
I. Forcing, Basic Facts

§0. Introduction

In this chapter we start by introducing forcing and state the most important

theorems on it (done in §1); we do not prove them as we want to put the stress

on applying them. Then we give two basic proofs:

in §2, we show why CH (the continuum hypothesis) is consistent with ZFC,

and in §3 why it is independent of ZFC. For this the NI-completeness and

c.c.c.(=countable chain conditions) are used, both implying the forcing does not

collapse KI the later implying the forcing collapse no cardinal. In §4 we compute

exactly 2*° in the forcing from §3 (in §3 we prove just V[G\ \= "2*° > λ"; we

also explain what is a "Cohen real"). In §5 we explain canonical names.

Lastly in §6 we give more basic examples of forcing: random reals, forcing

diamonds. The content of this chapter is classical, see on history e.g. [J]. (Except

§7, 7.3 is A. Ostaszewski [Os] and 7.4 is from [Sh:98, §5], note that later

Baumgartner has found a proof without collapsing and further works are:

P. Komjath [Kol], continuing the proof in [Sh:98] proved it consistent to

have MA for countable partial orderings +-ιCH, and Λ Then S. Fuchino, S.

Shelah and L. Soukup [FShS:544] proved the same, without collapsing HI and

M.Dzamonja and S.Shelah [DjSh:604] prove that A is consistent with SH (no

Souslin tree, hence -iCH).)
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§1. Introducing Forcing

1.1 Discussion. Our basic assumption is that the set theory ZFC is consistent.

By GodeΓs completeness theorem it has a countable model. We make the

following further assumptions about this model.

(a) The membership relation of the model is the real membership relation;

and therefore the model is of the form (V, G).

(b) The universe V of the model is a transitive set, i.e., x E y G V —> x £ V.

Assumptions (a) and (b) are not essential but it is customary to assume

them, and they simplify the presentation. So "V a model of ZFC", will mean

"a countable model of ZFC satisfying (a) and (b)", and the letter V is used

exclusively for such models.

Cohen's forcing method is a method of extending V to another model V^

of ZFC. It is obvious that whatever holds in the model V^ cannot be refuted

by a proof from the axioms of ZFC, and therefore it is compatible with ZFC.

If we show that a statement and its negation are both compatible with ZFC

then we know that the statement is undecidable in ZFC.

Why do we look at extensions of V and not at submodels of V? After all,

looking at subsets is easier since their members are already at hand: To answer

this question we have to mention GodeΓs constructibility. The constructible

sets are the sets which must be in a universe of set theory once the ordinals of

that universe are there. Godel showed that the class L of the constructible sets

is a model of ZFC and that one cannot prove in ZFC that there are any sets

which are not constructible. Therefore, for all we know, V may contain only

sets which are constructible and in this case every transitive subclass V^ of V

which contains all ordinals of V and which is a model of ZFC must coincide

with V, and therefore it gives us nothing new.

1.2 Discussion. Now we come to the concept of forcing. A forcing notion

P G V is just a partially ordered set (not empty of course). Usually a partial

order is required to satisfy p < q&q < p => p = q, but we shall not (this is
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just a technicality), this is usually called pre-partial order or quasi order. It is

also called a forcing notion. We normally assume that P as a minimal element

denoted by 0p, i.e.

really from Chapter II on, we do not lose generality as by adding such a member

we get an equivalent forcing notion, see §5. We want to add to V a subset G

of P as follows.

(1) G is directed (i.e., every two members of G have an upper bound in G)

and downward closed (i.e., if x < y G G then also x G G).

Trivial examples of a set G which satisfies (1) is the empty set 0 and {x : x < p}

for p G P.

The following should be taken as a declaration of intent rather than an

exactly formulated requirement.

(2) We want that G $. V and moreover G is "general" or "random" or "without

any special property" .

We aim at constructing a (transitive) set V[G] which is a model of ZFC with

the same ordinals as V, such that V C V[G] and G G V[G], and which is

minimal among the sets which satisfy these requirements.

So we can look at P as a set of approximations to G, each p G P giving

some information on G, and p < q means q gives more information; this view

is helpful in constructing suitable forcing notions.

Where does the main problem in constructing such a set V[G] lie? In the

universe of set theory the ordinals of V are countable ordinals since V itself

is countable. But an ordinal of V may be uncountable from the point of view

of V (since V is a model of ZFC and the existence of uncountable ordinals

is provable in ZFC). Since for each ordinal α G V the information that α is

countable is available outside V, G may contain i.e. code that information for

each α G V. In this case every ordinal of V (and hence of V[G]) is countable in

V[G] and thus V[G] cannot be a model of ZFC. How do we avoid this danger?
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By choosing G to be "random" we make sure that it does not contain all that

information.

While we choose a "random" G we do not aim for a random V[G], but

we want to construct a V[G] with very definite properties. Therefore we can

regard p as the assertion that p G G and as such p provides some information

about G. All the members of G, taken together, give the complete information

about G.

Now we come back to the second requirement on G and we want to replace

the nebulous requirement above by a strict mathematical requirement.

1.3 Definition. (1) A subset J of P is said to be a dense subset of P if it

satisfies

(2) Call I C P open (or upward closed) if for every p, q e P

1.4. Discussion. Since we want G to contain as many members of P as possible

without contradicting the requirement that it be directed, we require:

(2)' G Π X ^ 0 for every dense open subset X of P which is in V.

1.4A Definition. A subset G of P which satisfies requirements (1) and (2)' is

called generic over V ( we usually omit V), where this adjective means that G

satisfies no special conditions in addition to those it has to satisfy.

The forcing theorem will assert that for a generic G, V[G] is as we intended it

to be.

Does (2)' imply that G φ VI Not without a further assumption, since if P

consists of a single member p then G = {p} satisfies (1) and (2)' and G G V.

However if we assume that P has no trivial branch, in the sense that above

every member of P there are two incompatible members, then indeed G φ V

(incompatible means having no common upper bound). To prove this notice
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that if G G V, then P \ G is a dense open subset of P in V, remember that

G is downward closed, and by (2)' we would have G Π (P \ G) φ 0, which is a

contradiction.

1.5 The Forcing Theorem, Version A. (1) If G is a generic subset of P

over V, then there is a transitive set V[G] which is a model of ZFC, V C V[G],

G G V[G] and V and V[G] have the same ordinals and we can allow V as a

class of V[G] (i.e. in the axioms guaranting (first order) definiable sets exists

"a: G V" is allowed as a predicate).

(2) P has a generic subset G, moreover for every p G P there is a G C P generic

over V, p G G. Πι.5

1.6 Discussion. We shall not prove 1.5(1), but we shall prove 1.5(2). Since

V is countable, P has at most NO dense subsets in V; let us denote them

with 2 Ό ί 2 Ί ) Ϊ 2 » . . . we shall construct by induction a sequence pn. We take an

arbitrary p0 We choose pn+ι so that pn < pn+ι G Jn; this is possible since Jn

is dense. We take G = {q e P : 3n(q < pn)}. It is easy to check that this G is

generic.

Since we want to prove theorems about V[G] we want to know what are

the members of V[G]. We cannot have in V full knowledge on all the members

of V[G] since this would cause these sets to belong to V. So we have to agree

that we do not know the set G, but, as we want as much knowledge on V[G]

as possible, we require that except for that we have in V full knowledge of

all members of V[G], more specifically V contains a prescription for building

that member out of G. We shall call these prescriptions "names". We shall be

guided in the construction of the names by the idea that V[G] contains only

those members that it has to.

Remember:

1.7 Definition. We define the rank of any α G V:

rk(o) is |J{rk(&) + 1 : b G a}
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(note if α = 0,rk(α) = 0), the union of a set of ordinals is an ordinal, hence

rk(α) is an ordinal if denned, and by the axiom of regularly rk(α) is defined for

every α. So

1.8 Definition. We define what is a P-name (or name for P or a name in P)

r of rank < α, and what is its interpretation τ[G]. If P is clear we omit it.

This is done by induction on α. r is a name of rank < a if it has the form

r = {(pi,Ti) : i < ZQ}, Pi G P and each TJ is a name of some rank < α.

The interpretation τ[G] of r is {τi[G\ : Pi 6 G, i < IQ}

1.9 Definition.

(1) Let rkn(τ) = α if r is a name (for some P) of rank < α but not a name of

rank < β for any β < a.

(2) For α G V and forcing notion P, ά is a P-name defined by induction on

rk(α);

ά = {(p,6) :peP,bea}

(3) G = {(p,p) ' P € P} (when necessary we denote it by (Gp).

(4) rkr(τ), the revised rank of a P-name r is defined as follows: rkr(τ) — 0 iff

r = ά for some α G V

Otherwise

rkr(τ) = |J{rkr(σ) + 1 : (p, σ) € r for some p}

1.9A Remark. 1) Usually, we use r, /,α etc. to denote P-names not necessarily

of this form.

Eventually we lapse to denoting ά (the P-name of α) by α, abusing our notation,

in fact, no confusion arrives.

1.10 Claim. Given a forcing notion P, and G C P generic over V, we have:

(1) rkr(τ) < rkn(τ) and rk(r[G]) < rkn(τ) for any P-name r.

(2) for a G V, ά[G] = a
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(3) G[G] = G.

(4) rkr(r),rkn(r) are well defined ordinals, for any P-name r.

Proof. Trivial. DI.IO

1.11 Discussion. Notice that while every name belongs to V, the values of

the names are not necessarily in V since the definition of the interpretation of

a name cannot be carried out in V. It turns out that these names are sufficient

in the sense that the set of their values is a set V[G] as required:

1.12 The Forcing Theorem (strengthened), Version B. In version A, in

addition V[G\ = {r(G} \ r e V, and r is a P-name }. Dι.ι2

We want to know which properties hold in V[G\. The properties we are

interested in are the first order properties of V[G], i.e., the properties given by

formulas of the predicate calculus. We shall refer to the members of V[G] by

their names so we shall substitute the names in the formulas.

1.13 Definition. If r\..., τn are names, for the forcing notion P, φ(xι,..., xn)

a first-order formula of the language of set theory with an additional unary

predicate for V, then we write p Ihp "φ(τ\..., τn)" (p forces φ(r\..., τn) for

the forcing P) if for every generic subset G of P which contains p we have:

φ(τι[G]... ,rn[G]) is satisfied (=is true) in V[G],

in symbols V[G\ \= V(τι[G],... ,rn[G])".

1.14 The Forcing Theorem, Version C. If G is a generic subset of P then (in

addition to the demands in versions A and B we have:) for every φ(r\..., rn) as

above there is a p G G such that p Ihp "->φ(τι..., τn)" or p Ihp "φ(τι..., τn)".

Therefore V[G\ 1= uφ(n[G\... ,τn[G])" iff for some p G G p lhP V(n . . . ,rn)".

Moreover Ih (as a relation) is definable in V. Πι.i4

This is finally the version we shall actually use, but we shall not prove this

theorem either.
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The forcing relation \\-p clearly depends on P. If we deal with a fixed P

we can drop the subscript P. We refer to P as the forcing notion.

The rest of the section is devoted to technical lemmas which will help to

use the forcing theorem.

1.15 Definition. For p, q G P we say that p and q are compatible if they

have an upper bound. J C P is an antichain if every two members of I are

incompatible. X C P is a maximal antichain if T is an antichain and there is

no antichain J C P which properly includes X. We say J C P is pre-dense

(above p € P) if for every q G P (<? > p) some </ΐ G I is compatible with g.

We say Z C P is dense above p G P if for every # G P such that q > p there

is r, ^ < r G T\ we may omit "above p". We define "J C P is pre-dense above

p G P" similarly.

1.16 Lemma. Let G be a downward closed subset of P. Then: G is generic

(over V) iff for every maximal antichain J G V of P we have |G Π I| = 1.

