (wy) or just S a subset of w,), similarly if S C Sy, (u1), we may interpret
it as {a € Sp, (1) : aNp1 € S}. Remember Dy, (A) is the filter {A C Sy, (A) : A
include some club of Sy, (A)} (see Definition III 1.4), it is Ry-complete, fine (i.e.
z€ A= {a:z €a} € Dy,(A)) and normal (i.e. A, € Dy,(A) for z € A implies
{a: (Vz € a)(a € A;)} € Dy,(4)).

(1) We say that £ is nontrivial if for every A large enough, there is a countable
N < (H(X\),€) suchthat E€ N and NNpu € A for every A € ENN. We
say in such cases that N is suitable for £.

(2) We say, for a nontrivial £, that a forcing notion P is £-complete if for every
A large enough, and N < (H()), €) countable, suitable for £, to which P
belongs, the pair (N, P) is complete (see below).

(3) The pair (N, P) is complete if every generic sequence (p, : n < w) for
(N, P) has an upper bound in P, where:

(4) (pn :n < w) is a generic sequence for (N, P) if p, € PNN, P F p, < ppy1,
and for every dense open subset Z of P which belongs to N, ZN{p, :n <
w} £0.

1.2 Claim.

1) If £ is nontrivial and £ € H()), then the set of suitable N’s is unbounded
in S, (H(\)). Moreover £ is nontrivial C P(Sx,(u)) iff the fine normal
filter on Sy, (1) it generates is a proper filter. So if £ = {E}, we can add
“ff E is a stationary subset of Sx,(u)”.

2) In the definition, in (1) we get the same answer for all A for which £ € H());
if we replace “€ € N < (H(A),€)” by “N < (H()),€,€£)” we get the same
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answer for all X for which Sy, (1) € H()), so we may replace the universal
quantifier on A by an existential.
3) If £ is nontrivial, it has the finite (in fact, countable) intersection property.
4
5

6

If S C w; is stationary, then £ = {S} is nontrivial (for 4 = w;).

If P is E-complete for some nontrivial £, then P does not add reals.

If N < (H()), €) is suitable for £, P € N a forcing notion, q € P is generic

for (N, P), then q IFp “N[Gp] is suitable for £”.

7) EE CP(Sxe(1)), 1 = €]+, E = {X; : 7 < |E]} and E* = {a € Sy, (11):
ifi € a and 1 < || then a N p € X;}, then: £ is nontrivial iff {E*}
is nontrivial; also for any forcing notion P, P is £-complete iff P is E*-
complete.

8) If P,Q are £-complete, then P x Q is £-complete.

9) If N < (H(A\),€) and p, E € N and E C S<x,(u) then: N is suitable for

{E} iff NnpeE.

Proof. 1) Fix A and a countable a € H()). We want to find a suitable N such
that a € N (then also a C N). Assume

(*) there is no suitable N < (H(\),€), a € N.

Then for some A\; > X\ we have (H(\1),€) = “(3a € H(A))[(*)]” and H(A) €
H () of course, and )\, is as required in Definition 1.1(1). Let N1 < (H(\1), €)
be suitable for £. Then for some a € Ny N H(A), N; = “(x)”. Now consider
N = N1Nn H()) and get a contradiction. The other two sentences are easy too;
on the normal fine filter on Sy, (1) which £ generates see 1.4.

2) Easy, by an argument similar to III 2.2.

3)-9): Easy, (for (6) see 1.3(1)). Oz

1.2A Explanation of 1.1(4). ) is large enough to ensure everything about P,
forcing, etc., is expressible in H (), now as N is an elementary submodel, it is
legitimate to ask what goes on when you force with P starting in N, of course
a generic sequence is not far from being a generic subset, so what (4) says is
that for any generic extension N[G], there is p € P which knows everything
about it (so G C PN N is generic over N).
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1.3 Theorem.
(1) If P is E-complete (so € nontrivial in V'), then I-p “£ is nontrivial”.
2 IfQ = (Pi,Qi 14 < a) is a countable support iteration, I+p, “Qi is €

-complete”, then P, = lim Q is £-complete.

1.3A Remark. So in (2) it is enough to assume £ is not trivial in V and I-p, “

if £ is not trivial then Q; is £-complete.”

Proof.

(1) Note: Sy, (1)V = Sy, (p)VP. Let X be large enough and p € P. Let N <
(H(X),€) be suitable for £, P € N, p € N, hence (N, P) is complete (see
Definition 1.1(2)). Choose (p, : n < w), a generic sequence for (N, P), po = p
and choose p* > p, for all n < w. Since p* is (N, P)-generic by Corollary III
2.13 (see clauses (a), (f)) we have, p* IF (N[G],€) < (H(\)VIG) €); £ € N[G]
and N[G]Nnp=Nnpand HA)Y NN = HA)V N N[G]” and as £ € V also
N[G]NE = NNE, hence Sy, (1) N N = Sy, (1) N N[G] (as forcing by P adds

no new countable subsets of 1) hence

N[GInu=Nnpe [ A= (] 4
A€ A€€
AEN AENIG)

So p* > p forces N[G] to exemplify that € is not trivial.

(2) Let A be large enough, N < (H(X), €) suitable for £. Let (p, : n < w)
be a generic sequence for (N, P,), (note p, € N, Dom(p,) countable hence
Dom(p,) C N). Define p* € P, : its domain is NNa, and for i € NNa, p*(i) is
a member of @; which is an upper bound for {p,(i) : n <w and i € Dom(pn)}
if there is such upper bound (in Q;, say first such upper bound in some well
ordering <; of @; (a P;-name)). We now prove by induction on i € N Na
that p*[i > pn|i for every n (note i € Dom(p,) for every n large enough as
{p € P, :i € Dom(p)} is a dense open subset of P, which belongs to N). There

are no special problems.

Ui
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1.4 Claim.

(1) The minimal normal fine filter on Sy,(x) which includes € is D = D(€)
which is defined by:
A € D if and only if there is C' € Dy, () and A; € EU{Sy,(p)} for i < u,
such that {a € C: (Vi € a)a € A;} C A.

(2) £ is nontrivial if and only if § ¢ D(E).

(3) P is &-complete if and only if P is D(£)-complete.

Proof. Easy. Oia

1.5 Lemma. Assume 2% = X;. If Q = (P;, Qi 11 < @) is a countable support
iteration, IFp;, “|Qi| = N1”, £ a family of subsets of Sy, () which is nontrivial,

and each Q; is £-complete. Then P, = Lim Q satisfies the Ry-chain condition.

Proof. Let {p; € Py : 1 < Nz} be given. We shall find two compatible conditions
among them. Pick A regular large enough, for every i < Ro, let N; < (H(A), €)
be countable such that {Q,p;,i,€} C N; and N; is suitable for €.

1.5A Fact. We can find ¢ < j < wz and an isomorphism h : N; — N; (onto
Nj;) such that h(p;) = p; and h[(N; N N;) = idn;nn;-

Proof of the Fact. Denote S? = {y < Rq : cf(y) = N1}, clearly it is a stationary
set; define f(v) = Min{8 : Ny N (U;<yN;) = N, N (U;<gN;)}. Since || N, || = Ro
and [y € S = cf(y) = Ny] clearly f is a regressive function on S%, hence by
Fodor’s lemma there exists S C S? stationary and 8 < R such that f[S] = {3}.

The number of countable subsets of U;«<glV; is
| Uicg Nill™® < (18] - Ro)™ = RY = (2%0)% = 2% =Ry ,

therefore we may choose T C S of cardinality R, and a set B* such that
(Vy € T)[Ny N (UicpN;) = B*]. For every v € T define NJ = (Ny, Dy, C)ceB-
The number of isomorphism types is < 2% = R; hence we may choose ST C T,

|St| = RNy such that i # j € § = N} = Njf. Pick such 4,j from St. Let
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h : N; — N; be the isomorphism. As each ¢ € B* is an individual constant, h is
an isomorphism over B* (i.e., it is the identity on B*) and similarly h(p;) = p;.

This is the isomorphism we promised in the Fact so we have proved the fact.

Ois4a

Continuation of the proof of 1.5: Let i < j and h be as in Fact 1.5A. Now
choose {p? € P, N N; : n < w} such that p; = p? < p} < p? < --- and
for every dense subset T € N; of P, there exists n such that p € 7 and let
{p} € P, N N;j : n < w} be defined by p} = h(p}). Define a condition r as
follows: Dom(r) = (N N;) U (N N;), for £ € an N; \ N, r(€) will be a
Pe-name of an upper bound of {p}(§) : n < w} if there is such a bound, and
otherwise @ = Pp,. For £ € an Ny, r(£) will be a name of an upper bound of
{p}(€) : n < w} if there is such an element, and otherwise § = 0p,. It suffices
to prove that for every n < w we have pi' < r and pj < r. We shall prove by
induction on v < « that for every n <w, p;*[v,p} 7 < rlv. This suffices as for
v = a we get that r is a common upper bound of p;[a = p; and p;la = p; (in
P,). For vy = 0 this is trivial.

For ~y limit, it follows from the induction hypothesis (and the definition of the
order).

For v = £ + 1, notice that Dom(p}) C N; N a, Dom(p}) C N; N e, and divide

to 4 cases:
1. £ ¢ N; and £ ¢ Nj; trivial.

2. £ € N; \ N, it suffices to prove

(%) rI€kp “p7(§) < T(€)".

If {p?*(§) : n < w} has an upper bound in Q¢ then this is true by construction
(i.e. the choice of r(£)).

By the choice of (p} : n < w) as P < P, clearly (p}1§ : n < w) is a generic
sequence for (N;, P¢), hence by the induction hypothesis [ is (IV;, P¢)-generic.
So by 1.2(6) and the definition of the order of P, we have r[€ IFp, “N;[G¢] is
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&-suitable and (p}'(£) : n < w) is a generic sequence for (N;[G¢],Q¢)”. Hence
Tl Ikp, “(p}(€) : n <w) has an upper bound in Q¢”, so we finish.

3. £ € N; \ N;, symmetric proof to 2 (using the choice of h).

4. £ € N;N Nj; remember that w.lo.g. Q¢ (set of elements) is w; and as above
by the induction hypothesis r[¢ is (NV;, P¢)-generic and (N;, P¢)-generic. Since
N;Nwy and N;Nw; are initial segments of w; and N; = N; (and w; € N;NN;)
clearly N;Nw; = NjNw;. Also 7[€ determines Gp, NN; and Gp, N N; hence for
every m thereisann € w, and @™ € N;Nwy, such that p} [¢ IFp, “p*(§) = a™”.
To this relation in N; we can apply h, which yields p?[¢ IFp, ‘i) = a™”
(since a™ € N; N Nj). Hence ¢ IFp, “pI*(€) = pf*(€)” for all m < w. Now

continue as in the previous case 2.
Uis

1.6 Theorem. Suppose that CH holds in V, and € is a nontrivial family of
subsets of Sy, (1), X' = x = cf(x). Then V has a generic extension V; by

proper forcing in which:

(*¥) (a) CH holds, £ is not trivial, 2% = y, and

(b) If P is an E-complete proper forcing notion, |P| = X; and Z; C P is
dense for 1 < ip < cf(x), then there is a directed G C P such that
GNZI; #0 for i < 1.

1.6 A Remark.

(1) Properness is not essential in the proof of the theorem (except for having
it in the conclusion), its use will appear in 1.7.

(2) Also the reader should be aware of the fact that £-completeness and

properness is more than properness alone, otherwise 1.6 would say:

MAy, & CH,
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which is of course impossible.

Proof. We use countable support iterated forcing systems (P;,Q; : i < a) such
that ~
(*) a < x* and IFp, “|Q;| = R1,Q; is proper and is £-complete”.
For any such system Q, Lim Q is an £-complete forcing notion which satisfies
the Rp-chain condition (by 1.3(2) and 1.5 respectively). Also by III §3 LimQ is
proper.

By usual bookkeeping it is enough to prove the subfact below (note that

for R = {f : for some a < wy, f : o — {0,1}} ordered by inclusion, always (a)
of (iii) below holds).

1.6B Subfact. If Q! satisfies (*), P! = LimQ"! and R is a P'-name of a forcing
notion, then there is a Q? such that:
(i) Q? satisfies (*).
(i) Q! is an initial segment of Q2.
(ili) for some maximal antichain Z of P2, for every p € T (where P? = LimQ?):
either (g) pl-pz “ there is a directed subset of R, generic over VF1” (in fact, it
is the generic subset of some Qg, 8 € [£g(Q"), £g(Q?))),
or (b) for no Q, and q do we have: Q satisfies () and Q? is as initial segment
of Q and p < q € LimQ, and ¢ Fimg “R is a proper £-complete

forcing with universe w;”.

