
II. Iteration of Forcing

§0. Introduction

Suppose Vt+ι is a generic extension of V^, for i — 0,1. Is V% a generic extension

of VQ? In §1 we present the possible answer, in fact if V^+ι = V^[G^], G0 is a

subset of P generic over VQ, G\ is a subset of Q[Go] generic over VΊ, we can get

VΊ by some subset G of P * Q generic over VQ, and there are natural mappings

between the family of possible pairs [Go, GI] and the family of possible G's. In

§2 we deal with iterations (P^, Qi : ί < a) of length an ordinal a.

This seems suitable to deal with proving the consistency of "for every x

there is y such that ..." each Qa producing a ya for some xa G Vp°'. However

VPa is not U VPί, still if we speak of, say, x £ H(\) and cf(α) > λ and
i<a

PQ, = U PΪ, and PQ, satisfies the c.c.c. (or less), then no "new" x appear in
i<a

VPa, so we can "catch our tail."

An important point is what we do for limit ordinals δ. We choose P§ =

U Pi (direct limit), this is the meaning of FS (finite support iteration). An
i<δ
important property is (see 2.8): if each Qi satisfies the c.c.c. then so does P#.

In §3 we present MA (Martin's axiom) and prove its consistency. The axiom

says inside the universe, for any c.c.c. forcing notion P we can find directed

G C P which are "quite generic", say not disjoint to TI for i < i* if Ii C P is

dense and i* < 2H°. The proof of its consistency (3.4) is by iterations as in §2 of

c.c.c. forcing notions, the point being the right bookkeeping and the "catching of
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your tail." We then give some applications; if Ai C ω (i < X < 2K°) are infinite

almost disjoint, 5 C λ then for some / : ω —> {0,1} f\Ai -αe IA* iff i € S (this

is 3.7), and we can omit "Ai C ω" (by 3.5). Can we, for (/; € Λί{0,1} : i < λ),

λ > NO find / : "{0,1} such that f\Ai =ae Λ? (we say (Ai : i < λ) has

uniformization). If the A^s are like branches of trees and the fa are constant

then yes (by 3.9).

In §4 we continue with this question. If Ai C ω (i < λ) and the Ai has

splitting < 2 (if not branches of a tree this mean: if we know the first n members

of AI, there are < 2 possibilities for the nth member) then uniformization fail

(see 4.2 and 4.4). Moreover if MA holds, then (Ai : i < λ) has a subsequence as

above so the answer is no. Still a positive answer is consistent (see 4.6) where

we fix (Ai : ί < λ) and preserve a strong negation of: for no uncountable S C λ,

(Ai : i £ 5} has spliting < 2. For this we demand each Qi to satisfy a strong

version of the c.c.c.

Lastly §5 deals with the existence of mad (^maximal almost disjoint)

families of subsets of u;, showing the consistency of the existence.

Also this chapter presents old material. The material is mostly from Solo-

vay, Tennenbaum [ST] (consistency of Souslin hypothesis using FS iteration of

c.c.c. forcing notions) and Martin, Solovay [MS] (on applications of MA), but

note that [ST] use Boolean algebras. But the iteration like here was shortly

later known, and MA was formulated and proved consistent independently by

Martin and Rowbottom.

The material of §4 is from [Sh:98, §4, §1 (mainly 1.1(3), 1.2)] (where we

phrase the iteration theorem more generally). See more (for higher cardinals)

in Mekler and Shelah [MkSh:274].

§1. The Composition of Two Forcing Notions

1.1 Discussion. We shall now ask the following question. Suppose we start

with V, extend it once by means of the forcing notion P to V[G], where G

is a generic subset of P, then we take a forcing notion Q in V[G] and extend
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V[G] to V[G][ff], where H is a subset of Q generic over V[G\\ can V^G]^] be

obtained from V by a single forcing extension? The answer is positive as we

shall now see.

Since Q G V[G],Q does not necessarily belong to V but it has a P-name

Q in V. Since Q is a forcing notion we have, by the Forcing Theorem that

p \\-p "Q is a forcing notion (i.e. a partial order)", for some p G G. We shall,

however, make the stronger assumption, which suffices for all our needs, that

Ihp "Q is a forcing notion." If this stronger assumption would fail to hold we

can define

t (Q i f p e G
Qf = < ~

[ {0} otherwise

and then Ihp "Qt is a P-name for Q in V[G\". To prove that "forcing twice" is

like forcing once we want to define a forcing notion P * Q, i.e. the set and the

order.

1.2 Definition. 1) P * Q = {(p, q) : p G P, q is a canonical P-name of a

potential member of Q, i.e., Ihp "q G Q", q a canonical P-name"}.

[What are the canonical names of a potential member of Q and why do

we use this concept? A member of V[G\ may have a proper class of names in

V so P * Q would be a proper class if we would not restrict the names to a

certain representative set. What is important is that every member of Q[G] for

every generic subset G of P has a name in this set, e.g., has a canonical name.

By I 5.13 this is true. Also there is a class of P-names q such that: for some

p G P, we have p Ihp "q G Q"; again demanding Ih "q G <?" suffice as for every

P-name q° there is a P-name q1 such that Ihp V G Q" and Ihp "if q° G Q

then q° = g1" (why? by I 1.19, definition by cases as we assume Q ^ 0).]

2) We define on P * Q a (pre) partial order as follows:

(Pι»?ι) < (P2,<72) i/Pi < P2 (i.e. P N px < p2) and p2 Ih* "qi < p in the

partial order Q".
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1.3 Claim. If P G V is a forcing notion, Ihp "Q is a forcing notion" then P* Q

is a forcing notion.

Proof. First (p, g) < (p, g) since p Ihp "q < g" because (p, g) € P * Q implies

P II" p "^ € Q" and since Ihp "(Q, <) is a forcing notion". Now assume (pi, gi) <

(P2,Q2) < (P3,q3) then, since p3 > p2 > p\ we have p3 > pi and p3 Ihp

"tfi < Q2&Q2 < ^3"- Since also Ihp "(Q, <) is a forcing notion", clearly

Ps "~P "<7ι < <7s" and so (pι,gι) < (^3,^3). We shall use P * Q as a forcing

notion. DI.S

1.4 Theorem. This theorem asserts, essentially, that forcing by P * Q is

equivalent to forcing first by P and then by Q[G].

(1) Let GP*Q C P * Q be generic over V then

a. <3p d=f {p e P : (3pf)(3g)(p < Pf & (p f,g) G Gίp^g)} C P is generic over

b. GP*Q/GP = {^[Gp] : (3p)[(p,g) G GP*Q]} is a generic subset of Q[Gp]

over

(2) If Gp is a generic subset of P over V and /f C Q[Gp] is a generic subset of

Q[GP] over F[G] thenGP*Hd= {(p,q) : (p,g) G P*Q&p G GP&?[G] G

ίί} C P * Q is a generic subset of P * Q over V.

(3) The operations in (1) and (2) are one inverse of the other.

Proof. (1) a. Gp is downward closed by its definition. Gp is directed since GP*Q

is. Now let I be a dense subset of P. Define 1+ = {{p, ςr) G P * Q : p G I}.

We shall see that T+ is a dense subset of P * Q. Let (p, ς) G P * Q, then there

is a pt > p such that pt G J. Now (pt, ς) G P * Q. Also (pt, g) > (p, g) (since

pt Ih "g < g", as Ihp "(Q, <) is a forcing notion"). Since (pt,g) e J+ this

shows that X+ is dense. Therefore J+ Π GP*Q 7^ 0, let (p, g) G J+ Π GP*Q, then

p G Z Π Gp, hence X Π Gp ^ 0. As we prove it for every Z, Gp is a generic

subset of P over V.
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(l)b. (i) We want first to prove that Gp*g/Gp is downward closed, so

let Q[GP] N V < q[GP]» in V[GP] and assume q[GP] G GP*Q/GP. Then

by the Forcing Theorem (and I 5.13) there is a canonical name qi such that

q* = <?t[Gp], and for some pt G GP we have pt Ih "q^ < q and </t G Q".

By the "definition by cases" w.l.o.g. Ihp V G Q" (we will usually forget to

mention this explicity). As we assume q[GP] G GP*Q/GP clearly for some

p G Gp we have (p,<?) G GP*Q. Since p1" G GP there are p/7,<?77 such that

(p", <?77) G GP*Q and pt < p" (by the definition of Gp.) Since GP*Q is directed

there is (p*,<7*) G GP*Q such that (p*,ςr*) > (p,<?), (p",q"}. We claim that

(P*,?1) < (P*,?*> Since (p*,?*) > (p,?), we have p* Ih V > qn. Since

also p* > p" > pt and pt Ih V < f we have p* Ih V < g", So together

with the previous sentence p* Ih "gt < g*", hence (p*,g*) > (p*,(^) Since

(p*,ς*) G GP*Q also (p*,^) G Gpj)ίQ and ςt = ?t[GP] G GP*Q/GP. Thus

GP*Q/GP is downward closed.

To see that GP*Q/GP is directed let <?,^ be in GP*Q/GP. Then g =

g[Gp],ς^ = ^[Gp] for some q,q^ such that there are p,p^ satisfying (p,9),

(p^»^) ^ GP*Q. Since GP*Q is directed there is a (p",q"} G GP*Q such that

OΛ?") > (P,?>, (P1,^)- We havep77 Ih "ς,?t < ?//» and since p" G GP we have

q[GP],q*[GP] < q"[GP] and obviously q"[GP] G GP*Q/GP.

(ii) Let I be a dense subset of Q[Gp] in V[Gp], and we shall show that

IΠ Gp*Q/Gp / 0. Clearly I has a P-name J and for some po G Gp we have

Po "~p "? is a dense subset of Q".

Let J+ - {{p,<?) G P * Q : p Ihp "q G ?&p > p0"} Since p0 G GP

and, as we can replace po by any p7, po < pf G Gp, w.l.o.g. there is a qo

such that (po,9o) € GP*Q. We claim J+ is dense above (po,<?o) in P * Q. Let

(p^j^) ^ (Po,<7o) and let G^ be any generic subset of P such that pΐ G G^. In

y[Gt] we know that J[Gt] is a dense subset of Q[Gt], hence (by I 3.1, I 5.13)

there is a canonical name q" of a member of Q such that <?77[Gt] > q^[G^} and

g77[Gt] G J[Gt]. Let p77 G Gf be such that p77 lhP V7 G J" and p77 lhP "q" > gt»
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and (as Gf is directed) p" > p1". Then clearly (p",g") > (pW) and (p",g") G

J+. So we have proved that J+ is dense in P * Q, hence J+ Π GP*Q ^ 0. Let

(Pι,qι) G J+ Π GP*Q, then 0ι [Gp] G J[Gp] = I. So really in V[GP] we have

JΠ (Gp*g/Gp) is not empty, as required.

(2) (i) To see that Gp * H is downward closed let (p, g) G Gp * ίΓ and

(p*ι<fi) < (P> tf) Then p G Gp,pt < p hence also pt G Gp. Now g[Gp] G # and

gf[Gp] < g[GP] (since p G GP) hence q*[Gp\ G #, therefore (pt,^t) G GP * H

so we have proved that Gp * H is downward closed.