Proof. Suppose G is generic. Since G is directed it cannot contain two incom-

patible members and hence \G Π I\ < 1. Given T G V, a subset of P, let

J' = {p e P : (Ξςr G I)p > q} G V, i.e., ,7 is the upward closure of J. So ,7 is

obviously upward closed i.e. an open subset, we shall now show that if X is a

maximal antichain of P, then J is dense. For any r G P clearly r is compatible

with some member q of I (otherwise J(J{r} would be an antichain properly

including the maximal antichain Z), let p > r, q. Then, by the definition of J,

p G J and we have proved the density of J.

Since J is dense and open by Definition 1.4A we know GΓ(J ^ 0, let p G GΓ\J'.

Since p G J, there is a q G T such that q < p, and since p G G and G is generic,

q G G and so q G GΠ J, hence |GΠ J| > 1. So (assuming G C P is generic over

V) we have proved: for every maximal antichain J G V of P, |G ΠZ| = 1, thus

proving the only if part of the lemma.

Now assume that for every maximal antichain X G V we have |G Γ\I\ = 1.

First let J G V be a dense subset of P and we shall prove GΠJ7 ^ 0. By Zorn's
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lemma there is an antichain J C J which is maximal among the antichains in

J, i.e. the antichains of P which are subsets of J. We claim that J is a maximal

antichain. Let r € P, we have to prove that r is compatible with some member

of I (and hence J cannot be properly extended to an antichain). Since J is

dense there is a p G J such that p > r. Since p e J and I is an antichain

maximal in J necessarily p is compatible with some member q of J, hence r is

also compatible with g; so we have finished proving "J is a maximal antichain

of P". So by our present assumption \GΓ\I\ = 1 hence G Π J D G Γ\I ^ 0.

Secondly to see that G is directed let q, r e G and let J = {p e P : p > q, r

or p is incompatible with q or p is incompatible with r}. Clearly J e V, to

prove that J' is dense let s G P. If s is incompatible with # then s £ J.

Otherwise there is a £ G P such that 5, # < t. If £ is incompatible with r then

ί € J, and we know that t > s. Otherwise there is a w G p such that w > £, r.

Since £ > 5, q we have w > q,r and hence w e J. Since w > £ > 5 we know ,7

is dense. By what we have shown above, G Π J ^ 0. Let p £ G Γ\ J'. We shall

see that p cannot be incompatible with q or with r, therefore, since p G v7,

p > q,r. We still have to prove that no two members of G, such as p and q,

are incompatible. Suppose p, q € G and p and <? are incompatible. We extend

the antichain {p, <?}, by Zorn's lemma to a maximal antichain X € V. We have

J Π G 2 {p, g}, contradicting 11Π G| = 1.

As part of the assumption of 1.16 is "G C P is downward closed", and we

have proved G is directed, and [ J G V is a dense subset of P => G Π JΓ ^ 0],

we have proved that G is a generic subset of P over V (see Definition 1.4A).

Hence we have finished proving also the if part of the lemma. Πi.ie

1.17 Lemma. If J is a pre-dense subset of P in V and G is a generic subset

of P then G n J ̂  0.

Proo/. Let J^ = {p € P : (3q G v7)p > <?}. Let us prove that J^ is a dense

open subset of P. Now J^ is obviously upward-closed. Let r G P. Since J' is

pre-dense there is a <? G J such that <? is compatible with r. Therefore, there is

a p € P such that p > q, r. By the definition of J^ we have p e J^. Thus we
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have proved that for every r e P there is a p G J^ such that p > r, and so J^

is dense. Since J e V and jΊ" is constructed from J in F we have J^ £ V.

Since G is generic over V we have GfΊ J^ ^ 0. Let p £ GlΊ J^. By the definition

of J^ there is a </ G J^ such that q < p Since G is downward closed we have

q £ G and hence ς G G Π ,7 ̂  0, which is what we had to prove. DI.I?

1.18 Lemma. Let q G P, and let T be a subset of P in V^ which is pre-dense

above q. For every generic subset G of P if # 6 G then G Π I / 0.

Proof. Let T^ — ̂ Γ(J{p 6 P : p is incompatible with q}. Since T G V also 1^ £ V.

Let us prove that ft is a pre-dense subset of P. Let r € P. If r is incompatible

with ς then r G 2^ . If r is compatible with g then there is an s G P such that

s > r,q. Since J is pre-dense above q, necessarily 5 is compatible with some

member of J, and hence r is compatible with the same member of I which

neccessarily is also in X^ . Thus we have shown that 2^ is pre-dense. Let G be a

generic subset of P such that q £ G. Since ft is pre-dense and ft G V we have

G ΠZt 7^ 0. Let t G G Hit. Since ί, <? G G, t is compatible with </, hence by the

definition of ft we must have t G Z and thus ί G G Π Z ̂  0. DI.IS

1.19 Lemma. Let Z = {p^ : i < IQ} be an antichain in P and {r^ : i < i$} a

corresponding indexed family of P-names (in V). Then there is a name r such

that: for every i < ΪQ and for every generic G, if Pi G G then τ[G] = τ^[G] (and

τ[G] = 0 if G Π {pi : i < i0} = 0). (We recall that a generic G contains at most

one member of I and if J is a maximal antichain of P then G contains exactly

one member of X) .

1.19 A Remark. This means we can define a name by cases.

Proof. Suppose 7$ = {(Pij^ίj) '- J < Ji}, (of course jι — 0 is possible) and let

T = {{r, Tij) : j < ji, i < ΐ0, r > pitj and r > pi}. Di.ig

We note also:
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1.20 Claim. Let G be a downward closed directed subset of P. The following

are equivalent:

(a) G is generic.

(b) G Π J 7^ 0 for every dense open subset I of P.

(c) G ΠI / 0 for every dense subset I of P.

(d) G ΠI φ 0 for every pre-dense subset T of P.

(e) G Π J ^ 0 for every maximal antichain J of P.

1.20A Remark. Clearly for J C P,

(1) J is dense open => J is dense => J is pre-dense,

(2) J is a maximal antichain of P => J is pre-dense.

Proof. By Remark 1.20A(1) clearly (d)=Φ(c)=^(b), by 1.20A(2) clearly (d)=»(e)

by 1.16 (e)=^(a), trivially (a)=»(b); by the closing up of subsets of P clearly

(b)=>(c)=>(d); together we have finished. Πι.2θ

§2. The Consistency of CH (The Continuum
Hypothesis)

Usually the consistency of CH, i.e., of 2K° = N1 ? is proved by showing that it

holds in L (the class of constructible sets) but we do not want to go in this

way. So

2.1 Theorem. Model A. There is a model of ZFC in which 2H° = NI.

Proof. Let us first review the main points of the construction of the model. We

start with a countable transitive model V of ZFC in which 2N° is either HI or

greater. We shall extend it to a model V[G] in which G will essentially be a

counting of length HI of all sets of natural numbers, i.e. a function g from ω\

onto the family of sets of natural numbers. Each condition, i.e., each member

of P, is an approximation of the generic object G and therefore will consist

of partial information about the counting. Since every two members of G are
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compatible, the members of G, taken together, yield a counting of subsets of ω.

The three things about which we have to worry in the proof are the following:

a) How do we know that every subset α of ω in V will occur in the counting

given by G?

This will be answered by showing that the set of all partial countings in which

a occurs is a dense subset of P, and hence G contains such a partial counting.

b) How will the new subsets of cj, i.e., the subset of ω which are in V[G] but

not in V, be counted when the members of P, being in V, can count only

subsets of ω which are in VI

Here we shall make sure that V[G] has no new subsets of ω.

c) Is NI of V, which we have mapped on the set of all subsets of ω in V[G]

also the NI of V[G}7

Here the answer is easily positive because V and V[G] have the same sets of

natural numbers.

In V[G] we want to obtain a function g from N x ̂  (where N x ̂  denotes

the ordinal which is the NI of V[G], i.e., the least ordinal α such that V[G] does

not contain a mapping of ω onto α) onto P(ω)v^ (where P(ω) is the power

set of ω and the superscript V[G] means that P(ω)v^ is the power set of ω

in V[G]). It will turn out that N^ — K]7, and the only subsets of ω available

in V[G] are the members of P(ω)v. By easy considerations for every countable

ordinal α, the function g\a has to belong to V (as it can be coded by a set of

natural numbers). Therefore partial information about g is given by functions

from countable ordinals into P(ω) in V. Thus it is natural to define

P = {/ : / is a function from a countable ordinal into P(ω)}

where the definition is inside V: with / < g iff f C g.

A member / of P is understood to "claim" that g is like / on the domain of /.

When does a member /t of P give us more information that /? When / C /t.

Therefore we take the partial order < on P to be proper inclusion.
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Let G be a generic subset of P. By the definition of the concept of a generic

object every two members of G are compatible, hence |J G — \J{f : f G G} is

a function, we shall denote it with /<-. The domain of fc is the union of the

domains of the members of G and hence it is a union of ordinals < K^ and

therefore the domain of fc is an ordinal < tt]/. If A is a countable set in V

then in V there is a function r from ω onto A. Since V is a transitive set, V

contains already all the objects which are members of A in the universe and

hence A has no new members in V[G\. Now V[G] has the same set ω of natural

numbers as V and therefore r maps ω on A also in V[G] and A is countable

in V[G]. In particular every ordinal which is countable in V is also countable

in V[G]. Therefore, if K^ is uncountable in V[G] then N^ is the least ordinal

which is uncountable in V[G], i.e., #Y = N x

 l . If N]' is countable in V[G] then

#Y < ̂ [G\ hence in either case ̂  < N^[G1. Therefore the domain of fG is

an ordinal < N j (since it is < N]/). We have in fact deal with

2.2 Definition. 1) A first order formula φ(x) (in the language of set theory) is

upward absolute if when V C V^ are models of ZFC with the same ordinals (so

by our conventions both are transitive sets) and a G V, then: V N φ[a] => V^ \=

φ[a\. Note that properties and function are interpreted by first order formulas.

2) We say φ is absolute if both φ and ->φ are upward absolute (i.e. we have

"iff" above).

Obviously (or see [J]):

2.3 Lemma. 1) The following are upward absolute: "α an ordinal", "α not an

ordinal" "α is (not) a natural number", "α = n", "α ̂  n", "α = ω", "α ̂  ω",

"α is not a cardinal", "α is not regular", "A has cardinality < α", "A C £?",

"A 5 J5", "/ is (not) a (one-to-one) function from A to (onto) 5".

2) In fact any relation (function, property) defined by a ]Γχ - formula, i.e., by

(3y)φ(xQ . . . , £n_i, xn, y) when y? has only bounded quantifiers i.e., of the form

(Vzi € ^2)5 (3^ι G 2:2) is upward absolute. U2.3
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We have now to prove the following facts.

2.4 Fact. Every A G P(ω)v is in the range of /<-.

2.5 Fact. P(ω)γW = p(ω)v .

Once these facts are proved we know that the range of fc is P(ω)v^ and

in V[G] the function /G maps an ordinal < N]^G' onto P(ω) hence in V[G] the

set P(ω) has at most NI subsets, which establishes 2^° = NI in V[G].

Remember that a subset I of P is said to be pre-dense in P if every member

p of P is compatible with some member of J. In particular I is pre-dense if I

is a maximal antichain or if J is such that for every p in P there is a <? G 2"

such that q > p.

Proof of Fact 2.4. Let A G P(ω)v; we want to prove that A G Rang(/σ),

i.e., for some / G G we have A G Rang(/), or, in other words G Π {/ G

P : A G Rang(/)} φ 0. For this purpose it suffices to show that the set

X — {/ G P : A G Rang(/)} is dense, since this set is obviously in V. Let p G P

then p : α — > P(ω) in V, where α is a countable ordinal. Let / be the function

with domain a -f 1, which is also a countable ordinal in V, into P(ω)v given

by /(£) = p(ξ) for £ < a and /(α) - A. Clearly / G P, / > p and / G I. Thus

J is dense and Fact 2.4 is established. U2.4

Now Fact 2.5 will follow from 2.7, 2.8 below, thus completing the proof of

Theorem 2.1.