Proof. Immediate. O1.6B,1.6
1.6C Remark. 1) This is different from the situation of II 3.4, where we had
“c.c.c.” instead of “£’-complete for some suitable £”.

2) So the Schemma of the proof of 1.6 is more general than the one in II 3.4.
3) Assume that P, R are forcing notions in V', £ C S<r,(p) is nontrivial:

(a) if R is not proper in V, P is proper, then R is not proper in VP (use

the equivalent definition in IIT 1.10(1) and for simplicity the set of

members of @ is an ordinal): similarly for £-proper (see Definition

2.2(5) below). The proof is included in in the proof of III 4.2.
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b) If R is not £-complete in V, P is e.g. £-complete, then R is not £-
complete in VP .
c) Without “P is proper”, clause (a) is not necessarily true.
4) By (3)(a) (of the Remark 1.6C), as [ < a = Pg/P, is proper], we can
use in the proof of 1.6 the older Schemma.
5) We can omit x = cf(x) in 1.6 and replace ¢ < 1o < cf(x) by ¢ < x1 where
x1 < x is regular. (And use iterated forcing of length 6 < x ¥, cf(d) = x1.

Instead x* we can use an inaccessible.)

1.7 Conclusion. In the model from 1.6, if £ = {w; \ S}, S C wj, stationary
costationary the following holds:
a) for any (A; : § € S), such that As C ¢ unbounded of order type w for
d € S, we have: ((As: 6 € S),Rg) has the uniformization property.
b) S is still stationary (after the forcing, by properness).

Remark. Remember, we say a family P = {4, : a € S} of sets has the s-
uniformization property (or (P, k) has the uniformization property) if for every
family {f : a € S}, fa a function from A, to &, thereis f : {J,cg Aa — & such
that A\, fo =ae flAa, where f =a g if [{a : f(@) # g(a),a € Dom(f)}| <

|Dom(f)| (note: this is symmetric and transitive only if we demand Dom(f) =

Dom(g)).
def

Proof. Let (A5 : 6 € S) be as above, f5: As > w, and Q@ = {f : f a function
from some a < w; to w, such that for every limit 6 < a,6 € S we have
FTAs =ae fé}a ordered by C.

We have to check the following four facts:
Fact A. If p € Q,Dom(p) < a < w; then, there is ¢, p < q € Q, Dom(q) = a.
Fact B. Q is E-complete.

Fact C. If p € Q, A C w; \ Dom(p) is finite, f a function from A to w, then
thereisq,p<qeQ, fCq.

Fact D. Q is proper.
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Proof of Fact A. Let {0y : £ < j < w} be a list of all limit ordinals § € S, such
that Dom(p) < § < a. As As, has order type w, and Sup(As,) = d¢, clearly
As, N As,, is finite for m < £, hence we can define by induction on ¢ < w,

Be < b¢ such that B, > Dom(p) and B, > Max(As, N As,,) for m < £. Now

define ¢, a function from a to w:

f&(i) 1€ (Atsz \/Bl)

0 otherwise (but i < «)

p(i) i€ Dom(p)
q(@) =

Now g is well defined as the 3, were defined such that the A, \ B¢ are pairwise
disjoint and disjoint to Dom(p). It is trivial to check p < q € Q.

Proof of Fact B. Trivial. (Note that if (p, : n < w) is an increasing sequence
of members of @, then |J p, satisfies almost all the requirements, the prob-

n<w
lematic one is: if § € S is |J Dom(p,) (i.e. the supremum of the domain)
n<w

then (U pn)lAs =ae f5. But by Fact A the set |J,,., Dom(p,) is N Nw; if
n<w
(pn : m < w) is a generaic sequence for (N, Q), so if NNw; € w1\ S the sequence

has an upper bound, and this holds for N suitable for £.)

Proof of Fact C. Let A = {ay : £ < m} increasing with £ and we define by
induction p; € Q (for £ < 2m), po = p, Dom(pa2e+1) = o, Dom(paes2) = ap+1,
paer2(ae) = f(ou),pe < pey1. Now the existence of pae,; follows by Fact A, and
poes2 belongs to Q as for every limit d, [§ < Dom(paes1) € 0 < Dom(paey2)].

Now q = pay, is as required.

Proof of Fact D. Let X be large enough, p > (2*)*, <}, a well ordering of H (y),
for which X is the first element and let <}=<], [H()). It suffices to prove that
for any given countable N < (H(u),€,<},), Q€ N,p€ NNQ thereis g € P
which is (N, Q)-generic, p < q. So let § NN w1 and choose a, < §, such
that an < 0ms1, 6 = Up<wOn. Let {bg : £ < w} be a list of all members of
N N H()\) and Ny be the Skolem hull of {Q,p} U {bg: £ < k} U {i: i < o}
in the model Nt % NTH()\) < (H()),€,<%). So clearly Ny € N (as A is
definable in (H(y), €, <%), being the first, hence (H()), €, <}) belongs to N).
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It is also clear that Ug<o N = N t, so every pre-dense Z C Q,Z € N belongs
to Nt hence to some Ni. Now, define by induction on n, p, such that:

a) po =P, Pn < Pntl

b) pn € NuNQ

c) if § € S, then py, f5 agree on A; N Ny, \ Dom(po)

d) if £ < n, b, an open dense subset of Q then p, € be

e) an € Dom(pn+1)

For n = 0, pp = p satisfies all the requirements.

If p, is defined and satisfies the requirements, first note that As N Ny 41 is
finite as: Npy1 € N, Sup(Np41 Nw;) € N hence Sup(Np4+1 Nwi) < 6, whereas
Aj has order type w with Sup(As) = 8. By Fact C there is p}, > pn, p}, € Q,
p! D f51(Nns1NAs\Dom(p,)) and by Fact A w.l.o.g. o, C Dom(p},) (if 6 & S,
we use only fact A). As Npy1 < (H(A), €,<3), {Pn, Q, 0, f5[(Nny1 NA)} €
Npy1, we can find such p}, € N,1. Now pl satisfies all the requirements on
Pr+1 (for c) use the induction hypothesis) except maybe d) for £ = n. So if b,
is an open dense subset of Q, we choose pni1 € bn, Pnt1 > DL, Prs1 € Nog1,
and if by, is not an open dense subset of @, we choose p,.1 = p},.

So, we have completed the definition by induction of the p,’s. Now ¢ =
Un<wPn is a member of Q) because: by a)(and b)), ¢ is a function from an
ordinal to w; by b) we have Dom(p,) C 4, and by e) we have a,, C Dom(p,)
hence Dom(q) = 4; for §; < 0 we have q[As, =qe f5, as qlAs, C pn € Q for
some n and if § € S then q[As =4 f5 by ¢). Also ¢ belongs to every b, which
is an open dense subset of Q (by d) as py4+1 < ¢). But, every open dense subset
of Q which belongs to IV, belongs to H()) (as X is large enough) hence to N'

hence is by for some ¢, so q is (N, Q)-generic. Oi7
% X *

We can easily get similarly (more exactly, combining 1.7 and [Sh:44], [Sh:64)):

1.8 Conclusion. In the model from 1.6, if £ = {w; \ S}, S C w; stationary
costationary, the following holds: If G is an abelian group, G = U;.,,G;, G;
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increasing, countable, free, and G;/Gj is free when j ¢ S, j < i, then G is a
Whitehead group. O 8

Also note that if £ is a normal filter on wy, it is well know that by &-
complete forcings we can “shoot” through all A € £ closed unbounded subsets
of wy. We can in 1.7 (hence 1.8) replace {w; \ S}, by a normal nontrivial ideal
on wi; which we can assume is dense in the sense that every stationary S C w;
contains a subset in the ideal.

The reason for 1.8 is

1.8A Fact. For G = (G; : i < w;), S C wy as in 1.8, H an abelian group,
h a homomorphism from H onto G with kernel Z, letting H; = h~1(G;),
the following forcing notion is proper and (wj \ S)-complete: P = {g : g a
homomorphism from G; into H; such that (h[H;) o g =idg,}. 084

Note

1.9 Claim. If P is {S}-complete, S a stationary subset of w; and in V' we have

Og thenin VF we also have (g.

Proof. Straightforward (as in IV, we use Qg to given the isomorphism type of

a countable elementary submodel and a name of a subset of wy). Oig

82. Generalizations of Properness

We shall repeat most of this section in the next one, with more details and less

generality.

2.1 Definition. For an uncountable cardinal ), countable ordinal & and ¢ < w:
(1) Let SQS% () be the set of sequences (NV; : i < o) such that:
a) N; a countable submodel of (H()), €).
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b) i € N; and (N; : j < 1) € Niy14¢ or, at least, (N; : j < i) is definable in
Nit1+4e-

c) If ¢ is first order, @ € N; and (H(\),€) F “Iz ¢(x,a)”, then for some
b€ Nire, (H(N),€) F @(b,a) (so for limit § < o, N5 < (H(X), €)).

d) N; (i < ) is increasing and continuous.

(2) A forcing notion P is (a,£)-proper, if (for A large enough): for every
N = (N; :i < a) € SQSY(N) (the zero is intended), such that P € Ny,
and for every p € Ny, p € P, there is an r € P,r > p which is (N, P, £)-
generic (or (P, £)-generic for N, or £-generic for N), which means: for every
i, 7 lkp “N;[Gp] NV C Niy,”, where:

(3) If P e N C H(A\), G C P generic, then N[G] = {7[G] : T a P-name first
order definable from parameters from N }. We define N[G] similarly, for
N = (N;:i<a).

2.1A Remark.
1) Note that for £ =0, N; < (H(A), €).
2) Note that by Lemma 2.5 it follows that (£, a, £)-properness is equivalent
to (€, a, k)-properness for k,£ > 0. See 2.5A(0).

2.2 Definition.
(1) S§(w) = {{a; : i < a) : a; € Sx,(n) and the sequence is increasing

continuous}.

(2) We call £ C Ui<aP(S%, (1)), (o, €)-nontrivial, if for every large enough
A, SQSE(NE) # 0, where SQSE4(),E) is the set of N = (N, : i < a) €
SQSE(X) such that: £ € Ny (and p € No) and if A € €N No NP(SY, (1))
and v < a, then (N; Ny : i <) € A. In such a case, we call N suitable
for £.

(3) P is (£,a,f)-proper means: if ) is large enough, and N € SQS%()\, €),
B < v £ a, v a limit ordinal, P € Ng and p € P N Ng, then there is ¢,
p < q € P such that q is (N[[3,7], P, £)-generic.

(4) In Definition 2.1, 2.2 we may suppress £ when it is zero.
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(5) A forcing notion which is (£,0,0)-proper will be called £-proper.
(6) A forcing notion will be called («, £)-proper if it is ({Sy, (1)}, a, £)-proper.

2.3 Theorem. Assume & is (a, £)-nontrivial. Countable support iteration pre-

serves (€, a, £)-properness, provided that £ =0 or « is a limit ordinal.
Before proving we show 2.4, 2.5 below.

2.3A Remark. There are examples that the notions are distinct, proper is

({Sx, (1)}, 0, 0)-proper.

2.4 Claim.

1) If P e N < (H(\),€,<}), N countable, G C P generic over V, then
N[G] = {r[G) : 7 € N a P-name}.

2) If N € SQSY(\),P € Nop,G C P is generic, then VP E “N[G] €
SQSO()”.

3) If N € SQSI(N), @ = (P, Qe : £ < m) € Ny is iterated forcing, 1, a
P;-name of a member of Qp, is (N[G4], Qe, k)-generic (G C Py the generic
set), thenr = (ro,r1,...,Tn—1) is (N, P,, nk)-generic.

4) If P is (a,1)-proper and o = wg, then P is (8, 0)-proper.

5) If P is (ay,£1)-proper, o > ag, ¢1 < #3, then P is (az, £2)-proper. Also P
is (0, 0)-proper iff P is proper.