To see that Gp * H is directed let (p, g), (p*,^) G Gp * H. Since p,pΐ G Gp

there is a p" > p,p^ in Gp. Since g[Gp], #^[Gp] G H there is a canonical name

g" of a potential member of Q[Gp] such that q"[Gp\ > g[Gp], g^[Gp] and

q"[Gp\ G H. Since Gp is directed we can assume, without loss of generality

that p" Ihp V eQ&q">q&q"> q*n. Thus (j/7,/) G P * Q and (p/;,/) >

(p,?),^,?1}-
(ii) Let J be a dense open subset of P*Q. Let J/GP = {<?[GP] : (Ξp G GP)

[{p, q) G I}}. We shall see that J/GP is a dense subset of Q[GP] in V[GP]. Let

^o € Ql^pjj then for some canonical name #o of a member of Q we have

qo[Gp] = qo, and let p0 G Gp, so p0 Ihp "#0 ^ Q" Then (po,^o) G P * Q. Let

T ? 0 = { p e P : p > p o & (%f)[P ll-p "?t > ?o" and (p, ςt) G J]} G 1Λ We shall

see that Tςo is dense in P above po Let pi > po, then (pι,^o) G P * Q. Since

J is dense in P * Q there is a (pt, </ΐ) G J such that (pt, g^) > (pi, go) We have

also p^ Ihp "gΐ > g0" hence p^ G Iqo, p^ > p\ and so Iqo is dense in P above p0.

Since po G Gp by I 1.18 there is p2 such that po < P2 G Gp and p2 G Tg0, hence

for some gt we have p2 Ihp "g^ > go" and (p2,<^) ^ 2". Since p2 G Gp we have

q][GP] > q[GP] = q and ^[Gp] G J/GP (as (p2,g t> € J). So really I/GP is a

dense subset of Q[Gp] (in V[Gp]). Since H is a generic subset of Q[Gp] over

V[Gp] we have (J/GP) Π H ^ 0, let g[GP] G (I/GP) Π ff . Since g[GP] G I/GP

there is a p G Gp such that (p, q) G J. Therefore (p, g) G T Π (Gp * #), which

establishes the genericity of Gp * H.

(3) Left to the reader. Πι.4
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1.5 Lemma. For every P* Q -name τ there is a P-name r* such that for every

generic subset Gp of P, τ*[Gp] is a Q[Gp]-name in V[Gp] and for every subset

GQ of Q which is generic over V[Gp] we have (l*[Gp])[Gg] = τ[Gp * GQ]. We

use the notation τ*[Gp] = τ/Gp.

Proof. By induction on the rank α of the (P * Q)-name τ. Suppose τ —

{((Piι<li)ιTi) : i < ^0} where (Pi,qi) G P * Q and Ti is a (P * Q)-name of

rank < α. By the induction hypothesis each τ$ has a translation r\ to a P-

name such that Γ*[^P] ^s a Q[Gp]-name and Γ*[^P][^Q] = TΪ[GP*GQ] Let σ^

be the P-name of { ,̂ r*) and let r* = {(PI, <ji); i < io}; this is clearly suitable.

(See I 1.8). D1<5

1.6 Definition. If P <£ Q (see Definition I 5.3(2)), and G C P is generic over

V, £/&en let Q/G G V[G] be the following forcing notion:

(1) its set of elements is {q G Q : q is compatible in Q with every p G G},

(2) its order is inherited from Q.

Sometimes we write Q/P instead Q/Gp, (so it is a P-name) and if h is a

complete embedding of P into Q (or even to RO(Q)) we write Q/(P, h).

1.7 Lemma. (1) P <£ P*Q (when P a forcing notion, Ihp "Q a forcing notion"

and we identify p G P with (p, 0g})

(2) The forcing notions (P * Q)/P and Q are equivalent (i.e., this is forced by

P). Moreover for any generic G C P, the function /, /((p, Q)/~) = <?[G]/~ (for

(p,q) G P * Q/G, equivalently p G G) is an isomorphism from (P * Q)[G]/«,

onto Q[G]/« (where « denotes the relation defined in I 5.5).

(3) If P <£ Q (both forcing notions in V) then Q is equivalent to P * (Q/P).

Πl.7

It is not hard to see that
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1.8 The Associative Law Lemma. If P is a forcing notion, Ihp "<3 a forcing

notion", lhP*Q "R a forcing notion", then (P * Q) * R, and P * (<9 * R) are

equivalent. DI.S

§2. Iterated Forcing

2.1 Discussion. We saw already that two successive extensions of V by forcing

are equivalent to an appropriate single extension. We want to ask now the same

question about an infinite number of extensions by forcing. The need for this

arose in the following case.

By a classical theorem, if a linearly ordered set is dense and complete,

has no first or last member, and has a dense countable subset then it is order-

isomorphic to the real numbers. Souslin raised the question whether one can

replace the last requirement, that there is a dense countable subset, by the

requirement that every set of pairwise disjoint intervals is at most countable.

The statement that these two additional requirements are equivalent is called

Souslin's hypothesis, and an ordered set which is a counterexample to Souslin's

hypothesis is called a Souslin's continuum. Jech and Tennenbaum proved the

independence of Souslin's hypothesis of the axioms of ZFC by using forcing to

obtain a universe in which there is a Souslin continuum. Later Jensen proved

that in the constructible universe there is a Souslin continuum. To prove the

consistency of Souslin's hypothesis Solovay and Tennenbaum, [ST] proceeded

as follows: Given V and a Souslin continuum C, one can construct a generic

extension V[G] of V in which C is no more a Souslin continuum by a generic

introduction of an uncountable set of pairwise disjoint intervals in C. In this

case we say that we have "destroyed" C. Using the same method we can go on

destroying more and more Souslin continua. It can be shown that a Souslin's

continuum has exactly 2^° points, hence there are at most 22 Souslin continua

( up to isomorphism). However, when we destroy one Souslin continuum, new

ones will be created and we must be sure we have destroyed them all. Since

we have infinite time at our disposal this may be possible if we can "catch out
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tail" , but for this we need that in the end no new Souslin continua arise which

look doubtful by the above estimate. However we can show that it is enough to

deal with subsets of Souslin continuum of power NI, so there are only 2Nl such

orders. We shall iterate λ times, so that in the new universe, 2N° = 2Hl = λ, so

if the cofinality of the length of the iteration is > HI we have a chance to catch

our tail.

2.2. Definition. We shall call Q = (Qj : j < a) (or Q - (Pj.Qj ' j < α) or

Q — (Pi,Qj : j < a and i < α)), for some ordinal α, a system of FS (finite

support) iterated forcing (or FS iteration) if each <2j, j < α is a name, for the

forcing notion Pj, of a forcing notion (=quasi-order), i.e., Ihp. "Qj is a forcing

notion", where Pj for j < a is defined by recursion as the set of all finite

functions / with domain included in j such that for all i G Dom(/) we have

f ( i ) is a canonical name for the forcing notion Pi of a potential member of Qi

and we call Pa the direct limit of Q and denote it lim<N0(Q). So i < j < α,

p G PJ =» p\i G Pi and Pi C Pj. We use freely I 5.13.

This is called iterated forcing with finite support since the functions / we

use in the Pj's are finite functions. The Pj's are sets since we restrict the choice

of the /(i)'s to be canonical names of members of Qi. We can replace "finite

support" by CS ("countable support") or "< ^-support", see Chapter III.

The partial order on Pj for j < a is defined as follows: / < g 4Φ Dom(/) C

(V; G Dom(/)) \g\i lhPί "/(i) <?ί g(ι)n}.

2. 2 A Fact. In Definition 2.2:

(1) If i < j < a then Pi C Pj as sets and even as partial orders.

(2) If i < j < a and p G Pj then p\i G P»; moreover Pj N "p\i < p" and if

p\i < q £ PΪ then r = q\Jp\(j\i) belong to Pj and is the least upper

bound of g, p in Pj (actually as we are dealing with quasi order we should

say a least upper bound).

(3) Ίfi<j<a then P< <? Pj and q G Pi? p G Pj =» Pj -^ q < p *-> P» N ς < pfi

(4) If j < α is a limit ordinal then Pj = U P^.
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(5) The sequence (Qj : j < α) uniquely determines the sequence (Pj,Qj : j <

a) and vice versa and similarly for (P^, Qj : j < α, and i < a).

(6) If Q\ is a Pi-name, such that Ih "ζ^ is a dense subset of Qi" then P( =

{/ G Pi: for every j G Dom(/) we have: lhP. "f(j) £ QΓI is a dense

subset of Pi. Moreover we can define and prove by induction on i < α,

that P" = {/ G Pi : for every j G Dom(/) we have: f ( j ) is a P/'-canonical

name of a member of Q^} is a dense subset of Pi and Q" is a canonical

Pf-name satisfying lhP. «<$' - <$" and (P' ̂ Q' , : jo < i,jι < z) is a FS

iteration.

(6A) Assume Q\ is a set of canonical P^-names of member of Qi such that

for every P^-name p for some q G Q( we have lhPi "if p £ Qi then

Qz N "p < ςf"" Then P/ = {/ € P» : for every j G Dom(/) we have

f ( j ) G Q^} is a dense subset of P( and (P/, Qj : i < a, j < a) satisfies (1)

— (4) above.

(7) If λ is regular uncountable, α < λ and lhPί " the density of Qi is < λ"

then the density of Pa is < λ.

(8) If for i < α, lhP. "Q^ G fί(λi)", (λ^ : i < α) is an increasing sequence of

regulars, 2λi < Xi+ι and for limit δ < α, ̂  λ^ < λ^, ί/ien Q G H(Xa).
i<δ

2.3 Definition. Let (P^Qj : i < α, j < α) be a FS iteration. For β < 7 < α

we define P/3)7 and if 7 < α, QY by recursion on 7 as follows: P/?,7, Qif

are P^-names, P/??7 is the set of all finite functions / from 7 \ β such that

for i G Dom(/), /(i) is a canonical P/j-name for a canonical P/^-name of a

potential member of Q\ . Now if 7 < α then essentially P7 = Pβ * P0,7 (see

2.4(a)) and let Qίf1 be QΊ/GPβ (see Definition 1.6).

The next theorem is given here without proof.

2.4 The General Associativity Theorem.

(a) P7 ~ Pβ * P/3,7 for /? < 7 < α, where P/?,7 is a name in the forcing notion

Pβ for the forcing notion which is P^)7 in V[G], where G is a generic
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subset of P/3, and where the Q/s, β < j < a are translated to names for

the forcing notions Pβj, ~ means that one of the two forcing notions are

isomorphic to a dense subset of the other, so that they represent essentialy

the same forcing notion (see I §5).

(b) P/3,/3+ι w Qβ over V[Gβ] where Gβ is a generic subset of Pβ.