2.6 Definition. 1) A forcing notion P is said to be ^-complete, or countably

complete if every increasing (by <) sequence (pn : n < ω) of members of P,

i.e., every sequence (pn : n < ω) such that p0 < Pi < P2 < •> has an upper

bound p in P (i.e., p > pn for every n < ω).

2) A partial order P is λ-complete if for any 7 < λ and increasing (by <=<p)

sequence (pi : i < 7) of members of P, the sequence has an upper bound in P.
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2.7 Lemma. Our present set P is count ably complete in V.

Proof. Let (pn : n < ω) be a nondescending sequence of members of P in V.

Since the pn's are pairwise compatible p = \Jn<ωPn is a function. The domain

of p is the union of the domains of the pn's. Thus the domain of p is a countable

union of countable ordinals, and is therefore a countable ordinal. The range of

p is the union of the ranges of the pn's and it consists therefore of members of

P(ω)v. Thus p G P, and obviously p > pn for every n < ω. U2.7

2.8 Theorem. 1) For every countably complete forcing notion P in V and

every generic subset G of P, V[G] contains no new ω-sequence of members of

V, i.e., if (an : n < ω) G V[G] and an G V for n < ω then also (an : n <ω) eV.

In particular if a C ω and α G V[G] then also a eV.

2) If the forcing notion P is λ-complete, G C P is generic over V then V[G]

has no new (i.e.^ V) bounded subsets of λ, not even new sequences of length

< λ of members of V.

Proof. 1) Let (an : n < ω) G V[G], then (an : n < ω) has a name r. By the

forcing theorem (i.e. 1.14) there is a q G G such that q Ih "r is an α -sequence of

members of V". We shall prove that the subset {p G P : p Ih "r G V" } of P is

pre-dense above ς and, by 1.18, therefore G contains a p such that p Ih "r G V"

and therefore r[G] G V, i.e., (an : n < ω) G V is true in V[G]. Here we use

the fact that {p G P : p Ih "r G V™} is in V; this is the case since forcing is

definable in V.

Let us prove now that J = {p G: p Ih "r G F"} is pre-dense above q. Let

<?ΐ > q\ it "knows" (i.e. forces) that every αn is in V, since already ς forces this

statement, but even q^ does not necessarily "know" the identity of αn. We shall

see that we can extend q^ to a condition which "knows" α0(=force a value),

then to a condition which "knows" αi, and so on, and as a consequence of the

countably completeness of P, q^ can be finally extended to a condition p which

"knows" all the αn's. This will imply p "knows" that (an : n < ω) is some

particular member of V, and p Ih "r G V", which establishes the pre-density of

T above q.
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We define a sequence (pn : n < ω) of conditions and a sequence (an :

n < ω) of members of V as follows. Let us mention now that the forthcoming

definition is carried out entirely within V and therefore the obtained sequences

are members of V. We set PQ = q^. For n > 0 we choose pn+ι and an so that

Pn+1 > Pn and pn+ι Ih "τ(n) — άn", where τ(n) = άn is an abbreviation of "the

n-th term of the sequence r is αn" and άn is the P-name of an (see Definition

1.9(2) and 1.9A). Do such pn+ι and an exist? To prove their existence we go

out of V, but this does not matter since once we know they exist the definition

proceeds entirely within V. Let G^ be any generic subset which contains pn.

In V[Gt] we have r[G^] is an ω-sequence of members of V, since q < pn G

G^ and </ Ih "r is an ω-sequence of members of V". Let an be the n-th term of

the sequence τ[G^], then an G V and τ[G^](n) = αn is true in V[G^]. By the

forcing theorem there is an r G G^ such that r Ih "τ(n) = άn". Since r,pn G G^

they are compatible. Choose pn+ι > r,Pn then also pn+ι Ih "τ(n) = άn", and

Pn+ι and αn are as required. In order to choose a definite pn+ι in P we assume

that we have some fixed well ordering of P in V and pn+ι is chosen to be the

least member of P in that well-ordering for which there exists an αn so that

Pn+i ^ Pn and pn+ι Ih αr(n) = άn". Note that αn is uniquely determined by

pn_ι_ι since if also for some b ̂  an we have pn+ι Ih "r(n) = 6" then for every

generic G^ which contains pn+ι we have that the n-th term of τ[G^] is both an

and 6, which is impossible.

Since P is countably complete there is a p G P such that p > pn for all

n < ω. We have, obviously p > po — <7^ and for every n < ω we know p > pn+ι

and hence p Ih "r(n) = άn". Thus for every generic subset G^ of P which

contains p we have: τ[G^] is an α -sequence and r[G^](n) = αn for every n < α;,

hence τ[G^] = (αn : n < ω) G V (note (αn : n < α;} G V since this sequence was

defined in V). By the definition of the forcing relation we have p Ih "r G V",

which is what we had to prove.

If α G V[G] and α C ω then let (an : n < ω) be the characteristic function

of a. Since each αn is 0 or 1 we have (an : n < ω} is a sequence of members

of V and hence, by the present theorem (an : n < ω) G V and α can be easily

obtained from (αn : n < ω} within V'.
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2) Left to the reader. 02.8,2.5,2.1

§3. On the Consistency of the Failure of CH

We first prove a technical lemma, and then prove that 2H° = Hα is possible for

almost any α.

3.1 The Existential Completeness Lemma. 1) If p0 Ihp "(3x)φ(x)n then

there is a name τ such that po "~P ψ(τ)ι where φ(x) is a formula which may

mention names.

2) Moreover for every formula φ(x) as above for some P-name r

Ihp "(3x)[φ(x)] -> φ(τ)n and lhP

 u-*(3x)[φ(x)] -> r = 0".

Proof. 1) The idea of the proof is as follows. The condition pQ, "knows" that

(3x)φ(x) but this does not tell us directly that po knows a particular name of

a set x which satisfies φ(x). However with more information than that in po we

know names of sets which satisfy φ(x). What we have to do is to combine the

various names to a single name which equals each of those names just when

the name satisfies φ(x).

Let

J = {q q\\-p "~ (3z)y?(z)" or for some name r we have q Ihp V(r)"}

J is defined in V, hence J e V. We shall now see that J is dense. Let r G P,

but r does not force -*(3x)φ(x). Then there is a generic G C P such that r G G,

and V[G] N "(3x)(^(x)", by r's choice. Since every member of V[G] is the value

of some name we have V[G\ N "φ(τ[G])" for some P-name r. By the forcing

theorem there is an r^ G G such that r^ Ihp V(l)" Since G is directed and

r e G without loss of generality r t > r and by definition, r^ G J7. Now if

r Ihp "-ι(Ξz)y?(z)", trivially r e J. Thus we have shown that J is dense. Let I

be a maximal subset of J of pairwise incompatible members. We shall see that

also T is pre-dense. Let q G P and suppose, in order to obtain a contradiction,
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that q is incompatible with every member of J. By what we proved about J

there is a q^ e J such that q^ > q. Also q^ is, clearly, incompatible with every

member of J. Now JUJgt} is a subset of J of pairwise incompatible members

which properly includes J, which contradicts our choice of J.

Let J = {qi : i < α}, since X C J there is for every i < a a name T; such

that qi Ihp VdO" or 9< Ihp "-.(3z)y?(χ)". Let r be the name

f i t i f f c l l - p XrO"

10 otherwise

which we have proved to exist (1.19) for pairwise incompatible q^s. We claim

that po II- 'V(l)" T° prove that let G be a generic subset of P and p0 € G. Since

J is pre-dense we have GlΊ I ^ 0 and hence for some i < a we have q^ e G. If r*

is not defined q^ Ihp "->(Ξb)(/?(x)", but then <ft,po are incompatible, but both are

in G, contradiction. So ̂  Ih 'V(lΐ)" hence we have V[G] 1= φ(Ti[G]). Also since

ft G G we have, by the definition of r, τ[G] - r;[G], hence V[G] N "φ(τ[G\)n ,

which establishes po 1^ 'V(l)"

2) The second part in the lemma was really proved too. DS.I

3.2 Theorem. Model B. There is a model in which the continuum hypothesis

fails. Moreover, for every cardinal λ there is a forcing notion P such that

Ihp "2H° > λ and every cardinal of V is a cardinal

Convention. We use the word "real" as meaning a subset of ω or its character-

istic function.

Proof. We want to add to V λ real numbers ( i.e., functions from ω into 2).

Each condition gives us some information about them, so we have to make sure

that the information contained in a single condition will not suffice to compute

one of the reals since in this case this real will be already in V. Therefore we

shall define the conditions so that each one will contain only a finite amount of

information, and therefore each condition is clearly insufficient for computing

any of the reals. We shall regard the λ reals, each of which is an ω-sequence of
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O's and 1's, as written in a long sequence one after the other to form a sequence

of length λ of O's and 1's. The members of P will be finite approximations to

this member of λ2. Therefore we take P = {/ : / is a finite function from λ into

{0,1}} where by " a finite function from λ" we mean a function from a finite

subset of λ. For the partial order on P we take proper inclusion, i.e., / < g if

/ C g. This forcing is called "adding λ Cohen reals."

3.3 Lemma. Ihp "there are at least λ reals".

Proof of the Lemma. We shall prove the existence of the reals by giving them

names. Since for every generic G there is a function g which satisfies g = (J/eG /

we have Ihp "(3x)(x = U/eGP /)" and by tne first lemma in this section, 3.1

there is a name g such that Ihp "g = jJ/eGP /"• Using again the same method

we get, for every i < X a name α^ defined by a^(n) = g(i -h n). Now a^ is forced

to be a name of a real number provided g is a name of a function on λ into

{0,1}. We shall prove it in the next sublemma.

3.4 Sublemma. g is a function from λ into {0,1} (i.e., this is forced).

Proof of the Sublemma. g is a function since G is a directed set of functions,

hence its union g is a function. Also g is into {0,1} since each member of G is

into {0,1}. Next Όom(g) C λ since for every / G G we have / G P and hence

Dom(/) C λ; we still have to prove that Dom(<?) = λ. Let i < λ; it suffices to

prove that the set Ji — {/ G P : i G Dom(/)}, which is clearly is V, is pre-

dense. Let / G P, if i G Dom(/) then / G Ji, otherwise let /t = f\J{(i,Q)}

then /f G P and /f > / and /t G Ji. D3.4

We return to the Lemma 3.3. Note that since we have proved that Ihp "g is

a function from λ into {0,1}", it is enough to prove for each i ^ j < λ that

Ihp "α,j ^ g,j". For this it suffices to prove that for every p G P there is an

r > p G P and an n < ω such that r Ihp "θi(n) ^ <*>j(n)n, since this proves

that the set of all p G P such that p Ihp "α^ ^ α^ " is pre-dense.
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Let p £ P. Since Dom(p) is finite there is an no such that for every n > ΠQ

i + n φ Dom(p) and an n\ such that for every n > n\ we have j -f n φ Dom(p).