Proof. 1) Straightforward.
2) like 1.3(1).
3) Left to the reader.
4), 5) Check. Osa

2.5 Lemma. Consider the following properties of a forcing notion P, p € P,
countable limit ordinal a, A regular large enough and <} a well ordering of
H(X), 7 is an a-sequence of ordinals, strictly increasing, v(i) < i + w, k an

a-sequence of natural numbers, k(i) > 3, are equivalent:
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(1) There is a function F, Rang(F) C Scx,(P(P)), Dom(F) = S5, (P(P))
such that (but for TC P, ACP(P)welet INA={peI:{p}e A}):
for every increasing continuous sequence of countable subsets of P(P),
Ai(i < ) satisfying: F((4;:j <1)) C Aiy1, p € PN A there isa q € P,
g > p, such that for every i < a and 7 € A; a maximal antichain of P,
INF((Aj:j <)) is pre-dense above q.

(2) For every N; C (H()), €,<3) for i < a satisfying (a), (b), (c) listed below
and p € Ng N P thereis a ¢ € P, q > p such that

(%) for every i < a and P-name p of an ordinal, B € N;, we have
q ”__P «? € Ni+1n

where
(a) (Nj:j <1i) € Niy1, N; continuously increasing, N; is countable and
P e Ny, a € Np.
(b) For every (first-order) formula p(z,a),a € N;, i < a, (H()A),€,<})
(3z)¢(z,a) implies (H(A), €, <3}) F (3 € Nit1) o(z,a)
(c) In b) we can allow @ C N; U {(N; : j <14)}.
(3)y The same as (2) omitting (c), replacing Niy1 by N,(;)43 in (¥).
(4)z The same as in (2), replacing Njy1 by Nk in (*), omitting (c).
(5) Like (4) for k constantly 3.

2.5A Remark. (0) The point of this lemma is to show that some natural

variants of Definition 2.1(2) are equivalent.

(1) Note that clause (2) is just a case of (a, 1)-properness.

(2) “X large enough” just means P(P) € H(\); we can replace P(P) by the
family of maximal antichains of P.

(3) As (1) of 2.5 does not depend on A, we get the equivalence of the others
for all suitable ), similarly concerning 7 and k.

(4) We can replace a € Ny by “6+1 C N;”.

Proof. (1) = (5): We can assume that the F exemplifying (1) is definable
in (H()\),€,<x) (by a formula with the parameters P and « only); just
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take the <,-first F satisfying (1). Moreover we can assume there is an
f = (fo, f1,-- Yn<w € H()) similarly definable such that F((Aj : j <1)) C
{fn({(A; : § <)) : n < w}. Clearly for every i < o, n < w and (A4; : j < 1)
we can find some first order ¢, (z,P,p,(A4; : 7 < 1)) such that the unique
x € H(A) satisfying it in (H(X), €, <}) is fa((4; : j < 1)). Hence, if N;(i < )
are as in (4)g, then for every i < a, n < w, fo({(N2; N P(P) : 5 < 1))
is definable with parameters from Nz;y;, hence is an element of Ng; 5. So
F({N2; "P(P) : j < i)) C Naita. So, if ¢ exemplifies the satisfaction of (1) for
(N2;NP(P) : j < a), then it exemplifies the satisfaction of (4); for (N; : j < a)

where k; = 3.

(1) = (2): Similar proof, but we use F({(N; NP(P) : j < 1)), made possible by
use of (c) from (2).

(2)= (1): To define F((A, : j < 1)), we define a sequence (N¢((4;: 5 < 1)) :
¢ < 2i+2) as follows: N¢ = U, Ny for limit ¢, and N¢ = N¢((4;:j <4)) =
the Skolem hull of {(N, : v < B8) : 8 < (}U{4; : 2§ < ¢} in the model
(H(X),€,<3) for a successor ¢ and ¢ = 0. Note that N¢((4; : j < ip)) =
Ne((A; 2§ <in)), if ¢ < 2ip+2,( < 2i1+2. Let F((4; : j <)) = P(P)NNaita.
If (A; : i < a) obeys F, let Ne = N¢((A; : j < 1)) for some (or all) i such that
¢ < 2i+2. Then (N¢ : ¢ < a) satisfies (a), (b),(c). For p € Ay = P(P) N Ny,
find g as guaranteed in (2). Let Z € A;. Then Z € N1, so, by (2), TN Noiio
is pre-dense above ¢ and it includes Z N F((A; : j < 1)), just as required.

(5) = for some k, (4)z: Trivial.

(4) = for some 7 (3)5: (i.e. ¥ depends on k): Given k define v(0) = k(0),
Y(8) = Uj<iv(9) + k(Uj<iv(5)) + 8.

(3)5 = (1): Similar to the proof of (2) = (1), only we define N¢((A4; : j < 1))
for ¢ < (i) +8x (y(3) +1—sup{d : 4 limit < ~(i)}). Note that as {P,a} € N;

5 belongs to P or at least some.

Putting together all the implications, we have finished. Oz



§2. Generalizations of Properness 211

Proof of 2.3. We seperate the proof to the two natural cases. Let (P, Qe: (<

¢*, &€ < ¢*) be a countable support iteration and let A be large enough.

Case A: £=0.
We prove by induction on ¢ < ¢* and then by induction on v < « the

following

(K¢ if €< ¢ N € SQSYNE),Q e Ny, B<y<a, {(,6} € Nsand g € P

is (N[B,7], Pe)-generic and p € P; N Ny satisfies: p[¢ < g, or just pisa
Pe-name, I-p, “p € Ng N P, pl € Gp,”, then there is r € P; such that: r
is (N1[8,], P¢])-generic, ¢ = g and p < g and Dom(r) \ € = N, N ¢\ €.

As case B is more involved we do it in more details.
CaseB: /=1

Note that by 2.4, each Q; is proper. We prove by induction on ¢ < ¢* and
then by induction on v < a and ¢ < ¢* the following:

(¥)¢y FE<C <Y, N eSQSSNE), Qe Ny, B<v<a, v a limit ordinal and
B is a non limit ordinal, {¢,£} € Ng and g € Pz and qlFp, “if 3 < 81 <7
then N, [Gp,|NV C Ng,4n for some n < w” and p € P; N Ny satisfies
pl€ < qor just p is a P;-name of a member of PN Ng such that p[§ € Gp,
and Dom(q) = N, N§ and v C [B,7) is a finite set of non limit ordinals
then there is r € P; such that
(a) rlFp, “if B < B1 <7 then Ng, [Gp | NV C Np,1n for some n < w”
(b) 7 Ikp, “if B1 € uso B < By <7, then Ny, [Gp,] N VFe = Ng[Gp,]”
(c)p<r
(d) rré =gq.

Note that when £ = ( the assertion is trivial.

case 1: ¢ =0. There is nothing to prove.

case 2: (=¢( +1.

So £ < (i, so by the induction hypothesis (and the form of what we are
trying to prove) w.lo.g. £ =¢ and S € uand (VB)[f +1eu& f > 5 —
B €ul,and B € u. Let u={Bo,f1+1,...,00 =1}, B=0Fo <P1<...<Pn-1
and let B, = 7. Let ¢ € G¢ C P, G¢ generic over V and let N] = N;[G¢]
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for i € [B,7], so (N} :i € [B,7]) € SQS?,Y_[,)H()\,&S') in V[Ge]. If v = a let
Njp1 < (H(X)[Gel, €) be countable such that {N,G¢,p,q,Q,£,(} € Niyy.
Clearly p(§)[Ge] € Qe[G¢]N N, , so there is po € Np | which is (Nj , Q¢[Ge])-
generic (because as noted above, IFp, “Q¢[G¢] is a proper forcing”).

We now choose by induction on ¢, p, € N ée 41 Such that:

()1 if B < j < By, j is a limit ordinal then py I+ N]’.[GQE] NVI[Ge] = N]’~

(¥)2 if B < j < Be then pe IF “Nj[Gq, ] N V[Ge] C Nr’nin{j+n’ﬂe} for some

n<w’.

(*)3 QelGel F p(€)[Gel < pe < pesa

For £ = 0 this was done above, for £ = n this complete the proof for the
present case so let us choose pg41 assuming we have already chosen p,.

Now if Bey1 = Be + 1 we just use IFp, “95 is proper”, so assume (p1; >
Be + 1, so by a demand on u we know that 41 is a limit ordinal. So first
choose pj € Q¢[G¢] N N, , which is above p, and is (Ng,+1, Q¢[G¢])-generic
(using again properness) and then choose pey1 € Q¢[Ge] N Npg,,,+1 above pj
and satisfying (*); + (*)2, which is possible by the induction hypothesis on v

(and B¢+1 being a limit ordinal), so we have finished the induction step on £

hence the present case.

case 3: ( a limit ordinal.

First as in the proof of the previous case, w.l.o.g. u = §. Now use diago-

nalization as usual. Os.3

§3. a-Properness and
(£, a)-Properness Revisited

In §1 we gave some solution to “which forcings do not add reals”. What occurs is
that we may have a small stationary subset of w;, on which e.g. uniformization
properties hold. But we want e.g. to be able to prove the consistency of CH +
SH, which is impossible by §1’s method, because it is possible that the model
V1 from Theorem 1.6 satisfies also Q.,, and even 07, | 5 (see 1.9 or [Sh:64]).
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Here we make an investment for this goal by developing a-properness (and
(€, a)-properness) which is a generalization of properness, when the genericity
is obtained for some tower of models simultaneously. In almost all cases the
proof that properness holds gives a-properness. The point is that for some
properties X, for “X + a-properness” it is easier to prove preservation by CS
iteration.

To a large degree we redo here §2, with more explanation and, for nota-

tional simplicity, only for £ = 0.

3.1 Definition. For a < w; the forcing notion P is said to be a-proper if for
every sufficiently large A and for every sequence (N; : ¢ < a) such that Nj is
a countable set, N; < (H(X), €), if the sequence (N; : i < @) is continuously
increasing, i € N;, (N; : j < 1) € Ni41, P € Ny and p € PN Ny, then there is a
g, p < q € P which is (V;, P)-generic for every i < a.

3.2 Remarks.

(1) Obviously, a forcing notion P is O-proper if and only if it is proper.

(2) It is also obvious that if 3 < @ and P is a-proper then P is also -proper
(every sequence (N; : i < ) which satisfies the above conditions can be
extended to a sequence (N; : ¢ < «) which satisfies these conditions and,
since P is a-proper there is a p < ¢ € P which is (V;, P)-generic for every
i < a). Therefore, in particular, every a-proper P is proper.

(3) If P is a-proper it is also (a + 1 4 a)-proper. To see this let (N; : i <
a+ 1+ a), p be as required. Since P is a-proper there is a g, p < go € P
which is (N;, P)-generic for every i < a. Since Ngy1 < (H()), €) and p, P,
(N; :i < a) € Ngy1 there is such a gg € Nyy1. Since P is a-proper there
is q1, g0 < q1 € P which is (Ngt144, P)-generic for every i < a. Since
q1 > qo, qo is also (N;, P)-generic for every i < a+1+ a.

(4) Note that if o is limit, (IV; : i < «) increasing and continuous, p is
(N;, P)-generic for i < a (and P € Np), then p is (N, P)-generic where
N = U;<aN;. As a consequence of this and (3), if P is proper it is n-proper

for all n < w and if P is w-proper it is a-proper for all w < a < w?. And:
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P is ~yp-proper iff P is v;-proper when yow = v w. Hence it is enough to
deal with additively indecomposable v (i.e. (V8 < ¥)(8+ 8 <7)).

(5) For (N; : i < a) as in 3.1, o additively indecomposable, as a € N, for
some 3 < a, a € Ng; now a =  + o, so with easy manipulations this

definition is equivalent to the one with a € Nj.

3.3 Definition. S§ (A) = S2y,(4) = {{ai : i < ) : a; € Sy,(4) for all
i < o and {a; : i < @) is continuously increasing}. Let F' be a function from
Up<a S2x, (A) into Scx, (A) and let G(F) = {(a; : i < o) € Sy, (4) : (Vi < o)
(V finite b C a;41) F({(a; : § <14),b) € aiy1)A(V finite b C ag) F(b) C ag} where
we write F(b) instead F'((b)) and F(a,b) instead F(a"(b)). Let F,, n < w,
be functions into Scy,(A) and let F' be given by F(z) = Up<yFr(z), then
G(F) C Np<wG(Fy), hence the set of all G(F')’s generates an N;-complete
filter D2y, (A) on Sy, (4).

3.4 Theorem. The forcing notion P is a-proper if and only if it preserves the
property of being a stationary subset of Sy (A) (i.e. being a set of positive
measure) with respect to the filter Dy (A) for every uncountable A.

Proof. Similar to the proof of the corresponding fact for proper forcing. s 4

3.5 Theorem. For each a < wj, a-properness is preserved by countable
support iterations.
Proof. Again the proof is similar to the one on properness, or see 2.3(1). O35

Now we add £ as a parameter, where £ is similar to what we did in §1.

