Chapter V
The Story of 0*

In this chapter we investigate the effect upon V = L of the postulated existence of
various large cardinals in the universe. This represents a different approach to
constructibility from that adopted hitherto. Previously we have been looking at
the internal structure of the constructible universe. We now step back and regard
L from the outside as it were.

It is assumed that the reader has a prior acquaintance with large cardinal
theory. Admittedly, our account is self-contained (except for the omission of some
proofs); but the results we shall obtain cannot really be appreciated without some
familiarity with the standard theory of the cardinal properties concerned. The
relevant material can be found in Drake (1974) and Jech (1978).

We shall make considerable use of model-theoretic techniques, usually for
models of the languages £ (A, ..., 4,). It will be convenient to use some of the
standard notation of model theory. In particular, we shall write the satisfaction
relation as

<M,E9 Ala ceey An> ': (P
rather than

':<M,e, Ag, . A @ -

We shall also not bother to distinguish between an element, x, of a structure and
the constant, x, of £, which denotes it. If ¢ (X, ..., X,,) is a term of £, (A44, ..., 4,)
(so xg,..., X, € M), we write t¥(x,,..., X,,) for the interpretation of the term
t(Xy,..., X,) in the structure & = (M, , Ay,..., A,).

We shall also speak of models of ZFC, BS, etc. In each such case we mean these
theories formulated in the language %, and not in LST as was originally the case.

1. A Brief Review of Large Cardinals

A cardinal « is said to be weakly inaccessible iff it is an uncountable, regular limit
cardinal, and (strongly) inaccessible iff it is uncountable and regular and has the
property that (Y A < k) (2* < k). Itis clear that all inaccessible cardinals are weakly
inaccessible, and that if the GCH be assumed then the two notions of inacces-
sibility coincide.
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If x is inaccessible, then V, (and L,) is a model of ZFC. Hence by Godel’s
Second Incompleteness Theorem, the existence of inaccessible cardinals is not
provable in ZFC.

1.1 Theorem.
(i) If x is a cardinal, then [k is a cardinal*.
(i) If x is a limit cardinal, then [k is a limit cardinal]*.
(iii) If x is a regular cardinal, then [k is a regular cardinal]".
(iv) If k is a weakly inaccessible cardinal, then [« is an inaccessible cardinal]".

Proof. (i)—(iii). Each of the properties is easily seen to be I, , and hence D-absolute.
(iv) By (i)—(iii) and the fact that [GCH]L. O

A cardinal x is said to be Mahlo iff it is inaccessible and the set
{4 e k| is inaccessible}

is stationary in k.
1.2 Theorem. If k is Mahlo, then [k is Mahlo]*.
Proof. Again, this property is easily seen to be D-absolute. [
A _cardinal K is said to be weakly compact iff it is uncountable and satisfies the
partition property

K — (K)3.

What does this mean? In order to explain we need some notation. If X is a set of
ordinals and o is an ordinal, [X]* denotes the set of all strictly increasing
a-sequences of members of X. We set

[X1=*= U XV

p<a
[X]5*= | [X7".

B<a

Let X be a set of ordinals, a an ordinal, u a cardinal. By a u-partition of [X]* we
mean a function

X >,

which we regard as partitioning [X]* into u disjoint classes. A subset Y of X is said
to be homogeneous for the partition f iff

fIYr=t,

i.e. iff all strictly increasing a-sequences of members of Y lie in the same partition
class. We write

K= (A
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iff every pu-partition of [x]* has a homogeneous set of cardinality A. This notation
is due to Erd6s and Rado. The idea behind it is the easily observed fact that a valid
partition relation remains valid if the parameter on the left of the arrow is in-
creased or if any parameter on the right of the arrow is decreased.

The well known Ramsey’s Theorem states that

= (w)y

for all m, n € w. Generalising this to some extent is the Erdds-Rado Theorem that
for any cardinal x and any n € w,

Fnlt)" = ()T,

where ¢, (i) is the n-th iterate of the exponential function 2%, starting from « (i.e.
Fo(K) = K, F1(x) = 2%, £, (k) = 2719, etc.).

A weakly compact cardinal, then, is one for which the generalised Ramsey’s
Theorem

K (K)3

holds. All weakly compact cardinals are Mahlo. The name “weakly compact”
stems from the equivalent definition that a weakly compact cardinal is a cardinal
x for which the “x-compactness property” is valid for any “k-language”. By a
k-language we mean a first-order language having xk many basic symbols, whose
syntax allows conjunctions and disjunctions of any length less than x and quan-
tification over any sequence of variables of length less than «. (In this context, an
ordinary first-order language would be called an “w-language”.) The x-com-
pactness property for such a language says that if a set of at most x sentences of
the language is k-satisfiable (i.e. any subset of cardinality less than x has a model),
then the entire set has a model. The whole idea is to generalise to an uncountable
cardinal x, everything connected with the compactness theorem of ordinary logic.

The following theorem lists several standard, equivalent formulations of the
notion of weak compactness. Proofs of the various equivalences may be found in
Drake (1974) or Jech (1978).

1.3 Theorem. Let x be an uncountable cardinal. The following are equivalent:

(i) x is weakly compact (i.e. k — (k)3);
(i) (Vnew) (Vi <x)[x—(x)i]
(iii) the x-compactness property holds for any k-language;
(iv) x is ITi-indescribable: i.e. if ¢ is a sentence of & (U, Ay, ..., A,) such that

VU < V)[KV,e,e, U, Ay, ..., 4D E @]
for Ay, ..., A, = V,, then for some o < K,
(VU S V:z)[<V;zaEa UaAlmI/a’"-aAnnI/a>':(p];

(v) x has Keisler’s Extension Property: every structure of the form {(V,, e U)
has a transitive elementary extension which contains k;
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(vi) If Z is a x-complete field of sets which is k-generated by a set of cardinality
at most k, then & has a k-complete ultrdfilter,

(vii) x is inaccessible and if F is a k-complete field of sets of cardinality «, then
F has a k-complete ultrafilter;

(viii) x is inaccessible and there is no k-Aronszajn tree. [J

The following lemma is relevant to our present purposes.

1.4 Lemma. Let k be a weakly compact cardinal,and let A < k. If A~ a € L for all
o <k, then Ae L.

Proof. By assumption,

Ve, ADE(Va)(AnaelL).

By Keisler’s Extension Property, let M be a transitive set such that V, u {x} = M
and for some set A’ = M,

Vi€, A) < (M€, A
We have
{M,e, AYEN)(A'nael).
In particular, since x € M,
{M,e,A>FEA " nkelL.
But A’ nx = A. So, noting that set-membership is absolute for M,
Ae(L)™.

Now, as « is inaccessible, V, is a model of ZFC. Thus M is a model of ZFC. So
by I1.2.10, (L)™ < L. Thus A € L, and we are done. [J
Utilising 1.4 we have (see also Exercise 1.):

1.5 Theorem. If k is weakly compact, then [k is weakly compact]*.

Proof. By 1.1 we know that [k is inaccessible]*. So by 1.3 it suffices to prove that
[there are no k-Aronszajn trees]F.

Let Te L be, in L, a x-tree. We may assume that T has domain x and that
o < f implies « < f. It is clear that T is a x-tree in the real world. Hence as x is
weakly compact, there is (in V') a k-branch, b, of T For any « < «, let y be the least
ordinal in b — a. Then

bna={¢(eT|é<ry}elL.
So by 1.4, b € L. But clearly,
[b is a k-branch of T,

Thus T is not a x-Aronszajn tree in the sense of L. The proof is complete. [J
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We shall return to the notion of weak compactness, and a strengthening of it
(ineffability) in Chapter VII. In the meantime we consider a much more powerful
large cardinal notion.

We write

K= (A7

if, whenever f is a p-partition of [x]=¢ (i.e. f: [x]°®— p) there is a set X < x of
cardinality A such that

(Vreo)[If"[X]" = 1].

Thus, X is simultaneously homogeneous for each of the partitions f | [X]", n € w.
We cannot expect X to be “homogeneous” for all of f in the sense that
|f"[X]=°| = 1, since the value of f could depend upon the length of the argument.
There is thus no real danger of confusion if we agree to say that a set X for which
Vnew)||f"[X]"| = 1]is homogeneous for f.

Already the existence of a cardinal x such that

K= ()3

is a powerful assumption, implying the existence of (many) weakly compact car-
dinals.
For any cardinal 4, if there is a cardinal x such that

K= (4%

then the least such « is denoted by «x (4). The cardinals x (1) are called the Erdds
cardinals. They are all inaccessible, and x (w) excceeds the first weakly compact
cardinal (and the first ineffable cardinal). If A < g, then x (1) < x (u). (See Drake
(1974) or Jech (1978) for all details.)

A cardinal x such that x(x) = k is called a Ramsey cardinal. Thus x is a
Ramsey cardinal iff

K—(K)°.

Since this is not a simple generalisation of Ramsey’s Theorem (the obvious gener-
alisation being provided by the weakly compact cardinals), the name “Ramsey
cardinal” is slightly misleading, but is now well established.

The Erdés cardinals have powerful model-theoretic properties, as we show
next. We consider structures of the form

o = <A’ <A9"->a

where <4 linearly orders some subset of A, called the field of <,. By the length
of &/ we mean the cardinality of the set of all functions, relations and constants
of o7 If the length of .o/ is infinite, then this is just the cardinality of the language
of .



174 V. The Story of 0*

An infinite subset, H, of the field of < is said to be «/-indiscernible iff for each
new and each pair (aq,...,a,), (by,...,b,) € [H]"*! it is the case that for all
formulas ¢ (v, ..., v,) in the language of .o:

AE@p(agy,...,a,) iff LE@(by,...,b,).

In other words, as far as first-order properties are concerned, for each n € w, all
increasing n-tuples from H look the same to <.

1.6 Theorem. Let A be an infinite cardinal. The following conditions on K are
equivalent:

@) x> (D)7

(i) x - ()7
(i) for all p < K (4), kK = (A);*;
(iv) every structure of the form

‘52{=<A’ <A"">a

of countable length, such that k < field (<) and <, |k is the usual order on k, has
an /-indiscernible subset of cardinality A;
(v) as in (iv) except that o/ may have any length less than K (A).

Proof. The proofs of the equivalence of (i), (ii) and (iii) can be found in Drake (1974)
and Jech (1978), but, since they are not really relevant to us here we shall not give
them. We prove the equivalence of (iii) and (v), this being the result that we require.
(A similar argument yields the equivalence of (iv) and (ii), as is easily seen.)
Assume (iii). Let o/ be a stated in (v). Define a function f on [k]=® by letting
f(ag, ..., a,) be the set of all formulas ¢ (v, ..., v,) in the language of ./ such that

A E@(ag,...,a,).

Since length (/) < k () and « (1) is inaccessible, the range of f has cardinality less
than x (4). So, by (iii), f has a homogeneous set, H, of cardinality 1. Clearly, H is
o -indiscernible.

Now assume (v). Given a partition

[kl —>pn<x(d),

consider the structure

A = e, <, (f 1K Nn<or (De<i? -

The length of .« is less than x (A), so by (v), &/ has an .«/-indiscernible subset, H,
of cardinality A. Clearly, H is homogeneous for f. [

A measurable cardinal is an uncountable cardinal x such that there is a func-
tion
w2k -2
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with the properties:

(i) u({a}) =0 for all o € x;
(i) plx) =1;
(ii) if X,, « < 4, are disjoint subsets of x, where A < k, then

#(aQ}.Xd) = ag'l.u(Xm)'

(Such a function p is called a two-valued measure on k.) Measurable cardinals are
extremely large. In particular, if x is measurable, then x is Ramsey, and indeed is
the x-th Ramsey cardinal. However, as far as L is concerned, cardinals well below
the first measurable cardinal (if it exists) already have a highly significant effect.
The critical point is the jump from x (w) to x (w,), as we show next.