We set r = p\J{(i + &,0), (j -f fc, 1), where fc > n0,nι. Clearly r is a function

since i + A:, j 4- k φ Dom(p) and i 4- k ̂  j -f k since z ^ j. Obviously p < r and

(r forces that ) α (fc) = 0, aj(k) = 1 hence Oi(fc) 7^ αj(j) DS.S

Continuation of the Proof of 3.2. We started with λ, which is a cardinal of V

and we proved that in V[G] there are at least λ real numbers, but is λ in V[G]

the "same" cardinal as it was in VI As the matter stands now we do not even

know whether the continuum hypothesis fails in V[G] since even though λ may

be a large cardinal in V it may be countable or HI in V[G]. We shall now prove

that all the cardinals of V are still cardinals in V[G] so for example if λ = Nίf

then λ is still the third infinite cardinal in V[G\ and thus λ = N^'σ'. We shall

prove that the cardinals of V are not collapsed in V[G] for forcing notions P

which satisfy the countable chain condition and that P satisfies this condition.

I.e. the cardinals of V are still cardinals in V[G], and as V, V[G] have the

same ordinals and no non-cardinals of V are cardinals of V[G] we have: V,

V[G\ have the same cardinals; this is done in 3.6, 3.8 below. This is important

general theorem which we shall use a lot. This will finish the proof of 3.2.

3.5 Definition.

(1) A forcing notion Q satisfies the countable chain condition (c.c.c.) if Q

has no uncountable subset of pairwise incompatible members, i.e., if every

uncountable subset of Q contains two compatible members.

(2) A forcing notion Q satisfies the λ-chain condition (λ-c.c.) if there are no

λ pairwise incompatible members of P.

3.6 Lemma. If a forcing notion Q satisfies the c.c.c. then

(i) forcing with Q does not collapse cardinals and cofinalities, (i.e., \\-Q "every

cardinal of V is a cardinal (of V[6?])), and the cofinality is preserved".
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(ii) For every ordinal a and every Q-name r there is, in V, a function F from

a (to V) such that for every β < a we have |F(/3)| < K0 and Ihg "if r is a

function from α into V then (V/3 < α)[r(/3) G F(/3)]".

Proo/ of Lemma 3.6. Proof of (ii): We define the function F on α by F(β) =

{α G F : (3q G Q)(ςr Ihg "r is a function from α and τ(β) = ά")}. We have

to prove that the right hand side is a set, and not a proper class of V and

moreover is countable. We shall assume it now and prove it later. The right

hand side is the set of all possible values of r(β) in all the V[G]'s in which r[G]

is a function from α into V. To see this suppose G is a generic set such that

τ[G] is a function from a into V. Then for some α G V V[G] N "r is a function

from a and τ(/3) = ά". By the forcing theorem there is a q G Q such that

q If-Q "r is a function from α and τ(β) = α". Hence α G F(/J) and therefore

V[G\ N "(V/? < α)[r(/J) G F(β)]n. Since this is the case for every generic G we

have what is claimed in (ii).

Now we shall prove not only that the class {α G V : (3q G Q)(q \\~Q T

is a function on a and τ(β) = ά")} is a set but even that it is a countable

set, and thus \F(β)\ < N0 Suppose {α^ : i < ωι} is a subset of this class.

For each such α» there is a qi G Q such that <& Ihg "r is a function on α and

τ(/?) = di". Since Q satisfies the c.c.c. there must be some i ^ j such that q^

and ^ are compatible. Let q > qi,qj and let G C Q be a generic subset of

Q which contains q. We have q^qj G G and hence, since ^ Ihg "r(/3) = α^"

and ^ Ihg "τ(β) = α^ ", we have V[G] 1= "α^ = r(/?) = α/', hence α^ = α^ .

Thus we have shown that at least two of the α^'s must be equal therefore the

class {α G V : 3q G Q(q \\-Q "r is a function from α and τ(β) — α")} must be

countable. The proof that F(β) is a set is similar.

Proof of (i). Let λ be an uncountable cardinal of V and suppose λ is not a

cardinal in V[G]. Then there is an ordinal a < X and a function / G V[G]

which maps a onto λ. Let r be a name for / in V[G]. By part (ii) of our lemma

(already proved) there is a function F from a in V such that f ( β ) G F(β) and

\F(β)\ < ^o for every β < a. We have therefore λ = Rang(/) C (jβ<aF(a).

But in V we have | \Jβ<a F(β)\ < |α|H0 < λ, since λ is an uncountable cardinal
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of V and a < λ, and therefore also \a < λ. Thus we have proved that the

uncountable cardinals are not collapsed in V[G}. Also NO is not collapsed since

the finite ordinals and ω of V are also finite ordinals and ω in V[G].

The preservation of the cofinality is proved similarly. D3.6

Similarly one can prove for uncountable λ.

3.7 Claim. If Q satisfies the λ-c.c. then

(i) forcing by Q preserve cardinals and cofinalities which are > λ.

(ii) for every Q-name and ordinal a there is a function F with domain α,

(F e V) such that \\-Q " if r is a function from α to V then τ(β) G F(β)

for every β < α", and \F(β)\ < X for β < a.

3.8 Lemma. The forcing notion P which we use here for Model B satisfies the

c.c.c.

3.8A Remark. Once we prove this lemma we know that all the cardinals in

V here are cardinals also in V[G] and therefore λ is a cardinal also in V[G],

and if λ is the α-th infinite cardinal ttα in V it is also the α-th infinite cardinal

in V[G].

Proof. Suppose {/$ : i < NI} C P, in order to prove Lemma 3.8, it is enough

to prove that two of the functions are compatible. By 3.10 below for some

uncountable A C ω\ and finite w for every i ^ j from A, we have Dom(/i) Π

Dom(/j) = w. The number of possible fi\w is finite (i.e. < 2'™'), so without

loss of generality fi\w = /* for every i G A. Now for any i φ j £ A, we know

fi U fj G P is a common upper bound of /i, f j . DS.S

We have promised the so called Δ-system lemma.

3.9 Definition. A family F of finite sets is called a Δ-system if there is a set

w such that for any A, B in F we have A Π B = w.

In this formulation our problem reduces to:
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3.10 Lemma. Given an indexed family F of finite sets, \F\ = NI there is

F1" C F; |F f| = NI such that Ff is a Δ-system.

Proof. The cardinality of each A in F is a member of α; but there are NI

elements in F, so by the pigeonhole principle some n is obtained uncountably

many times. In similar cases in the future we will just say: w.l.o.g. \A\ = n for

any A in F (since all we need is a family of HI finite sets.)

Now we proceed by induction on n:

For n = 1: this is the pigeonhole principle for HI.

For n > 1 we distinguish two cases.

1) There is a £ (J{A : A £ F} such that there are uncountably many B in F

such that a € £, then you have an easy induction step ( you take a "out"

and put it back after using induction hypothesis).

2) If there is no such a then we build a sequence (Aa : a < ω\) such that

a^β=ϊAaΓ\Aβ = Φ (Aa G F); suppose Aβ is defined for β < α. Now

\Jβ<0ί Aβ is countable. The subfamily of F of members which contain an

element of this union is clearly countable so there is A G F, such that

A Π \Jβ<aAβ = 0, let Aa — A and we are done (in this case w — 0).

§4. More on the Cardinality
and Cohen Reals

Now we want to find what is exactly the power of the continuum in V[G] for

the model from Theorem 3.2.

4.1 Theorem. Let P = {/ : / is a finite function from λ to {0, 1}}. We have

already shown that lhP "2K° > λ", we shall show now that if λN° = λ then

Ihp "2H° -λ".

Proof. The idea is to construct a family of λ^° canonical names for the real

numbers and then prove that for every name τ there is a canonical name rf of
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a real such that Ihp " if r is a real then τ — r'". Since a real is a function from

ω into {0,1}, a real r is given by telling for each n < ω whether r(n) = 0 or

r(n) — 1. For a P-name r of a real the answer whether τ(n) — 0 or τ(n) = 1

depends on which condition is in G therefore we shall have a maximal antichain

(Pn,i '• i < &n) in P, where an < ω (because of the c.c.c.), and a function fn on

an which tells us that if pn^ G G then τ(ri) — fn(i). Since each generic G C P

contains exactly one of the pn^ for i < an, this will give, for any given G, the

value of τ(n) in a unique way. For any pair of sequences ((pn,i '• i < otn} : n < ω),

(fn '• n < ω) where for every n < ω, fn is a function from αn into {0,1}, and

(Pn,i ' i < &n) a maximal antichain of P we can construct a P-name, which

we shall denote with r ( ( f n '• n < ω), ((pn,i '• i < &n] : n < ω)) such that r

is a name of a function from ω such that for every n < ω if pn^ G G then

r(n) = fn(^)' There is no difficulty in obtaining such a name by the methods

we described above (or by 3.1). A name of this form is called, in this proof,

canonical.

Let us estimate now, in V', the number of the canonical names. For a

fixed n, and a given αn, there are 2'aTll < 2H° different suitable /n's. Therefore

there are < Tln<ω2*° = 2^° possibilities for (fn : n < ω). P is included in

the set of all finite subsets of λ x 2 and |λ x 2| = λ and so, obviously, also

|P| — λ. The number of countable sequences from P is therefore λκ°, thus the

number of possibilities for (pn^ : i < an) is at most λκ°, and for sequence

((Pn,i '• i < θίn) : n < ω) the number is at most (λH°)H° = λH°. For each

sequence ((Pn,i '• i < OLU] : n < ω) we have at most 2K° corresponding sequences

(fn '. n < ω), thus the total number of possibilities is at most 2K° λκ° = λH°.

Since λH° = X there are at most λ canonical names.

4.2 Lemma. For every P-name r there is a canonical name r (as defined in the

beginning of the proof of 4.1 above) such that Ihp " if r is a real then r = r".

Proof of the Lemma. For every n let Jn = {p G P : p Ihp "r is not a real "

or p Ihp "r is a real and τ(n) = f for some I G {0,1}}. For each n the set

Jn is a dense subset of P, since every q G P can be extended to a p G Jn. (If
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G is a generic subset of P which contains q then in V[G] either τ[G] is not a

real or τ[G] is a real in which case r(G\(n) = 0 or τ[G](n) = 1. By the forcing

theorem some member p of G forces the statements mentioned above which

hold in V[G], and, without loss of generality, we can assume p > q. This p is

in Jn}. Let Tn be a maximal antichain contained in Jn. Since P satisfies the

c.c.c. we have |I| < NO and we take αn = |Jn|, Jn = {pn^ : i < αn}. We define

/n on αn by:
J O i f p n > ί l h p '<τ(")=0"

J n V V — "S
I 1 otherwise

Let r* = r ( ( f n : n < ω), ((pn,i i < &n) n < ω)), and we shall prove that for

every generic G C P we have V[G] N " if r is a real then r — τ*[G]". Assume

that τ[G] is indeed a real. Since r* is a name of a real, by its construction

τ[G] = Γ*[G] will be established once we prove that for every n < ω we have

l[G](n) = Γ*[G](n). Since [pn^ : i < an} is a maximal antichain in P (in V)

G contains pn^ for a unique i. Since pn>i G Jn and since pnji cannot force that

r is not a real (as τ[G] is a real in V[G]), we have pn^ Ihp "r(n) = f, for some

^ G {0,1}. By the definition of fn(i) we have fn(i) — i for the same I. By the

definition of r* we have r*[G](n) = /n(i) if pn,t ^ G. Since pn|ί Ihp "τ(π) = f

we have y[G] t= "τ[G](n) = £ = /n(i) - τ[G](n)" which is what we have to

prove.

Π4.2

Continuation of the proof of 4-1- To prove Ihp "2H° < λ" we shall show that for

every generic G C P we have V[G] N "2N° < λ". Suppose V[G\ \= "2H° > λ+",

then in V[G] there is a one-to-one function / from λ"1" into the set of reals.