(c) If (βi : i < 7} is an increasing and continuous sequence such that β0 = 0

and βΊ = α, then (Pβitβi+l : i < 7) is an iterated forcing equivalent ( in

the w sense) to (Qi : i < a). This is, in some sense, a general associative

rule. Π2.4

2.5 The Definition by Induction Theorem. (One can construct Q^s by

a given recursive recipe.) If F is a function and α is an ordinal then there

is a unique FS iterated forcing (Qj : j < QQ) such that for all j < αo,

Qj = F((Qi : i < j}) and either αo = OL or else F((Qi : i < αo)) is not

suitable for <3αo, i.e., it is not a name of a forcing notion in the forcing notion

POO.
Proof. This theorem is an obvious consequence of the standard definition-by-

recursion theorem. Cb.s

2.6 Theorem. If P and Q are as in the definition of P* Q and P and Q satisfy

the c.c.c., where by "Q satisfying the c.c.c.", we mean Ihp "Q satisfies the

c.c.c.", then P * Q satisfies the c.c.c.

Proof. Let {(pi, qi) : i < NI} be a sequence of conditions in P*Q. We claim first

that there is a p G P such that p \\-P "\{i : p< € Gp}| = NI", where GP is the

generic subset of P. Suppose this is not the case, then Ihp "|{i : pi G G^pjl =

HO"- Let β = {C : (3r G P) [r Ih "sup{i : p< G GP} - C"]} Since each i for

which ̂  is defined is a countable ordinal and {i : pi G Gp} is a countable set in

V[Gp] also each ζ G B is a countable ordinal in V[Gp] and hence in V (since

P satisfies the c.c.c., by I 3.6 we know N^[Gpl = N^). Since P satisfies the c.c.c

again by I 3.6 we know B is countable, so let ξ = sup(£), we have ξ < NI.
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Obviously p^+i Ih "£ +1 G {i : Pi G GP}" hence pe+ι Ih "sup{* : pi G GP} > ξ"

on the other hand we have Ihp "sup{z : Pi G Gp} < £", which is a contradiction.

Hence now we know that for some p G P we have p Ihp "|{i : p^ G

Gp}\ = NI"; let Gp be a generic subset of P such that p G Gp. Let A = {i :

Pi G Gp}, then the set {qi[Gp\ : i G A} is an uncountable subset of Q[Gp],

in V[Gp] of course. Since Q[Gp] satisfies the c.c.c. there are i,jeA such

that Qi[Gp} and Qj[Gp] are compatible, hence there is a q[Gp] G Q[Gp] such

that q[Gp] > q%[Gp],qj[Gp]. Since Pi,pj G Gp and Gp contains conditions

which force q > qi and q > qj, because Gp is directed ί/iere exists a p* G Gp

such that p* > pt,p* > PJ, p* > p and p* Ih "q > qi" and p* Ih "q > qr/,

thus (p*,ςf) G P * Q and (p*,ςf) > (p*,^), (ft,^ ) and so (pi,ςfi> (ft,^ ) are

compatible (in P * Q). D2.e

Within the proof of this theorem we have proved the following:

2.7 Observation. Let P be a forcing notion which satisfies the c.c.c. and let

{pi : i < uJι\ be a sequence of members of P. Then for some p G P we have

P Ihp "|{i < ωi : pi G Gp}| = KI", where Gp denotes the generic subset of P

(in fact for every ξ < ω\ large enough, p = p% satisfies the conclusion). U2.7

2.8 Theorem. If (Pi,Qi : i < a) is a system of FS iterated forcing and for

each i < a the forcing Qi satisfies the c.c.c. ( i.e., Ihp. "Q satisfies the c.c.c.")

then Pa satisfies the c.c.c.

Proof. We proceed by induction on a. For a = 0, PQ consists of the null function

only, hence it satisfies, trivially, the c.c.c. If a is a successor let a = β -h 1 then

by 2.4 we know Pa — Pβ+i ~ Pβ * Pβ,β+ι ~ Pβ * ζ)/?. By the induction

hypothesis P^ satisfies the c.c.c. and since also Qβ satisfies the c.c.c., theorem

2.6 establishes that also Pβ * Qβ satisfies the c.c.c. The relation « obviously

preserves the c.c.c. (see I 5.15), hence Pα too satisfies the c.c.c.

So assume a is a limit ordinal. Let {pi : i < ω\} C Pa. Now {Dom(p^) :

i < ωι} is an uncountable family of finite subsets of a.
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If cf (α) > KI then for some ξ < a we have \Ji<ωι Dom(p ) C £, so p^ e Pξ

for i <ω\ and we can apply the induction hypothesis.

If cf(α) = NO, let a = \Jn<ω^n, &n < αn+ι < ot. So for each i < ωι

for some n(i) < ω we have Dom(p^) C an^. So for some n(*) < ω the set

A = {i < ω\ : n(i) = n*} is uncountable. So {pi : i G A} is an uncountable

subset of Pan(+) so by the induction hypothesis for some i ^ j from A, p^, p^

are compatible in Pαn(Hl) hence in PQ as required.

Lastly, assume cf(α) = HI, so let (α* : i < NI) be a (strictly) increasing

continuous sequence of ordinals with limit α. Clearly for every i < ω\, Dom(pi)

being a finite subset of a is included in Oίg^, for some g(i) < ω\ and is disjoint to

[θίf(i),θLi) for some countable ordinal f ( i ) < i when i is limit ordinal (remember

Oίi is increasing continuous).

So clearly £7 = { ΐ < N ι : ΐ i s a limit ordinal and for every j < i we have

#0) < 0 is a club °f NI, and by Fodor lemma for some j(*) the set 5 = {i <

N! : f ( ϊ ) — j(*)} is stationary and let ξ — OLj(*y Now {pi\ξ : i G £ Π 5} is

an uncountable subset of Pξ, hence by induction hypothesis there are in it two

compatible numbers Pi\ξ, Pj\ζ, i.e., there is q £ Pξ such that <? > Piί^, PJifξ,

but then clearly Pi,pj are compatible in Pα. e.g. q\J(pi\[£,&) (J(pj\[ζ,ot)) is a

common bound. U2.8

2.9 Lemma. Assume (P^, Q : i < a) is a FS iteration of c.c.c. forcing notions,

II-Pi "|Qi| < λ" (forcing) and λ^° = λ and |α| < λ.

1) If Ihp. " the set of elements of Q< is C V" (for each i < α) then \Pa\ < λ.

2) Without this extra assumption, Pα has a dense subset of cardinality < λ.

3) In (1) if y C V, |y| < λ then the number of canonical Pi -names of

members of Y is < λ.

Proof. 1) We prove it by induction on α. For each i < α, by the induction

hypothesis, |P^| < λ, by 2.8 the forcing notion Pi satisfies the c.c.c. so by I 3.6

there is a set YJ G V of cardinality < λ (in V) such that Ihp. " every member

of Qi belongs to Y^. As in I §4 the number of canonical P^-names of members
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of Yi (hence of members of Q») is at most λ. Let Qi be the set of canonical

P^names of members of Qi. So Pa is the set of functions /, with domain a

finite subset of α, and i G Dom(/) => f ( i ) G Qi. Clearly

2) Let fβ be a P^-name for a one to one function for some ordinal (< λ) onto

Qβ. Now P'a = {p G Pa : for each β G Dom(p) for some canonical P^-name r

of an ordinal, p(β) = fβ(τ)}.

We prove by induction on α that P'a is a dense subset α of cardinality < λ.

3) Left to the reader. Π2.9

§3. Martin's Axiom and Few Applications

What is the meaning of MA (Martin's Axiom, discovered by Martin and Row-

bottom independently). It says that we can find quite generic sets inside our

universe. As we have noted before (see I 1.4 ), if P has no trivial generic subset

(i.e., above any p G P there are two incompatible members of P) then we can-

not find a generic subset of P over V. But we may well find such G C P generic

over some V^ C V. So it is plausible that for any family of < K, dense subsets

of P there is a directed G C P not disjoint to any of them. How can we build

a model V satisfying such a requirement? We extend and re-extend the uni-

verse, in stage a we extend the universe we have got Va, to Va+ι = Va[Ga] by

forcing by some forcing notion Qa. The hope is that in the end V\ = LU<λ Va

is as required, as if -R G V\ is a suitable forcing notion (satisfying the c.c.c.

with elements from V and cardinality < λ in our case) and J; C R a dense

subset for i < io, then R and (Ii : i < io) belongs to some VJ, and for some j,

i < j < λ, QJ = R. So the generic object GJ+I C Pj+1 will give a generic subset

of Qj[Gj+ιΓ\Pj] as required: essentially Gj+ι/(Gj+ιΓ\Pj)\ so this construction

is similar in some sense, to the consturction of λ-saturated models in model
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theory. Now V\ = (J Va is impossible when Va = V[Gα], Ga C Pa is generic
α<λ

over V, but H(X)Vχ = \J H(X)Va is reasonable and is enough.
a<\

This is carried out by iterated forcing.

3.1 Definition. Marlins's Axiom for K. MAK. If P is a forcing notion

satisfying the c.c.c. and 2^ C P is dense in P for i < K then there is a directed

subset G of P such that for every i < K we have G Π 1$ ^ 0.

3.2 Observation. In order to have MA^ it suffices to require that the defini-

tion of MAK hold only for forcing notions P such that |P| < K.

Proof. To prove this let P be a forcing notion satisfying the c.c.c. and for ί < K

let Ti C P be a dense subset of P. For i < K, let fa be a function with domain

P such that for p G P we have fa(p) > p and fa(p) G Ii. Let g be a function

with domain P x P such that for p,q G P if p and q are compatible then

9(pι<ϊ) > P><7 Let PQ be any member of P and let Q be the closure of {po}

under the functions fa for i < K and # (i.e. this is its set of elements, the order

is inherited.) We have |Q| < «. Let us see that Ii Π Q is dense in Q. Let p G Q

then /i(p) > p,fa(p) G J*, and /^(p) G Q since Q is closed under fa. Now

let us prove that Q satisfies the c.c.c. Let A be an antichain in Q; we claim

that A is also an antichain in P and hence \A\ < NO- Let p, q G A be distinct,

then p, # are incompatible in P since if p, q were compatible in P we would

have g(p, q) > p, g, but Q is closed under g hence also g(p, q) G Q and p, # are

compatible also in Q, contradicting the assumption that A is an antichain in

Q. By the version of MA^ for |P| < K there is a directed subset G of Q such

that G Π 2; Π Q ̂  0 for all i < «. This G is as required. D3.2

3.3 Definition. Martin's Axiom MA. (V/c < 2H°)MA/ς.

MAκ0 is true since if for i < ω the set 2i is a dense subset of P then let us

pick by induction a sequence (pn : n < ω) such that pn G Tn and pn+ι > pn,

then choose G = {pn : n < ω}.
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Therefore we have that the CH implies MA. However, usually one means

by MA, MA with the negation of the CH.

3.4 Theorem. If K0 < λ = λ<λ then there is a forcing notion P, |P| = λ

which satisfies the c.c.c. and such that Ihp "2K° = λ& MA".

Proof. First we shall show that if λ = λ<λ, |P| < λ and P satisfies the c.c.c.

then Ihp "λ = λ<λ". Since P satisfies the c.c.c. and λ > N0, by I 3.6(i) the

ordinal λ is an uncountable cardinal also in V[G].