3.6 Definition. A family £ of subsets of U, ,, Sy, (1) is a-nontrivial if: For
every \ large enough, there is a continuous sequence N = (N; : i < a) of
countable elementary submodels of (H(X),€), (N; : j < 1) € Niy1, € € Ny
such that: (N; N u: ¢ < o) belongs to ({Y : Y € £N Np}. In this case we call
N suitable for £ and for (£, ). Let Dy (€) = {S C Sg (1) : EU{Sg, (1) \ S} is

o-trivial}.
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3.6A Remark. 1) If a < wy, €4 C ’P(S;{O_B(,u)) for 8 < v < a, B not limit,
then we can find £ C P(S§, (2*)) such that: if A > 2%, (N; : i < o) € SQS3(A)
and p € Ny, then (a)<(b) where:

(a) (NiNp:B<i<7) €&, when £, is defined.

(b) (N;N2¢:i<a)ek.

2) We also use in this section the following stronger demand than 3.6:
if 8 < a, then (Ngiy Np:y<a-p) e[ {Y:Y €EnNg}.

3) The point of 3.6A(1) (and its parallel for 3.6A(2)) is the variation in Defi-

nition 3.6 do not give a really new notion.

3.7 Definition. A forcing notion P is (€, a)-proper (£ as above, a-nontrivial)
if for every N which is suitable for (€, @) and p € No, p € NoN P there is ¢ > p
(in P) such that ¢ is (IV;, P)-generic for every i < a.

The following repeats 2.3.

3.8 Theorem. Suppose £ is a-nontrivial, € C Uy<u, P(S3, (1))-

(1) If P is (£, a)-proper, then IFp “€ is a-nontrivial”.

(2) If Q = (P;,Qi : i < B) is a countable support iteration, IFp, “Q; is (£, ®)-
proper”, Pg = Lim Q, then P is (€, @)-proper.

(3) If P € Ny,
then p I-p

is &-suitable, p € P is (IV;, P)-generic for every i < £g(N),

N
“N[G] is E-suitable”.

3.8A Remark. So in (2) (by (1)) it suffices to assume IFp, “if £ is a-nontrivial
(in V) then Q; is (€, a)-proper”.
Proof. No new point. O3

3.9 Theorem. If P is (£, a)-proper and Q is not (£, a)-proper, then lFp “Q is
not (€, a)-proper”.
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Proof. Easy. Osg

§4. Preservation of w-Properness
+ the “w-Bounding Property

4.1 Definition. A forcing notion P has the “w-bounding property if: for any
f € (“w)VIGl (G C P generic) there is g € (“w)V such that f < g (ie.
(Vn <w)f(n) < g(n)).

4.2 Discussion. Clearly the “w-bounding property can be considered as an
approximation to the property “not adding reals”. Also this property, and
similar properties play crucial parts in many independence proofs. That is,
many times we want on one hand to add many reals, but on the other hand to
preserve something. e.g. to preserve: the set of old (or constructible) reals is of
the second category or does not have measure zero, or every new real belongs
to an old Borel set of special kinds, etc. In the next chapter we shall deal with
various such properties. But here we choose to deal with “w-bounding, as it is
very natural, and as the proof of its preservation is a prototype for many other
such proofs. To be more exact we do not prove that it is preserved, only that
together with w-properness it is preserved. (This will be eliminated in the next
chapter). The proof also serve as introduction to the proof of preservation of

“no new reals” in §7 and to VI. Of course VI §2 gives an alternative proof of

the theorem 4.3.

4.3 Theorem. The property “w-properness + the “w-bounding property” is

preserved by countable support iteration.

Proof. Let (P;, Qi< @) be a CS iterated forcing system. We prove that it has
the “w-bounding property by induction on « (the preservation of w-properness
follows from Theorem 3.5). For o = 0 there is nothing to prove. For o 4+ 1 we
have VFPet1 = (VP)Qa If f € VPa+1 = (VFP=)Qa then there is a function
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g € VP such that g > f (since Qo has the “w-bounding property) and, by the
induction hypothesis, there is an h € (“w) such that h > g, so h > f.
If o is a limit ordinal and cf(a) > Ry, then every f € VP= already appears
in some VP i < a (by III 4.1B(2)), so we can apply the induction hypothesis.
So we are left with the case « is a limit ordinal of cofinality Ro.

The following lemma is the main point.

4.4 Lemma. Suppose

a) P a proper forcing notion, @ a P-name of a proper forcing notion, (p, g) €
P x Q@ and P,Q have the “w-bounding property, A large enough, Ny <
N1 < Nz < (H(A),€), and P,Q, P * Q and (p, g) belong to No.

b) Ny € N1, N1 € N3, and each N, is countable.

c) v € Pis (Ng, P)-generic for £ =0,1,2 and r > p.

d) (Zy : £ < w) is a list of all maximal antichains of P which belong to Ny,
I; C Iy N Ny is finite, Z; pre-dense above r and (Z; : £ < w) € Ny,
(I; : £ <w) € Ny.

e) (Je: £ <w) € Ny is a list of the maximal antichains of P xQ which belong
to Np.

Then there is a g1 € Q@ N Na, J C Jp N Ny finite for £ < w, such
that: (r,q1) > (p,g), and each J;* is pre-dense above (r,q1) (hence (r,q1) is
(No, P * Q)- generic) and (J;" : £ <w) € Ns.

4.4A Remarks.

(1) Instead of a maximal antichain, we can look at a name of an ordinal, or
dense subsets.

(2) The situation for P, Ny, N1,r in the assumption is similar to the situation
of P*Q, No, Ny, (r,q") in the conclusion when g > gy is (N2, Q) generic.
So we preserve the situation while not increasing the condition in P. So,
every time we advance one step in the iteration, we lose genericity for one
of the models (V;). This will give us the induction step in the proof of 4.3
for cf(a) = No.



218 V. a-Properness and Not Adding Reals

Proof of Lemma 4.4. For helping us in understanding let G = Gp C P be
generic over V, and we shall work sometimes in V[G], sometimes in V. Note
that if r € G (which is the interesting case for us) then for £ = 0,1,2 we
have Ng[G] N H(A\)V = Ny and N;[G] < (H(N)[G], €) and even (N¢[G], N, €
) < (H(A)[G], H(\), €) and N;[G) € Ng41[G]. Alternatively, we could rewrite
statements of the form V[G] = ... asrl-...

First try:

As Jp is a maximal antichain in P*Q, the set {¢°[G] : (p°,¢°) € Jo, p° € G} is
a maximal antichain of Q[G]. Hence ¢[G] is compatible with some such ¢°[G].
Let ?O’ ¢° be P-names such that:

Fp “p® € Gp,(p° ¢°) € Jo and, ¢,9° are compatible in Q”. Let Iy = {p, :
n € To}, where Tp C !y for some u codes a maximal antichain in P deciding
which element of Jo, (p°,¢°)[G] will be, i.e, p, IF “(p°,¢°) = (p),q7)”, where
(3,¢9) € Jo iff n € To. Then p, IF “p) € G”, so without loss of generality
pn > Y, and py I+ “q and g9 are compatible in Q”.

Similarly for each n € To; if p, € Gp and there are pl > P, and
(p1,q1) € J1 such that py <p', p' € Gp and p' IFp “q, ¢, 1 are compatible”.
So, there is a Ty, T1 C 2y for some p, n € Ty = 11 € Ty and for every 19 € Ty
for some 71 € T1, o = 1 [1, and I{ = {py : n € T1} is a maximal antichain of
P, py > pyt1, Py 2 Py (P, 4) € J1 and py - “q,49,,, ¢;, are compatible in Q.

So, we can easily define inductively on n, Ty, p,(n € Ty,), Z}, and (P qn) €
JIn (for n € T,,).

Looking at the way we have defined this, clearly we can assume T},
(P :n € Tn) € No (i.e. T, and the function 7~ p, in No) and ((p},q}) : n €
T,) € Ny, But as (Z, : n < w) does not necessarily belong to Ny (in fact it
cannot), we do not try to claim (T, : n < w) € Ny, etc., but we can assume
that ((Tn, (py : 1 € Tn), (P, q5) : M € Tn)) : 0 < n < w) belongs to Ny.

Now as each IZ € Ny is a maximal antichain of P, for some n(f) < w,
I} = Zn(e), hence I;(e) CIue NNy = IZ N Ny is pre-dense above r and is
finite. Let T = {n € Ty : py € I} ,y}- So, it is natural to look for ¢; € Q[G]
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(where r € G) such that for each £ < w, {¢4[G] : n € Ty} is pre-dense above ;.
This will be sufficient ~ it implies (in V[G]) that q; is (No[G], Q[G])-generic,

q1 > ¢[G], and in V, for some P-name ¢; we have J' e {(pf,,gf’) :n € Ty}
is a finite subset of J; N Ny pre-dense above (r,gl); moreover clearly we can
choose ¢; € Ny, in fact q1 € N;.

Unfortunately, there is no reason to asssume ¢; exists. Look at the extreme
case Ty = {nn} (e.g. when P is R;-complete and r determines Gp N Np). So
in V[G] we know ¢, qf;l (¢ < w) and we know {q, qu : £ < 4y} is compatible for
every £p < w; this is not a good reason to assume {q, g, : £ < w} is compatible,
except when @ is Nj-complete and any two compatible members have a least

upper bound.

Second Try:

Let 7 N No = {(ph,q%) : m < w} (Je from (e) of 4.4) and as Np € Ny,
(Je : £ < w) € Ny, we can assume that (((p%,,¢5,) : m < w) : £ <w) € Ny.
Let S, = {m < w : pf, € Gp}. This is a P-name, S, € N; and even
(Se : £ < w) € Ni. If Ny[G] NV = Ny then in V[G] there is a function

f :w — w such that

a=g¢CGA NV ¢.[C]

e<w m<f(o)
meS: (G|
is consistent (because Q has the “w-bounding property and No [G]nV C Ny).
More formally, this means that in Q[G] there is a g1 > ¢[G] such that for every
¢ < w, {¢5[G] : m < f(¢) and m € S,[G]} is pre-dense above ¢; in Q[G].
And also, equivalently, there is q; € Q{G] such that ¢; II-Q[G] “q € Gq and for
every £ < w for some m < f(£) we have pf, € G, gfn[G'] € G@” (anyhow, the
expression ¢; has intuitive meaning, formally see later in this section).
But as P has the “w-bounding property, we can assume that f € V. Also
as Ni[G] < (H(A)[G],€), and the parameters appearing in the requirements
on f belong to N1[G], we can assume f € V N Ni[G] = Nj.
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Now in V we have a P-name of it, f € N1 such that I-p “No[Gp|NV = Ny
implies that f is as above; also in any case f € (“w)V”; so in particular r
forces f to be as above. As r is (N, P)-generic we have just countably many
candidates for f € (“w)V NNy i.e. for f[G]; and clearly there is in V' a function
f* € Yw such that for every g € N; N“w we have, g <4 f* (i.e. {n < w : not

g(n) < f*(n)} is finite) and f* € Nj. So it is reasonable to try

a=4qG AN\ 4.
£ m<f*(e)
meES[G]

(i.e. it is consistent; see in the beginning of the second try or end of the
section concerning an exact definition.) The (N, P * Q)-genericity of (r,q;)

and (J;* : £ < w) € Ny should be clear. So the question is whether

rl-p “g[Gp] A /\ \/ ¢%,[Gp] is consistent in Q[Gp]".
£ m<fr()

meS,[Gp)
(If so we can use a suitable P-name for g;; let q1 € Ny be the above expression
(or just a condition forcing it) if it exists and g otherwise).
Unfortunately, though f* is a very plausible candidate, the fact is that if
G C P is generic over V, r € G, the relation f[G](n) < f*(n) may fail for some

n, though necessarily only for finitely many n’s.

Third try:
The second try almost succeeded, except that the function f* did not work
on a finite set. So we try to take care of all finite sets that could occur, using
the first try. Remember I} = T, and I’I:(f) is a finite subset of Z,,;y N Ny
(pre-dense above 7). Let I,y = {py : n € Ty}, T; a finite subset of T; and so
for some k(¢) < w, for every n € T; we have (pf, ¢%) € {(pk,, %) : m < k(£)}
when (p¢,, gfn) were chosen in the second try.