Let σ be a name of this function. For every i < λ+ there is a canonical

name r\ of a real such that Ihp "if σ(ί) is a real then σ(ϊ) = r*" (since we

can either regard σ(ϊ) itself as a name and use the lemma above, or else use

an earlier lemma, 3.1, which establishes the existence of a name r such that

^~P "?(*) — l" whenever Ihp "(3x)(σ(i) = x)" and then use the lemma to

obtain Ihp "r = r*".) Since there are at most λ canonical names, and λ+ of

V[G] is also > λ+ of V there is a j ^ i such that r* — r*. Now in V[G] we
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have f ( i ) = σ[G](i) = τ*[G] = τ*[G] - σ[G\(j) = /(j), contradicting the fact

that / is one-to-one. So we have proved 4.1. QI.I

4.3 Definition. Cohen Generic Reals. Let us take P = {/ : / is a finite

function from ω into {0,1}}, with p < q being defined as p C q. This is called

Cohen forcing. It is easily seen that if G is a generic subset of P then |J G is a

real. Let us see now that we can reconstruct G from \J G by taking G to be the

set of all finite subsets of \J G. If p G G then p is obviously a finite subset of (J G.

If p is a finite subset of \JG then p — {(fci,^) : i < n} for some n < ω. Since

(ki,ti) G G there is a pi G G such that (A^,^) G p^. Since G is directed there

is a q G G such that q > Pi for all i < n. Obviously p = {(fc-j, £$) : i < n} < ς,

and since G is downward-closed we have also p G G. Since G and |J G can be

constructed from each other we can identify them and speak of a generic real

U G. Given V, we shall call a real number g a Cohen real over V if for some

G C P which is generic over V we have # = \J G.

4.3 A Discussion. When we talk here about reals we talk about members of

the cantor set W2, given an open subset A of ω2 in V this A is also a set of reals

in the (true) universe, but we are interested not in A itself in the universe but

in the subset of ωeϊ in the universe that has there the same description that A

has in V. For example, suppose A is {r G ω<2 : V N r 2 p} for some p G P, then

we are interested in the set A* = {r G ωel : r 3 p}

Obviously A = A* Π V and A* contains reals which are not in V (since,

in the universe, \A*\ = 2^° while \V\ = NO) and hence not in A. The analogous

situation for the real line R is when we look at a rational interval (α, b)v — {x G

Rv : α < x < &}, and the corresponding set in the universe is (α, b) = {x G R :

a < x <b}. Obviously (α, b)v = (α, b)ΠV and (α, 6) contains reals which are not

in V ( since |(α, 6)| = 2^° and \V\ = NO) and hence not in (α, 6)^. Let us denote

with Bp the basic open set {r G ω2 : r 2 p} in the Cantor space, and with B^

the corresponding set {r G ωel : V N r 2 p} in \Λ Obviously B% = BPΓ\V.

Given an open set Av in I/ we define A* = (J{BP : p e P,B% C Av}.

A* is obviously an open subset of ωΊ and Av = A* Π V. For a closed set
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Cv we take A = ω(2 n V \ Cv and C* = ωcl \ A*, we can write it also as

C* = {r G "2 : (Vn < ω) [S n̂ Π Cy ^ 0]}. One can easily see that if Av is

a clopen (i.e. closed and open) set then A* is the same set whether we regard

Av as an open set or as a closed set.

We shall use Av only when Av G V; in fact for every Borel set A G V

there is a unique Borel set A* in the universe such that they have a common

definition (in V) and then A* Π V = A.

The close connection between Cohen forcing and Cohen (generic) real is a

quite universal phenomena for the forcing in use.

4.4 Theorem. A real number r is a Cohen real (or Cohen generic real) over

V iff r belongs to no <7* where Cv is a closed nowhere dense subset of ωcl in

V, or in other words, if r belongs to every set A* for every set A G V which is

a dense open set of ωcλ in V.

Proof. Let r be a Cohen real and let Av be a dense open set in V. We

have r — |JG for some generic subset G of P where P is from 4.3. Let

X — {p G P : B^ C ^4^}. Since Av is a dense open set, clearly X is a

dense subset of P, and hence G Π X ^ 0. Let p G G Π T. Since p £ G clearly

r — U G D P, i.e., r G Bp. Since p e X we have £^ C Λv hence £p C A* and

r e Λ * .

Now assume that for every dense open set Av ,r G ̂ 4*. Let G be the set

of all finite subsets of r, then r = \JG. We shall prove that G is a generic

subset of P over V and hence r is a Cohen real (over V). Let X be a dense

subset of P. Then Av d= \J{B^ : p G J} is a dense open subset of (W2)v, and

therefore r G A*, hence r G B^ for some # G P such that 5^ C Av. Since

5^ is a closed set in the compact space ω<2 n V and {5̂  : p G 1} is an open

cover of Av and hence of B^ there is a finite subset {B^. : 1 < i < n}, with

{Pi : 1 < i < n} C Z which covers β .̂ Let m be such that ra includes the

domains of all p^ I < i < n, and #. Let r^ be such that r^(j) = r ( j ) for j < m

and rt(j) = 0 for j > m. Since r e Bq also r^ G -B^ and since r t G V also

r ΐ G S .̂ Therefore for some 1 < i < n, r^ G -B^ and r^ \Ώom(pi) = pi. But r^
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coincides with r on m which includes Dom(pi), hence rfDom(pi) = pi. Lastly

rfDom(^) € G since it is a finite subset of r, hence pi G G. Since Pi G I we

have G Π Z ̂  0 and G is generic. U4.4

4.5 Corollary. The set of all Cohen reals over a model V is a comeager subset

of "2.

Proof. The reals which are not Cohen reals are exactly the reals which do not

belong to some set A* where Av is a dense open subset of ω<2 Π V in V. Let

I = {p G P : £^ C Λv}. Since Ay is a dense open subset of ωfl Π V in F,

clearly X is a dense subset of P and A* = |J{-BP : p G X} is a dense open subset

of "2. The set of the reals which are not Cohen reals is |J{ω2 \ A* : Av G V, Av

is dense open in (ω2)v}. This is the union of NO nowhere dense sets (2ω \ A* is

nowhere dense since A* is dense open, the union is countable since V is ) and

is thus a meager set. Therefore the set of all Cohen reals is comeager. D4.5

Remark. Does the Cohen forcing collapse cardinals? No, since P is countable

and hence, obviously it satisfies the c.c.c. See Lemma 3.6 (i).

§5. Equivalence of Forcings Notions, and
Canonical Names

We deal with forcing with a subset of P.

5.1 Lemma. Let (P, <) be a forcing notion in V and let Q be a dense subset

of P.

(a) If G is a generic subset of P over V then H = G Π Q is a generic subset

of Q over V and G = {p G P : (3q G H)p < q}.

If H is a generic subset of Q over V then G =

a generic subset of P over V and H — G Π Q.

(b) If H is a generic subset of Q over I/ then G = {p G P : (3g G #)p < g} is
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(c) The assertion (a) and (b) above establish a one-one correspondence be-

tween the generic subsets of P and those of Q. If G and H are correspond-

ing generic sets then V[G\ = V[H] and therefore the same statements are

forced by the forcing notions P and Q (they are equivalent - see Definition

5.2 below).

(d) Any Q-name is a P-name, and if TI, . . . , τn are Q-names, φ(x\, . . . , xn) a

first order formula then Ihp φ(τι, . . . , rn) iff Ihg φ(τι, . . . , τn).

(e) For any P-name r there is a Q-name σ such that Ihp "r = σ".

Proof of the Lemma, (a) It is obvious that G Π Q is downward closed in Q.

Let p,p^ G G Π Q. Since G is directed there is a p" G G such that p" > p,p^.

Now Q is dense, and hence {<? G Q : <? > p"} is dense above p". Since p" e G

clearly G Π {ςr G Q : q > p"} Φ 0; let q be such that p" < q G G Π Q,

so # > p" > p,pt. Thus we have seen that G Π Q is directed. Let I G V

be dense in Q, then, as easily seen, J is also dense in P. Therefore we have

I Π (Q Π G) - (I Π Q) Π G - I Π G φ 0. We can conclude by 1.20 that G Π Q

is a generic subset of Q (over V).

Obviously {p € P : (3ςr G G Π Q)p < <?} C G. In the other direction, if

r G G then, as we have seen for p" above, there is a q G G Γ\Q such that g > p.

Therefore r G {p G P : (3<? G G Π Q)p < 4} and so

{p G P : (3qr G G Π Q)p < q} = G.

(b) G is obviously downward closed and directed. Let 2 be a dense upward

closed subset of P, then T Π Q is obviously a dense subset of Q. Then 0 ^

f Γ Π ( I n Q ) = ί / 'nJCGnI. Lastly H = G Π Q is obvious by the definition

of G as H is downward closed.

(c) Since we have G G V[/f], because G can be easily computed from if, we can

evaluate all the P-names in V[H] and we get therefore V[G] C V [ H ] . Similarly

H G V[G\ implies V[H] C y[G], hence V[H] -

(d),(e) are left to the reader.



30 I. Forcing, Basic Facts

In fact in 5.1 we have proved that P, Q are equivalent where

5.2 Definition. The forcing notions P, Q are equivalent if there are τ,σ, a

P-name and a Q-name respectively such that:

(1) Ihp "r is a generic (over V) subset of Q".

(2) If-Q "σ is a generic subset of P"

(3) for G C P generic, G = σ[τ[G}}

(4) for G C Q generic, G = τ[σ[G\]

Clearly equivalence of forcing notion is an equivalence relation.

5.3 Definition. (1) A function / from P into Q is called a complete embedding

if: for any maximal antichain T C P , f(X) = {f(p) : p G X} is a maximal

antichain of Q and / \ϊ is one to one of course and P N "p < ς" => Q N "

(2) We write P <> Q if P C Q (which mean: p G P => p G Q, for p, 9 G P we

have P 1= "p < <?" <£> Q N "p < </"), and the identity mapping is a complete

embedding of P into Q.

5.4 Lemma. 1) If / is a complete embedding of P into Q, ί/ien there is a

Q-name σ, Ihg "σ is a generic subset of P". If in addition the range of / is a

dense subset of Q, then P, Q are equivalent.

2) If P <$ Q, and pi, ^2 € P then: pi, ^2 are compatible in P iff pi, P2 are

compatible in Q.

3) Assume P C Q. Then P <£ Q iff every pre-dense J C P is pre-dense in Q

too.

Proof. Easy. Dι.5

5.5 Definition. (1) For a forcing notion P, and p, g G P, we say p w q (p, ς

are equivalent ) if any r G P is compatible with p iff it is compatible with q.

Clearly « is an equivalence relation on P.
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(2) We define P/« as follows: the members are p/« (for p e P) and we define

a partial order: (p/«) < (<?/ w) zjff there are p1" G p/« and ςrt G ςr/« such that

every r G P compatible with q^ is compatible with pt.

5.6 Claim. (1) In Definition 5.5 we have:

(a) (p/*)<(qMiffq\}-pupeGpn.

(b) w is an equivalence relation.

(c) in 5.5 (2), "there arept € (p/~),q^ € (<?/«)" can be replaced by "for every

pt e (p/«) and tft € (ς/«)»

(d) (p/«) = (g/«) iff (p/«) < (<//«)& (ϊ/«) < (p/«).

(e) P/« is a partial order.

(2) The function p —» p/« is a complete embedding of P into P/w with a

dense range hence P, P/w are equivalent. The function preserves "p < g",

"p,9 compatible", "p,</ incompatible" (though not necessarily "-«p < #").

Proof. l)(a) If the right side fails, let G C P be generic over V such that q £ G

but p <£G. Choose a maximal antichain X such that p el e V, then for some r

we have G Γ\X = {r} and g, r are compatible (because they are in G) while p, r

are not compatible (because r ^ p as one is in G the other not and {r,p} C X).

By clause (c) of 5.6(1) this implies the failure of the left side, so we have proved

the only if direction. The other direction in the "iff" is proved similarly,

(b), (c) Easy.

(d), (e) Left to the reader.