To prove the theorem we shall give a canonical name to every function

from μ to λ, where μ is a cardinal < λ. The canonical names (for this context)

will be as follows: such a name has the form

{{Pi,n, (i, ji,n)> : i < μ and n < ω}

where j^n < λ, p^n G P. For each P-name r, Ihp "r a function from μ to λ"

choose for each i < μ, a maximal antichain {pi,n : n < ω} C P (possibly with

repetitions) such that pί jfl Ihp uτ(ϊ) = ji,n" for some jίjn < λ ( this is possible

as Ii = {p : p Ihp "τ(i) = j" for some j < λ} is a dense open subset of P, as P

satisfies the c.c.c.)( if the maximal antichain is finite we can change notation

or use "possibly with repetitions"). Let

If = {(Pt,n,(i,.7i,n)) 'i <μ,n<ω]

Then clearly Ihp "r^ = r". So we can consider only canonical r. What is

their number? For each i < μ we choose two ω-sequences, one from P and

one from λ, so we have < λ^°|P|^0; and so the numbers of such names is

< (λ*°|P|*°y* < λ^ < λ<λ = λ. Hence clearly in Vp, λ^ = λ for μ < λ. Now

we return to the proof.

Let S = (SΊtμ : 7 < λ, μ < λ,μ is a cardinal ) be a partition of λ to

disjoint sets each of cardinality λ such that i G 57>μ => i > 7. We shall define

Qi by induction such that Ihp. "the members of Qi are from V" and |P;| < λ.

Assuming we have arrived to α, we know Pa satisfies the c.c.c. by 2.8 (we carry
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the definition by 2.5). At stage α all the Q0's, for β < α, are defined, and

hence Pa is defined. Let (<ξ : ξ G Sa,μ) be a list of the canonical names for

the forcing Pa of quasi-orders of μ. We shall use below <ξ in the ξ-th stage

of the construction but since for ξ G Sa^μ we have ξ > a this does not spoil

the induction. But can we find such a list, i.e. is 5α>μ large enough? So how

many such canonical names are there? By the induction hypothesis and 2.9,

\Pa\ < λ. A quasi-order on μ is a function on μ x μ into {0,1}, and as we saw

in I 4.2 the number of canonical names in the forcing Pa is < λ<λ = λ, since

\Pa <λ.

Now by the choice of S there are unique 7^ < λ and μα < λ (a cardinal)

such that α G SΊa,μa. By the demand above this implies α > 7^, hence

(<ξ : ξ G SΊa,μa) is already well defined. So in particular <a is a P7e>-name

of a partial order on μa. As 7α < α we know PΊa <$ Pa hence <a is also a

Pα-name of partial order on μα.

We define now

i (μ«, <α:} if H~PO "(^cn <α) satisfies the c.c.c."

(1,{(1,1)}) otherwise

It is now obvious that lhpα "Qo, is a forcing notion, it satisfies the c.c.c. and

its elements are ordinals " since if this does not hold for (μα, <a) then we have

chosen Qa as (1, {{!,!)}) which obviously satisfies the c.c.c. So we have carried

the induction. Therefore P = P\ also satisfies the c.c.c. by 2.8. Our argument

above that |Pα| < λ works also for α — λ hence |P| < λ. It is true also that

2^° > λ since, as we shall see in the next lemma MAμ => 2^° > μ and of course

2H° < λ so equality holds.

Let G C P (= Pχ) be generic over V, we should prove V[G\ \= "MAμ" for

a given μ < λ. Let μ < λ, and let R be a c.c.c. forcing notion in V[G] and let

Xi, for i < μ, be dense subsets of R in V[G]. As we saw by 3.2 we can assume

without loss of generality that the set of members of R is μ (if | JR| < μ we can

introduce many "copies" of a single member and setting each of them < than

all others on μ). Let J = { ( i , j ) : ί G Ij} C μ x μ. So for some P-names R, J,

Ii we have R = R[G] and I = J[G], J< = J^G], w.l.o.g. lhP "R is a quasi order
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on μ and J is a subset of μ x μ and J» = {j : (i, j) e 1} is a dense subset of R"

(we could have add "and R satisfies the c.c.c." and slightly save later). For each

pair ( i , j ) G μ x μ there is a maximal antichain I^j in P which determines the

truth value of R (= i < j and a maximal antichain Jij in P which determines

the membership of (ij) in I. Now U{Dom(p) : p G (Jij<μ^ίj U v7z,j} is a

subset of λ in V of cardinality < μ < λ. Now λ = λ<λ hence λ is regular (since

λcfλ > λ) and therefore 7 =f sup \J{Όom(p) : p G \Jiίj<tΛIijUJij}+l < λ, and

1ij,Jij <Ξ Pγ for z, j < μ, and so the P-names R and I of R and Z are names

for the forcing notion P7. For the generic subset G of P let G7 = {^^7 : p G G}.

So G7 is a generic subset of P7. This can be shown in any one of the following

two ways. One way is to use the fact that P\ « P7 * P7jλ (see 2.4) and then

G7 is the first component of G C P7 * P7>λ and we have already proved that it

is generic in P7. Another way is to prove directly that GΊ is a generic subset

of P7 using 2. 2 A. Since in computing R[G] — R and I[G] — T only G7 is used

we have R[GΊ] = R, I[GΊ} = I and

V[GΊ] 1= "R is a quasi-order with set of elements μ& Ii for i < μ is dense

in jβ and P satisfies the c.c.c. ".

Hence there is a p G G7 such that p\\~p^ "R is a quasi-order μ&R satisfies the

6 \μ otherwise

then Ihp^ "<* is a quasi-order with set of elements μ satisfying the c.c.c. ".

Therefore there is a ξ G SΊjμ such that <ξ = <*. Since ξ G 57>μ we know

ξ > 7 hence Gξ 2 G7 and since p e G7 we have Qξ[G^] = <ξ[G^] = P.

Pξ+ι = P^ * Q^ hence G* = Gf+i/Gξ is a generic subset of Qξ[G^] = P over

V[G$] (provided that (μ, <ξ) satisfies the c.c.c. in V[Gξ], but this follows from

V[G] \= "R satisfies the c.c.c."). For i < μ we know I* € V[GΊ] C V[Gς] and !»

is dense in Qξ[Gξ] = P hence G* HZ* ^ 0, and G* is a directed subset of P.

3.4A. Lemma. MAμ -» μ < 2*°.

Proof. Assume μ > 2H°. Let P be the forcing notion of all finite functions

from ω into {0, 1}, with proper inclusion as the partial order (i.e. the Cohen
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forcing). For each η G ω{0, 1} let Iη = {p G P : p <£ η}, and for each n < ω

let In = {p G P : n G Dom(p)}. Obviously each Xη and Jn is dense (and open)

and there are 2^° < μ such sets. By MAμ there is a directed subset G of P

such that GΓ\Iη ^ 0 for each η G ω{0, 1} and Gnln ^ 0 for each n<ω. Since

G is directed g = \JG is a, function, since G ΠJn ^ 0 we know n G Dom(^) for

each n < ω, hence g G ω{0, 1}. Now GΓ\Xg = 0 since for every p e G we know

P C U ̂  — # hence p £ Xg, but this contradicts G Π Ig ^ 0 which we get by

Π3.4A,3.4

Applications o/MA+2^° > NI.

3.5 Theorem. Assume MA and let λ be a cardinal N0 < λ < 2H° and let

(Ai : i < λ) be a family of infinite pairwise almost disjoint subsets of ω (i.e., if

i ^ j and i,j<\ then Ai Π Aj is finite), and let 5 be a subset of λ. There is

a function / on ω into {0, 1} such that for alH < λ we have: f\Ai =ae 1.4. iff

i G 5, where 1̂  is the function on Ai with the fixed value 1 and =ae denotes

that two functions have the same values for all elements of their domain except

(possibly) finitely many.

Proof. Let

P — {f : f is a function such that Dom(/) = Aiλ U U Ain U w for some

ii, . . . , in G 5 and a finite w C ω and for 1 < I < n we have f\Ait —ae ^Aif }•

The partial order on P is inclusion.

Since, for each / G P, /-1[{0}] is finite we can take for each / G P a finite

Wf 2 /~1[{0}] to play the role of w in the definition of P.

To see that P satisfies the c.c.c. let (/$ : i < NI) be a sequence of members

of P. Since all the / \Wf belong to the countable set of all finite functions from

ω into {0,1} we have i ^ j, i,j < NI such that fi\Wfi — fj\Wf.. Obviously

f ί \ J f j is a function and a member of P and above /$ and f j , hence /f and /^

are compatible.

We shall specify below λ dense subsets of P (called J*, J^, Jn,i). By MA

there is a directed G C P such that J Π G ̂  0 for each one of the specified
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dense sets X. Let g = \J G. Since G is directed every two members of G are

compatible and g is a function from a subset of ω into {0, 1}. We establish now

the following properties of G.

1. Dom(0) = ω. For n < ω let J* = {/ G P : n G Dom(/)}. Now J* is

dense since for / G P if / $ I* then / |J{{n, 1)} G I*. Since G Π T* ^ 0 there

is an / G G such that n G Dom(/), hence n G Dom(/) C Dom(#).

2. If i G 5 then 01^ =αe l^ For i G 5 let J{ = {/ G P : Dom(/) D AJ.

To see that J^ is dense in P let / G P then Dom(/) = A^ U U Ain U w where

ii, . . . , zn G S and w is finite. If i G {ή, . . . , in} then / G Ii. If ί ^ {ή, . . . , zn}

then ̂  Π Dom(/) C \Jι<ι<n(Ai Γ\ Aie)\Jw and each set participating in this

union is finite. It follows immediately now that / U [(Ai \ Dom(/)) x {!}] G P

and this member of P obviously is above / and belongs to Iif Hence we have

now G Π Ii 7^ 0. Let / G G Π Ji} f\Ai —ae l^ί and since g 2 / we have

3. If i φ S then ^f^4^ obtains the value 0 for infinitely many members of

Ai. Let Iitn = {/ G P : (3m G A.) (m > n&/(m) = 0)}. To see that Ji)Tl is

dense let / G P, and let / be as in the definition of P. Since i £ 5, neccessarily

z ^ {ύ, . . . , zn}, therefore, as we saw above, Dom(/) Π Ai is finite. Since Ai is

infinite there is an m G Ai \ Dom(/) such that m>n. Now / U {(m, 0)} G P

hence / U {{m, 0}} G Jn>i also / < / U {{m, 0)}; hence we have shown Jn>ί is

dense. Since Jn^ Π G ^ 0 there is an / G G such that there is an m G Ai

satisfying m>n and /(m) = 0, hence g(m) = 0. Thus g(m) = 0 for arbitrarily

large m G Ai. Π3.5

3. 5 A. Conclusion. M λ̂ implies 2λ = 2H°. D3.5>ι

It is natural to ask

3.6 Question. Under the assumptions of Theorem 3.5, is there an / : ω — >

{0, 1} such that f\A> =ae IΛ< for i G S and f\Ai =ae QA{ for i φ SI

We shall return to this later. Note however
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3.7 Theorem. In Theorem 3.5 we can omit the requirement "Ai C ω",

requiring only \Ai\ — HQ.