Clearly (k(£) : £ < w) € Ny, (as it can be computed from (n(4) : £ < w)
and (Z} : n < w) and ((pfn,gf;l) tm < w) : £ < w) all of which belong to N7)
and so in the second try w.l.o.g. k(£) < f*(¢) for every ¢ < w.
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Now return to the beginning of the argument in the second try. We know

that for every ¢ € Q[G] N No[G] there is a f € (“w)V[G] such that

AN AN VAR (e

£<w m<f(8)
meS:[G]
is consistent (i.e., as said above, some member of @ forcs all those pieces of
information). In particular for every n = (mg,...,mgy_1)(Mm; < w) there is
an f = f, € (“w)VICl such that: if {4[G, 4%, [G], 43y [G), - - g2 LG} is
compatible (in Q[G]) then

() IS AN (& AN VAR (€
<n n<b<w m<f(e)
meS,(G]

is consistent (i.e. some member of Q[G] force this). Without loss of generality
fn € (“w)V. Let, for i < w, fH(i) = Max{f,(i) : 7 = (mo,...,Mp-1), n < i
and mg < k(0),...,myu—1 < k(n—1)}. The maximum is taken over a finite set,
hence, it is a well defined natural number, so f* € (“w)VI¢). So there is in V
a function f! € (“w)Y such that f+ < ff.

Now we work in V. For each € “”w there is a P-name f, of a function
from w to w which belongs to V, such that if f; as above exists, then f, is such a
function; w.l.o.g. (fy, : 7 € “”w) € Ny, and remember that (k(¢) : £ <w) € N;.
Hence f* (which is defined from them as above) belongs to Ny; as well as ff.
Note that r I- “the f,’s and fT, ff are as above”. Let f* € N, be as in the

second try be such that k, < f*(£), so we know f1 <., f*.

Now we shall prove that

rlEp “gA /\ V gf;1 is consistent (in Q[Gp])”.
£<w m<f()
meSe[Gp]
As remarked in the end of the second try this suffices. So let G C P be a
subset of P generic over V, r € G. So ff = ff[G] € N1 N (“w)V (C V) hence
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f1 <ae f*. So in V[G] for some i < w, for every j, i < j <w = f1(4) < f*(4).
Also there is a unique w-sequence 7 of ordinals such that n[¢ € Ty, pf; 1e € G for
1 < ¢ < w (from the first try; remember {p, : n € T;} is a maximal antichain
of P and pyim < pn)- S0, (0410, 4E1e) = (0,1 45,) for some my < w. By the
definition of k(£), and m, we have my < k() < f*(¢).

Let n = (mo,...,m;—1) (where i was chosen above). Then by (x)y,

dGIA NG IGIAN V6]
£<i £>i m<fq(G1(O)
meSy[G]

is consistent, so the result follows, since [ > i = f,(£) < f+(£) < f1(£) < £*(0).
Ug.q

Continuation of the proof of the Theorem 4.3:

We were proving by induction on « that if I-p, “Q; is w-proper and has the “w-
bounding property”, @ = (P;, Qi1 < a) is a CS iteration then P, = Lim Q is
w-proper and has the “w-bounding property. The w-properness follows by 3.5,
and for the “w-bounding property only the case of cf(a) = Rg was left. Now
by IIT 3.3 w.l.o.g. @ = w. Let f be a Py-name, p € P, p Ik “f € “w”, and we
have to find g € (“w)Y and g satisfying p < q € P, such that ¢ IF “f<g". We

can assume w.l.o.g. that
(¥) f(n) is a P,-name

(this follows from the proof that P, is proper, see III 3.2).

Let Ny < (H()), €) (X large enough) be an increasing chain such that, p,
(Pn,Qn : n < w) € No, N¢ € Ngy1 each Np countable (Note that Np < Neyg
follows from Ny € Ngy1, Ny countable, and Ng, N1 < (H(A), €)).

We want to find ¢ € P,, ¢ > p, qlFp, “f < g for some g € (“w)Y. For
this we now define by induction on n a sequence (g, : n € w), where each g, is

in P, such that the following will hold:
1) Qn+1rn = (qn; p[n < gn
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2) qn is (N, P,)-generic for k=0,and n+ 1<k <w
3) there is a function F, € Npy1, whose domain is the set of maximal
antichains of P, which belong to Ny, and for every Z € Dom(Fy,), F,,(T)

is a finite subset of Z N Ny pre-dense above ¢,.

Clearly, if we succeed then ¢ = Up<,qn, € P, is as required as then we can
define g(n) as the minimal g(n), g» I- “f(n) < g(n)”, g(n) exists by 3) and (x).
For n = 0 use the w-properness of Qo, and for n+1 we use first the lemma

4.4 and then w-properness. Uas

4.5 Definition. 1) For a forcing notion Q, let @t be the following forcing
notion, first defining Q(J{ :
(a) the set of members of Qa' is the closure of @ under the operation p A ¢,
PV 4, P, AncwPrr Vineo Pn (assuming no accidental equality)
(b) QZ, is the P-name of the following subset of Q¢ :
forrEQ,rw’:'Q'gL2 iff r € Gg
forr:p/\q,regg iﬁpegg and ¢ € G¢
forr=p\/q,r€(j’5 iﬁp€G5 oquG?2
forr=-p,reGfiffpg G4
forr = A
forr =V, pn, TE Ga iff p, € 95 for some n < w

n<wPn, T € GZ5 iff pn € GE for every n < w
(c) for r1,72 € QF, we define r1 <@ ry iff g “if rp € G then vy € G
(d) Q*={qeQ*: forsomereQ,rl “e Ga”}_

4.6 Fact. 1) kg “GCS is a generic subset of Q* (or V) and G;S nNQ=Gy"

2) Q is a dense subset of Q*

3) essentially Q = Q*[Q ie. for p,g € Q,Q* E “p< g -(Fr)(re Q&p<
7 & g, incompatible])”. O46

4.6A Remark. We can continue and do iteration in this context, see X §1.
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§5. Which Forcings Can We Iterate Without
Adding Reals

In Sect. 1 we have proved that we can iterate forcing notions of special kind
(&-complete) without adding reals. As a result we get a parallel of MA for such
forcings and get the consistency of some uniformization property (see more
in Chapters VII, VIII). However this axiom, quite strong in some respects,
is consistent with diamond on Np: (see [Sh:64], [Sh:98] or 1.9 here). On some
stationary subsets of w; it can say much, but on others nothing.

So we shall try here to find another property of forcing notions, so that

forcing with LimQ, Q = (Pi,Qi : 1 < a) a CS iteration of such forcing, does

not add reals.

5.1 Example. Assume 2%° = R; (or even 2% < 281 suffices).

Let As C 4 be unbounded of order type w, for § < w; limit, so by [DvSh:65]
(or see AP §1), (A5 : & < w;) does not have the uniformization property, hence
there are f5s : As — {0,1} such that for no f : w; — {0,1}, is f1As =¢e fs
for every 6. Let f = (f5 : § < wy), Pz = {f : Dom(f) is an ordinal o < wy,
d < a = [flAs =ae fs5]}, ordered by inclusion. Consider the dense sets.

Z; ={f :1 < Dom(f) and f € Py}
So clearly there is no directed G C Py such that G N Z; #  for every i < w;.

5.1A Remark. Previously Jensen (see Devlin and Johnsbraten [DeJo])
showed, that though forcing with Souslin trees does not add reals, starting
with V = L (at least with V |= Oy,) there is a CS iteration of such forcing of
length w, such that forcing by the limit adds reals. This, however, does not ex-
clude a suitable MA for the example above, because MA for this forcing implies

-CH.
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Now, Pj is a very nice forcing — e.g. it is a-proper for every a < wi, but

our desired property should exclude it. The following is a try to exclude this

case by a reasonable condition.

We shall return to this subject in VIII, §4 (going deeper but also having

presentational variations of the definitions).

5.2 Definition.

(1)

We call D a completeness system if for some p, D is a function defined
on the set of triples (N,P,p), p € NNP, P € N, N < (H(p),€), N
countable such that (P is meant here as a predicate on N, i.e., PN N):
D(n,ppy = D(N, P,p) is a filter, or even a family of nonempty subsets of
Gen(N,P) = {G: G C NN P, G directed and GNZ # @ for any dense
subset Z of P which belongs to N} such that if G € Gen(N, P) belongs to
any member of Dy p,py, then p € G.

We call D a A-completeness (A may also be finite or Xg or X;) system if each
family D(n,p,p) has the property that the intersection of any i elements is
nonempty for i < 1+ A (so for A > Ry, Dy, pp) generates a filter). Now,
such D can be naturally extended to include N < (H(u'),€), u € N,
p < put by D(N, P,p) = D(N N H(u), P,p). We do not distinguish strictly.
We say D is on p. We not always distinguish strictly between D and its

definition.

5.3 Definition.

(1)

(2)

Suppose P is a forcing notion, £ a nontrivial family of subsets of Sy, (u)
and D a completeness system on u.
We say P is (£,D)-complete if for every large enough A, if P, £,D € N,
pe PNN, N < (H(A),€), N countable, A€ ENN = NNy € A, then
the following set contains some member of Dy, p,py (i-e., DinnH(u),P,p)):

Gent (N, P) = {G € Gen(N, P) : p € G and there is

an upper bound for G in P}

If & = {Sx, (1)} we write just D-complete.
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5.4 Remark.

(1)

We can think of Dy, pp) as a filter on the family of directed subsets G of
PN N generic over N, to which p belongs. The demand “(€, D)-complete”
means that (for D(€)-majority of such N’s) the “majority” of such G’s
have an upper bound in P hence the name (€, D)-completeness.

In some sense the definitions above are trivial: if P is £-proper and does not
add reals, then there is a k-completeness system D such that P is (£, D)-
complete for all x simultaneously. Because, given (N, P, p), we extend p to
q € P which is (N, P)-generic. If {Z,, : n < w} is a list of the dense subsets
of P which belong to N, Z, "N = {ppx : 0 < k < w}, we can define a

P-name z:
z = {(n,k) : n <w and k is minimal such that p, , € Gp}

Clearly q IFp “z € “w”, and since P does not add reals there is an z* €
(“w)V,andr,q<r€P,rlrp “z* =z". Let G, = {p' e PN N : p! <r}.
Clearly G, € Gen(N, P) and let

D, ppy = {{Gr}}

So what is the point of such a definition? We shall use almost always
completeness systems restricted in some sense: D(y pp) is defined in a
reasonably simple way. The point is that usually when we want to decide
whether some G € Gen(N, P) has an upper bound, we do not need to
know the whole P, but rather some subset of N, e.g. a function f from
N to itself. Check the example we discussed before: if § = N Nw;, then
we just need to know f[4. But two f[é’s may give incompatible demands,
so for it the system is only a 1-completeness system. So if we deal with
Rg-completeness system, we exclude it (in fact later we shall discuss even

2-completeness system).

An explication of “defined in a reasonably simple way” is:
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5.5 Definition.

(1) A completeness system D is called simple if there is a first order formula

1 such that:

D(N, P,p) = {A; :z a finitary relation on N,

i.e. z C N*, for some k € w}

where
A; = {G € Gen(N, P) : (NUP(N),€,p, P,N) EY[G, z]}

(2) A completeness system D is called almost simple over V; (V} a class, usually

a subuniverse) if there is a first order formula v such that:
D(N, P,p) = {A;,, : = arelation on N,z € Vp}

where

Az, ={G € Gen(N, P) :
(Vo UNUP(N),e", eNPWN) p PV, N) E9[G,z, 2]}

where €4= {(z,y) 1z € A,y € A,z € y}.

(3) If in (2) we omit z we call D simple over V.

5.6 Claim.

(1) A A-completeness system (see Definition 5.2(2)) is a A*-completeness sys-
tem for every A* < .

(2) P is (&£,D)-complete for some D if and only if P is £-proper and (forcing

with P) does not add new reals.

Proof. (1) Trivial.

(2) The direction <« (i.e. “if”) was proved in Remark 5.4(2) above. So, let
us prove the “only if” part. So P is (£, D)-complete.

Suppose N < (H(A),€), p € P and {p, P,€,D,u} € N, N countable and

Nnpe () A SoB = {G € Gen(N,P) : G has an upper bound and
A€EnN
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p € G} € D(n,p,p), hence B # 0 (by Definition 5.2) and let G € B. So G has
an upper bound ¢ (by the definition of (£, D)-completeness), G € Gen(N, P),
and by Definition 5.3, p € G. So ¢ > p is (N, P)-generic. If p IFp “f € “w,
f € N, then for every n, I, = {r € P: 7 I “f(n) = k” for some k < w} is a
dense subset of P which belongs to N, hence Z,, N G # (). Hence q determines
the value of f(n). So g determines f(n) for every n. Hence it determines f,ie.
f is not a new real. Now if there were a new real, some p would without loss of

generality force f is such a real. Choosing N as above we get a contradiction.