1.7 Theorem. If k — (w)5 ®, then [k — ()5 ]~

Proof. Let fe Lbe such that, in the sense of L, f: [k]=® — 2. Then, clearly, f is such
a function in the real world. Define

H={oe[x]**|(Vn<Ia)[IfT[c]"] = 1]}.

Notice that the definition of H is absolute for L. We regard H as a poset under
the ordering 2. Since k — (w)5 ®, f has an infinite homogeneous set X. Let o,
consist of the first n elements of X, for each n € w. Then ¢, € H, and (0,|n < w) is
a 2-decreasing chain in the poset H. Thus H is not well-founded. So by 1.8.7 and
1.8.3,

[H is not well-founded]*.

So let (7,|n < w) be a 2-decreasing chain from H in L. Then Y = ) 7,€ L is an
infinite homogeneous set for f. This proves the theorem. 0O  "=¢

1.8 Theorem. If there exists a k such that k — (w,); ©, then "(w) is countable (so
in particular, V % L).

Proof. Let k = k (w,), and consider the structure
oA = {L,,e, P(w)).
Let X < x be an uncountable, «7-indiscernible set, and let
B = (B,e, ?“(w) " B)
be the smallest # < o such that X < B (see I1.5.3). Then every element of B is of
the form ¥ (%) for some term ¢ of set theory and some (%) € [X]™“. Suppose that

t¥ (X) < w. Now, each n e w is definable in o/, and the validity of the sentence

net(x)
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in o/ is independent of the exact choice of (%) from [X]<“. Hence t¥(X) does not
depend upon %. But there are only countably many terms t. Thus 2%(w) N B must
be countable.

Now let

. B=€ =L, U).
Since A > w,, we have 2X(w) = L,. But

A E(Vx € w)(xeP(w),
so
CENVx cw)(xel).

Hence #X(w) < U. But |U| = |2%(w) n B| = w, so we are done. [J

2. L-Indiscernibles and 0*

In this section we shall obtain a considerable strengthening of 1.8, by proving that
if  (w,) exists, then the class of all uncountable cardinals is L-indiscernible. (In
particular, this will imply that every uncountable cardinal is inaccessible in the
sense of L, giving the conclusion of 1.8 at once.) The existence of x (w,) will also
be shown to imply the existence of a truth definition for L, so we may consider the
set of all formulas ¢ (v, ..., v,) of & such that F, ¢ (k,, ..., x,) for any strictly
increasing sequence ko, ..., k, of uncountable cardinals. Denoting the set of all
Godel numbers of formulas in this set by the symbol 0¥, we shall go on to show
that the set 0* has an alternative definition, which does not depend upon the
existence of L-indiscernibles and a truth definition for L, and that the mere
existence of a set of integers satisfying this definition is itself sufficient to ensure
that the uncountable cardinals are L-indiscernible.

The techniques which we shall employ are essentially model-theoretic, and
originate with some work of Ehrenfeucht and Mostowski concerning models with
indiscernibles.

By examining the proof of I1.2.9, we see that there is an extension of the
Z-theory BS, let us call it BSL, which consists of BS together with finitely many
instances of the X,-Collection Schema of KP, such that:

(i) L, EBSL for any limit ordinal A > w; and
(i) if M is a transitive model of BSL, then for any a e M, (L) = L,.

(This relates to the proof of II.2.12. We simply require enough instances of
X-Collection to enable us to define the constructible hierarchy.)

Suppose &/ = {4, E) is amodel of the #-theory BSL + (V' = L).If X < A, we
denote by o/ [ X the set

{t¥(xq, ..., X,) |t is a term of & and x,, ..., x, € X}.
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It follows from the fact that L has a definable well-ordering that .« | X < .</. (See
I1.5.3 in this connection.) We say that o/ | X is the elementary substructure of &/
generated by X.

We shall call a set, X, of formulas of # an Ehrenfeucht-Mostowski set (or E—-M
set for short) iff there is a model o7 = (A4, E) of BSL + (V = L) and an infinite set
H = On* which is «Z-indiscernible, such that ¥ is the set of all .#-formulas which
are valid in 7 on increasing sequences of indiscernibles from H.

Let Z be an E—M set, and let a be an infinite ordinal. By a (X, «)-model we
mean a pair (<7, H) such that:

(i) & = (A, E) is a model of BSL + (V = L);
(ii) H < On¥ is an </-indiscernible set of order-type o (under <&,);
(i) & = o/ | H (i.e. H generates </);
(iv) X is the set of all #-formulas which are valid in &/ on increasing tuples
from H.

2.1 Lemma. Let ¥ be an E-M set, and let o, f be infinite ordinals, « < B. Let
(4, H,) be a (Z, )-model, (g, Hp) a (£, p)-model, and let h: H,— Hy be order-
preserving. Then there is an embedding h: o, < g such that h < h. Moreover, if
B = a and h is onto HB’ then h is an isomorphism of </, onto of g5 S0 in particular,
the (X, a)-model is unique up to isomorphism.

Proof. Since H, generates </, for any a € </, there is a term t and elements X of
H, such that a = t=(%). Set h(a) = t**# (hx).

We must first of all check that & is well-defined. Suppose that there are terms
ty,t, and elements x,, ..., X,, V1, -- -, ¥ Of H, such that

a= t.‘lga(xb“-,xn) = t‘g“(yla-“,ym)'

Let z,, ..., z, enumerate the set {x,, ..., X,, V1, ..., Ym} iD increasing order, and let
¢(z4,...,2,) be the formula

tl(xlan',xn) = tZ(yl’--->ym)'

Then ¢(z4, ..., z;) € Z, since ¢ is true in &7, on the increasing sequence z, ..., z;
from H,. Hence ¢ is true in /4 on any increasing sequence from H,. But
h(zy),..., h(z;) is an increasing sequence from Hy. Thus

’dﬁ':q’(h(zl)’-"sh(zk))-

In other words,

e (h(xq)s o h () = 657 (R(), -, B (V)

so h is well-defined.

Similarly, we can show that h is one-one and preserves the e-relations of the
two models. To show that F is elementary, it suffices to show that h preserves the
validity of formulas on tuples from H, only (since H, generates .<7,), which again
can be done by passing through X as above. The rest of the lemma follows easily
now. 0O
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2.2 Lemma. Let X be an E— M set. For each infinite ordinal o there is a unique (up
to isomorphism) (X, a)-model.

Proof. Uniqueness was established in 2.1, so we need only concentrate on exis-
tence. We introduce new individual constants c,, v < a, to the language .. Let &
be a model of BSL + (V = L), and let H = On*® be an .«/-indiscernible set such
that X is the set of all #-formulas true in ./ on increasing sequences from H. (Such
o, H exist because £ is an E—M set.) Consider the following theory in the
language % U {c,|v < a}:

= {@| @ is a sentence of ¥ and &/ F ¢} U {On(c,)|v < a}
ufe, <clv<t<atu{plc,y, .. cn)|opel &vo<...<v,<a}.

It is clear that T is finitely satisfiable in .«/. So by the compactness theorem, T has
a model, say 4. Let

={c%?|v<a}.
v

Clearly, # is a model of BSL + (V =L), K = On? is a #-indiscernible set of
order-type a, and X is the set of formulas of . which are valid in 4 on increasing
tuples from K. Thus (% | K, K) is a (X, a)-model. [

So far we have said nothing regarding the existence of an E— M set. In fact the
results of this section will depend not just upon the existence of an E—M set, but
of an E—M set with some very special properties. We shall describe these proper-
ties and their implications for the (X, #)-models next, before turning out attention
to the construction of an E—M set of the type desired (which will require the
existence of large cardinals).

An E—M set X is said to be cofinal if it contains all formulas of the form:

On(t(Vgyeevs V1) > t(Vgy - vvs Vy—1) < Uy,

for any #-term t.
2.3 Lemma. Let ¥ be an E—M set. The following are equivalent:

(i) X is cofinal,
(ii) for every limit ordinal o, if (Z, H) is the (X, a)-model, then H is cofinal in
On¥;
(iii) for some limit ordinal o, if (<, H) is the (X, a)-model, then H is cofinal in
On“.
Proof. (i) — (ii). If (&, H) is the (Z, oc) model and x € On*, then there is a term ¢ and
elements i of H such that x = t¥(h). But then if k € H, k > h, we have x < k by
the requirements on X.

(i) — (iii). Trivial.
(iii) — (i). Let ¢ be any term, and let ¢ (v, ..., v,) be the formula

On(t(vo, ..., Uy=1)) > t(Vos -5 Vy—1) < Oy
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We must show that ¢ € X. It suffices to show that for some increasing sequence
hg, ..., h, from H,

Mk(ﬂ(ho,...,hn).

Choose hy, ..., h,_, arbitrary increasing from H. If t“ (h,, ..., h,_,) ¢ On?, we
are done already. Otherwise, by our assumption on H we can find h,e H,
h,> h,_,, such that h, > t“ (h,, ..., h,_,), and again we are done. [

An E—-M set X is said to be remarkable if, for every term ¢t of %, if the formula
t(UO’ cees Up—15Upsevey Un+m) < Uy

is in X, then so too is the formula

E(Ugs v vs Up 15 Upseons Opim) = E(V0s e ees Upe 1> Uptmatseees Untome1)-

2.4 Lemma. Let X be a remarkable, cofinal, E— M set. Let A be a limit ordinal, and
let (o4, H) be the (X, A)-model. Let (h,|y < A) be the monotone enumeration of H. Let
a < Abealimit ordinal, and set K = {h,|y < a}. Let # = o/ | K. Then (%, K) is the
(Z, o)-model and

On? = {x e On?|x < h,}.

Proof. It is immediate (by uniqueness) that (%4, K) is the (Z, «)-model. And since X
is cofinal, 2.3 (ii) tells us that K is cofinal in On?, so

On? c {x e On?|x < h,}.

Hence the lemma boils down to proving that if x e On® and x < h,, then in fact
x € On”,

Well, since H generates <, there is a term t and elements kq, ..., k,_, of K,
lo,...,l,of H— K, suchthatkg < ... < k,_; <ly<...<l,and x = t“(k, I). By
virtue of our convention concerning the indication of variables present in terms,
we may assume that [, = h, here. Now, x < hy, so t“ (k, I) < h,. Thus the formula

t(005"'9vn—19vn5'”9vn+m) < Uy
is in X. So, by remarkability, the formula

t(vm"'aun—19vm”'avn+m) = t(vo’---’vn—-19vn+m+1"“svn+2m+l)
isin X. Thus for any increasing sequence [y, . .., I, from H with k,_; < [, we have
t? (k, 1) = t“ (k,I"). But o is a limit ordinal, so we can find such [y, ..., I, with
Il < h,. Then, since k, I € K, we have

x=t'k D=tk e oA |K =23,

as required. O
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Thus, if T is a remarkable, cofinal, E— M set and (&7, H) is the (Z, 1)-model for
some limit ordinal A, then if we pick any limit ordinal « < 4 and let K consist of
the first o elements of H, the ordinals of the (X, «)-model (& | K, K) form an initial
segment of the ordinals of /. Another consequence of remarkability is that the
indiscernibles form a club subset of the ordinals of the model:

2.5 Lemma. Let X be a remarkable, cofinal E— M set. Let A be a limit ordinal, and
let (<, H) be the (£, A)-model. Then H is closed and unbounded in On*.