Proof. We let P — {/ : / is a function whose domain is A^ U U Ain and

whose range is C {0, 1} where for some n < ω we have i\ G S, . . . ,in € 5,

/~1[{0}] finite }, ordered by inclusion.

Let Pi £ P (for i < HI) be NI conditions, Dom(pi) — \J Aa with m < X
a£ui

is finite, so w.l.o.g. i ^ j => m (~}Uj = u*. By the definition of P, there are

only countably many possible p^ \ (J Aα, so w.l.o.g. pi \ (J Aa = f for every
c*£u* C*€H*

z < NI. Let u^ = Pϊ"1[{0}], it is a finite set so w.l.o.g. i ^ j — > Wi Π Wi =

w* & \Wi\ = £(*). So for each i the cardinality of {j : Dom(pi) Π w^ \ w* / 0}

is at most the cardinality of Dom(pi) hence this set is countable, so w.l.o.g.

i < j => Dom(pi) Π wj C w*.

Now if i < j and pi? p^ are incompatible, then there is x G Dom(/i) Π

Όom(fj) such that f i ( x ) ^ /j(x), so 0 G {/i(^),/j(^)} hence x e Wi\J Wj, in

fact x G (MI \ ιy*) U (ιyj \ w*)] but by the previous sentence x φ W j \ w* so

x G Wi \ ιu*; also x ^ Dom(/) (as p» |Όom(/) — PJ fDom(/)) so x G \J Aa,
aζUj\u*

hence (wi\w*)Γ\( \J Aa) ^ 0. Let Wi\w* = {xij : i < ί(*)}; so rephrasing
α€uj \w*

if i < jί < KI and p^, p^ are incompatible then for some ot(i,j) G u^ \ u* and

£(i, j) < £(*) we have Xi^(ij) G Aα(ί)<7 ). Let D be a nonprincipal ultrafilter on

ω, so for each j G [ω,u;ι) for some lj < £(*) we have {i < ω : ί(i,j) — i} G D

and as Uj is finite, for some OLJ G Uj \ u* we have {i < ω : o;(i,j) = α^} G D.

The number of possible lj is £(*) so for some j(l) 7^ j(2) G [ω,ωι) we have

'̂(1) =^(2) Hence

A - {i < ω : ί(i,j(l)) = ej(l) = tj(2) = ί(ij(2)) and

and ot(ij(2)) = otj(2)}

belongs to D, so Aa.(l} Π Aαj.(2) includes {xi,^(1) : i G A} which is infinite,

hence we have 0^(1) = aj(2) and (^j(i) \^*) Π (wj(2) \u*) T^ 0 contradicting the

choice of u*. So P satisfies the c.c.c.
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Now if i < λ, i φ S and Ai Π (UjGS A?) is infinite, then Iijn = {p G

P : Ai Πp~1({0}) has cardinality > n} is a dense subset of P. Also for each

x G U Ai we have JT^ = {p G P : x G Dom(p)} is a dense subset of P. Lastly

for i G 5 we have Ii = {p G P : Ai C Dom(p)} is a dense subset of P.

So there is a directed G C P such that GΠ Jί)n ^ 0 for i < λ, i φ 5, n < ω

and G Π I; ^ 0 for i G 5, and G Π J* ^ 0 for x G U Ai Let /* be \JfeG f

and /** be the function extending /* with domain \J Ai and being constantly

zero on \J Ai \ \J Ai. It is easy to check /** is as required. D3<7

A partial answer to the Question 3.6 is

3.8 Definition. A sequence (Ai : i < λ) of infinite pairwise almost disjoint

subset of ω is called a tree if for any i, j < \ if n G AiftAj, then AiΓin = AjΓ\n.

An example of a tree of 2H° subsets of the set of all finite sequences of O's

and I's is the set {Γ/ : / G ωϊ} where ϊ> - {/fn : n < ω}.

3.9 Theorem. Assume MA, let λ be a cardinal such that NO < λ < 2N° and let

(Ai : i < λ) be a family of infinite pairwise almost disjoint subsets of ω which

is a tree. Let S C λ then there is an / : ω —> {0,1} such that for alH G S we

have f\Ai —ae IA» and for alH G λ \ 5 we have f\Ai =ae 0^.

Proof. Let

P = {/ : / is a function and for some ΰ, . . . , in < λ and a finite subset w

oϊω we have Dom(/) = Aiλ U \jAin\Jw, and for t = 1,... ,n: f\Ait =ae \Ai&

iϊit^S and f\Ait =ae ®Aίt if iι $ S}.

The partial order on P is inclusion.

Let us prove now that P satisfies the c.c.c. Let (fa : i < HI) be a sequence

of members of P. For fa let Dom(/i) = Aa(iti) U U Aa^n^i)) U w^ where

α(i, 1), α(t,2),.. . < λ. Let ki < ω be such that ki is a strict upper bound of

Wi and for each ^, 1 < t < n(i), A*(M) n ^ΐ contains a number m such that

fi(πι') = fa(m) for every number m1 G -Aα(ΐ,*) which is > m. There is such

a ki since each /iί-Aα(i,*) has the value 0 almost everywhere or the value 1

almost everywhere. We demand in addition that for 1 < £, m < n(i), i ^ m,
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^α(M) n ki 2 A*(i,m) n kί and A*(i,0 n A*(i,m) ^ fc*5 without loss of generality

we can assume that for all ϊ < NI n(i) is fixed, i.e., n(ϊ) = n for i < NI, fc» is

fixed, i.e., fc* = fc* for i < HI and for 1 < ί < n, the set Aa^^ Π fc* is fixed (for

each f) and /$ ffc* is fixed and w$ is fixed. We shall now prove that for i ^ j

i,j < NI the conditions fi and /j are compatible. Consider the union Λ U / J . If

this union is a function it obviously belongs to P and is above f i and fj (thus

completing the proof of c.c.c.). Suppose it is not a function. Since fi \k* = fj ffc*

there is a k > fc*(fc < ω) such that fi(k) ^ fj(k). Since Wi = Wj C fc* clearly

fc φ Wi — Wj, hence for some 1 < IQ, ί\ < n, fc e Aα(i^0) and fc € Aa^^. Let

mo = Max A^^ Π fc*, since fc Π Aa^^ contains a number m such that we

have (Vm^lm < m' G Aa(itiQ),fi(m') = /t(m)], clearly Λ(m0) = /<(fe). Note

fo ?̂ ι => Aα(<Λ) Π fc* ̂  Aα(<ϊ€l) Π fc* - Aa(jM Π fc*. Since (Ai : i < «ι)

is a tree and fc G Aα(^0) Π Aa^^), fc > fc*, we have £Q = ^i and therefore

ra0 = Max(Aα(j)£1) Π fc*) and, as for i, fj(k) = /j(mo). Since mo < fc* and

/i f fc* = fj\k* we have /i(mo) = fj(^o) hence /i(fc) — /^(A;), contradicting our

choice of fc.

Looking at the proof of Theorem 3.5 it is clear how to choose dense subsets

Z of P such that if G is a directed subset of P which intersects each one of

them then g = \JG has the following properties: Dom(^) = ω, for i G 5 we

have g\Ai =ae ^-Ai and for i G λ \ 5 we have g\Ai =ae 0^. Da.9

3.10 Theorem. In 3.9 "A; C α;" is not required, provided \Ai\ < HO

Proof. The proof is analogous to the proof of Theorem 3.7. Πs.io

§4. The Uniforrnization Property

Let us present now the setting with which we shall deal with the problem 3.6.

4.1 Definition. Let A ~ (Ai : i < a) be a sequence of sets (or we use a

family of sets), each of which is (usually countable and always) infinite and h a
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function from Ui<« Ai to ^ne class °f nonzero ordinals. We say that (A, h) has

the uniformization property if for every family of functions ( f i ' . i < α) such that

fi\Ai^ Ord and /;(α) < ft(α), there is a function / : Ui<α^» ~^ ^rd suc^

that for each i < α the function /; is almost included in / (i.e., included except

for < |Dom(/ΐ)| members a of Dom(/i); which usually means except for finitely

many a G Dom(/)). We shall denote \Ji<aAi with D(Ά), so Dom(h) = D(A).

If h is constantly λ we may write (A, λ) and if λ = 2 we may write A. We shall

say that A is a tree if there is a partial order < on D(A) such that:

a) CD (A), <) is a tree such that for all x £ D(A) the set {y : y < x] is a finite

set linearly ordered by <.

b) For each i the set Ai is a branch in -D(A), i.e., if x £ Ai and y < x then

also y £ Ai and any two members of Ai are Ocomparable. Since each Ai

is infinite and since by clause (a) the tree (D(A), <) is of height < ω, each

Ai is a maximal branch, i.e., it goes all the way up.

We shall denote (D(Ά), <) with T and Tn will denote the n-th level of T,

that is Tn = {x : \{y : y < x\ = n}. For a branch A we denote with (A)[n] the

only member of A in the level n, i.e., the only member of A Π Tn.

4.2 Claim. If A = (Ai : i < α), a > ω\, is a tree in the above sense and

-D(A) C ω>2 and the tree order is < then A does not have the uniformization

property.

Proof. So let 77* £ ω2 be such that ^ = {ηi\n : n < ω} so (Ai)^ — ηi\n. Let

us define the function fa on Ai as follows. fi(fy\n) = ηi(n). The value of fi for

this member of D(A) tells us which way the branch goes at 77* fn, right or left,

since

ηi\(n + l) =η^(ηi(n)}

Assume now that there is a function / uniformizing all //s, or even all f^s for

some uncountable set / C a. For each i £ / let n(i) be such that fi(x) = f(x)

for every x £ Ai of level > n(i). Since / is uncountable there is an n* < ω

such that {i e I : n(ϊ) = n*} is uncountable, we denote this set with /i.

Since D(A) has at most 2n* members of level n* there is a p £ n 2 such
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that /2 — {i € /i : r?Jn* = p} is uncountable; we denote this set with

/2 For all i,j G /2 we have ηi\n* — p — ηjfn* and since A^ and Aj are

branches we have ηι(k) = ηj(k) for all k < n*. For i ^ j such that i, j G

/2 we know that A^ and Aj are different branches hence there is a least I

such that τ^(£) ^ ηj(£), since £ < n* => n(i) = n(j) clearly ί > n* hence

Λfat W - /for*) and /jfo r*) - f ( η j \ £ ) . By the definition of /, and /, we

have ηί\(l+l) = foΓ*Γ fo(£)> = foWΊ/foW) - WΓ (/W)} (since

r/t \f = ηj \f by the minimality of t) = fo |t)Λ {%(£)} = ηά \(l +1), contradicting

the choice of t. D4.2

4.3 Theorem. Assume MA. Suppose A = (Ai : i < λ) is a family of pairwise

almost disjoint countable sets and λ < 2H°. Then (A, N0) has the uniformization

property provided that:

(*) for every countable A, {i < X : A Π Ai is infinite } is countable.

Proof. Let fa : Ai —> ω for i < λ, and we shall find /, almost extending each

fi. Let P = {/ : there are ή, . . . , in < λ such that Dom(/) = AilL U U Ain,

Range(/) C ω and / almost extend fi for ί = 1,... ,n} ordered by inclusion.