2) Easy. D5.6

It is interesting to note that in each equivalence class of equivalent forcing

we can choose canonically a representative (unique up to isomorphism), which

is essentially a complete Boolean algebra (without the one).

5.7 Definition. For any forcing notion P let:

(1) A set A C P is called open-regular if it is open and for every p G P \ A

there is q > p incompatible with A, i.e., (Vr G P)(r > q —> r φ A).
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(2) RO(P) is the partial order whose set of elements is the nonempty open

regular subsets of P, and A < B (for A,B G ΛO(P)), if B C A, equiv-

alently if every p G P incompatible with ^4 (i.e. incompatible with every

g G A) is incompatible with B.

(3) For p G P let ro(p) = {q G P : there is no r > q incompatible with p}.

5.8 Theorem. (1) The mapping p ι— > ro(p) is a complete embedding of P into

(2) PO(P)/«, if we add to it a maximal element 1, becomes a complete Boolean

algebra;

(3) If B is a complete Boolean algebra, and P = B \ {!#}, (with the usual

ordering of a Boolean algebra ) then RO(P)/& is isomorphic to P, moreover,

we can use the isomorphism p \— > ro(p).

Proof. Well known. Ds.g

5.9 Theorem. The forcing notions P, Q are equivalent iff

ΛO(P)/w and ΛO(Q)/« are isomorphic.

Proof. The proof is easy, using:

5.10 Claim. Suppose A G RO(P) and J a maximal antichain such that for

every pel either p G ̂ 4 or p is incompatible with A. TTien A, UPeAn:rro(p)

are equal (in PO(P), union as in a complete Boolean algebra). Πs. 10,5.9

5.11 Definition. For any α G W and V C V^ we define rky(α): rkv(α) — 0

iff a G V, and rky(α) = U{rky(6) + 1 : 6 G α} otherwise.

5.12 Definition. We define when a P-name r is canonical by induction on its

rank α: if r = {(pi,Ti) : i < ZQ}, then r is canonical if:

(1) If Ihp «rk(r) < /?", then β > α, and if lhP

 αrkv(r) < β» then
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(2) if Ihp " r has power < λ", λ is a regular cardinal and P satisfies the

λ-c.c. then IQ < λ"

(3) each TI is canonical, moreover: if pi \\- "rk(τi) < β" then rkn(r^) < /?,

and if pi Ih uτkv(li) < β" then β > 1 + rkr(r;) and if lhP

 u

Ti has

power < λ", λ a regular cardinal and P\{p : p > Pi] satisfies the λ-

c.c. then |r^| < λ.

5.13 Theorem. For every P-name r there is a canonical P-name σ such that

Ihp "r = σ".

Proof. We prove by induction on the rank of r, that

(*) if r € P, r Ih "rkv(τ[G]) < a and ιkv(τ[G\) < β, and τ[G] has power

< λ", and λ is a regular cardinal, and P\{rf : r < r' G P} satisfies the λ-c.c.,

then we can find a canonical P-name σ such that: r Ih "r = σ" and rkn(σ) < α

and rkr(σ) <!+/?, and if σ = {(</;, σ^) : i < ZQ} then i0 < λ.

If rkn(τ) = 0, let σ = r and there are no problems. If not, but Ihp "r G V"

let Z be a maximal antichain of P above r such that for every p G Ί, for some

«P € ^5 P I^P "l = £p" We then let σ — {(p, 6) : p G J, 6 e αp}. So assuming

neither occurs, we can find a maximal antichain X of P above r, so that for

each p G Z, for some ordinals αp and βp and λp we have p Ih "rk(r[G?]) = ap

and rkv(r[G]) = /3P, and the power of r[G] is λp, (which is a cardinal in

V[G])". Let fp be a P-name such that p Ih α/p a function from λp onto r",

for each p G T (use Lemma 3.1). Let r = {(pi,Ti) : i < i0}, and let J77 for

7 < sup{λp : p e X}) be a maximal antichain of P above r, so that each q e JΊ

is above some member p of I, and if 7 < λp, for some i = 1(9,7), 9 ^ Pή

9 II- "/p(τ) = Γ<" and g Ihp "rkd^G]) - α^, rky(r[G]) - β^ and the power

of Ti[G] is λ^ (which is a cardinal in F[G])".

Now apply (*) by the induction hypothesis for r^q^,q for any q e JΊ and

get canonical qΊ^ Let

? = {(^5 2"7>ς) : 7 < sup{λp : p € ΐ] and g G J^}
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As P\{rf : r < r' G P} satisfies the λ-c.c., \I\ < λ, and as r Ih "τ[G] has

power < λ" , each \p (p G I) is < λ. As λ is regular, UP<EJ λp is < λ, so we can

finish. Πs.ia

5.14 Theorem. If PI, P2 are equivalent and disjoint, then there is Q, PI <& ζ),

P^ a dense subset of Q, (for ί= 1,2). Πδ.i4

5.15 Claim. The λ-c.c. property is preserved by equivalence. Πs.is

5.16 Definition. (1) Tc(x) (the transitive closure of x ) is defined by induction

on the rank of x,

Tc(x) = {x} U \J Tc(y)
y£x

and it is the minimal transitive set to which x belongs

= {x: |Tc(x) |<λ}

5.17 Claim. Let λ be an uncountable regular cardinal.

(1) If r is a canonical P-name, P G if (λ) and V (= cf (λ) > |P|

then:

T € #(λ) ίflp Ihp "r G

(2) (ίf(λ),€) satisfies all axioms of ZFC except possibly the power set

axiom.

Proof. (1) If r £ Ή"(λ) we can prove by induction on rkn(r) that τ[G] G

F(λ)v[G' hence obviously lhP "r G #(λ)V[ζ?]". Now P satisfies the |P|+-chain

condition and H(X) = \J{H(μ+) : μ < λ} so w.l.o.g. λ is a successor cardinal;

clearly |P| < λ (by the definition of ff(λ)). By Claim 3.7, λ is a cardinal also

in V[G] so Definition 5.12(1) gives the other direction.

(2) Is obvious. Furthermore if λ is strongly inaccessible (if (λ), G) is a model of

all ZFC. D5.i7
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5.18 Claim. 1) If P is a forcing notion satisfying the c.c.c. then the number

of canonical P-names of an ordinal < μ is < (|P| + μ + HO)N O.

2) In (1) the number of canonical P-names of a function from μ to λ, is

3) If P satisfies the ft-c.c., K regular, the numbers in (1) and (2) should be

(|P| + μ + K0)
</ς, (\P\ + μ + A + K0)

<(/ί+μ+) respectively.

Proo/. Included, essentially, in the proof of 4.1. Πs.is

§6. Random Reals, Collapsing Cardinals
and Diamonds

Random Reals.

6.1 Definition. Let C be the set of all closed subsets of the real line, B the set

of all Borel subsets of the real line and M the set of all (Lebesgue) measurable

subsets of the real line. For X G {C,B,M} we take Px = {A G X : A is of

positive Lebesgue measure }, and p < q if q C p. We use here the real line, but

we could have used also the Cantor space ωcl as the real line. For A G .Λ/ί, let

Leb(A) be the Lebesgue measure of A.

6.1 A Discussion. Every measurable set of positive measure includes a closed

set of positive measure, and thus PC is dense in PM- Since C C B C ΛΊ, the

three notion of forcing PM, PB, and PC are interchangeable (in fact equivalent

see 5.1(c) and Definition 5.2). We shall work mostly with PC and when we do

not care with which of these notions we work we shall write just P.

First we shall prove that PΛΛ satisfies the c.c.c. Let pi, i < HI be pairwise

incompatible conditions. For each i < HI we know Leb(p^) > 0, where Leb

denotes Lebesgue measure. Therefore there is a positive integer Ui such that

Leb(pi Π (— ni,rii)) > —-. Since there are KI i's and HO positive integers there

is an uncountable subset 5 of HI and an n < ω such that Ui — n for all i G S.

Since for i,j < HI, i ^ j, Pi and p^ are incompatible we have Leb(p^ Πpj) =0.

Let T C 5 contain 2n2 4- 1 members, then Leb((— n,n)) > Leb(Uί€Tpi Π
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(-n,n)) = Σ;eτLeb(P* Π (-n,n)) > Σ^τ £ = (^ + 1)£ = 2n + i which

is a contradiction.

For every positive real ε in V the set {[nε, (n + l)ε]: n is an integer } is

obviously a maximal antichain, therefore G contains a closed interval of length

ε. For p £ PC let pv^ denote the closed set with the same description in V[G]

as p has in V. If Pi G G C Pc for i = 1, . . . , n we have Leb(p|™=1 pY) / 0. Since

pΓ[G1 2 pf we have ΠlLi^1 ^ <*• Let us consider the set {pvW : pv e G C

PC}- The intersection of every finite subset of it is nonvoid and its members

are closed sets, some of them bounded, hence Γ\p^opv^ ^ 0 by compactness.

Moreover, since for every positive integer ra the set {py[Gl : pv G G} contains

an interval of length ^ (since if the length of pv is ̂  so is the length ofpv^)

necessarily the set Γ\P^GPV^ consists of a single real g. A real obtained in this

way is called a random real (over V). We shall see that we can reconstruct G

from g. Now let us mention that since PC is dense in P&, we have, for every

p G PB ΠG a condition q > p such that q G PC ΠG, i.e., q C p. Since the generic

real g belongs to qv^G\ and since q C p implies qv^ C p^Pl also <; G p^'G'.

Thus for every Borel set pv in G we have g G pv^σl.

To reconstruct G from # it suffices to tell which closed sets belong to G,

since if we deal with PB or PM , G will consist of all members, of PB or PM which

are < these closed sets. Now we shall see that in V[Gpc], G = {Av G PC g G

Λ^N}. We have already seen that if Av G G then # G Av^. Now we assume

that g G AVIG1 and prove that Av G G. Assume Av φ G and extend {Av}

to an antichain S of PC which is maximal among the antichains which consist

of pairwise disjoint sets. We shall see that 5 is a maximal antichain of PC- If

this is not the case there is an E G PC such that E is incompatible with every

member of 5, i.e., Leb(EΓ\B) = 0 for every B G 5. By the c.c.c. S is countable,

hence Leb(£\US) = Leb(S)\Leb(EΠ|j5ί), but Leb(EnljS') < Σβes° = °

hence Leb(£ \ 5) = Leb(£) > 0.

Now E \ U 5 is a Borel set of positive measure, hence it includes a closed set

W of positive measure. For every B G S we know that W Γ\B CW Γ\\JS = 0,

contradicting the maximality of S. Now that we have proved that S is a

maximal antichain we know that G contains some member Bv of 5, which
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is different from Av (since Av φ G) and therefore BVΓ(AV = 0. Since Bv G G

we have g G BVW, hence g G BVW Π AVW. Let [n,n + l]v^ be an interval

which contains g, then BVM Π A^ Π [n, n + 1] ̂  ^ 0.

On the other hand, since (Bv Π [n, n + l]y) Π [Ay Π [n, n 4- 1] v) = 0 the

distance between B^ Π [n,n 4- 1]̂  and A^ Π [n,n 4- I]17 is some d > 0. Let

e be a rational number < d. There is a finite number of intervals of length e

which separate Vβ Π [n, n + 1] v from Av Π [n, n + 1] v. The "same" intervals

separate also BVW Π [n,n + 1}VW from AvtG] Π [n,n + 1]̂  contradicting

6.2 Theorem. A real number r is random over V iff for every Borel set Av G V

such that Leb(Av) = 0 we have r £ A* iff this holds for every Gσ set A^ (where

A* is the Borel set in the universe with the same description as A.)

Proof. Assume that r is random over V, r G n{Bv^ : Bv G G C Pβ}. Let

Av be a Borel set with Leb(Av) = 0. As easily seen the complement Rv \ Av ,

where Ry is the set of all reals in V, is such that {R^ \ Av} is a maximal

antichain in PB and hence Rv \ Av G G. Therefore r G IR^l \ AVW C R\ A*,

i.e., r ^ A*.