Proof. Unboundedness was proved in 2.3. We verify closure. Let (h,|y < 1) be the
monotone enumeration of H. Let « < A be a limit ordinal. We must prove that h,
is the least upper bound of the set K = {h,|y < a} in On*. Well, we know from
2.4 that (<7 | K, K) is the (Z, a)-model. But X is cofinal, so K is a cofinal subset of
On“ "X It thus suffices to show that h, is the least upper bound of On® "% in On“.
But by 2.4 again,

On?'¥ = {xeOn”|x < h,},

so in particular, h, is the least upper bound of On? ¥ in On?. 0O

We shall be particularly interested in well-founded (X, a)-models. For suppose
& 1s a well-founded (Z, a)-model. Then .« is a well-founded model of the Axiom
of Extensionality, in particular, so by the collapsing lemma there is an isomor-
phism

o = (M,e),

where M is a transitive set, Now, M is a transitive model of the theory
BSL + (V' = L). So by virtue of our choice of this theory (see earlier)

M=W)"=@DM=L,,

where A = sup (M n On). Hence & =~ L,.

The well-foundedness of the (£, «)-model will depend upon the E— M set £. We
shall call an E— M set X well-founded if, for all infinite ordinals a, the (X, «)-model
is well-founded.

2.6 Lemma. Let X be an E—M set. The following are equivalent:
(i) X is well-founded ;
(ii) for some o > w,, the (X, a)-model is well-founded,
(iii) for all infinite o < w{, the (X, c)-model is well-founded.
Proof. (i) — (ii). Immediate.

(ii) — (iii). Choose o > w, so that the (X, «)-model is well-founded. As we ob-
served earlier, up to isomorphism the (Z, f)-model is a submodel of the (T, a)-
model for any infinite § < w,, which proves (iii).

(iii) — (i). Suppose X were not well-founded. Then for some infinite «, the
(X, @)-model, (<7, H) say, is not well-founded. Let a, € 4, n < w, be such that
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ay+1Ea,, where o/ = {4, E). Each a, is of the form t (h,) for some #-term ¢ and
some f,e H. Let K be a countably infinite subset of H which contains all &,
n<w. Let # = o/ [ K. Then (%4, K) is the (X, f)-model, where = otp (K) < w;.
But a, € B for all n, where 4 = (B, E), so 4 is not well-founded. This contradicts
@i). O
If X is a well-founded E—M set, then for any infinite ordinal o, there is a unique
transitive (X, a)-model. We denote this model by M (Z, «). We observed above that
M (Z, o) has the form ((L,,e ), H), where 4 is a limit ordinal greater than w, and
where H = A. In case « is an uncountable cardinal, we can say even more, namely:

2.7 Lemma. Let T be a well-founded, remarkable, cofinal, E-M set. If k is an
uncountable cardinal, then the universe of M (X, k) is L,.

Proof. Let M (X, k) be (L,, H). Since H = y and |H| = k, we know that y >k
Suppose that y > x. Since H = {h,|a < k} is cofinal in y, we can find a limit
ordinal o < x such that h, > k. Let K = {hs| B < a} and set N = L, [ K. By 2.4,

N={xey|x <h,}=h,.

Thusx < On". But|N| = |K| = |«| < K, so this is absurd. Hence y = x and we are
done. O

For each uncountable cardinal x, let H, denote the unique subset of x (if it
exists) such that (L,, H,) is the (X, x)-model M (%, ). By 2.5, we know that H, is
a club subset of «.

2.8 Lemma. If k < A are uncountable cardinals, then H. = H, "k and L, =
L, H,.

Proof. Let (h,|v < A) enumerate H, in increasing order. Set K = {h,|v < k}, and
let N =L, K. Then (N, K) is a (Z, k)-model, so N = L,.. But On" is an initial
segment of 1. Hence N must be transitive. But then we must have N = L,, and
moreover K = H.,h, =x,and H. =K =H,nk. [

2.9 Corollary. If 4 is an uncountable cardinal, then H, contains all uncountable
cardinals below A.

Proof. Let k < 4 be an uncountable cardinal. Then, as we saw above,
K = h‘x € HZ' D

Of course, we have still said nothing concerning the existence of E— M sets. We
are now about to rectify this omission. We show first that if there is a well-founded,
remarkable, cofinal E—M set, then it must be unique.

2.10 Lemma. If there is a well-founded, remarkable, cofinal, E—M set, then it is
unique.

Proof. Let X be a well-founded, remarkable, cofinal E-M set. Now, (L, , H,_) is
the transitive (X, w,)-model, and by 2.9, w, € H, for all n < w. Thus for any
Z-formula ¢,

oWy,...,v)eX  iff L, Fo(wy,...,0,).
This determines Z uniquely. O
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The unique well-founded, remarkable, cofinal E— M set, if it exists, is denoted
by the symbol 0¥ (“zero sharp”). It is possible to carry out a similar development
for the relativised universe L[a]for any set a = w, in which case the corresponding
E—M set is denoted by a®. (This is considered in Exercise 2.) Summarising our
previous results, we have:

2.11 Theorem. Assume 0¥ exists. Then there is a club class H of ordinals such that:
(i) H contains all uncountable cardinals;
and for any uncountable cardinal x, if we set H, = H N k, then:

(ii) H, has order-type k and is club in x;
(ii) H, is L,-indiscernible;
(iv) L, =L, | H.

Proof. We set H = | ) H,, where H, is a described earlier. The theorem is immedi-
ate now. [ *

2.12 Theorem. Assume 0¥ exists. If k < A are uncountable cardinals, then L, < L.
Proof. We know that

M(©0%* k)= (L., H), M(@O0*% 1) =(L,, H,).
So, by 2.8, we have

L.=L,lH<L,;. O

The existence of 0¥ also provides us with a truth definition for L:

2.13 Theorem (Metatheorem). There is a formula © (x) of LST such that, for any -
LST formula & (vy, ..., v,), if @ is the L-formula corresponding to & (as in 1.9.11),
ZF - “if 0% exists, then (Y aq, ..., a, € L) [®X(a,, ..., a,) < O (¢ (do, ..., )]

Proof. Given any formula & (v,...,v,) of LST, the reflection principle (1.8.2)
provides us with an uncountable cardinal x such that

(VaeL,)[9" ()« o (a)].
But by 2.12, together with 1.9.11, the actual choice of x here is irrelevant in the case
that 0% exists. Thus, given any d € L, if x is any uncountable cardinal such that
de L,, then providing that 0* exists, we have (using 1.9.11)

BL(a) o O™ (@) - Fr 0 ().
Thus O (x) is the LST formula which says:

“x is a sentence of #;, and if x is the least uncountable cardinal such that
x € L,, then Fy_x.
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By virtue of 2.13, we may speak about “elementary submodels of L” quite

openly, and indeed may state the following theorem:

2.14 Theorem. If 0* exists, then for any uncountable cardinal x, L, < L.

Proof. Since
L = J{L,|x is an uncountable cardinal},

this follows easily from 2.12. O

Before we turn to an existence proof for 0%, we give one more consequence of
its existence.

2.15 Theorem. Assume that 0¥ exists, and let k be any uncountable cardinal. Then:

(i) [x is inaccessible];
(i) [ = ()5 °T%;
(i) |2 (k)| =K.

Proof. (i) If A = w,, then
[4 is regular]®,
and if 4 = w,, then
[u is a limit cardinal]®.
So by the L-indiscernibility of the cardinals,
[« is a regular limit cardinal]®.
Since [GCH]Y, this proves (i).

(i) Suppose not, and let fe L, f: [x]"“ — 2 be the <;-least partition with no
infinite homogeneous set (in the sense of L). In the real world, f: [x]® — 2, of
course. Now, f is definable from « in L, + (by the above definition, which is clearly
absolute for L, +). It follows that, in the real world, H, is homogeneous for f. For
if t is a term such that

f(o) = t"* (g, k)
forall 6 € [xk]"¢, thenforany o, <... <, B, < ... < B, from H,, ifi = 0, 1, then
flq,...,a,)=1i iff L.+ Ft(ag,...,0,kK)=1
iff Lo+ Ft(Byy...,Bu)=1
ifff(ﬂb---’ﬁn):i'

But then, exactly as in 1.7 it follows that there is, in L, an infinite set which is
homogeneous for f (in the sense of L), contradicting the choice of f. This proves
().

(iii) By (i) [4 is inaccessible]*, where A = x*. This implies (iii) at once. [
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Note that a particular consequence of the above (and previous) results is that
the existence of 0* cannot be established in ZFC alone. We shall now look into
this question of existence of 0*.

2.16 Theorem. The following are equivalent:
(i) 0% exists;

(ii) for every uncountable cardinal x, L, has an uncountable set of indis-
cernibles;

(iii) for some uncountable cardinal k, L, has an uncountable set of indiscernibles.
Proof. (i) — (ii). By 2.11 (iii).
(i) — (iii). Trivial.
(iii) — (i). Let A be the least limit ordinal such that L; has an uncountable set of
indiscernibles. Let H = A be an L;-indiscernible set of order-type w,, chosen so
that h,, is as small as possible, where (h, |v < ,) is the monotone enumeration of

H. Let X be the E—M set determined by the indiscernible set H in L,. We show
that X is well-founded, remarkable, and cofinal.

(a) X is well-founded. Well, clearly, L, [ H is well-founded. But (L, [ H, H) is the
(Z, w;)-model. So by 2.6, X is well-founded.

(b) X is cofinal. For suppose not. Then by 2.3, H is not cofional in (the ordinals
of) L, I H. So for some #-term t and some v; < ... <V, < @,

y =t (h,,, ..., h,) > sup(H).

We may assume that y is a limit ordinal here. (For otherwise, ify = § + m, we may
replace t by the term

t'(hy,,....h,)=t(h,,...,h,)—m.)
Let

K={lv,<v<w}.

Clearly, K is a set of indiscernibles for L,. But y < 4, so this contradicts the choice
of . Hence £ must be cofinal.

(c) Z is remarkable. To see this, suppose that the formula
(Vg e ees Up 15Uy enns Upin) < Uy

is in X, for some #-term t. Partition H into increasing, finite pieces
&doydyy..nd,,... (<o),

where ¢ has length n and each d, has length m + 1, and where

max (¢) < min (dy) < max (dy) < min(d;) < max(d,) < min(d,) <... .
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Notice that, in particular,
Jw = hw, hw+1’ ceey hw+m.

By indiscernibility, one of the following must occur:

(A) 2@, d) = t**(¢,d) forall v<1<wg;
(B) 2@, d) < tt*(¢,d) forall v<1 < w;;
(©) L2, d) > t*+(¢,d) forall v<1<w,.

Since X is determined by H in L, if we can prove that (A) must occur, we shall
be done, since this will imply that £ contains the formula

t(Uo,...,U,,—1,U,,,...,U,,+m) = t(007~~~aun—1,vn+m+1a-‘~,Un+2m+1)'

Well, (C) is clearly impossible, since that would give us a decreasing
w,-sequence of ordinals. So let us assume (B) and work for a contradiction. Set

W, =t @ d), v<o;.

By (B), the sequence (h,| v < w,) is strictly increasing. And it is easily checked that
{h,|v < w,}is L,-indiscernible. But by choice of ¢, h;, < h,,, so this contradicts our
choice of H, h,,, and we are done. [

2.17 Corollary. If x(w,) exists, then 0% exists. Hence if there is a measurable
cardinal, then 0¥ exists.

Proof. By 1.6. O

3. Definability of 0*

We have already seen that the existence of 0¥ has a profound effect upon the
constructible universe. In this section we investigate the logical complexity of the
set 0% as a subset of the set of all formulas of .#. In particular we shall show that
0* has strong absoluteness properties.

3.1 Lemma. There is a I1; formula @ (x) of LST such that
D(x)>x=0%.

Proof. By 2.10, 0* is unique, if it exists, and what we must show is that the
predicate

“x is a well-founded, remarkable, cofinal E— M set”

can be expressed in a IT; fashion.
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We commence by examining the predicate
“Yisan E-M set”.