It suffices to prove that P satisfies the c.c.c., and proceed as in e.g. 3.5.;

but this is not hard (proof similar to 3.9). U4.3

4.4 Discussion. Theorem 4.2 asserts that if D(A) is a tree which at each node

branches into at most two branches then A does not have the uniformization

property (the fact that in the theorem D(A) was actually a subset of ωcl is

obviously irrelevant). The assumption in the theorem that D(A) is a tree can

be replaced by the following weaker assumption. For each i < a let Ai be given

as a sequence of length ω enumerating its elements with no repetitions, which

we write as (α^Qj ai,ι > •} so {α^n : n < ω} = Aj. The weaker hypothesis is that

A is uncountable and for each sequence (60, . . . , 671-1} °f members of D(A) the

set {α^n : (α^o, 5 &ί,n-ι} — (6o» > 6n_ι}} has at most two members, i.e., for

all Ai given α^o, .. ,α^,n-ι there are at most two possibilities for a^n. (This

assumption obviously holds if D(A) is a tree with branching as above and each
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sequence (α^o^i,!, . . .) is such that a^n = (^)[n] for all n < ω). We shall see

that also under this weaker assumption A does not have the uniformization

property.

Let A be as above. For each i < a let Bi = {{α^o, . . . ,αi,n-ι) •' n < ω},

B = (Bi : ί < a). Now B is obviously a tree which at each node branches to

at most two branches, and for i ^ j we have Bi ^ Bj since Ai ^ Aj. We can

prove by induction on n that {α^n : i < a} has < 2n elements, hence \J Bi is
i<a

countable. Let ( f i ' . ί < a) where fa : Bi — > {0, 1} be a family of functions which

cannot be uniformized, by claim 4.2. We define a family (gi : i < ωι) where

gi : Ai — > {0, 1} as follows. Let gi(di,n) = /^((α^o, ,a>i,n)) We shall see that

this family too cannot be uniformized. Suppose g : D(A) — > {0, 1} uniformizes

this family. Define / on D(B) as follows: /({αi,o, ,αi,n-ι)) — #(αi,n-ι) if

n > 0 and /({)) can be given any value. We shall see that / is an uniformization

of (fi : i < a). Given i < a we know that for some k < ω, for all n > k

we have ^(a^n) = g(a^n) hence, by the definitions of gι and / we have

Let us remark now that the theorem is true also for a tree D(A) which

has a bounded branching at each node (and hence also in the more general

case mentioned above). We shall show it here for the case where D(A) C w>4,

which is sufficiently general to exhibit the proof of the general case. For a

natural number k let dι(k) denote the coefficient of 2^ in the binary expansion

of /c, di(k) G {0,1}. We define now on the branch Ai of ω>4 two functions

/P and // by setting //((4<)[n]) - ̂ ((^)[n+1]), for * = 0, 1. Let f be the

function uniformizing the functions {// : i < a) for ί — 0, 1. Let n*, z and / be

such that / C α, |/| > K0, (Ai)[n*j = z for i G / and //(n) = /^(n) for n > n*

(as in the proof of the theorem). We get now a contradiction from the fact that

for i, j € / i / j there is a least level where ̂  and Aj go to their separate ways,

while at each node (from level n* and above ) /° and fl determine completely

the way the branch goes in the next level so Ai and Aj must go the same way.

We deal here exclusively with trees A and other systems where |D(-A)| =

NO- In 3.8 we dealt with a different definition of a tree, namely we called a

family w of subsets of ω a tree if for all x, y G w if n G x Π y then x Πn = y Πn.
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In this case let us define <* on ω by k <* ί if k < t and for every A £ w

if i G A then also k G A. It is easily seen that <* is a partial order; the set

{ f c : f c < * n } i s linearly ordered by <* which coincides with < on this set and

that each A e w is a branch in the tree (tt>, <*). Thus a tree in the sense of 3.8

is also a tree in the present sense.

Now let A be a tree as defined here with |£)(A)| = H0 with <* as the

partial order relation of the tree. Identify the members of D(A) with the natural

numbers in such a way that if k <* I then k < t. Now suppose n G Ai Π Aj and

k < n, k € Ai. Since Ai is a branch of the tree we have k <* n or n <* k] n <* k

would imply n < fc, contradiction; hence A: <* n. Since also A^ is a branch,

n G A; and k <* n we get also fc G Aj. Since this works in both directions we

have Ai Π n = Aj Π n. Thus a tree in the present sense is isomorphic to a tree

in the sense of Definition 3.8.

4.5 Theorem. Assuming MA+2*° > HI. Let A = (Ai : i < HI), Ai =

{aiίn : n < ω} be a set of HI countably infinite pairwise distinct sets such

that |jD(A)| = H0. T/ien there is an uncountable subset W C HI which has the

property that for every sequence (&o, , bn-ι) the set {α^n : (α^o, , αi,n-ι)

= (&0j j &n-ι)j and i G VF} has at most two members. As a consequence A

does not have the uniformization property, since A\W does not have it.

Proof. Remember Ai is {^,05^,1, •} (with no repetitions). Let

P = {w C HI : w is finite and for all (ί>o, , &n-ι) we have

|{αn,i : i G w and (αί)0, - - , fli.n-i) = {&o, - - , &n-i)}| < 2}

and P is partially ordered by inclusion. By deleting at most HO members of A

we can make sure that for alH < &ι and n < ω:

[For every finite sequence (60, , bn-ι) of members of D(Ά), and there are HO

such sequences, if 0 < \{j < HI : (α^o, . . , flj,n-ι) = (bo, . , &n-ι}}| < NO we
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delete all the Aj's with j in this set, so altogether we deleted count ably many

sets.]

Let us see now that P satisfies the c.c.c. Let (wt : t < HI) be a sequence

of members of P. Let us write wt as {4»4» >^n(t)} ^et ^W ^e tne ^east

number fc such that the sequences (α^t >0, a$t ? 1 , . . . , α^t )A._1) for r = 1,.. ., n(£)

are pairwise distinct. Without loss of generality we can assume that for all

t < HI we have n(t) = n, k(t) — k and for each r = 1,... , n the sequence

(α t ?o, &i\,,ι, , fli* ,fe-ι) is fixed for all t < HI, we shall now see that for s, t < HI

we have ws(Jwt £ P and hence we have ι<;s and u^ are compatible. Proving

ws U Wt G P is equivalent to showing that for all sequences (60, , &m-ι) we

have |{α<ιm : i G ws U wt and {α<|0,... ,αi,m-ι> = (&o, ,&m-ι)}| < 2. If

m < k then the initial (m + 1)- tuples (α^o, . , α^m-i^m) of the A^s for

* £ ^s U ̂ t are exactly these (ra+1) - tuples for i £ ws since for m = 1,. . . , n we

have (αi ^o,. ,α^^_ι) = (α^o, . - ,α^,fc-ι), hence {αί>m : i G ιyβU^t and

{ α ^ O j - . - j α ^ m - i ) = (60,...,ί>m-ι)} = {aiiTn : i G ws and {α< ϊ 0,... ,αi,m-ι) =

(60,. ., 6m-ι)}ϊ and the latter set has at most two members since ws € P. If

m > k then since the initial sequences of length k of all Ai for ί G ws are all

distinct, and the same holds for all i G wt so (60, ,δm-ι) can be an initial

sequence of Ai for at most one i e ws and at most one i e wt so that |{i G

^sU^ί : (αi,o, ,αi,m-ι) = ( ί > o , - - - , ί > m _ ι > } | < 2 hence |{oίfm : i G ws\Jwt,

and (α^o,. . . , αi.m-i) — (&o» > &m-ι)}| < 2. So P satisfies the c.c.c.

For ε < HI let Iε be the subset of P, Iε = {w e P : (3j > ε)[j G w]}.

Let us prove that Iε is a dense subset of P. Let w G P and let fc be such that

the sequences (αΐ,θ)αz,ι> ιai,k-ι) are all distinct for different i G w. Take a

fixed i € w (the case where w = 0 is trivial ). By our assumption there are HI

ordinals j such that (07,0> » o j.k-i) — (αΐ,o> »αi, j fc-ι)» hence there is such a

j > max(iϋ), ε. We shall see that w U {j} G P, to prove that we have to show

that for all (6 0 , . . . , bm_ι)

(*) Kα7,m :7^^UO'} and (α7,o, ,α7,m-ι) = {&o, ,δm-ι)}| < 2.

If 77i < fc then since the first fc members of Aj are the first k members of A»,

where ϊ E w, the left side of (*) remains unchanged if w U {j} is replaced by w

and since the inequality holds for w, as ιu G P, it holds also for w(J{j}. If m > k
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then, since the sequences {α7)o>tt7,:b ?α7,fc-ι) are all distinct for different

7 G w there is at most one jew such that (α7 ) 0,..., α7,n_ι) = (60, , &m-ι)>

hence there are at most two 7 G w U {j} which satisfy this equality and (*)

follows immediately.

By MA there is a directed subset G of P which intersects each Xε. Therefore

W = (JG is a cofinal subset of KI. We take now A* = (At : i e W). We

still have to prove that for all (60,. . . ,6m-ι) we have \{aiιrn : i G W and

{αί>0, - - , αi,m-ι) = (δo, - , &m-i)}| < 2. Assume that for some (60, - - , 6m-ι)

this set has three members α ΐ l ) m,αi2 5 m,α ί 3 ) m where ή, 12,^3 G W. Since W —

[JG and G is directed we have 11,12^3 € ^ f°r some w £ G C P. Then we

have |{α;)m : ί e w and (α^o,.. - , αi,m-ι) = (δo> - , ί>m-ι)}| > 3, contradicting

tϋ G P. D4.5

4.6 Theorem. It is consistent that there is a tree A — (Aa : a < ωι) such

that |Z) (A) I = NO and A has the uniformization property.

4.6A Remark. We can phrase a condition on forcing notions preserved by FS

iteration (it depends on an A with the relevant property) and by this prove the

consistency of an axiom; see [Sh:98].

Proof. Let T be a tree with ω levels, |T| = N0, Tn (the n'th level) is finite for

n < ω and for all x G Tn we have \{y G Tn+ι : y > x}\ > T1*. We shall obtain

a generic extension of V in which there is a tree A of length NI which has the

uniformization property. We saw above (in 4.4) that if the branching of a tree

at each node is bounded the tree does not have the uniformization property.

Here we shall see that if at level n each node branches to 2n branches the tree

may have the uniformization property. There is a gap here which one should

narrow or even eliminate.

First one introduces NI generic branches of T by the following set QQ of

conditions

QQ = {/ : f is a finite function on ω\ x ω such that:

(α,n> G Dom(/) => /(α,n) G Γn,
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(α, π + 1) e Dom(/) => (α, n) G Dom(/),

/(α,n) < /(α,n 4-1) (when defined)}

The partial order relation on <2o is inclusion. If G is a generic subset of

Qo let F = (JO, ^α - {^(a,ra) : n < ω] and A = (Aa : α < ωι). Now A

will be the tree which has the uniformization property (it is obvious that for

a ^ β, α, β < ωι we have Aa ^ Aβ, since the subset {/ G Qo : 3n[(α, n), {/?, n)

e Dom(/) & /(α, n) ^ /(/?, n)}} of Q0 is dense in Q0) '

The next step is to carry out an iterated forcing so that at each step a

different system g = (gi : ί < ωι) where ^ : A{ —> {0,1} gets uniformized.