Now assume that r ^ A* for every Gσ - set Av (i.e. countable intersection

of open sets) such that Leb(Av) = 0. Define G C Pc by Bv G G iff r G S*.

If Ay D 5y G G then also A* D 5* and r G Bv, hence r G A* and Av G G.

If Av , 5V G G then r G A* Π 5*. If Leb(Λy n 5V) - 0 then since Av Π Bv

is closed and therefore is a Gσ-set, we would get r φ A* Π B*. Therefore

Leb(Av Π Bv) > 0, and since r G A* n B*, we get Ay Π βv G G. Finally, let S

be a maximal antichain in PC, we have to prove G(Ί5 ̂  0 in order to prove that

G is generic. Let Ev = Rv \ (J{A : A G 5}, so £ is obviously a Gσ - set. Since

S is maximal Leb^) = 0, therefore r φ E*. Since Ev = Rv \ \J{A : A G 5},

so we have E* = R \ |Jβ€s B*. Since r g E* we have r G B* for some B G 5,

and therefore £ G G and G Π S ̂  0. D6.2
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The Levy Collapse.

6.3 Definition. 1) Levy(H0,λ) = {/ : / is a finite function from ω into λ},

where λ is an uncountable cardinal. For the partial order on Levy (Ho, λ) we

choose inclusion.

2) Levy(tt, λ) = {/ : / is a partial function from K to λ such that |Dom(/)| < «}

ordered by inclusion.

6.4 Discussion. In V[G], where G is a generic subset of Levy(Ho, λ) it is easily

seen that g = (J G is a function on ω onto λ. Therefore |λ|^[Gl — HQ.

Since in V[G] there are no cardinals between λ and λ+ all the ordinals

< λ+ are countable in V[G] so (λ+)y = H-^ ^ provided λ+ is a cardinal in

V[G], thus we must check what is the fate of the chain condition for Levy(H0, λ).

Levy (Ho, λ) has λ pairwise incompatible members, for example {{0, α) : α < λ}.

However, it is easy to see that |Levy(Ho, λ)| = λ and hence Levy(Ho, λ) satisfies

the λ+ chain condition and the cardinal λ+ is not collapsed by forcing with

Levy (Ho, λ).

We define

6.5 Definition. 1) Levy (Ho, < λ) — {/ : / is a finite function from λ x ω into

λ such that /(O, n) =0 and for α / 0 we have /(α, n) < α}. The partial order

on Levy (Ho, < λ) is inclusion.

2) Levy(/ς, < λ) = {/ : / is a partial function from λ x « into λ such that

|Dom(/)| < K and /(O, α) = 0 and α > 0 => /(α, i) < a} ordered by inclusion.

6.6 Discussion. Let G be a generic subset of Levy(H0, < λ) over V, and let

fo = \JG. Obviously for every 0 < a < X the function /σ(α, -) is a mapping of

ω onto α, and hence α is countable in V[G]. What about λ, is it, too, countable

in V[G\ or else is it H^'G'? If λ is singular in V it stays singular also in V[G],

hence it cannot be Hj ^ ^ and it is countable.

6.7 Theorem. If λ is regular then Levy(H0, < λ) satisfies the λ-chain condition,

and hence λ = H^[GI in V[G\.
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We shall prove the following more general version.

6.8 Theorem. Let λ be a regular uncountable cardinal, \W\ = λ, let (Ax : x G

W) be such that \AX\ < λ for x G W and let P = {/ : / is a finite function on

W such that f ( x ) G Ax for each x G Dom(/)} be a forcing notion such that: if

/, g G P agree on Dom(/) ΠDom(^) then /, g are compatible. Then P satisfies

the λ-chain condition.

Proof. Without loss of generality we can assume that W = λ and Ax C λ for

each x G W. Let ( f a : a < λ) be a sequence of members of P. For a < X we

define h(a) — Max[{0}(J(Dom(/α) Π α)]. Since fa is a finite function we have

h(ά) < a for a > 0. Thus h is a regressive function on λ \ {0} and therefore it

has a fixed value, 70 on a stationary subset S of λ by Fo dor's Lemma. Let pt

be the set of all members of P whose domain is included in 70 -h 1. For every

finite subset u of 70 4- 1

|{/ G Pf : Dom(/) - u] = |{/ e P : Dom(/) - u}\ =

The number of finite subsets u of 70 H- 1 is < |7o| + NO < λ hence, since λ is

regular |pt | = £uc7o+i, u is finite K/ € P : Dom(/) = u}\ < λ. For each g G pt

let Sg = {a G S : fa f (70 4- 1) = g}. Clearly Upept Sg = S since for every

α G 5 we have α G Sy^^o+i)- Since |pt| < λ one of the 5p's say Sgo must

be stationary (since the union of < λ nonstationary sets is nonstationary) . Let

C = {δ < λ : δ a limit ordinal satisfying (Vα < δ)[Όom(fa) C 5]}, clearly C

is a closed unbounded subset of λ, hence 5' = Sgo Π C is a stationary subset

of λ. Let a G Sgo and let β G 5 0̂ be such that α < β G 5 hence /? is a strict

upper bound of Dom(/α), we shall see that fa and /^ are compatible. Since

β € Sgo C S, clearly Max(Dom(/^) Π β) = 70 and since Dom(/α) C β we

have Dom(/α) Π Ώom(fβ) C 70 -f 1. Since α,/? G 55o we have /αf(7o + 1) =

//3 Γ(7o + 1) = #o> hence /α and //? are compatible. Πθ.8,6.7
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On Diamonds.

6.9 Theorem. If λ is regular uncountable cardinal, 5 C λ stationary, then for

some forcing notion P:

(1) ll-p "Os holds " (see below)

(2) forcing with P, preserve the cardinals μ < X (in fact it is λ-complete

and hence add no new α-sequences of ordinals for a < λ.

(3) I-P| < Σμ<λ2μ> so if λ<Λ = X Arcing with P does not change

cardinalities and cofinalities,

where: "Os holds " means: there is a sequence (Aa : a G 5), Aa C α

such that for any A C λ the set {α G 5 : A Π a — Aa} is stationary.

Proof. Now the idea is as usual to construct a generic object, by approximations

inside V.

So we define: P — {(Ai : i G SΊΊα) : a < X and Aj C i for every i G 5lΊα},

ordered by: being an intial segment.

Part (3) is easy by the definition of P.

Part (2) holds as P is obviously λ-complete (take union) and the inequality

stated in (3) is straigthforward - [the fact that no new α-sequences are added

follows from regularity of λ]. Now what we are left with is:

(*) if G is P-generic then V[G\ N "Os holds"

Let A be included in λ, and let C be closed and unbounded subset of

λ, both in V[Gr], then C, A have names C,A repectively and for some / in

G, f Ih "C is a club of λ and A is a subset of λ". Let / < p G P. All we

have to do is find q > p such that q — (Ai : i G S Π α), α < λ, Ai C i

and q Ih "i £ C&A Π i — A? for some i G S Π α; this will prove that

the set of such <?'s is dense above / hence that G contains one of them so

V[G] t= "{α G 5 : A Π a = Aa and a G C} / 0" and as this holds for any club

C G V[G\ clearly V[O\ t= "{α G S : AΠa = Aa} is stationary" i.e., V[G\ N "Os

holds as exemplified by A" where A = \J{f : f G G}.

So let us find </, we define by induction on ζ < λ, aζ < λ, pζ = (Ai : i G

S Π αζ), -Bζ and /?£ such that

1) for ξ < C, αξ < αc, p^ < pc, and PQ = p
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2) Pc+1 ih «βζ G C"

3) pc+χ Ih "A Π αc = Bζ" for some Bζ G V such that Bζ C αc.

4) for limit C, we have pζ = (Jξ<ζpξ = (A* : i G 5 Π αc).

5) αζ < λ is (strictly) increasing continuous and /?£ is strictly increasing

continous.

6) αc </3c+ι

The definition is easy, remember for ζ successor / Ih "C is an unbounded subset

of λ", so there is β G C, β > Oiζ. For ζ limit remember / Ih "C is closed ".

For (3) remember that P is λ-complete hence does not add new bounded

subset of λ.

Note that for ζ limit &ζ = βζ (by clauses 5), 6)) and that ξ < ζ =>

B^ = Bζ Π aξ. In the end {βζ : ζ < X} is a club in V, but 5 is a stationary

subset of λ (in V) hence for some limit C, βζ £ 5, but then p^ Ih "for ε < ζ",

Λl Π αε = βε and βε e C hence A Π βζ = Bζ = \J^<ζ Bξ and βζ G C". Let

q= (A't'.ie Sn(βζ + 1)), where A^ is: A< if i < /?c and Bc if i = /3C. Easily

p < q, and g is as required.

Note that we also have proved that 5 remains stationary. D6.g

§7. A Does Not Imply <>

Note: 4k is a weak version of the diamond.

7.1 Definition. For a regular uncountable cardinal λ and stationary S C λ

set of limit ordinals let us state the combinatorial principle φ:

J|fc(5) = "there exists a witness i.e. a sequence (Aα : α G £) such that for every

a G 5 we have Aa C α and supAα = α and for every unbounded subset X of

λ there exists an α G 5 such that Aa C X" .

When (5) is omitted, it is (Ki).

7.2 Observation. This form of stating A implies the apparantly stonger form

of*:
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"(Aα : α G 5} is as above, and for every unbounded X in λ there are stationarily

many points α G 5 such that Aa C X".

Proof. Assume the first form holds, let X be unbounded and let C be an

arbitrary club in λ. We must show that there is a point a G C Π S such that

Aa C X. Define by induction an increasing sequence (βi : i < λ) of ordinals in

X as follows: 7^ is the first member of C greater than all (βi : j <i), and βi is

the first member of X greater than 7^. As both C and X are unbounded, this

is well defined. Now X' ά= (βi : i < λ) is unbounded, therefore there exists an

a G S such that Aa C Xf. But the demand supAa = a implies that a is also

a limit of members of C - as between two consecutive members of X1 there is

a member of C. By closeness of C, α G C. Dγ.2

Next we prove

7.3 Fact, if CH -fJfrs hold, then also Os holds, where 5 is a stationary subset

of NI.

Proof, suppose that (Aa : a G S) is a witness that Jfrs holds. Using CH let

(Bi : i < NI) be a list in which every bounded subset of HI appears NI times,

and such that sup(Bi) < ί. To get such a list start with a function g from NI

onto <S<KO(NI) x HI (this is where CH comes in, where S<^(A) is the family of

countable subsets of A). Define i : HI —> <S<κ0(Nι) by cases as follows: suppose

g(ϊ) = (Ba,β). Set Bi to be Ba if sup(£α) < i, and 0 otherwise. So it is

easy to check that i is a listing of all bounded subsets of KI which satisfies

our requirements. Now define a sequence (Da : a G S) as follows: x G -Dα

iff there is an i G Aα such that x e Bi. Let us verify now that this sequence

demonstrates <>s Let X be a subset of NI. If Λ" is bounded, let X' be the set

of indices of X in our list, namely all i such that Bi — X. Prom our assumption

that each bounded set appears HI times in the list, X1 is unbounded, and so

there are stationarily many points α G S such that Aa C X'. This implies that

Da is X. Now suppose X is unbounded, and define by induction a function
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j : KI —-> KI as follows: j(a) = minimal j greater than all the ordinals in

{j(β) - β <ot} such that Bi is the bounded set X Π sup{j(β) : β < a}. Now as

j is strictly increasing, for every α we have j(a) > a (the first counterexample

yields an immediate contradiction). So there is a club C whose members are

closed under j. Set X' as the range of j. This is clearly an unbounded set by

the monotonicity of j. So there are stationarily many δ G S for which A$ C X'.