Let £ * be the language % together with the extra constant symbols ¢,, n < w.
For any set, Z, of #-formulas, let Z* be the set of £ *-sentences which consists
of:

(i) the axioms of BSL + (V = L);

(i) @(cg,---»cp), for each ¢ (v, ...,v,) € X;

(iii) On(c,), for all n < w;

(iv) (c,<cp),foralln <m < w;

) oy ...rc))e0(cj,...,cj), for each ¢ (v, ..., v,-;) € Z and each
W< <L <wj<..<j,<o.

Claim. ¥ is an E-M set iff =" is consistent.

Proof of claim: Suppose Z is an E—M set. Then X is the set of all #-formulas
which are true on increasing tuples from an .-indiscernible set {a,|n < w} in
some model .7 of BSL + (V = L). Clearly, (., (@,)p<o> isa model of Z*,s0 =+
is consistent.

Conversely, suppose £ * is consistent, and let (<, (a,),<,> be a model of Z*.
Clearly, {a,|n < w} is &/-indiscernible and (<, {a,|n < w}) is a (£, w)-model, so
Y is an E—M set. The claim is proved.

By the claim we have:

Y is an E—M set iff there does not exist a proof of the sentence (0 = 1)
from the sentences in £*.

More precisely:

X is an E—M set iff there does not exist a finite sequence of £ *-
formulas such that the last formula in the sequence is (0 = 1) and each
formula of the sequence is either a consequence of previous formulas by
modus ponens or else is an axiom of logic or else an axiom of
BSL + (V=L) or else is of the form ¢(cg,...,c,) for some
¢ (vg, ..., v,) € X or else of the form On (c,) for some n < w or else of the
form (c, < ¢,,) for some n < m < w or else of the form (¢ (c;,, ..., ¢;) <
o(cj,...,c;)) for some ¢ (v, ...,v,-;)in £ and some i; < ... < i, < ®,
Ji<...<jp< o

Now, provided that the constants ¢, are suitably chosen (e.g. take %, as the
language ¥ * and use the constant symbol 7 for c,), all quantifiers in the above
definition can be bound (without loss of generality) by V,,. Thus the above charac-
terisation of the predicate “X is an E—M set” is X in the parameter V,.

It is easily seen that the predicates “ is cofinal” and “X is remarkable” are also
Y, in the parameter V,,. Thus there is a £, formula ¥ (x, y) of LST such that

X is a remarkable, cofinal E-M set & ¥ (X, V,).
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But V, = L. Hence

X is a remarkable, cofinal E—M set
> VaVul[[On(x) Alim(x) A (YBea)(f =0 v succ(B) A u=L,]
- Y u)].

The formula on the right here is IT; . (In fact there is an equivalent X, formula, as
the reader may readily verify, but we do not require this fact.) So we are left with
proving that the predicate

“% is well-founded”

(for a remarkable, cofinal E-M set X) is IT,.
By definition,

2 is well-founded iff for all «, the (Z, o)-model is well-founded.

Now, if T is a remarkable, cofinal E—M set, then for every limit ordinal « there
is a unique (up to isomorphism) (X, «)-model, and we can find one of the form
({4, E), «), where E n (o X o) = € " (o x a). Let us call such a model a standardised
(Z, ®)-model. Then:

({4, E>, o) is a standardised (X, «)-model iff
(i) <A, E) is a model of BSL + (V= L) A
(i) = On4 B A En(axa)=€en(axa) A
(iii) o is <A, E)-indiscernible A
(iv) o generates <A, E) A
(v) X is the set of all #-formulas valid in (A, E) on increasing
tuples from a.

Now, in each of the clauses (i)—(v) above, all necessary quantifiers may be bound
either by 4 or by a or by V,,. (This is a routine matter which we leave to the reader
to check.) Thus there is a £, formula & (w, x, y, z) of LST such that

({4, E), a) is a standardised (Z, a)-model iff © (Z, (4, E),a, V).
But, clearly,

OEZ,{A,E),a, V) iff 3y Iu[On(y) A lim(y)
A(VBe)(B=0vsuc(h) A (u=L,)
AOEZ, (A, E), a,u)].

Thus the predicate “({4, E), a) is a standardised (Z, )-model” (as a predicate on
(A, E),a, X)is Z,. But (for a remarkable, cofinal E-M set Z):

T is well-founded « Va V{4, E) [if ({4, E), o) is a standardised
(=, )-model, then E is well-founded on A4].

This is easily seen to be I1,, so we are done. [
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3.2 Corollary. 0* ¢ L.

Proof. If 0% € L, then since I1, properties are D-absolute, @ (0*) implies &~ (0*),
where @ is the I1; formula from 3.1. But then we can prove all of the results of
section 2 inside L, which is absurd. [

4. 0% and Elementary Embeddings

The existence of 0* is closely connected with the existence of elementary embed-
dings of the form j: L, < L,, where k is a cardinal. The simplest such result is the
following:

4.1 Theorem. If 0* exists, then for any uncountable cardinal k there is a non-trivial
embedding j: L, < L,..

Proof. Let (h,| & < k) be the monotone enumeration of H,. Define j: H,— H, by
j(hy) = hyy (. By 2.1, j extends to an embedding j: L, < L,. O

The main effort in this section is directed towards proving the converse to 4.1.
In fact we shall prove a stronger result. In order to imply the existence of 0¥ it
is enough to have an embedding j: L, < L, for some limit ordinals a, f such
that j(y) + y for some y < |a|. In order to do this we shall first of all prove a con-
verse to 4.1 under some additional assumptions. We require some prior defini-
tions.

Say that a cardinal k is of y-type 0 if it is a limit cardinal and cf(x) > y. Notice
that there are arbitrarily large cardinals of y-type O, for any given ordinal y.
Moreover, if (x,| v < 0) is an increasing sequence of cardinals of y-type 0 such that
cf(6) > y, then sup, .4k, is of y-type 0.

A cardinal « is said to be of y-type 1 if it is of y-type 0 and

|[{A €x|Ais of y-type 0}| = .

Since the y-type O cardinals are closed under limits of #-sequences whenever
cf() > v, it is easily proved that there are arbitrarily large cardinals of y-type 1.
Moreover, it is clear that the y-type 1 cardinals are closed under limits of
n-sequences whenever cf(n) > y.

Proceeding in a recursive fashion now, say that a cardinal x is of y-type v + 1
if it is of y-type v and

[{A ex]|Ais of y-type v}| = k.

Provided the y-type v cardinals are unbounded and closed under limits of
n-sequences whenever cf (1) > 6 for some 6 > y, the same will be true of the y-type
v + 1 cardinals.
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If 7 is a limit ordinal, we say that a cardinal « is of y-type  iff it is of y-type v
for every v < 7. If, for each v < 7, the y-type v cardinals are unbounded and closed
under limits of #-sequences whenever cf (1) > ¢ for some 6 > y, then, provided
T < 0, the same will be true of the y-type t cardinals.

4.2 Theorem. Let x be a cardinal. Suppose that there is an embedding
e: L. <L,

such that for some ordinal y < k:

@ ely=id[y;
(i) e(y) >7y;
(iii) if A > Kk is of y-type O, then e(A) = A.

Suppose further that x is of y-type w,. Then 0¥ exists.

Proof. By 2.16, it suffices to show that L, has an uncountable, indiscernible subset.
For each v < wy, let

U,={Aexk|lis a y-type v cardinal}.
Since « has y-type w,, |U,| = k for each v < w,. Moreover,
Uy2U;2...2U0,2... ((¥<ow),
and for each v < w,,
Uv+1= {lEUvI |Uvmj'|=’l},
with
Us= (U, iflim(), é < ;.
v<9

For each v < w4, let

MV = LK r(’yu UV)'
Thus,
M,<L, and |M,|=x.
In particular, the transitive collapse of M, is L,. Let
iy L, = M,.
Thus
iy: L,<L,.
Set
P =15, (7).



190 V. The Story of 0¥

Claim 1. Let v,7 < w,. Then:

(i) y, is the least ordinal in M, — (y + 1);
(i) if v < 7 and x € M., then i,(x) = x;
(iii) if v < 7, then i,(y,) = 7,3
@iv) if v < 1, then y, < vy,.

Proof. (i) Since y e M, i, [ y = id | y and i,(y) is the least element of M, — y. So it
suffices to prove that yé M. Since Mo 2M,2...2M,2... (v<wy), it is
enough to prove that y ¢ M,. Consider any x € M,,. Then x = t“(n,, ..., n,) for
some -term t and some #,, ..., n, € y U U,. By the assumptions (i) and (iii) of the
lemma, e(,) = 1y, ..., e(n,) = n,. Thus

e(x) = e(tLK(nl’ cre ”n)) = tLK(e(rll)s AR e(ﬂn)) = th(r“’ R r]n) =X.

So by assumption (ii) of the lemma, x % 7. Thus y ¢ M.

(i) Let xe M,. Then for some Z-term ¢t and some #,...,n,eyv U,
x = thx(yy,...,n,).Ifn €y, thensince y € M, i,(n) = n.1fn € U,, then since v < t,
|U, "yl =mn,s0i, " () =n,so i,(n) = n. Thus

iv(x) = iv(tLK(rll’ e nn)) = tLK(iv('ll)’ et lv(nn)) = tL"(’h’ AR nn) =X.

(iii) An immediate consequence of (ii).

(iv) f v < 7, then M, = M_, so y, < y,. Now by result (i) of this claim, y, > 7, so
applying i,, we get i,(y,) > i,(y) = y,. But by result (iii), i,(y,) = y,. Hence y, * 7..
Thus y, < 7,.

The claim is proved.
Forv <1 < wy, set
MV[ = LK r(’YV o Uf)'
Let

Thus
iye: L,<L,.

Claim 2. Let v < 7. Then:

(i) if & <, then iy (y) = ye;
(i) iy (1)) = P23
(iii) if & > 7, then i,,(ys) = ..
Proof. (i) Since y, = M., we have i, [y, = id [ y,, so this is immediate.

(i) Since y, >y, we have M, = M, ,,so y.e M .. But i, [y, =id [ y,, s0 i,.(p,) is
the least ordinal in M, greater than or equal to y,. Hence y, < i,.(p,) < 7.. It
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therefore suffices to show that there is no ordinal 6 € M, such that y, < J§ < y,.
Suppose that there were such a 8. Then for some #-term t, § = tix (&, ..., &,
N1, ---> i), Where &, ..., &, €y, and ny,...,n, € U,. Thus

ka(aél’---:én< yv)[yv < t (él:'“a émnla"':nk) < ’Y‘L’]
Applying i, !, we get (since i,(y,) = 7., i, [ U, =id [ U, and i, () = 3,)

LKF(3519---9€n<y)D}St(flaw-,ém”h'“:ﬂk)<yt]'

So for some &, ..., &, <y we have

Pty s M) < s

But tix (&4, ..., 0 Nys - -, M) € M, so this contradicts (i) of Claim 1.

(iii) If xe M, , then x = t'x(n,,...,n,) for some L-term t and some 7, ..., 1,
eyuU,;,. Now, i,[y,=1idly,, so i, [y=id[y. And if neU,,,, then
|U,.nn|l=n, so i, (n) =n, giving i, (n) =n. Thus i, (x) = x. In particular,
iy (ye) = yeforall &£ > 1.

The claim is proved.
Claim 3. The set {y,|v < w,} is L-indiscernible.