Eventually we obtain that A has the uniformization property if all appropriate

g's appear. We shall describe first only a single step of this iterated forcing.

The conditions we use now are the following. Let g be a name of a system

of functions as above in the forcing <2o We define Q(g) = {h : h is a finite

function from HI to ω and for every α, β G Dom(/ι) the functions ga \{x G Aa :

height(x) > h(a)} and gβ\{x G Aβ : height(x) > h(β)} are compatible }.

The partial order relation on Q(g) is inclusion. This forcing is done over

V[Go]> where GO is a generic subset of Qo Let G be a generic subset of Q(g)

and H = IJG. We can now define the uniformizing function g : T —> {0,1}

as follows. For x G T if x G Aa and heigth(x) > ff(a) then g(x) = ga(x)\ if

x belongs to no Aa such that H(a) < height(x) we define g ( x ) arbitrarily. If

x G Aa, height(x) > H(ά) and also, β ^ α, x G Aβ and height (x) > H(β) then

since G is directed and # = |JG there is an h G G such that α,/3 G Dom(/ι),

Λ(α) - ίί(α) and h(β) = H(β). Since h G Q(§), h(ά),h(β) < height(x) we, by

the definition of Q(g), have ga(x) = Qβ(x), so that g(x) is well defined. It is

obvious from the definition of g that it uniformizes all (fo's for α < KI.

Let us consider now the set Qo * Q(θ) and prove that it satisfies the c.c.c.

Let W be an uncountable subset of Qo * Q(<j) and we shall prove that there are

two distinct members which are compatible. Each (p, q) G W C Q0 * Q(d) is

first extended as we shall tell. If two of the extended conditions will turn out to

be compatible then the corresponding original conditions are compatible too.

First we extend p to p\ which decides exactly the value of q (q is the name
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of a finite subset of ω\ x α;), so we shall now regard q as a finite function

from ωι to ω and not as a name. Then we extend p\ to /?2 so that the

Dom'(p2) = {& '- (3τΊ)[(α,n) G Dom(p2)]} (which is the set of branches on

which p "speaks" ) will include the domain of q. Let up denote Dom^(p)

i.e., the set of indices of the branches about which p contains information.

For a sufficiently large c < ω we can extend p<2 to p% so that c > |up2|,

Dom(pa) = UP2 x {0, . . .,c} and ps(^c) ^ p3U,c) for ί,j G UP2 such that

i φ j (i.e., different i G UP2 are indices of branches of A which branch off from

each other at a level up to level c), and c > q(ϊ) for i G up. ^From now on we

shall assume that all the members of W have the properties of (pz,q)

Using the standard technique we can delete members from W so as to

obtain a set W with the following properties. There are a c < α;, a finite

subset v C HI; finite sequences υa = (jf, ,Jn) f°r α < ^1 °f n different

members such that the sets {jf, •-,.?£} (which we shall also call va) are

disjoint from each other for different α's and are disjoint from v; a function

p with domain v x {0, . . . , c}, a function p with domain {1, . . . , n} x {0, . . . , c},

a partial function q with domain υ and a partial function h on {!,..., n}

such that W — {(Pa,qa) ot < HI} and Dom^α) = (υ (J va) x {0, ...,c},

P - pa\(v x {0,...,c}), pαr(uα x {0, . . . , c}) - {((j£,m), p(fc,m)> : 1 <

k < n} and g < qa and qa\Q = { ( J k ' h ( k ) ) : 1 < fc < n}. The members

p(l,c),/o(2,c), . . . ,p(n, c) and p(α,c) (for α G V) of Γc are pairwise distinct

(by the properties of (p, q) obtained above). Above each one of them there are
2 2

at least 2C different members of TC+I. Let (tk,t '• 1 < I < 2C } be a sequence

of 2C different members of Tc+ι which are above p(fc, c). For α, £ = 1, . . . , 2C

let ^«^ — PαLJ{(0?5c+ I))*M) : ^ — ̂  — n) Notice that for different α's

the initial parts of the branches with indices jf , . . . , j% were the same, but

this is not the case for the p*^'s since we introduced different branchings at

level c + 1. Let p\ — p\t for H — 1, . . . , 2C . Since all the p^s behave the same

way on υ and have otherwise disjoint domains also Uκ^<2c2 P*t ^ Qv Extend

this condition to a condition p* which determines the values of gjc^(p(m,k))
2

for all 1 < α < 2C , 1 < m < n and 1 < k < c. If we keep α fixed and
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let A:, ?rι vary we have here 2C functions on a set with at most n x c < c2

members into {0, 1}, hence there must be two different β ^ 7, 1 < /?,7 < 2C

such that g.β(p(k,m)) = g^(ρ(k,πί)} for all 1 < fc < n, 1 < ra < c (they
~J|C ~ fc

are Qo-names but we mean the values p* force for them). We claim that

(p*,qβ U ςr7) e Qo * Q(g), hence (pβ,qβ) and (p7,#7) are compatible. What

may prevent (p*,qβ U g7) from being a condition when each of (p*,<?β) and

(p*,ς7) is (since (pβ,qβ) and (pΊ,qΊ} are conditions and p/? < p*, p7 < p*

by the choice of p*)? There may be fcι,ra, fc2, such that m > /ι(fcι), m >

'm) such that #?£ (P(fcι»m)) 7^ ^2(p(fc2,m)) (where

F = Uί/ : / G (?Qoh see tne choice of the A/s). But by the choice of p*

this can occur only for m < c, so we get p(fcι,m) = p(A:2,m). This is the

case where the corresponding functions ^j give different values to the same

member p(kι,m) = p(/C2,m) of T and this member is above the place in the

two branches with indices j^ and j^2 where the Uniformization is supposed to

occur. By our choice of β and 7 we have g.β (ρ(k2, m)) = Q»Ί (p(/C2, m)), hence
7fc2

 f c2

g.β (p(fcι,m)) 7^ σ./3 (/9(A/2,m)) while p(k\,m) — p(A;2,m), but this shows that
7fcl J f c2

(p*,Qβ) is not a condition in Qo * Q(τ)> which is a contradiction.

This of course does not yet prove Theorem 4.6. If we want to carry on the

iteration, somehow imitating the scheme of Martin's axiom, we should do two

things: first isolate some property of (Ai : i < ω\) in VQo, a property which is

the "reason" why Q(g) is c.c.c. Then we should formulate a property of forcing

notion which would ensure the property of (Ai : i < ω\) is preserved, at last

we should show by induction on α: < ω^ that the iteration of Q(g) over all

names for candidates has the desired property. Where by candidate we mean a

9=(9i'Λ <ωι),9i : Ai -> {0,1}.

Assume T was chosen such that:

(Vm)(3n > m)(Vx G Γn)[|{y G Γn+1 : y > x}\

What we get from the genericity of the HI -branches is:

0 for every k < ω and distinct A\ for i < ω\, i < k from A there are n < ω,

and pairwise distinct αi, . . . , α^ G Tn and w C ω\ such that:
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(i) di — (Af)[nj for every i G w

(ii) i + j G w =

(iii) H > Π 2l^<α*}l - i(α0, . . . ,ak-ι) (the i is for notational conve-
£<k

nience)

For ^ - (ga : a < cjj.), ga : Aa -> {0, 1} the forcing notion Q(g) is defined

above, let (Pa,Qa : α < α*} denote a Finite Support iteration of length α*

such that Qo is as above and for a > 0, Qα = Q(g ) uniformizes a candidate

g where #α = (̂  : ξ < ωι) such that \\-Pa "ga is ^candidate ". We prove by
a

induction on α < α* the following condition.

(*)α : if k < ω and pi G Pα, A\ G A for i < ωi, £ < fc, then Vm < ω^n < ω,

n> HI 3α0, . . . , dk-1 G T 3w C α i such that

(i) α^ - (^<)[n] for £ < fc, i G iί; and α^ = α^2 <Φ (Vi G w)(A^ - Af 2).

(ii) for i ̂  j G it; we have (A|)[n+1] ^ (^)[n+ι] or Af - Λ^.

(iii) |tί;| > i(α0, . . . ,α f c_ι)

(iv) 3g G Pα such that Pi < q for each i G iu

Note that (*)α = >̂ Pα satisfies the c.c.c. So if we succeed to prove that, the

rest of the proof is like the proof of 3.4. Also note that proving (*)α w.l.o.g.

for each i the sequence (A\ : i < k) is without repetitions. So let us carry the

induction.

Case (1) α = 0 nothing to prove.

Case (2) cf(α) > N2. Then for some β < a we have: i < ω\ => Pi G Pβ so

(*)β gives the conclusion.

Case (3) α limit, cf (a) = ω.

Let α = \Jn<ωan ^en ̂ or eac'1 * < ωι there is n(i) < ω such that:

Pi € Pan(ί) so for some n we ^ave K* : n(*) = n}| = NI then (*)αrι(i) gives the

conclusion.

Case (4) a limit, cf (a) = HI so a = Ui<ωι a* an(^ (α* : * < ω^ is increasing

and continuous; for each i we let h(i) = Min{j : Όom(pi\oti) C α^-} this is a

pressing down function on the set of limit ordinals < ωi, so by Fodor's Lemma

for some i0 we have: S d= {ί : h(ί) < aio} is stationary. W.l.o.g. pi G Ptti+1,

let p = Pi\cti, so p G Pαίo Now for any finite w C ω\, if {p( : ί G w} has
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an upper bound p* in Pίo, then {pi : i G w} has a common upper bound p

in Pa: p* U \J (pi\[θίi,Qίi+ι)). Hence by (*)αίo (which holds by the induction
iζw

hypothesis) we can complete the proof of (*)Q.

Case (5) a = 0 + 1.

If a + 1 this is clear, so assume 0 > 0. Remember that Q(g ) is the set
~ β

of functions / such that : Dom(/) is a finite subset of ω\ and for ξ G Dom(/),

f ( ξ ) < ω and

(VC, e G Dom(/))(Vn) [/(£) <n/\ f ( ξ ) < n

W.l.o.g. for each i < ω\ we have /? G Dom(pj), so p;(/3) is (the name of ) a

finite function from ω\. W.l.o.g. Pi(0) is an actual function, and |Dom(pi(/3))| is

constant so let Dom(pΐ(/3)) = {A\ : k < t < k(ϋ)} (where k comes from the case

of (*)α we are trying to prove) w.l.o.g. pi(β)(A\) depends on I only. We apply

(*)0 to fc(0), pi\β G Pβ and A\(i < ω\,l < fc(0)); we thus get n, at(i < fc(0))

Wo and ςo Clearly we can find q\ G P/3, q$ < q\ such that for each i G WQ?

k < I < fc(0) and m < n we have #ι Ihp^ "gΊ(m) = Ci(£, m)" where Af = ^47; of

course Q(£, m) G {0, 1}. The number of possible functions is ϊ(αjk, . . . ,αfc(o)-ι)

as \WQ\ > i(αo, . , αjfe(o)-ι) so f°r some c, w = {i G υ o : Ci — c} has cardinality

> i(αo,...,α f c-ι). Now g - gi U {{/?,UίGυ;o Pi (/?))} € ^<* and g, at(ί < fc), w

exemplify (*)α. U4.6

§5. Maximal Almost Disjoint Families
of Subsets of ω

5.0 Definition. By a mad ( maximally almost disjoint) subset of P(ω) we

mean an infinite subset F of P(ω) such that for all x, y G F we have |x| = K0

but \xΓ\y\ < HO and for every z G P(ct ) there exists x £ F such that |zΠx| = NQ
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5.1 Claim. There is a mad subset of P(ω) of cardinality 2H°.