Os.6

5.7 Example. Forcing with a Souslin tree T" is not D-complete for any simple
2-completeness system D.

Let N < (H()), €) be countable, T € N, § = NNw;. Note that Gen(N, P)
consists of all branches of TN N, and Gen™ (N, P) consists of the branches of
T N N which have an upper bound, i.e. A, = {y €T :y < z}, where x € Ts =
the é-th level of T. Now N “does not know” what is the set of such branches
of TN N, and two disjoint sets are possible.

The above is an argument, not a proof. To be exact, we can, assuming
diamond of N;, build a Souslin tree, such that no first order formula v defines

a simple 2-completeness system for which 7" is D-complete.

86. Specializing an Aronszajn Tree Without
Adding Reals

The traditional test for generalizing MA has been Souslin Hypothesis. Jensen
has proved the consistency of the Souslin Hypothesis with G.C.H. (see Devlin
and Johnsbraten [DeJo]). He iterates forcing notions of Souslin trees, in limit
points of cofinality Ry he uses diamond to refine the inverse limit of the trees,
in limit points of cofinality R; he uses the square on X, (and preparatory

measures in previous steps). In successor stages he specializes a specific tree,
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by first forcing a closed unbounded set and then building a Souslin tree using
O, (more precisely he adds R, closed unbounded subsets in the beginning).
We shall prove that there is a D-complete forcing notion Pr specializing
an Aronszajn tree T, for D a simple R;-completeness system. The proof is close
to Jensen’s successor stage. We feel that the ideas of the proof are applicable

to related problems, see [AbSh:114], [AbSh:403], [DjSh:604].

Notation. For an R;-tree T, T; is the i-th level, T'[i = U;j<;T}, and for = € Tj,
a < [, zla is the unique y € T, y < z.

6.1 Theorem. There is a simple X;-completeness system D, such that for every
Aronszajn tree T, there is a D-complete forcing notion Pr, specializing it, i.e.
IFp,. “T is a special Aronszajn tree”, also Pr is a-proper for every countable

ordinal a.

Proof.
First Approzimation:

Let

PY = {f: f a function from T'|(a + 1) to Q (set of rational numbers)

such that a <wy,z <y = f(z) < f(y)}.

The order is inclusion. If f € P{, Dom(f) = T'[(a + 1) we say f has height o,
ht (f) = a.

Clearly P2 specializes T, but we have to prove that it is proper and does
not add reals and more. Let N < (H()), €) with T', P2 € N and N Nw; = 6,
(N countable). Let (the é-th level of T be) Ts = {z,, : n < w}. It is trivial that
we can extend any condition to a condition of arbitrarily large height. So we
have to define an increasing sequence of conditions p, € P2 N N, which will
be generic for N (hence their heights converge to §) and has an upper bound.
Now in order that {p, : n < w} has an upper bound, it is necessary that for
each £ < w, the sequence (of rationals) (p,(z¢ ht (p,)) : n < w) is bounded. So

a natural condition to ensure it is e.g.
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(%) for £ < n we have pn(z¢lht (pn)) +1/2" > pni1(ze[ bt (Pnt1))

This is not difficult by itself, but we have also to ensure the genericity of

(pn : n < w). So it clearly suffices to prove, for each n

(x*), if p€ P2NN, n < w, T an open dense subset of P9 which belongs to N,
Zo, -+, Tn-1 € TNnw, and € > 0 (a rational or real), then there isa g € P2NN,
p<¢,9g€Zand

p(zel ht (p)) +€ > q(zelht () for £ < m

Unfortunately we see no reason for (xx), to hold.

In fact, it is false, and for every natural number n, Z, = {p € P2 : for every
z € ht (p), we have p(z) > n} is dense.

Second Approximation:

We can remedy this by using P} = {f : f € P, and: if B < ht(f),z € Tp
and € > 0 and T is a Souslin tree, then for some y we have <y € Thy(s) and

f(@) < f(y) < f(z) + €}
Now for n = 1, (%x), is true; more generally for any n < w, (%), is true if:
(k% %) {(Yo,---+Yn—-1) : Npcn Y2 € T & ye < x4} is generic for (N, T™)}.

(T™ - the n-th power of T i.e. the set of elements is in |J
iff A\ger 2(€) < 9(4).)

™(T;), and Z < §

1<wi

Why? Though it is not used we shall explain. For a given p and rational ¢ let
R=Rpze={(y0,.--1Yn-1) : for some a < 6, > ht (p) &y, € T,, and for
some q € P},p < q€Z, ht(q) =, q(ye) < q(zelht(p))+€}. Now R is a dense
subset of {(yo,-.-Yn—1) : for some v, for each ¢,z,ht (p) < ye € T}. [Why?
as given (Yo,-.-,Yn—1) € "(Ty) we can find 7, p < r € Pr, ht(r) =7, r(ye) <
r(yel ht (p)) + € (by a density argument), let e; = Min{r(ye) — r(ye[ ht (p)) :
£ < n}, and let us choose ¢, 7 < q € Z, without loss of generality ¢ € N.
Now by the definition of P} we can find yj, yo < yp € The(q such that
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q(yp) < q(ye) + €1. Clearly ¢ exemplifies (y, : £ < n) € R as required]. Hence
there is a (Yo,...Yn—1) € R, A\pye < z¢.

However, there may be Souslin trees which do not satisfy (x * %), for n > 1.

6.1A Explanation. So we shall change P2 somewhat by adding “promises”
such that if (the parallel to) (xx) fails, then we can add one more promise to
p guaranteeing that p has no extension in Z, a contradiction to Z being open

and dense.

The Actual Proof.

6.2 Definition. We call I a promise (more exactly a T-promise) if there
are a closed unbounded subset C of w; and n < w (denoted by C(T"), n(T)
respectively) such that:

a) the members of I' are n-tuples (zo,...,Zn—1) of distinct elements from
T, where a € C. We say (2o,...,Zn-1) < (Yo,---1Yn—-1) if Tp <
Yoy 1 Tn—1 < Yn—1,

b) if « < B are in C, T € I' N *(Ty,), then there are infinitely many 3’s,
T < § € I'n"(Tp) which are pairwise disjoint (i.e. the ranges of the
sequences are disjoint),

¢) I'N"™(Thinc(r)) is not empty.

6.3 Definition. We let P, = {(f,C) : C is a characteristic function of a
closed subset of some successor ordinal o + 1 < wj, with the last element
a = £t(C), and f is a monotonically increasing function from U T; to Q}. Let
(f1,C1) < (f2,C?) if and only if C; C C3 (equivalently C; = C2 [(€t(Cy) + 1))
and f1 C fa.

6.4 Definition. We say that (f,C) € P, fulfills or satisfies a promise I if:
£t(C) € C(T') and C(T') 2 C \ MinC(I'") and for every a < 8 in C(I') N C and
Z € I'N™(T,) (where n = n(I')) the following holds:



232 V. a-Properness and Not Adding Reals

@ for every £ > 0 there are infinitely many pairwise disjoint § € I'N"(7}3) such
that f(zg) < f(ye) < f(ze) +efor{ <nand Z < 7.

6.5 The Main Definition. P = Pr = {(f,C,¥) : (f,C) € P;, and ¥ is a
countable set of promises which (f,C) fulfills }

(fl?cl)q/l) S (fZ,CZ,\IJz) if:

(f1,C1) < (f2,C?) (in Py) and ¥; C ¥5 and: o € Co\C impliesa € ) C(T)
ey
(actually follows). '

6.5A Notation. If p = (f,C,¥) we write f = f,, C = Cp, ¥ = ¥y, &), =
2t(Cy).

6.6 Fact. If pe P, f < wy, then
(1) thereisa g€ P, ¢ > p, and £, > S,

(2) moreover, if e ()| C(T) and § > {t,,, then we can have £t, = 3,
rev,

(3) moreover, if m < w, Yo,...,Ym-1 € T, € > 0 we can in addition to (2)

demand fp(ys[€tp) < fq(ys) < fp(yilftp) + € for i < m.

Proof. (1) Clearly () C(I') is a closed unbounded subset of w; (as ¥ is
rev,

countable and each C(T') is a closed unbounded subset of w;). Hence there
is an ordinal 8,8t > 8,8 > £t, and B € (| C(T), and apply (2).

(2) Let o = £t,. We define C; = C, Urfgf, ¥, = ¥, so we still have to
define f;, but as we want to have f, C f;, we have to define just f,[73. We
have two demands on it, in order that q € P:

(i) monotonicity: fy(zla) = fo(xla) < fo(z) € Q for x € Tp
(ii) & from Definition 6.4 for oy < az in Cy \ Min(C(T")) (hence in C(T'),
Te¥,=0,zecln"(T,,) when az = 8 (for az < B use p € P)).

If we succeed to define fy]Tp such that it satisfies (i) and (ii), then ¢ is

well defined, and trivially belongs to P and is > p.
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Now, (ii) consists of countably many demands on the existence of infinitely
many § € "(Tp).

Let {(T'm,¥m,Z™) : m < w} be a list of the triples (I',v,Z), " € ¥,,Z €
L N™(T,), v < B, v € Cp N C(T), each appearing infinitely often (if this
family is empty, we have no work at all).

We now define by induction on m, a function f,, such that:

a) fm is a function from a finite subset of T to Q such that f,(z]a) <
fm(z) for z € Dom(fp).

b) fm € fmt1

c) There is a §™ C Dom(fm41) \ Dom(fm), §™ € T, T™ < §™ and
for every £ < n(I'r,) (which is the length of Z™) fp(z}*) < fm(y7*) <
fo(z7") +1/m.

This will be enough, as any triple appears infinitely often and the §™’s are
pairwise disjoint and 1/m converges to zero, so any completion of U, f, to a
function from Tp to Q satisfying (i) is as required.

We let fo be arbitrary satisfying (a), e.g. the empty function.

If f,, is defined, consider I" = I';,,. Let n = n(T'), if v, = a we know that T’
is a promise, ym € C(T'), (part of requirements of (L', Ym,Z™)) and g € C(T)
(by the hypothesis of Fact 6.6(2)). Hence (by the definition of a promise) there
are infinitely many pairwise disjoint §’s, Z™ < g, § € I'N"(T). As the domain

of f,, is finite there is such a ¢ disjoint from Dom(f,,). So we let:
Dom(fm+l) = Dom(fm) u {yOa s 7y‘n-—1}

fm+1(ye) = fp(yela) +1/(2m)

If v < a, we use the fact that (f,,Cp) € Py, satisfies the promise T,
Ym € C() and a € C(T') (by Definition 6.4 C(I') D C, \ MinC(I') and
a € Cp,a > vy > MinC(I')). So there is a Z € I' N *(T,,) such that 2™ < Z,
and fp(2¢) < fp(x}*) +1/3m. Now we apply the argument above, replacing 2™
by z.

(3) The same proof as that of (2), using our freedom to choose f.

So we finish the proof of Fact 6.6. Us.6
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Now we shall prove the crux of the matter: the parallel of (xx).

6.7 Fact.

(1) If N < (H(\),€) (A large enough) P,p € N, p € P, N countable,
NNw; =6, e >0 and z,...,zn—1 € T5 (are distinct) and Z € N is
an open dense subset of P, then thereisaqe INN, q > p, lt; = 6 and
fa(zellty) < fp(zellty) + €.

(2) In (1), we can instead of zo,...,zn—1 have By,...,Bn,_1,d-branches of
Ts NN (ie. By = {zf : i < 6}, 2f € T, zf < «f for i < j). Define
Byla as the unique x € By N T,, and replace the conclusion of (1) by
fa(Belttq) < fp(Beltty) + €.

Proof. (1) By (2), using B, ={y € T : y < x¢}.
(2) Suppose p, N, ¢, By, ...,Bp_1 form a counterexample, for simplicity €

rational and let a = £t, and z; = Bela, T = (zo,...,Tn-1). Let

'y ={y:y € "(Tp) for some 8 > o, T < §, and there is no (g,~, Z) such that:
Zz<g,v2o,z2€ "(Ty),q 2 p, Lty =", € T and YV < n[fy(z0) < fo(ze) + €]}
So I'; is, in a sense, the set of “bad” ¥’s; the places to which we cannot

extend p suitably. More explicitly:

6.7A. Subfact. If € () C(T')\ (¢, +1), B < 6, then
rev,

(BO [Bv e ’Bn—l fﬁ) € Fl-
Otherwise, for some o < v < ( there exists a (g,7, Z) witnessing
(BolB,...,Bn-118) ¢ I'1.