Proof. Let ¢(vy,...,v,) be any ZL-formula, and let v, <...<v,<w,,
T, < ... <1, < w,;. We show that

LeF@@ys-eesvy) M LF@ ey, ..ns 7))

Pick 6, <...<d,< w; so that v,, 1, <d;. Applying i, ; Wwe get, using
Claim 2,

Lx':(p(’yvnn-ayv,.vnyvn) iff LK':(P(’YVHH"?\:,._UV&,,)'

Applying i,, 5, , now gives
LK ’= (P (yvu sy ’Yvn—z’ y"n—l ’ Va,.) lff LK F qo(yvl’ B yv"_z,yé"_ v y‘;") '
Successively applying i, ,;

.,1,,5, NOW gives, in the end, the equivalence

LKF(P(%W--,VW) lff LKFQ”(V&”---,%,,)-
Repeating the above procedure with 74,..., 7, in place of vy, ..., v,, we get
LKF(P(yrls~-'a))t") lff inzgo('yép"',))&n)'

The above two equivalences combine to give the desired result. That proves the
claim, and with it the theorem. O
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We shall make use of 4.2 in our proof of the next result, the (strong) converse
to 4.1.

4.3 Theorem. Assume there is an embedding j: L, < L;, where o, B are limit or-
dinals, and that j(y) & y for some y < |a|. Then 0% exists. [

The proof of 4.3 will take some time. Fix j, a, § as above, and let y be the least
ordinal such that j(y) # y. Thusj [y =id [y and j(y) > y. Let x be a cardinal of
y-type w,. We prove 4.3 by using j to construct an embedding e: L, < L, to satis-
fy the hypotheses of 4.2.

Let A = x*. Notice that since y < |a|, Z(y) " L < L,. Hence we may define

D={Xcy|XeL&yejX)}.

Since j: L, < L is elementary, the following lemma is easily proved.

4.4 Lemma.

(i) yeD and 0 & D;

(i) if Xe D and Ye D, then X n Ye D;

(ii) if X e D and X = Y = y, where Ye L, then Ye D;

(iv) if X =y, X € L, then either X € D or else y — X € D;

(V) if §<yand {X;|¢ <7} =D and (Xe|& <7) €L, then (| X;eD. O

&<y

Thus D is an ultrafilter in the field of sets 2L(y) which is y-complete with
regards to families of sets in L. We do not necessarily have D € L; indeed, it is a
consequence of our ensuing results that D ¢ L.

We use D to construct a kind of “ultrapower” of L,. Set

F={feL|fiy—-Li}.

Notice that as cf(4) = A > v, if fe F then in fact fe L;. This fact will be relevant
later on. Define an equivalence relation on F by

f~g iff {veylf(y)=gm}eD.
(Since {v e y|f(v) = g(v)} € L whenever f, g € F, this definition makes sense. And,

using the results of 4.4, it is easily checked that ~ is an equivalence relation.) Let
[f]denote the equivalence class of f, and set

M = {[f]IfeF}.
Define a binary relation, E, on M by
[f1E[g] iff {veylf(eg(®}eD.

(Again, for f,ge F, {vey|f(v) e g(v)} € L. And using 4.4 it is easily seen that E is
well-defined on M)
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4.5 Lemma. Let ¢ (v, ..., v,) be any L-formula, and let [fy], ..., [f,]€ M. Then

MLEYE@([fol - [fo])  #f {veylLiF@(fo(v),.... s} €D.

Proof. Notice first that, since fg,...,f,€L;, {vey|L,Eo(fo(),...,f,(v))} € L.
The lemma is proved by induction on the length of ¢.

If ¢ is primitive, the result is true by definition of (M, E.

If ¢ is of the form =1y or else ¥; A V5, the induction step is trivial, using the
results of 4.4.

Suppose finally that ¢ has the form 3 yy (y, vy, . .., v,) and that the result holds
for . If

<M,E>‘=3Y'J/(J’a [fO]""a [fn])a

then for some [g]e M,

<MaE> F l//([g]a [fO]a Ty [f;n]);

so by induction hypothesis

X ={vey|Liky @O, o), .... (")} eD.
But clearly,

Xc{vey|LiFIyy (y,fov), ... fuv)} € L.
Hence

{vey|LiF3yy (0. fo0), -, fu()} €D.

Conversely, suppose that

Y={vey L,k Iy (nfo(,.... fu(")} €D

In particular, Ye L. Define g: y — L, by

) = the <;-least y such that L, Fy (y,fo(v), ..., f,(v), if veY,
IV=0, ifvev.

Clearly, g € L. Hence [g]€ M. But

{(veylLiFd(g().fo(v).... fulv)} = YeD.
So by induction hypothesis,

<Ma E> F l//([g]’ [fO]a R [fn])

Hence
<M9E> F aylp(ya [fO]a> [fn])

The proof is complete. [
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4.6 Lemma. (M, E) is well-founded.

Proof. Suppose not, and let [g,, ] 3[g,] for all n < w. Now, g, € L, for all n < w,
sopick X < L, suchthat(y + 1)U {g,|n < w} = Xand |X| = |y|.Leto: X = L,.
Then|d| = |y| < ||, and hence 6 < a. Thus g, € L,, where we set g, = o(g,). Now,
6 . L;<L;and ¢ |y =1id |y, so for each n < w,

{(veylgar 1M €} ={veylga+r1(mWeg(v} eD.

Thus for each n < w,
YEJ({veEdar 1€ G(M}) = eiMIi@Gn+ )10 €[i(@n)]0)}
In other words, for all n < w, we have

U @ns D10 € @D]0)-

But this is absurd. The lemma is proved. [

We can define a map k: L, - M by

k() = [c.),

where c, is the constant function (x |v < y). Using 4.5, it is easily seen that
k: {Lj,€) <M, E),

so by 4.6 there is an isomorphism
0: {M,E)=<L,.©),

for some pu > A. Let © = ¢ o k. Thus
n. L,<L,.

4.7 Lemma.

@) mly=idTly;
(i) 7(y) > y;
(iii) if @ < A is a cardinal of y-type O, then (0) = 0.

Proof. (i) Let v < y. Then
n(v) =g°k()=e(lc).
So, as g is the collapsing isomorphism for {M, E,

n(v) = otp({4, ED),
where

A={fle M|[f]E[c,]}.



4. 0* and Elementary Embeddings 195

Now,

IEl) i Eerlf@ec @) eD
if {Ee71f(@ev}eD
it | (¢ey1f©) =t} eD.

Using 4.4 (v), we get

[f1E[c,] iff QL <w)[{Ce|f(§) = eD]
iff AL <v)[[f]= [e]l.

Thus

A= {[c]IC <}
But

¢ <L [ce] Eley].
Thus

n(v) = otp({4, E)) = v.
(ii) Forallv<y,y—veD,so
v<y-[e]E[d[y]Elc,)].
Thus n(y) >y + 1.
(iii) Suppose that [g] E [co]. Thus
{veylg(ebieD.
Define f: y — 6 by

_Jg, ifg(eo,
f(v)_{o , i gv) 0.

Then fe L,sofe F,and [f] = [g]. But cf(6) > y,s0 f”y < v for some v < 6. Thus
[f1E[c,), ie. [g] E[c,]. We have therefore shown that the set {[c,]|v < 6} is E-
cofinal in [cq], i.e. that {k(v)|v < 0} is E-cofinal in k(). But g is the collapsing
isomorphism for (M, E). Thus

¢ (k(0)) = sup,<p0(k(v),
ie.

(0) = sup, <o (v).

But for v < 6, if [¢] E [c, ], then as above we have [g] = [f]for some f€ (*v) n L, so,
noting that 6 is a limit cardinal and that [GCH]*, we have

e =le° kM| =le([e,Dl=[lglllg]Elc.]} < |(V)nL| <86.
Thus 7 (0) < 6, and so, in fact, z(0) = 0. O
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Since k < A is of y-type w,, it follows from 4.7 (iii) that = (x) = x. Hence
(mlL,): L,<L,.

Setting e = n | L,, 4.7 implies that e is as in 4.2. That completes the proof of 4.3.

5. The Covering Lemma

It is the very essence of 0¥ that its existence implies that V is very different from
L. In this section we show that if 0% does not exist, then V is very similar to L.
More precisely, we shall prove the following result.

5.1 Theorem (The Covering Lemma). Assume 0% does not exist. If X is an un-
countable set of ordinals, then there is a constructible set, Y, of ordinals such that
X c Y and |Y| = |X|. (Thus, every uncountable set of ordinals is covered by a
constructible set of ordinals of the same (real) cardinality.)

The proof will take some time. Before we commence, let us notice that if 0¥
does exist, then the conclusion of 5.1 fails badly. For example, if 0¥ exists, then w,,
is inaccessible in L, so the countable set {w,|n < w}, being cofinal in w,,, can only
be covered by a constructible set of cardinality at least w,,.

It is also instructive to give some examples of how the covering lemma effects
the set theory of ¥, making it resemble L to some extent.

5.2 Theorem. Assume 0% does not exist. Let x be a singular cardinal. If 27 ®* o1

< k™", then k™ =x*. In particular, if x is a singular cardinal such that
(VA<k)(2*< k), then2* = k.

Proof. Let k be a singular cardinal such that 2" ®* @1 < x*. Let A be the set of all
subsets of x of cardinality cf (x). We know (see 1.5.8) that | 4| > «, so we must prove
here that |A| < k% in order to obtain the first part of the theorem. (The second
part follows easily by cardinal arithmetic.)

Let X € A. By the covering lemma thereisaset Ye L, Y = x,suchthat X = Y
and | Y| = cf () + w,. Given such a set ¥, how many subsets can it have (in V)?
It has 2/¥/ many, of course. So, by hypothesis, Y has at most x * subsets (in V). Now
we ask ourselves how many such sets Y there are? Clearly, there are at most
|(2%)%|. But GCH is valid in L. So the number of possible sets Y is at most
(k)] < k*. So the set X is one of at most x* subsets of one of at most x*
constructible sets. There are thus at most x* sets X e 4. O

Further consequences of the covering lemma for cardinal arithmetic are con-
sidered in Exercise 3.

5.3 Theorem. Assume 0* does not exist. Let k be a singular cardinal. Then [k is
singular]-.

Proof. Let X = k be cofinal in k, | X| =cf(k). Let X €Y<k, YeL,|Y|=|X|
+ w,. Since Ye L, | Y| <k, and sup(Y) = x, we must have [« is singular]t. O
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Notice that as an immediate consequence of 5.3 we have:

0* exists iff w,, is regular in L.

5.4 Theorem. Assume 0% does not exist. Let x be a singular cardinal. If
Va<k)[?(@) < L], then (k) < L.

Proof. Let A = k. We show that A e L. Let 4 = cf’ (), and let (x,|v < 1) € L be
cofinal in k. By 5.3, A <k. Let feL,f:ke—L,. Foreachv< 1, Ank,eL, so
Ank,eL,,and wecanfind ana, < ksothat A nk, = f(«,). Let X = {a,|v < 4}.
Pick YeL, Y=k, so that X = Y and |Y|=|X| + w; < k. Then u = | Y|l < k.
LetjeL,j: pe Y.Sincej "X = u < k,wehavej !"X € L.So,asj e L, we have
X eL.ButfeL,soitfollows that 4 = | ) {f(@)|lee X} e L. O

5.5 Theorem. Assume 0¥ does not exist. If x is a singular cardinal, then (k* )t = k*.

Proof. Let A = (x*)-. Suppose that A < k*. Thus |4| = k, and so cf (1) < k. Let
X < A be cofinal in 4, | X|=cf(l). Let YeL, X YcA |Y|=|X|+w, <k
Then |Y|* < k. So as Y is cofinal in 4, [cf(4)]F <k < A. But [4 is regular]-.
Contradiction. [

5.6 Theorem. Assume 0¥ does not exist. Let k be a singular cardinal. Then U,
holds.

Proof.In L, O, is valid, so let (C,| & < (x*)* A lim («)) € L be a [J-sequence in the
sense of L. By 5.5, this sequence is clearly a [J,-sequence in the real world. [

5.7 Theorem. Assume 0% does not exist. If GCH holds, then for every singular
cardinal x there is a k*-Souslin tree.

Proof. By 5.6 and IV.2.11. O

A slight strengthening of 5.7 is considered in Exercise ID.