Proof. Replace ω by the set of all nodes of the full binary tree, i.e., with the

set of all finite sequences of O's and 1's. This tree has 2^° branches and every

two of them are almost disjoint. Extend the set of all branches to a mad set by

Zorn's lemma. D5.ι

5.2 Observation. No countable subset ofp(ω) is mad.

Proof. Let (α^ : i < ω) be a sequence of infinite pairwise almost disjoint subsets

of ω. For each i < ω we have α» \ (Jj<i aj — aΐ\ Uj<i aj n α*> and since each

set a,j Π at is finite and α$ is infinite there is an #$ G a$ \ (Jj<i aj For j < i we

have Xj £ α^ while #$ ^ α^ hence Xj ^ £$, therefore the set b — {xi : i < ω} is

an infinite set. Since for j < i, Xi φ dj we have b Π Q.J C {x0,..., Xj}. Thus the

intersection of b with each αj is finite and therefore {α^ : i < ω} is not mad.

Π5.2

So if the continuum hypothesis holds then there are mad sets of cardinality

2H° = N]_ and of no other cardinality. If the continuum hypothesis does not hold

we are faced with the question whether there are mad sets of cardinalities > NI

but <2H°.

5.3 Theorem. Martin's axiom implies that every mad set is of cardinality 2H°.

Proof. Let A be an infinite set of infinite pairwise almost disjoint subsets of ω,

|^4| < 2H°. Let PA = {(α,ί) : α is a finite subset of ω and t is a finite subset of

.4}. For p — (α, t) and <? = (6, s) in PA we define: p < q if: α C 6, s C ί and for

each u e t we have 6 Π u = α Π u. Now < is easily seen to be a partial order.

The meaning of the condition (α, t) is that the set w which we are constructing

will include α, but for every u G t we will have w Π u = a Π u, so no additional

members of u will be in w (other than those already in α).

If (α,ί), (α, s) are in PA then, obviously, also (α,t(Js) £ PA hence (α,ί)

and (α, s) are compatible. Therefore incompatible members of PA must have

different first components. Since there are only H0 finite subsets of ω every



§5. Maximal Almost Disjoint Families of Subsets of ω 85

subset of PA of pairwise incompatible members must be countable, and the

c.c.c. holds.

For every u G A let Iu = {(α, t) G PA : u G t}. Now Iu is a dense subset

of PA since for every (b,s) G PA we have (b,s U {u}} G Iu. For n < ω let

^n = {(<M) £ ^U : (3fc > n)k G α}. Let us prove that Jn is a dense subset of

PA- Let (6,5) G PΛ Since s is finite and A infinite there is a v G A \ s. Now
v n (U 5) — v n Ul^ Π u : u G 5} is finite hence v \ \J s is infinite. Let k G v \ \J s,

k > n, we shall see that (6 U {fc},s) > (6,5). To prove that let u G 5; now

(6 U {k}) Γ\u = bΓ\u since k £ \J s hence k φ u.

By Martin's axiom there is a directed subset G of PA which intersects each

Tu and each Xn. Let A be the union of the first components of G. Let u G «A,

let (α, s) G Zn Π G, then u G 5. We shall see that A Π u = α Π u and hence A Π u

is finite. We know (α, 5) G G so α C A hence αfΊ u C AlΊu; assume that m G A,

then m G 6 for some (6, £) G G. Since G is directed there is an (c, r) e G such

that {c, r) > (o, 5), (6, ί) so m G b C c but m G u by its choice so ra G c Π u.

Since u G 5 and (c, r) > (α, s) we have u Π c = u Π α, hence m G w Π α. So we

have proved raG^4nu=>raGαΓlu; hence yl Π u C a Π u', so by a previous

sentence A Π it = α Π u, hence A Π n is finite. A is infinite since for every n we

know G contains a member (α,ί) of Xn hence A contains a number > n.

Thus we have constructed an infinite set A which is almost disjoint from

every member of A> and hence A is not mad. D5.3

5.4 Theorem. If V does not satisfy the continuum hypothesis and λ is a

cardinal such that KI < λ < 2 H ° inV then V can be generically extended by a

c.c.c. extension which preserves also 2K° (automatically it still is a cardinal) to

an extension V[G] where there is a mad subset of P(ω) of cardinality λ.

Proof. We start in V with a sequence (Aa : a < λ) of almost disjoint subsets

of ω (there is such by claim 5.1). Now we proceed with a system of FS iterated

forcing of length ω\ as follows. At step a we assume that we have constructed

a sequence (Ai : i < λ 4- α) of pairwise almost disjoint subsets of ω. We take

Fa = {Ai : i < λ + α} and we use at this step the forcing notion PFa, where
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PA is as in the proof of Theorem 5.3, and we introduce by means of it a new

infinite subset A\+0ί of ω almost disjoint with each member of Fa. (This follows

immediately from the proof of Theorem 5.3.) Since Ppa is a c.c.c. forcing, by

2.8 our iterated forcing is c.c.c. For Ppa we can use, instead of pairs (α,t)

where a is a finite subset of ω and t is a finite subset of Fα, such pairs where

t is a finite subset of λ + a and each i G t stands for the corresponding Ai.

Thus each Ppa will consist of elements from V (while its set of elements is not

necessarily in V), and the cardinality of Ppa is therefore Max(α, λ) = λ. For

the iterated forcing we can use only standard names in the set P of conditions,

hence \P\ = λ. Since P is a c.c.c. forcing, standard arguments (as in 3.4) show

that \P(ω)\(yW = [(λ)*°]y < (λ"*)vM < [(2*°)*°]vr - [2*°]v, hence in V[G\

we know 2H° is the same as in V.

Finally let us prove that {Aa : α < λ + ωι} is a mad subset of P(ω).

The "almost disjoint" is trivial. Let A C ω, A G V[G\. For each n G ω let In

be a maximal antichain in P of conditions which decide n G A, where A is a

name of A. Since P satisfies the c.c.c. we know \In\ — NO- Let J = \Jn<ωZn, so

|J| = N0. For each q G J the set Dom(ς) is a finite subset of ωi, hence there is

an α < α i such that for all q G J we have Dom(g) C a. If Gα is the component

of G in the iterated forcing up to and not including α, we have A G V[Gα].

We shall see that A Π Aβ is infinite for some β < λ + a which establishes that

{Ai : i < X + ωι} is mad. Moreover, we shall show that if A Π Aβ is finite for

every β < X -f a then A n Aα is infinite. This follows from the following lemma,

which ends the proof. Π5.4

5.5 Lemma. Let F be a set of pairwise almost disjoint subsets of α;, and let

B C ω be such that for every finite subset F* of F the set B \ \J F^ is infinite.

Let G be a generic subset of Pp over V and let A be the union of the first

components of the members of G, then A Π B is infinite.

Proof. For every n let

In = {(α,t) GPF : (3m>n)[mG5nα]}.
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We shall see that In is dense. Let (b, t) G Pp. By our assumption B \ \Jt is

infinite hence it contains an m > n. Now (α U {m},t) G In and since m φ \Jt

(αϋ{m}, t) < (α, t). Since In is dense, G contains some (α, t) G Tn, hence A D α

and so ^4 contains an m G 5 such that m > n. Since this holds for every n < α;

we have ^4 Π B is infinite. DS.S

Discussion. We shall prove that essentially all countable forcing notions are

equivalent. If one carries out the proof of the last theorem for the case where

a — HI, but one starts with a sequence (Ai : i < ω) of pairwise almost disjoint

subsets of ω then each Pp is a countable forcing and therefore equivalent to the

addition of a Cohen real. Thus the FS iterated addition of HI Cohen reals yields

an extension of V with a mad set of cardinality HI. But the iterated extension

of HI Cohen reals is the same as the simultaneous addition of HI Cohen reals

(as in the proof of I 3.2).

5.6 Theorem. Every two countable forcing notions where above every condi-

tion there are two incompatible conditions are equivalent.

Proof. Let P be the set of all finite sequences of natural numbers ordered by

proper inclusion and let Q be a countable forcing as in the theorem. We can

assume that Q has a minimal element 0g (or change the proof slightly). We

shall show that P and Q are equivalent by constructing an isomorphism F from

P onto a dense subset of Q. We shall define F(τ/), for η G P, by induction on

the length of η. Let F(()) = 0g, where 0g is the minimal member of Q. Let

Q = {qn : n < ω}. We shall take care to satisfy the following in the definition.

(i) For every η £ P the set {F(ηΛ (i)) : i < ω} is a maximal set of incompatible

members of Q greater than F(η).

(ii) For every n there is an η G P of length n + 1 such that F(η) > qn.

It is easy to check that this suffice. We assume, as an induction hypothesis,

that {F(η) : ίg(η) = n} is pre-dense in P. Since, by clause (i), for every η G

U iω we have {F(ηΛ (i)) : i < ω} is a maximal set of incompatible members of
ί<n
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Q above F(η), the set (F(z/) : tg(v) = n] is a maximal antichain of Q. To define

F(η~ (i)), for alH < ω and η G nω, define a set J* of pairwise incompatible

members of Q above F(ry) as follows. If ίg(η) = n and F(η) is compatible

with qn let s0 > F(η),qn (in Q) otherwise let s0 > F(η). Let ίι,sι be two

incompatible members of Q greater than s0 and, by induction, let tn+ι, sn+ι be

two incompatible members of Q greater than sn. Take Xη — {tn : I < n < ω},

Iη is a set of pairwise incompatible members, and if F(η) is compatible with

qn then each member of Iη is > qn. Let J* be a maximal set of pairwise

incompatible members above F(η) which includes Tη. Now Z* is countable,

since Q is, and we define the F(η~ (i))'s so that {F(η* (i)) : i < ω} — I*. Since

(ii) holds {^(77) : η G P} is a dense subset of Q. D5.6

5.7 Discussion. Using the method of Theorem 5.4 we can extend V so that

in the extension for every λ such that H0 < λ < 2N° there is a mad subset of

cardinality λ but 2*° is preserved. To do this let (λα : α < μ) be the cardinals

HO < λ < 2N° in increasing order. For a < μ we construct a mad subset

{A? : i < λα + ωι} of P(ώ) as follows. {Af : i < λα} € V is a family of

pairwise almost disjoint subsets of ω. We extend V by iterating μ x ωi times

and at the step of ordinal μ x i + α we add the set Λ"+ί C ω as an almost

disjoint set of {A° : j < Xa + i} as in the proof 5.5: forcing by P{Λ«:j <λα+i}