Hence there are stationary many δ G S Π C for which A$ C X'. For each such

£, let us prove that D$ is exactly X Π δ: As ^5 contains only members of X1',

which are in particular indices of bounded subsets of the form X Π α, it is clear

that D$ - which is the union of these sets - is contained in XΓ\δ. To see equality,

fix an arbitrary β < δ. It suffice to show that in the union D$ appears an initial

segment of the form X Π a with a > β. As δ £ C, clearly δ is closed under

the function j so j ( β ) < 5, and since A§ is cofinal in 5, there is an ordinal 7

such that δ > 7 > j ( β ) and 7 G A$. But A$ C X' hence 7 — j(α) for some α,

now by the monotonicity of j, α > /?. So by definition of j, Bj(a) is an initial

segment of X which is obtained by cutting X somewhere higher than j ( β ) , but

the latter is greater or equal to β. So D$ includs X Π β for arbitrarily large

β < δ, hence D$ include X Π ί; hence equality follows. D7.s

7.4 Theorem. A does not imply O

Discussion.

It is clear that the principle 0 implies A, and under CH, we have seen that

A implies O It was asked whether φ —> O As we shall now see, the answer is

negative. We shall build a model of ZFC in which A holds, but CH fails. As

trivially 0 —> CH, this necessarily implies that 0 also fails.

Proof. Out intention is to begin with a ground model satisfying GCH (or just

2^° — N1 } 2*1 = K2; for example a model of V = L) which has a 0-sequence

on ^2 Using the 0 we will define a ^-sequence on K2 which is immune to NI-

complete forcing, i.e. is still a ^-sequence in the universe after forcing with an

Ni-complete forcing notion. The next step is adding N3 subsets to KI using an

Ni-complete forcing notion. The last stage will be collapsing KI, thus making
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of the cardinal that previously was H2 our present HI. Although this will not

be done by an K2-complete forcing, our Jfc-sequence on N2, which has has now

dropped to HI, will remain a ^-sequence, while there will be K2 subsets of HO

(which were formerly HS subsets of HI). So we change our universe three times.

We will present each stage of our plan in detail:

Stage A: defining a ^-sequence on H2 using

We first note here that a 0-sequence can guess not only ordinary subsets

of H2, but also elementary substructures of any structure over H2. Suppose

a structure M over H2 (in a countable language) is given. For each relation

symbol or a function symbol R fix a subset of AR H2 of size H2 and a 1-1

function FR : H2 ' — > AR such that two different ARS are disjoint where we

let £g(R) = n if R is an n-place relation symbol, and ίg(R) = n + 1 if R is an

n-place function symbol. Thus the set FR(RM) codes the relation RM . Let A

be the union of all FR(RM). So A codes the structure M. If (Ai : i £ S) is a

0-sequence, then A is guessed stationarily often, namely for stationarily many

i G S we have A Π i = Ai. Clearly, the set C = {i < H2: for all R we have

FR(RM^) C i} is closed unbounded in H2. Moreover, the set of α such that

M \a is an elementary substructure of M is a club by the Skolem-Lόwenhein

theorem and the continuity of elementary chains. So the intersection of the

two clubs with our stationary set is the stationary set SM of all α such that

M\a is an elementary substructure of M and for all R we have FR(RM^) C α

and Aa = \jFR(RM^a) (that is, M\a contains its own coding and Aa equals
R

this coding). In short we say that for every a. in 5M, Aa guess the elementary

substructure M\OL.

Let S be the subset of H2 of all ordinals having cofinality HQ. We wish to

make use of Os Why does this principle hold in our ground model? Because,

e.g. we could have forced it easily by a preliminary forcing which appeares in

6.9.

Now we come to defining the Jfr-sequence. Let us choose coding for a

language with two relation signs, <* and a two place relation R( , ), and

let (Ma = (α, <*,Λα) : α G 5) be a diamond sequence for such models. So
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for every structure M with universe ^2 for this language, for stationarily many

δ € S the substructures M Γ δ of it are guessed by our 0-sequence i.e. M\δ = MS.

Restrict attention now only to those places in which the guessed substructure

satisfies the following sentences (the set of such δ G S will be called S'):

(i) <* is a partial order.

(ii) if β <* 7 then R(β, x) -* #(7, x)

(iii) (Vα)(V/?)(37 > α)(3£ > β)

Note that there are stationarily many such places (by guessing one such struc-

ture on ^2? for example). In each such place δ we define now a subset of δ

of order type ω which we call D$ : let δ be fixed, and let (β^ : n < ω) be a

cofinal increasing sequence in <J; we define by induction on n < ω a sequence

<7n>ίn : ™ < ω ) such that

2- >

So let 7#, £$ < <J be such that Λ(7o>fo) & $) < ίo» exists by clause (ni) above,

and the induction step i.e. choosing 7*+1, ξ^+1 such that 7^ <| 7^+1 & /3^+1 <

& Λ(7ί+ι,ίί+ι) is handled using (iii). Set Dδ = {& : n < ω}.

Our Jk-sequence will be the sequence (D§ : δ £ S').

Claim B. (D$ : δ e S') is a Jfc-sequence.

Proof. Suppose X is unbounded in ^2- Define a structure (^2, <*,#) with <*

be the natural order on ^2, and R(y,x) ifί x e X. So for stationarily many δ

in Sf the model is guessed by A$, namely (5, Ag) is an elementary substructure

of our structure. So each ξn G X - which implies that D$ C X.

Stage C: adding ^3 subsets to NI.

We will force now with PI = {countable functions from H3 to 2}, ordered

by inclusion. The advantage of our ^-sequence to other Jfc-sequences is that

it is preserved under the forcing notions we are about to apply, and this is
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what we are about to check now. We must check first, however, the weaker

condition, that this forcing preserves stationarity of stationary subsets of N2

namely that a subset 5 of N2 which intersects every "old" club ( "old" meaning

"in the universe before the forcing") intersects also every "new" club. This

follows from the following couple of claims:

Claim D. PI satisfies the N2-.c.c.

Claim E. Every P that satisfies the N2-.c.c preserves the stationarity of subsets

θ f N 2 .

Proof of Claim D. let χ be any regular cardinal which is large enough to have

the power set of PI in H ( χ ) . Suppose that J is a maximal antichain of PI whose

cardinality is greater than NI. Now define an increasing sequence of elementary

submodels of (/f(χ), G) of length NI called (Ni : i < NI), as follows:

(i) PI, X are members of 7V0, and 7V0 is countable, has cardinality NI.

(ii) every countable subset of Ni is an element of NΪ+I.

(in) j < i => Nj ^ Ni.

There is no problem to carry out the construction, because at each stage in

the construction the cardinality of the model at hand is at most NI, therefore

it may have at most NI countable subsets (we have CH in the ground model).

So close these NI elements together with everything you already have in an

elementary submodel of cardinality NI using the Skolem-Lόwenheim method.

At limits take unions, for example. Let us denote the union of the increasing

chain as TV. So TV is an elementary submodel of (ίf(χ),E) of cardinality NI.

Furthermore, every countable set of elements of AT is a subset of one of the

models along the construction (say Ni) by the regularity of NI, therefore it is

an element of NΪ+I, and therefore of N. In short we say that "AT is closed under

countable subsets" .

We recall that PI, X £ N. As X is greater in cardinality than JV, there

must be an element p of J which is not a member of N. (Remember that p is a
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countable function from K3 to 2.) Look at pf, which we define as p Π N. From

the countability of p,p' is clearly countable, and as N is closed under countable

sets and p1 is certainly a countable subset of TV, we have p' € N. Now (H(χ), e)

satisfies the sentence "there is a member of I which extends p1" (it is p). As

N is an elementary submodel of it, and contains as members all the constants

mentioned in this sentence - therefore there must be an element q G I Π N

which according to TV extends p'. We lack only one more detail to derive a

contradiction: the domain of q is countable, therefore there is an enumeration

of it in N. This implies that Dom(g) is contained in TV. So inspect the union

q U p. Clearly q extends the part of p which is in N, and contradicts nothing

that is outside of TV, as we just saw. Therefore p and q are compatible members

of J.

Proof of Claim E. Let S be a stationary subset of H2 in V, and suppose C is

a PI-name for a club of N2 with the condition p in the generic set forcing p Ih

"C is a club in N2". Attach to each ordinal α < N2 a maximal antichain Ia of

extentions of p such that for each q G Ia there is a β(q) such that q Ih "/?(#)

is the minimal member of C above α". Define as Ba the set of all ordinals 7

for which some member of 2a forces that 7 is the first member of C above a.

Clearly Ba has cardinality < |Jα| which is < N2 hence Ba is bounded in N2

Using our standard argument, we see that C* :— {δ < N2 : for all a < δ the set

Ba is included in δ} is a club of K2. But this club, being defined in V, is an old

club! Therefore it meets 5, let us say in δ. As for each Ia, a < δ the generic

set must choose a condition from Jα, and 5α is contained in 5, ί is a limit of

the realization of C, therefore in it.

Stage F. So we know now that our Sf from the definition of the it-sequence is

still a stationary subset of N2 after forcing with PI. But is the sequence still a

Jk-sequence? We verify this now.

Let X be a Pi-name, p e PI and p lhPl "X C N2 is unbounded and C

is a club of N2" We show that the set of conditions which force "there exists

δ G S Π C such that L^ C X" is dense above p. Fix an elementary submodel
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N of (if (χ), G), \N\ = H2, N closed under subsets of size < HI, with p, PI, X

and C members of TV. Enumerate in the sequence (pi : i < H2) the member

of PI Π M which are > p and define a structure M with the same language

as above with universe H2 with: i <* j iff PI \= Pi < PJ, and R(i,x) iff as

Pi Ih "x G X". From the definition of our diamond sequence (Ma : a G 5'),

stationarily many elementary substructures of this structure are guessed by it

i.e. S" = {a e Sf : Ma = N\a} is stationary. Let a be one such coordinate

so Da = {£ : n < ω} where £ < £+1 < <* = U £, # N 7- <* 7«+1,
n<u>

and TV N J?Z(7£,f£). Then we have at hand now an increasing sequence in PI

of conditions (q% : n < ω) such that qn Ih "ξ£ G X", just let q% = p7«. From

elementaricity, this is really an increasing sequence of conditions, and let us

bound it by g, which existed by Hi-completeness. So q Ih "D^ C X" and q is

certainly an extention of p.

So we have added ^3 subsets to HI forcing with PI without destroying out

^-sequence nor collapsing cardinals.

Stage G: collapsing HI.

We collapse now HI, P2 being the finite functions from H0 to HI. This is a

forcing notion of size HI and therefore leaves the cardinals above HI unchanged.

To show that our sequence, which was formerly on H2 is now on HI still a Jit-

sequence, it will suffice to prove the following.

Fact H. In the world after the collapse every new unbounded set of (the new)

HI contains an old unbounded set of (the old) H2.

Proof. Suppose p is a condition and p Ih "X is an unbounded subset of H2". So

for every i < H2 there is an ordinal τ(ϊ) and an extention q(ϊ) of p such that

q(ϊ) Ih "H2 > r(ί) > i and r(ί) G Xn. By the pigeon hole principle there are

H2 coordintes i with a fixed ςι(*) = q(i). Set X ά= {r(ΐ) : ςr(*) = q(i)} - then

surely X is unbounded, so (?(*) is an extention of p which forces that X is an

unbounded subset of X.
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From the lemma we easily deduce both the preservation of stationary sets

(in a new club there is an old unbounded set, the closure of which is an old

club; alternatively use Claim E) and the preservation of our Jk-sequence, for

instead of guessing a new set, it is enough to guess an old subset. Dγ.4