We turn now to the proof of the Covering Lemma. It turns out to be a little
more convenient to work with the Jensen hierarchy of constructible sets,
(J,| @ € On), rather than the hierarchy (L,|a € On). The Jensen hierarchy was
introduced briefly in IV .4, and is studied in detail in Chapter VI. In the meantime,
we summarise the facts we need concerning this hierarchy. Note that although the
Covering Lemma can be proved using the Fine Structure Theory outlined in IV 4,
we shall give here a proof which is free of Fine Structure. Consequently, this
section may be read independently of IV .4.

The rudimentary functions were defined in IV 4, so, even though you are not
require to have read IV .4, there seems little point in repeating the definition here.
For any set U, rud (U) denotes the closure of U U {U} under the rudimentary
functions. If U is transitive, so is rud (U). The Jensen hierarchy is defined by the
recursion

Jo = Q);
Ja+ 1= rud (Ja)’
Ji=U o, if lim(4).

a<i



H;(4)

H (4)

198 V. The Story of 0¥

Each J, is transitive, o < § implies J,u {J,} = J;, and J,n On = wa. We have
L, J, < L, so J, =L, iff wa = a. Each J, is an amenable set, and for all «,

Ja+1 ﬁe@(.]a) = Def(.]a).

The Jensen hierarchy thus resembles the usual L -hierarchy to a great extent, the
main difference being that the slightly more rapid growth of the Jensen hierarchy
makes each level amenable, not just the limit levels as is the case with the
L, -hierarchy.

There is a single rudimentary function S such that U L {U} = S(U), and in
case U is transitive, rud (U) = (] S"(U), where S" denotes the n’th iterate of S. We

define a refinement of the Jensen hierarchy by the recursion

So =0;
Sa+1=S(Sy);
Si= S, if lim(d).
a<l

Then o < B implies S, U {S,} = S5, S,nOn = a, and J, = §,,,.

Every rudimentary function is X, and uniformly ¥ for all « > 0. Consequent-
ly, both (J,|« € On) and (S,|« € On) are X,, and if a > 0, then (J,|v < &) and
(S,]v < wa) are uniformly X{=.

There is a well-ordering <; of L, which is X, such that <, n(J,x J,) is an
initial segment of <, N (J;x Jg) whenever a < B. If « > 0, x <;y € J, implies
x € J,. Moreover, <; N (J, xJ,) is uniformly X% for a > 0. :

The Condensation Lemma is valid for the Jensen hierarchy: if « > 0 and
X <, J,, then X = J; for some unique f < .

We have already mentioned that we shall give here a proof of the Covering
Lemma which does not require any of the Fine Structure Theory. For those
familiar with that theory (from IV.4, perhaps) we mention that it is the following,
relatively crude notion which suffices here in place of the full Fine Structure
apparatus.

Let ¢ (vy, vy, ..., V,,) be any P-formula. Let o > 0. The J,-skolem function for
¢ is the function h?: (J,)" — J, defined by

the <,-least y € J, such that k; ¢ (y, x4, ..., X,),
R (X1y ey Xp) = if such a y exists,
®, if no such y exists.

Let « >0, n <w, A<= J,. We denote by Hj(A) the closure of A under all
J,-skolem functions h? for which ¢ is X,. It is easily seen that if n >0,
A = H}(4) <, J,. Similarly, if we denote by H(A4) the closure of A under all
J,-skolem functions, then 4 = HY (4) < J,. (We sometimes write <, to mean <in
such contexts.) We also have 4 < H? (4) <,J,. To see this, suppose Y (v, .. ., v,)
is X, and that x,, ..., x, € H? (A) are such that

|=Jazay(p(y’xly-"5xn)
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Let ¢ be a X, formula such that  (y, X) is equivalent to 3z (z, y, X). Then

Fr. 3we (W)o, W1, X).
By definition,

Er, @ (B (X))o, (hZ (X)), X).
So

Fr.3z0(z, (hg (X)), %),
ie.

Er. @ (h3 (X)1, X).-

So we shall be done if we can show that (k¢ (X)), € H? (4). Well, for any ordered
pair z € H? (4),

(2); = the <;-least y € J, such that k; 0(y, z),

where 6 is the Zy-formula (3 x € z)[z = (x, y)]. Hence (z), = hi(z) € H? (A), and we
are done.

5.8 Lemma. Let >0, 1 <n<w. Let j: J,<,J;5. Let ¢(vy,...,0) be any
X, formula of . Then for all x1,...,x; € J,,

JZ (15 X)) = B ((x1), -5 ] (Xi)) -
Proof. Suppose first that there is no y € J, such that k;_¢(y, x4, ..., X;). Thus
Er, 7 Ayo(y, Xq, .0, X))
Applying j, we get
Fr,13y0 (1,7 (x1), -, j (X)) -
Hence in this case, we have
he(xy,...,x,) =0 and hg(j(xy),...,j(x) =90,

and the lemma is immediate.
Now suppose there is a y € J, such that k;_ @ (y, x4, ..., x;). Set

Yo =hg(x1s..., x0).
Then

'=J,¢(YOa Xisenns Xg)-
So, applying j,
Frs @ G (o) (xe)s -5 (k)
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Thus if j(yo) # h§ (j(x1), ..., j(xy), we must have

Fra3z(z <ij(yo) A @ (2, (x1), .5 j(x0)]-
Applying j 1, we get
Fr,3z[z <yy0 A @ (2, X455 X0 ],

contrary to the choice of y,. O

The main technique involved in the proof of the Covering Lemma is that of
constructing limits of directed systems of embeddings. For the benefit of readers
not familiar with this technique, we give here a brief outline of what is involved.

A directed set is a poset (I, <) such that whenever i, j € I there is a k € I such
that i, j < k. A simple example of such is the set ([X]=¢, <) of all finite subsets of
a set X, ordered by inclusion.

Let n < w. A directed X ,-elementary system consists of a family («/;|i e I) of
structures (of the same kind), indexed by members of a directed set I, together with
embeddings g;;: o/; <, o;for each i, j € I,i < j, satisfying the commutativity condi-
tion oy = o ° 0;;fori < j < k. In case n = w, here, we speak simply of a directed
elementary system.

A direct limit of a directed Z,-elementary system <{(s);c;, (0;;);<;> consists of
a structure 7 (of the same kind as all the /), together with embeddings o;:
o<, such that o;; = 0; ' o g, for i <, satisfying the condition that if x € &/
then x € ran (g;) for some i€ I. If (o, (6));c1), (&, (1));c1y are direct limits of the
same system <(7;);c1, (0;;)i<;> We may define an isomorphism n: &/ = 4 as fol-
lows: let x € 7. Pick i € I so that x = ¢,(X) for some x € «/;. Let n(x) = 7;(x). It is
easily checked (using the commutativity condition) that the choice of i is un-
important here, and that = is a well-defined isomorphism. Since any two direct
limits are isomorphic, we often speak of the direct limit of a directed elementary
system. That there always is a direct limit may be demonstrated as follows.

Let {();c1, (0:))i<;> be a directed Z,-elementary system. For simplicity, sup-
pose that «7; = (4;, R,>, where R; = A?. Set

U=UA,'.

iel

Define an equivalence relation ~ on U as follows. Let x, y € U. Pick i, j € I so that
xe A;, ye Aj. Say x ~ yiff there is a k > i, j such that g, (x) = 0;(y). (We leave
it to the reader to check that this is an equivalence relation.) Let 4 be the set of
equivalence classes of elements of U under ~. Define a relation R = A" as follows.
Let X,,..., X, € A. Since [ is directed we can find an i € I such that there are
elements x, € X; N A4;,...,x,€ X,Nn A;. Set R(X4, ..., X,) iff Ri(x4, ..., x,). (We
leave it to the reader to check that R is well-defined here.) Let &/ = (4, R). For
i €I, define o;: A; — A by letting g;(x) be the equivalence class of x. It is routine
to show that g;: &/, <, <.

In cases where the direct limit of a system is well-founded, we usually take the
transitive collapse of the limit as “the direct limit” to work with. In this connec-
tion, the following result is sometimes useful.
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5.9 Lemma. If e: J,<, M, where M is transitive, then e(S,) = S, for all v < wa.

Proof. Let ¢ be the canonical Z, formula which defines the S,-hierarchy: that is,
for any y and any v < wy, if N is a transitive set such that J, = N, then

x =38, iff Fy3ye(y, x,v).
Let v < wa be given. Set x = S,. Then
Fr.3ye(y, x,v).
So for some ye J,,
Fr.@(y, %, v).
Applying e: J, <o M,
Fa @ (e(), e (x), e(v).

Thus
FuIyo(y,e(x), e(v).

Thus e(x) = S,,), as required. [J

There are various ways of obtaining a structure J; as a direct limit of a directed
system of smaller structues. We describe below three methods that will be of use
to us.

Let 6 > w be given. For each integer n > 0 and each infinite ordinal # < wd,
we define a directed X,-elementary system S} (1) whose limit is J;, as follows. Let
I = I} (n) be the set of pairs («, p) such that « < 7 and p is a finite subset of J;.
Partially order I by setting

(.p)<(f,q iff «<pand pcgq.

Under this ordering, I is a directed set. We use I to index the system S (n).
Let i = (o, p) € I. Then

aup < Hj(eup) <,J5.
By the Condensation Lemma, let
0 Joi = Hi (U p).
Fori,jel,i<j,set
o;j=0;'°0;.
(This is clearly well-defined.) Thus
935t Jow <nJoips
and
0i: Joiy<nds-

Then Sj(n) = {(Jy@)ic1> (0:)i<;> is a directed Z,-elementary system whose direct
limit is {J5, (03)ic1)-

S3(n)
3(n)



S5 (n)
5 ()

53 (n),
I3 (n)
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We may also represent J; as the limit of a directed X, -elementary system S3 (),
described next. As above, let @ <1 < wd. Let I = I§ (1) be the set of all triples
(k, o, p) such that 0 < k < w, & < 7, and p is a finite subset of J;. Partially order
I by setting

(k,o,p)<(L,B,q iff k<landa<pfandpcgq.

The directed set I is used to index the system S (n).
Leti=(k, o, p) € I. Then

aup < Hé(xup) < Js.
Since k > 0, by the Condensation Lemma we may let
0t Joiy = Hi (@ L p).
Then o;: J,; <, J5, and in fact 6;: J,; <, J5. For i < j, we may clearly define

o'ij = 0;

j °0;.

Then
ij: Joy <140 -
¥ (1) is the directed X,-elementary system
{(Je@liers (aij)i5j> .

Its direct limit is, of course,

(s> (Giery -

Our third directed system to give J; as its limit will apply only in the case when
d is a limit ordinal. For o < n < w4, we define the directed X, -elementary system
S9 (n) as follows. Let I = I (n) be the set of all triples (v, a, p) such that 0 < v < 6,
o <n,a<v,and pis a finite subset of J,. Partially order I by setting

vap)<(up,q iff v=porJ,eqlanda<fandpcgq.