But then g exemplifies p, N, €, By,...,Bp—1 do not form a counterexample,
except that maybe g ¢ N.

Clearly T'; is definable in H(\) using parameters which are in N, hence
I'; € N. Now, the requirements on q are also first order with parameters in NV,
so w.l.o.g. ¢ € N. So subfact 6.7A holds. Oe.74
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Let C, = nrew,, C(T) \ £tp, so again C; € N. By the subfact 6.7A, N F “ for
every v € C; there is a § € I'; N "(T,)” but N < (H(X), €), hence also the
universe V satisfies the statement.

Our plan is to get a promise I' C T'; in N, and show that r def (fp: Cp, ¥pU
{T}) € P, p < r, and above r there is no member of Z, thus getting a
contradiction to “Z is an open dense subset of P”.

Let Ty = {y € TI'y: there are uncountably many z € I'y,j < Z}. By the

above, T € I';. We shall prove later:

6.7B. Subfact. There is a closed unbounded C* C w;, a = MinC*, C* C (4,
such that I' = {§ € I'y: for some i € C*, § € ™(T;)} is a promise.

Let us show that this will be enough to prove 6.7, hence Theorem 6.1
except checking simplicity.
As before, we can assume C* € N; and as MinC(I') = MinC* = a = £,
clearly p! = (fp,Cp, ¥, U{l'}) € PO N and p < p'. As 7 is an open and dense
subset of P thereis a ¢ > p' inZ. Asq € P, ( fq, Cq) satisfies the promise T,
-soas a € C(I')NCy, also B = £t, € C(T') N C,. Hence by the definition of
“fulfilling a promise” and as £ € I (see above), there is a § € *(T3) NI such
that Z < g and fq(ye) < fp(xe) +¢ for each £ < n. So by I'y’s definition, § ¢ T';
(as g€ Z) but § € I' C Ty C I'y. We arrive at a contradiction thus proving
Fact 6.7, except that we need:

Proof of Subfact 6.7B. Note that
a) if z € U "(T;), Z < § € T, then z € I'y; so clearly I'y has this
propert;rzgoo.
Next note that
b) for any § € ', the set {Z € T'y : § < z} is uncountable.
(Why? If not, for some y such that § < 4 < w; there is no z € Iy,

§ <z z¢ ™). But there are distinct z* € Ty, Z < z* for i < Xy, so
i<y

w.lo.g. z* € ™(Ty), v(§) > 4. Now, there are just countably many possible

(2515, 2h_11) (for v < i < wy), (as T, is countable), hence for some
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Z € ™(T) the set {1 : v < i < wy, 2ty = z for £ < n} is uncountable, hence
zely).
c) for any g € T2 N"™(T}), i < j < wy thereisa z € *(T;) N Ty, § < Z.
This is just a combination of a) and b).
d) for any § € I'y N™(T}) there is a j such that i < j < w; and disjoint
b2 eTonN™(Ty), § < 24,5 < 22
Otherwise for i < j < wy, let 27 € To N ™(T}), 2 < 77 (by c)). So for
1 < € < ( < w, for some £ and k, zg < z,cc (otherwise use (c) on z¢ with &,¢
here standing for i,j there to get a contradiction). This contradicts T' being
Aronszajn by the proof of Theorem III 5.4.
e) for any § € ['2N™(T;) and m < w there are j < wy, j > i and pairwise
disjoint z,...,2m € ToN™(Tj) <zt for £=1,...,m.
Just by induction on n, using d) and c).
Now we prove the subfact itself. For any § € 'y there are (by (e)) jm(7)
(m < w) such that there are m pairwise disjoint members of 'z N ™(T},.(5))
which are > §. By c) this holds for any j > jm (7). Now, if j > |J jm(y), then
we can find for every m, m pairwise disjoint members of I'y Uy’r:(?“;) which are
> . Let {z* : i < ip} be a maximal subset of {Z€ Iy N"™(T}) : § < Z,j € w1}
whose members are pairwise disjoint. If iy < w, choose another such set {g* :
£ < nig + 1} (exists as j > Jjm(7)). Now, at least one ¢ should be disjoint
from all z's, a contradictiorT to the maximality of {z* : i < ip}. Hence i is
infinite. Let C* = {i:iisaori>a,i€ C; and § € [ U .U'"(Tj) implies
that i > U jm(9)}- !
It iswe};swy to check C* is as required in 6.7B. So we finish the proof of 6.7.

Oe.7B,7

Continuation of the Proof of 6.1. The only point left is to prove the existence of
the appropriate simple R;-completeness system D. This is trivial. (It is easy to
see that if z : TNN — w codes the branches of TNN (use = which is eventually
constant on each d-branch of TN N where § & N Nwy), then Gen™ (N, P) can
be written as A, with some suitable 1 as in 5.5. The point is that (), Az, # 0
because we prove not only 6.7(1) but also 6.7(2).) Oe.1
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§7. Iteration of (£,D)-Complete
Forcing Notions

The discussion in the two previous sections lacked the crucial point that we can
iterate such forcing notions without adding reals. In order to get a reasonable
form of MA we need to iterate up to some regular x > R; and have the s-c.c.
For k = N3, Lemma 1.5 does not suffice as |Pr| = Ny (Pr from the proof of
Theorem 6.2; not to speak of the lack of £-completeness) but meanwhile x
strongly inaccessible will suffice (see VII §1, or VIII §2 for eliminating this).
An aesthetic drawback of the proof is that we do not prove that the forcing we
get by the iteration enjoys the same property we require from the individual
forcing notions but see VIII§4, which contains more detailed proofs of stronger

theorems.

7.1 Theorem. Let Q = (Pi,Qi : i < a) be a countable support iteration,

P, = Lim Q; £ a nontrivial family of subsets of Sy, (x)-

(1) If each Q; is B-proper for every 8 < wy, and (€,D;)-complete for some
simple R;-completeness system D; (so D; is a P;-name), then P, does not
add reals.

(2) We can replace in (1) “simple” by “almost simple over V” (note: V and

not V).

Combining the ideas of the proofs of 7.1 and of 4.3 we can prove

7.2 Theorem. In Theorem 7.1 we can weaken “R;-completeness system” to

“Ng-completeness system”.

However we shall not prove it now (see VIII §4 for more).

Proof of Theorem 7.1. Note: D is a function with domain «, D; is a P;-name (of
an Nj-completeness system or more acurately a definition of such a system).
For clarity of presentation we first deal with the case o = w (for a < w there

is nothing to prove).
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Let N; < (H()), €) be countable (for i < w),D,Q € Ny, N; € N;1; (hence
N; < N;41) each N; is suitable for £ (remember Definition 1.1(1), really just
Ny suitable suffice) and p € P, N Ny, and f € No be a P,-name of a real.

Now we shall define by induction on n < w conditions 7, p, such that:
(A) (1) mn € Pyt =Tpy1ln

(2) 7y is (IV;, Pp)-generic fori =0and n+ 1 <i < w.

(B) (1) There is a Gy € Gen(Ny, P,) which is bounded by 7, and belongs to
Npt1.

(2) Pn < Pnt1y Pn € PN Ny, po = p and pyIn < 7, (equivalently,

pnln € Gy,).

(3) Let {Z,, : n < w} be a list of the open dense subsets of P, which

belong to Np; then ppy1 € Z,,.

Finally, let r be such that Vn[rin = r,]. Then r > p,, so 7 decides all
values of f(k) (as for each k for some n we have Z, = {q € P, : ¢ force a value
to f(k)}-

Let us carry out the induction.

n = 0: Trivial (Note Py = {0}).

n + 1: We shall first define p,1, then G}, |, and finally r, ;.

First step. We want to find pny1 € P, N Ny, Ppt1 = Pn, Pnt1in € G}, and
Pnt+1 € I,. As Z,, C P, is dense and Z, € Ny, above every q € P, N Ny
there is r € P,NNoNZI,, r > q. Let J, = {r € Py,: there is an 7* € P,
™ > pn, ™ € In, r*In = r}, clearly it is dense above p,|n (in P,). But
pnin € Gy, € Gen(Ny, P,), and J, € Ny, hence there is 7 € G} N J,, and so
there is an r* € P, r* > p,, r* € I,,, r*[n = r. So, clearly, 7* can be chosen

as Pp+1 We need.

Second step. Let G, C P, be generic over V, r, € G, (hence G}, C G,,). We
shall try to see what are the demands on Gj, ;. Really we want in V[G,], to
find a member of Gen(No[Gp], @n[Gn]) which has an upper bound in Q[G,]
and p,(n) belongs to it.
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Note that D, is a P,-name which belongs to Ny. So there is also a P,-
name ¢, for the formula 1 appearing in the definition of simplicity (or almost
simplicity), and it belongs to Np. As we “know” G, N Ny = G}, we “know”
Yn = Pn [Gr], i.e. some member of G}, force Yn = ¥n. So we know that for
some Ay (z a relation on Ny, y € V, see Definition 5.5) every G € A;, has

an upper bound (in @n[G]), where
Agy = {G € Gen(No[Gr], @n[Gr]) : (V U No[Gr] UP(No[Gy])VIE],

€V, eNolGuluPNolGul) 4, 1 (n)[Grl, Qn[Gn],V, No[Gy]) F ¥[G, z,y]}.

So we have P,-names g,y for z and y. Now z,y are quite unlikely to be
in Ny (as their definitions used Ny as a parameter) but they can be chosen in
Np+1[Gr] (remember Ny 1[Gp] < (H(N)[Gr], €) as T, € Gp, Tn is (Nps1, Pr)-
generic, and No[Gr] € Npy1(Gr)).

Moreover, though we need to know G, to be able to find their exact
values, we know that they are in V' (remember P(N[G,]) € V and P, does not
add reals and even w-seqeunces of a member of V'); well formally N, 41[G,]
cannot be in V as it has members like G,, but the isomorphism type of
(Nn+1[Gr], Nnt1,Gn, €)cen,,, does, and so does the isomorphism type of the
model appearing in the definition of A ,. If you are still confused see VIII §4,
where essentially we make the set of members of Q»[G,] and N,[Gp] to be a
set of ordinals.

So as 7, is (Npt1,Pn)-generic 7, I+ “z,y € Npy1”, so we have just
countably many possible pairs (those in N,i1). Now N,,; “thinks” there
are uncountably many possibilities, but as N,41 € Npi2, Npyo F “Npyq is
countable”, in Npi2 we “know” that ({Azy : Z,¥ € Np41} is nonempty
(remember G}, € Nypy1 hence Ny[G}] € Npt1). So, in Np4o there is a G™ C
Qn[Gr] N No[G},] which belongs to the intersection. So though we do not know
exactly what z and y will be, we know (as long as r, € Gy)) that G™ € A y.
From G™, G}, we can easily compute G}, ; € Gen™(Ng, Pat1), Gy 1NP, =G},
Grhi1 = (90,91, -1 qn) (qo,gl,...,gn_l) € Gy, gn € No and gn[Gn] € G™}.
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Third step. We now have to define 7,41 € P41, S0 as we require 7,41 [n = 7y,
we just have to define r,,,1(n). What are the requirements on it? Looking at
the induction demand, just:

Tn IFp, “rny1(n) is above each q(n)[Gn| for members ¢ of G}, and is
(Ni[GP.], Qn[Gp,])- generic for n +2 < i <w”,

and there is no problem in this. We have finished the proof of 7.1 for o = w.

Now we have to turn to the general case i.e. with no restriction on a.

Let p,Q € Ny < (H(\), €), Ny countable, Ny suitable for £ and p € P,.
Let Non(a+1) = {8 1<} i<j=p0 <pB (so Non(a+1) has
order type v + 1). Now we can find V; < (H(A), €) for i < v, N; countable,
(N; : j < 1) € Nit1 (just define by induction on 7) and let N5 = U;<sN; for
limit § <.

As Ny € N, v+ 1 C Ny, hence i € N;.

7.3 Definition.

A pair (r,G*) is called an (4, {)-th approximation if (i < ¢ <+ and) :
a) m € Pg, and r is (N;, Pg,) generic for j=0and i +1 < j < (.
b) G* € Gen(Ny, Ps,), and G* is bounded by r and G* € N,4;.