The directed set I will be used to index the system S9 (1).
Leti= (v,a, p)el. Then

aup S H(xup) <, J,.
By the Condensation Lemma,

0i: Jyoy = HY (¢ U p).
Thus
Gi: JQ(i)<1 JV'
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Suppose that i=(v,a,p), j=(u f,q) are elements of I, i<j Let
x€HY(@up). Ifv=p, then xe H)(xup) = HY(Buq). If v + p, then since i < j
we must have J, € g. Now, x is X;-definable from elements of « U p in J,. So there
is a To-formula ¢ of & such that x is the unique element of J, such that

|=J“(p(x’ nh-",r’nayla‘--aym,‘]v),

where#,,...,n,€aand yy, ..., y, € p.[To obtain ¢, take a formula which defines
x from elements of « U p in J, and bind all quantifiers by J,.] Thus x € H (B L g).
So we have proved that HY (x U p) < HD (B L q). Hence we may define

1

=0;  °0;.

0 i

J

Since X, formulas are absolute for transitive sets (1.9.14), J, <, J,. Hence
5> Joiy <o oy -
S9(n) is the directed Zy-elementary system

<(Je(i))iela (Gij)i$j> .

Its direct limit is

{5 (O)ier) -

(Again, by X,-absoluteness, J, <o J; for all v < 6, so 0;: J, ;<o J5.)

The relevance of the above directed system “representations” of structures J;
lies in the fact that they enable us to represent a possibly large J; in terms of small
structures J, ;). For, although the directed system will have to be large, in the sense
that the index set I must be large, the individual structures J,; may all be
relatively small. We investigate this phenomenon next.

Consider any of the systems Sj(n) just defined, where 6 > w, 0 < n < o,
o < n < 6, with lim () in case n = 0. Let y be any admissible ordinal. We shall say
that S3(n) is below v if ¢ (i) < y for all i € I(n).

5.10 Lemma. If S3(n) is below y, then a;;€ J, for all i,je I3 (n), i <j.

Proof. Consider first the case 0 < n < w. Leti,j e I5(n), i <j,i = (&, p),j = (B, 9).
Then 6;;=0; ! ° g, where

oi:Jopy = Hy(@up), o;:J,;=H3(pug).

Now, Hj(x L p) is the closure of « U p under the X, skolem functions h¢. Since
o< fand p < q, Hy(xvp) = Hy(f v q). Using 5.8 and applying

o2 by = H3y(Bu @) <, Js
“backwards”, we see that the set

ran(o; ' c0;) = o; ' "Hj(x U p)



Q
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is the closure of « U g; !(p) under the Z, skolem functions A, i.e.

ran (0;;) = Hy (@ v a; ' (p)).

Consider the definition of H!;,(x U o} * (p)) from ¢ (j), n, &, o * (p). It is the subset
of J,;, consisting of all those elements x of J,(;, which may be obtained from
elements of o U 6; ' (p) by finitely many applications of functions of the form hg;,
where ¢ is a X, formula of .#. Thus, it is easily seen that H};, (@ v ;' (p)) is a
A, (J,) subset of J,;. But J, is admissible. Hence by A;-Comprehension (I.11.1),
Hyy (v o (p) €,

Again, o;;* is the collapsing isomorphism for the set Hy; (U 6 ' (p)), s0 6;; !
is a A;(J,) subset of J,;, whence o;;' €J,. Thus ;€ J,, as required.

Consider next the case n = w. If i, j e I§ (), i <j,i = (k, o, p),j = (I, B, g), then,
much as above, we have

it o) = Hopy (@ a5 (),
and again as before this implies that o;; € J,.

Finally suppose n = 0. Let i, j e I3 (1), i <j,i= v, o, p),j = (i, B, q). If v = p,
then

o Jyp = HY(@up), 0;:J,;3=HY(Bug),
so as in the above cases
0ij: Jooy = Hop (@ U a5 1 (p)),

and as before we can conclude that o;; € J,.
Now suppose J, € q. Then

o Jyy T HY(@up), 0 J,; = HY(BuUQ).

Now, if ¢ is £, and x4, ..., X,,, y € J,, then, as is easily seen,
y=h{(xq,....x,) iff y=hd(x,,...,x,).

Thus we may in fact apply the same argument as before to obtain
it Jouy = HYG (@ of 1 (p)).

Again this implies that o,; € J,, so we are done in all cases. [J

We are now ready to begin our proof of the Covering Lemma. We shall
assume from now on that the Covering Lemma is false. We fix 7 the least ordinal
such that there is an uncountable set X < 7 which is not a subset of any construc-
tible set of cardinality | X|. This choice of 7 has two immediate consequences.

5.11 Lemma. [t is a cardinal]".
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Proof. Suppose otherwise. Let A = [t|", and let je L, j: A7 Let X =j~'"X.
Since X < 4 < t, the minimality of  guarantees the existence ofaset Ye L, X = Y
c4,|Y|=|X|.Let Y=j"Y. Then YeL, X < Y< 1, and | Y| = | X|. Contradic-
tion. [

5.12 Lemma. If Ye L and | Y|* < 1, then Y cannot cover X.

Proof. Let A = |Y |t and letje L,j: A<> Y.Suppose X = Y. Let X =j~'”X. Then
X <l <1, s0 by choice of 7 there is a set ZeL, X< Z < A, |Z| =|X]|. Let
Z=j"Z Then ZeL, X € Z =, |Z| = |X|, contrary to the choice of X. O

The overall strategy behind our proof of the Covering Lemma is as follows.
LetM < J,,|M| =|X|,X = M,andlet n: J, = M. Since X < 7, we know that (by
choice of X) | X| < || (for otherwise 7 € Lis a cover of X of cardinality | X |). Thus
|J,] < |z|. But X is cofinal in T and X < ran(n). Hence n: J, < J, is non-trivial. Let
B be least such that n(B) > B. If B < |y|, then by 4.3, 0¥ exists, and we have our
sought-after contradiction. What if § > |y|? Then we try to find a é >y, |8] > B,
such that it is possible to find an embedding #: J;< J, which extends 7 (so
7(f) > P), in which case 4.3 may again be applied. The question is, how might we
extend 7 as desired? Well, by choosing M carefully in the first place, we find a 6
such that J; is the direct limit of a system which is below y. (Note that as J, = J.,
y is admissible, by virtue of 5.11.) Thus the map 7 sends the members of this system
to a directed system inside J,. If the direct limit of this system is well-founded, and
thus of the form J, for some v, then it will be easy to construct an embedding 7#:
Js < J, which extends =, as we shall see. However, as we shall discover, the choice
of M, in particular, must be made very carefully indeed, making use of the special
properties of 7 and X.

We defer until later the actual choice of the submodel M < J,. We assume
simply that we have found some embedding n: J,< J,. Note that by 5.11, y will
be an admissible ordinal. Let us further assume that J, n,  are such that 6 > w,
0<n<ow w<n<3dand that S§(n) is below y. Then we may define a directed
system 7* S} (), of the same degree of elementarity as Sj(»), as follows. As index
set we take the set I (). Associated with i e I5(#) will be the structure J, ;. For
i,jeI5(n),i < j,the embedding associated with i, j will be (o). Since = is elemen-
tary, if 6;;: J,4 <k Jy(j)> then m(0;): o) <kJre(y> SO this makes sense, and
moreover, 7* S} (1) so defined is a directed system. The lemma below shows how,
under these circumstances, it is possible to extend = from J, to J;. (Actually, in the
form stated, all that we get is that # extends = [ #, but in our main application of
the lemma we shall have n = y, in which case we really will have = = #.)

5.13 Lemma. Let (U, E), (0;);c1) be the direct limit of the system n* S3(n). Then
there is an embedding %: {Js5,€) < .,<U, E). Moreover, if (U, E) is well-founded,
we may take (U, E) to be of the form {J,,, €) for some p, in whichcase @ [n =mn 1.

Proof. Let x € J5. For some i € I5(n), x € ran (0;), say x = 0;(X), where x € J,;). Let
y = n(x), and set 7 (x) = 60,(). (Thus #(x) = 0, > w o 6; *(x).) It is routine to verify
that # is well-defined. And in the cases n < w, it is immediate that 7 is
X ,-elementary. To show that in these cases 7 is in fact ¥, , ;-elementary, we argue
as follows.

T, Y
o, mn

n* S5 (1)
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Suppose that ¢ is II, and that

CU,E>F3yo(y, #(x)).

Then for some y e U,
CU,E>Fo(y, T (x)).

Pick i so that 7 (x), y e ran(6,), say % (x) = 0;(x), y = 0;(¥). Since
0t {Jrieiy> € <au<U, E),

we have
Jrein F @ (3, %).

But x = 6; ! o #(x) = m > 6; }(x). So we may rewrite the above as
JeeinF @ (7. mo 07 ().

Thus
JreinFIzo(z,meo 0 1(x)).

Then, since n: J,< J,, we deduce that
JooFIzo(z, 07 1 (x).
So for some z € J,,

Je(i) i: (P(Za ai_ l(x))‘

But ¢;: J,;y <, Js- So

JsE@(0:(2),x).
Thus

Js F Ayoe(y, x).

The argument in the other direction is similar, and we leave it to the reader to
supply.

In the case n = w, to prove that 7 is elementary, we argue as follows. Let ¢ be
a formula which we wish to show is preserved by 7. Suppose that ¢ is X,,. Pick
i=(k,a p) in I§(n) “large” enough so that ran (¢;) contains all parameters in-
volved and so that k = m. Then use the fact that ¢; and 6, are X -elementary. (We
leave the details to the reader.)

Now suppose that (U, E) is well-founded. Then we may assume that U is
transitive and that E =€ n U2 Let U n On = wp. (It is clear that U n On must
be a limit ordinal.) We prove that U = J,. First of all set x € U. Pick i so that
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x = 0;(x) for some x € J,(, ;). For some v < w - n(g (i), X € S,. Applying 6;: J,.
<, U and using 5.9, we have

X = 9,()2) € GI(S‘,) = Sﬂi(v) = U S§ = JI"
E<op

Now let x € J,. For some v < wy, x € §,. Since v e U we can find an i such that
v = 0,(v), where v < (g (i)). Then by 5.9 again, 6,(S;) = Sy, = S,, s0 S, € ran (6),).
Thus S, e U. But U is transitive. Hence x € U.

Finally, assume now that U = J,. We show that # [n =7 [#. Let £ <n be
given. Pick i € I}(n) so that & € «, where i = (o, p)if0 < n < w,i = (v, a, p)ifn = 0,
and i = (k,«, p) if n = w. Then 0;;(£) = ¢ for all j > i, so 6;(£) = £. Again, since
0;;(§) = & for all j = i, applying n: J,< J, we have [rn(0;;)](n (&) = n(&) for all
j = i. Hence as U is transitive, 0;(n (£)) = n(£). Thus #(&) = =(§). O

The proof of the following lemma is very complicated, and is deferred until
later.

5.14 Lemma. There is an admissible ordinal y and an embedding n: J,< J, such
that |y| = | X |, X < ran(n), and whenever é > 7y, then S3 () is below y and the direct
limit of m* S (y) is well-founded. O

Using 5.14, it is very easy to obtain the contradiction which proves the Cover-
ing Lemma. Namely:

5.15 Lemma. 0¥ exists.

Proof. Since X < ran(rn) and |y| = | X| < |7| we can find a f such that n(f) + f.
Pick 6 >y, |6| > B. By 5.14, S (y) is below y and the direct limit of 7* S (y) is
well-founded. So by 5.13 we may take this limit to be J, for some y, and there is
an embedding #: J;< J, such that 7 [y = = [ y. But #(f) #+ B and B < [§]. So by
4.3, 0% exists. [

Now let us begin our attack on 5.14. The part that makes use of the fact that
X cannot be covered by a constructible set Y such that | Y|* < 1 (see 5.12) is the
proof that S§(y) is below y for any 6 > y. In fact, we shall prove, by induction on
o, n, that if 6 > y and 0 < n < w, then Sj3(y) is below y. (This is why we need to
consider three types of directed system, not just S§'(y).) This in turn means that we
must be even more careful in our original choice of y, 7. More precisely, instead
of simply proving 5.14 as stated, we prove the following two results, which togeth-
er imply 5.14 at once.