Now it suffices to prove

7.4 Claim. If 0 < i < j < ¢ < v and (r,G*) in an (3, {)-th approximation,
p € P, N No, plB; € G*, then there is a (j,()-th approximation (rf, G') such
that p € GT, r118; = r and G' N P3, = G* (actually G! depends just on G*
and (Ng : 8 < +), but not on 7).

Why is the claim sufficient? Just use i =0, j = { =y (so §, = &), and we

get what we need.

Proof of 7.4. Now, the proof of the claim is by induction on j (for all i,().
Then for successor this is just like the induction step for @ = w, and for limit
j we diagonalize using the induction hypothesis (also taking care of clause (a)

of Definition 7.3). Ur.4,7.1
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§8. The Consistency of SH 4+ CH + There Are
No Kurepa Trees

We wish now to give yet another application of the technique of not adding

reals in iterations.

8.1 Definition. For any regular x, a k-Kurepa tree is a s-tree such that the
number of its k-branches is > k. Let the xk-Kurepa Hypothesis (in short k—KH)
be the statement “there exists k-Kurepa tree”. We may write “KH” instead of
w1-KH. (Be careful: KH says “there are Kurepa trees”, but SH says “there are
no Souslin trees”!)

Solovay proved that Kurepa trees exist if V = L, more generally Jensen
[Jn] proved the existence of k-Kurepa’s trees follows from Jensen’s ¢+, which
holds in L for every regular uncountable x which is not “too large”. But -KH
is consistent with of ZFC + GCH, which was first shown by Silver in [Si67],
starting from a strongly inaccessible k. The method of his proof is as follows:
collapse every A, w; < A < & using Levy’s collapse Levy(N1,< ) = {p : |p| <
N; & p is a function with Dom(p) C k X w; A V(a, £) € Dom(p)(p(e, ) € a)}.
Now Levy(R;, < &) can be viewed as an iteration of length s, and satisfied
the k-c.c. on the one hand, and R;-completeness on the other hand. Therefore
R, does not get collapsed, as well as any cardinal X, > k. Suppose now that
T € VP is an w;-tree. So it has appeared already at an earlier stage along the
iteration, say T € V', where V? is obtained from V¥’ by an N;-complete
forcing. In VP’ the tree T has at most 2™ branches, and this is less than .
Note that by 6.1(2) the tree T' can have no new wj-branches in VF. So T is
not a Kurepa tree in V'F.

Devlin in [Del] and [De2] has shown, starting from a strongly inaccessible,
the consistency of GCH + SH + —KH. For a proof by iteration see Baumgartner
(B3].

8.1A Remark. In both proofs the inaccessible cardinal is necessary, for ~-KH

implies that N, is an inaccessible cardinal of L.
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8.2 Definition. Suppose T is an wj-tree, and that @ is a forcing notion. We
say that Q is good for T if for every p € @ and a countable elementary submodel
N < (H(x), €), for x large enough such that T, Q, p € N, there is an (N, Q)-
generic condition ¢ > p such that for every name 7 € N of a branch of T, either
q kg “7[G@] € N and is an old cofinal branch of T” or q IFq “T[G] N T(6(N))
is not b(a) = {x € T(§(N)) : s < a} for any a € T5n)”.

8.2A Fact. A forcing notion @Q is good for an w;-tree T iff @Q is proper and in

V@ there are no new cofinal branches of T.

Proof. =: Suppose @ is good for T. The properness of @ follows trivially.
Let p kg “7 is a new branch of T”, and we shall derive a contradiction; let
{T,p,Q} € N < (H(x),€), x large enough and N countable. So let ¢ > p be
as in the definition of good.

If 7[G] is an old branch — we are done. If not, 7[{G] N T<s, # By = {y :
y <t z} for all z € Ts,. But this implies that 7[G] being linearly ordered by
<7 has no member of level > d, so it cannot be a w;-branch of T.

Conversely, suppose that @ is proper and does not add a new w;-branch to
T. Let 7,p € N be as in the definition, and pick ¢ > p which is (N, Q)-generic,
and a generic subset G of P over V with ¢ € G. So 7[G] € N[G] < H(x, €)[G],
and 7(G] is either an old wy-branch, or is not an wy-branch at all. In the first
case we are done. Now if 7{G] is not an w;-branch, then either (3)7[G]NT, = 0
or 3z,y € 7[G] such that z,y are not comparable in 7. By elementaricity of
NI[G], such an a or such z,y exist also in N[G]. So q forces what is required by

the definition. Os.4

8.3 Lemma. If @ is an Nj-complete forcing notion and T is an w;-tree, then

Q@ adds no new cofinal branches to T'.

Proof. 1t is enough to show that Q is good for T'. Suppose that N < (H(x), €)
is a countable elementary submodel and that T, Q@ € N. Let (Z, : n < w) be
a list of all dense open subsets of @ which belong to N. Let p € @ N N. Let
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{((#n,7n) : n <w) be alist of all pairs (z,,7,) such that z, € T5y) and 7, € N
is a @-name of a branch in of T.

By induction on n we construct a sequence of conditions p,, such that:
(1) pp=p
(2) P <Pry1 €QNNNTI,.

(3) Pnt1 IFQ “7p is an old cofinal branch of T” or there is some z € TN N

such that x £7 z, and pnp41 kg “z € 17,

Suppose first that the construction is carried out. Let ¢ € Q extend
all p, (g exists by Ri-completeness). Clearly, q is (NN, Q)-generic. For every
T € N, a Q-name of a branch of T, either ¢ I “r is an old branch of 177,
of gl (Yn)[TNT NN # {z: z <r z,}]. In the first case, as q is generic,
gk 7 € N”. In the second, clearly ¢ forces that 7 is not a cofinal branch of T.
Therefore Q is good for T'.

We still have to show that the construction can be carried out. Suppose
pn is picked. First find an extention p’ > p, that decides whether 7, is an
old branch or a new branch. If p’ I “7 is old”, define p,+; = p” for some
p<p"€I,NN.Else,p' I+ “Tisnew”. Let B={z e T :3p" >p',p" I+ “z €
77}, Clearly, B is downward closed, and B € N. If B were a cofinal branch,
this would contradict p' I “7 is new”. Therefore there are two incomparable
elements in B. By elementarity, there are two such elements in N. Therefore
we can pick in N a condition p,+1 > pn such that p,y1 IF “TNT5 = " for

some z such that = £7 z,,. Us.3

8.4 Theorem. Suppose T is an w;-tree, (P;, Q; : i < a) is a countable support

iteration, and no Q; adds new cofinal branches to T', then also P, does not add

cofinal branches to T'.

Proof. By induction on a. If & = 0 or « is a successor ordinal, there is not much
to prove. Suppose that « is limit. Let N be a countable elementary submodel
as usual and suppose that p € P, N N. Pick a sequence (o : n < w) of ordinals

such that o, € NNa, any1 > a, and |J o, =sup(a N N).

n<w
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Let (Z, : n < w) be an enumerations of all dense open subsets of P which
belong to N. Let ((zn,7r) : n < w) be a enumeration of T5ny X {7 € N : 7 is
a P,-name of a branch of T'}.

By induction on n we pick pp, ¢, as in the proof of preservation of
properness under countable support iteration in III, §3. In addition to the
conditions there we demand:

(*) gnF “ppy1F Qa)rla#{z € T(a) A z < x,}" or

Gn Ik [“Pn+1 IF T is old”].

We show how to pick pp+1. let G C P, be generic such that ¢ € G. Then
there is a p € Z,, N N such that pfa, € G. There is some extention p’ > p which
decides whether 7, is old or new. The rest is as in the proof of the previous
Lemma. Us.4

We shall utilize now the preservation Theorem we just proved to reprove

Devlin’s result:

8.5 Theorem. If CON(ZFC + k is inaccessible) then CON(ZFC + GCH +SH
+ —KH).

Proof. Let k be strongly inaccessible. we define a countable support iteration
of lengh k of proper forcing notions, (H,Qj 11 < K,j < k). When i is odd,
Qi = Levy(Ry, Ry)VIP], When i is even, Qi = Q(T:) is the forcing notion
defined in §6 which specializes some given tree T'; (a P;-name) without adding

reals and every such names appear.

8.6 Claim.

(a) P, has the Ro-cc.

(b) P, does not add reals.
(c) VP~ E SH.

(d) VP~ F -KH.

Proof. Clause (a) is easy by III 4.1. For (b) see §6 and §7. Clause (c) is clear, as
every wi-tree gets specialized along the way by suitable bookkeeping. Suppose

now that T is some wi-tree in VF=. There is some intermediate stage P; for
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i < k such that T € VP In V¥ the tree T has at most 2™ (of V%) branches.
As k is inaccessible in VP the number of branches of T is < k. So there is
some j < k such that in VFi the tree T has at most N; old branches. What is
left to see is that the rest of the forcing does not introduce new branches to 7.
By theorem 8.4 it is enough to show that no Q; adds branches (for j > 7). In
case Q; is Levy(Ry, Ry), this is known from Lemma 8.3, because the collapse
is Nj-complete. The remaining case is that @Q; = Q(T;) is the forcing notion
defined in §6 for specializing a given Aronszajn tree T;. So our proof is finished

once we know that this forcing notion does not add branches to an w;-tree 7.

8.7 Claim. Suppose T is an N;-Aronszajn tree, and 7™ is any Nj-tree. Then
Q = Q(T) is good for T, where Q(T') is the forcing for specializing T' defined
in §6.

Proof. Suppose that N < (H(x), €) is a countable elementary submodel such
that Q, T, T* € N and p € Q N N. We shall find a condition g > p such that
q is (Q, N)-generic and such that for every Q-name 7 € N of a branch of T*,
q I+ “r is an old branch of T* or TNT* N N # b(a) for all a € T5iny

In the proof we shall follow the proof of Theorem 6.1, in which the proper-

ness of () was shown.

8.8 Definition. Suppose that p € Q and § > £¢(p). For Z = (zo,...,Zn-1) €
™(T5) and € > 0 we say that ¢ > p with £t(q) < 0 respects T by e iff
Fo(zel€t(q)) < fp(zeltt(p)) + € for all £ < n.

The main point is the following claim which is the parallel of 6.7.

8.9 Claim. Suppose that N < (H(x), €) is as usual, and p € N is a condition
and 7 € N is a Q-name of an w;-branch of T*. Let § = N Nwy, Z € ™(T}),
a € Ty and € > 0. Then there is a condition ¢ € N, ¢ > p and q respects Z by
€ and such that:

(i) qIF “716 #b(a) = {y : y <7~ ac} or

(if) g IF “r is an old branch of 7™.
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Proof. Suppose there is no ¢ > p in N as required and which satisfies (i).

We shall see that there is one which satisfies (ii). Define the set of “bad” § as

follows: Ty is the collection of all § € "(T}) such that 8 > a and

(a) For every v < B and z € ™(T}), m < w, there are ¥ € [y,) and an
extension of p of height v/ < § which respects (z¢[v' : £ < £gZ) by € and

which determines the value of 77,

(b) There are no two extensions, gy and g1, of p such that g respects § by ¢

(for k = 1,2) and ¢; and go force contradictory information about 7.

Let B(I';) be the set of levels 8 for which there is § € I'; of height 3.
Observe that Z € I'y. Why? Clause (a) follows from 6.7; if (b) does not hold
then there is a condition g such that g IF “7 is not b(a)”, contrary to our
assumptions, remembering a is constant in 8.9. Observe also that by 6.7, there
is a club F of w; such that if Z € I'; and § < Z is of height § € E, then j € I';.
W.lo.g. E€ N. Asz €', 6 € B(I'1)NE. Therefore B(I';) N E is unbounded,
and clearly it is closed.

Let I'; = {§ € I';: there are uncountably many z € I'; such that § < z}.
For each § € I'y of height 3, define t(§) to be the set of nodes t € T such that
some extension of p of height 3, which respects § by € forces that ¢t € 7. Then
(%) is linearly ordered and contains in fact a branch of height 8. If §; and 7
are any n-tuples in I'y, then ¢(g;) and ¢(g2) are compatible. (Why? By clause
(b).) Thus the function ¢ defines a cofinal branch of T" and the intersection of
this branch with Ty is just b(a). Since I's is definable in N, this branch is an
old branch in N. Now, as before, we get a promise I' out of I's and we add this
promise to p in order to obtain the desired q. It follows now that ¢ I+ “r is this

old branch”.

Os.9,8.6,8.5