5.16 Lemma. There is an admissible ordinal y and an embedding n: J,< J, such
that:

@) |yl =1X]| and X < ran(n);

(@ii) ifo = y,n < w, and if lim (9) in case n = 0, then, IF S%(y) is below v, then the
direct limit of n* S3(y) is well-founded. [J

5.17 Lemma. Let 6 >y, 0 < n < w. Then Sj(y) is below y. O

We prove 5.17 first, since 5.16 is the more complex of the two. It is clear that
5.17 follows directly from the following lemma (which is in fact only a reformula-
tion of 5.17 in the cases n < w, being stronger only in the case n = ).
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5.18 Lemma. Let 6 >y, 0 < n < w. For every a <y and every finite set p < Js,
otp[Hj(x up) N On] < y.

Proof. Suppose the lemma is false. Let 6 > y be the least ordinal for which it fails
(for some n), and let n be least such that 0 < n < w and the lemma fails for 4, n.
We wish to apply 5.16(ii) to 6,n — 1. In order to do this we must know that if
n = 1, then lim (). This is in fact the case, but we shall defer the proof for a
moment, and simply assume it.

Claim 1. S%™1(y) is below y. (If n = w, then of course n — 1 = w.)

Proof. Suppose first that n > 1. Let i € I}~ (y). Then
Jow = H5(x U p)

for some k, 0 < k < nand some finite p < J;. (If n < w, thenin fact k = n — 1.) By
the minimality of n,

otp[H(x LU p) " On] < y.

Hence ¢ (i) < y.
Now consider the case n = 1. Let i € I3(y). Then

Jooy = HY (U p)
for some u < 6, & <y, and some finite p < J,. If 4 > 7, then by the minimality of 6,
otp[H) (@ up)nOn] <y,
whilst if 4 < v, then trivially
otp[HJ (@ up) nOn]< wp <y,
so again we have g (i) < y. The claim is proved.
Claim 2. There are o, < ¥, po < Js, po finite, such that
Js = Hj(0t0 L po)-
Proof. Pick a <y, p = J;, p finite, such that
otp[Hj(xwp)nOn] > y.
Let
J:Js = Hy(x v p).
Set ag = a, po =j *(p). By 5.8,
Jy = H} (@ U po).

But 6 > 7. So by the minimality of § we have § = 6. The claim is proved.
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By Claim 1 and 5.16 (ii), the direct limit of z* S}~ (y) is well-founded. Thus by
5.13 we may take this limit to be of the form J,, and there is an embedding 7#:
Js<,J,suchthat % [y =z [y. Let By = & (o), 9o = 7 (po)- By Claim 2 and 5.8, we
have, applying %,

ran(f) = " J; = " H3(oto Y po) = HY(Bo Y q0)-

But X < ran(n) < ran (7). Hence
X = HY(Bo Y q0)-

Now, clearly, Y = H"(B, U qo) € L. Moreover | Y|E = |Bo| + w. But
Bo = R(2o) = (o) € J2,

s0 Bo < 1. Thus by 5.11, | Bo|* < 7. Thus Y contradicts 5.12, and we are done.

We are left with the proof that if n = 1, then lim (5).> Suppose, on the contrary,
that we had n = 1 and 6 = f + 1. Note that as > y and y is a limit ordinal, we
must have > y. Choose a < v, p = J; finite, so that

otp[H; (xup)nOn]=>y.
Now,

Hi(xup)nOn=H}(@xup)nwd.

Since 6 = B + 1, if we intersect H} (« U p) N wd with wp we lose at most w ele-
ments. But

otp[H}(xup)nwd] =7 = wy.
Thus we must have
(%) otp[H;(@up)nwpl=>y.

Let p = {a,,...,a}. Since ay,...,a; € J; = rud(Jy), there are rudimentary
functions f}, ..., f; and elements by, ..., b; of J; such that

a; =f1(Jﬂa by), ..., a4 =fl(']/h b).
Let g = {by, ..., b;}. We prove that

() Hij@up)nwpcs Hf(xug nwp.

5 This part of the proof makes use of some technical facts concerning the Jensen hierarchy of
constructible sets and the properties of rudimentary functions. These facts are proved in
Chapter VI, and we simply quote them in the present account. Consequently, the reader not
already familiar with the Jensen hierarchy may prefer to simply take the result n = 1 — lim ()
on trust, or else to merely skip through the account given. In any event, it hardly seems worth
postponing a proof of the Covering Lemma until after Chapter VI, when this one technical
detail in the proof is the only point where such knowledge is required.
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By (%), this implies that otp [Hj (x U q) " On] >y, contrary to the choice of J,
which completes the proof.

So let ¢ € Hy (U p) nwpf. We must prove that € Hf(xuq). Let ¢ be a
Yo-formula, and let &, ..., & < « be such that & is the least (which for ordinals is
the same as the <j-least) ordinal in wd such that

(1) Ersdxeo(x, & &, .. ¢ ar,...,a).

Pick x € J; such that

(2) Fjo(p(x,é,61,...,&‘,01,..-,01).

Then we can find a rudimentary function f and an element y of J; such that
x = f(Jg, ). So,

) Fra@ (F(Jp 9, & Cs s S f1 (U b1)s o, il b))

Since ¢ is £, and f, f3, ..., f; are rudimentary, the formula

(P(f(x, y)! 65 519 LRRE] éksfl(x9 bl)’ e ',ﬁ(x’ bl))

is X, in the variables x, y, &, &4, ..., &, by, ..., b;. This depends upon a property of
rudimentary functions that we have not mentioned before, that if R(x) is a X,
predicate and f is rudimentary, then R(f (%)) is a £, predicate. For a proof of this
fact we refer the reader to VI.1.3. It follows that there is a formula  of & such
that (3) is equivalent to

(4) FJﬁl/I(y’é,élau.aék’bl’-'-’bl)'

This requires another result not yet proved, which says that X-definability over
rud (U) for elements of a transitive rud closed set U, using parameters U, d, where
d e U, is equivalent to definability over U using parameters d. This is proved in
VI1.1.18. By (4) we have

)] Fra 3y (3, & C15 005 & by ooy by).

Moreover, ¢ is the least such. For suppose, on the contrary, that & < & is such that
©) Fra 3y (3, &, ¢y s by oy by).

Then, using the equivalence of (3) and (4) we can find a y’ € J; such that

™ Fra @ (f(Tgs ') €5 81y & f1 (T, ba), o, il T, b))

So, setting x’ = f(Jg, y'), we have

(8) Froo(x, &, ¢, ..., ¢ ay,...,a).

This contradicts the choice of £. Since € is the least ordinal satisfying (5), we have
¢ € Hy (xu g). This proves (x*), and completes our proof of the lemma. [J
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This leaves us with the proof of 5.16. We shall define, by recursion, a chain of
submodels

Mo<M;<...<My<...<J, (B<w)
such that X < M,. Setting
n0: J’y(@) = Mo

for each 6 < w,, we shall let y = y(w,), # = 7, to obtain the lemma. That is, we
shall have |y| = | X |, and whenever 6 > y and n < w, with lim (6) in case n = 0, if
"(y) is below 7, then the direct limit of 7* S3(y) is well-founded. The idea is to
include in the models M,, 6 < w,, withnesses to any possible failure of well-
foundedness of any eventual n* S3(y), so that the well-foundedness can be estab-
lished by a proof by contradiction.
To commence, we set

M, = H®(X).
And a limit stages 0 < w,, we set

Mg= U M(O'

Yw<é

This leaves us with the case where 8 < @, and M, has been defined.

Consider a pair (n, ) such that n < w and w < 5 < y(6). Suppose that there is
a d = n such that S3(n) is below 7y () and the direct limit of 7} S} (n) is not well-
founded. Let §, be the least such 6. Since the limit of 7§ S}, (1) is not well-founded,
we can find a sequence (g, |k < w) and elements ji, € I3 (1), jx < jk+1, such that
Ay € Jry oGy a0d a4 1 € [me(0,, j, . ) 1(ak), Where @ (i), o;; relate to the system S5 (1)
here.

For each pair (n, 1) as above, we pick one such sequence (a;| k < w). We let N,
be the set of all elements a,, k < w, chosen in this way. (Of course, it is possible
that Ny = 0.) We set

Mgy = H?(MgU Ny).

By induction on 6 < w; we easily see that |Ny| < |X]| for all 0 < w,. Thus
|Mg| = | X| for all 0 < w,. In particular, if y = y(w,), then |y| = |X|. Setting
n = m,,, we have n: J,<J, and X < ran(n). So what we must show is that if

6 To avoid the necessity of extra notation in a situation where the notational complexity is
already at the limit of human tolerance, we shall frequently use the symbols ¢ (i), oy, etc. to
refer to various dirceted systems of any of the three basic types described earlier, and merely
observe which system is referred to each time. In each case, g (i), o;;, etc. will have the meaning
originally defined, but for the system under consideration at the time. This desire for notational
“simplicity” is also the reason why we made no notational distinction between the three types
of directed system which we introduced; with g (i), g;;, etc. having the same meaning in each
case.

Ty, ¥V (0)

T

M,
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6 > vy and n < o, with lim (6) in case n = 0, and if S} (y) is below y, then the limit
of n* S%(y) is well-founded. We assume otherwise and work for a contradiction.

We consider first the case 0 < n < w. Pick sequences (b,,| m < ), (i,,|m < w)
SO that lm € Ig('))), im < im+la im = (am,pm), Xy < O+ 15 bm € Jn(q(im))s bm+1 €
[n (o, i,..,) ] (bm), where ¢ (i), o;; refer to the system S5 (7).

Now, in order to obtain a contradiction with the construction of M, what we
require is that such a sequence (b,,| m < w) exists for a system which is below y ()
for some 6 < w;. But all that we know about Sj(y) is that it is below 7. (Indeed,
for the system S} (y) itself, the ordinal y is clearly the least ordinal such that the
system is below y.) However, the subsystem {(J,¢,))m<w> (Gi,,, i,Jm<sy 1S such that
the limit of {(J;()m<ws (T(05,, :))m<sy is not well-founded. The idea now is to
use this countable system to construct a system S} (77) which is below y (6) for some
0 < w, and for which the direct limit of n§ S§(#) is not well-founded.

Now, S3(y) is below y, so for each m, ¢ (i,,), %, 0;.' () € J,. Thus for each m,
(0 (i), T (%), (0, (Pm)) € M,,,. Since M, = () M,, we can find a 6 < w,

0<w;

such that 7 (g (i), 7 (%), 7 (67, (pm) € Mg for all m < . Let j = !

o 1y. Thus
P dye=<J,-

Our next move is to use j in order to “pull back” from J, to J, 4, the system
<(Jo(im))m<wa (Uim, ik)mSk>' Since ran (.]) =ran (n‘l rMO)’ we have Q(lm)’ am?
0.} (pn) eran(j) for all m < w. For each m < w, let g,, < 7y(0) be such that
j(@m) = 0(in), let &,, < wg,, be such that j(&,) = a,,, and let p,, = J; be such that
J(I;m) = o'i:,.l (pm)

Now, by definition,

i Jotin) = Hi (U U p) <u s
So, using 5.8,

Jotim) = He i Om Y 05 (D) -
But j: J, < J,, so applying j~' we have

J;,, = Hj, (00 U Ppy).

Let m < s. Now, if x € &, then j(x) € j(&,) = &,. So as o; ; [, =id | &,, we
have g; ; (j(x)) = j(x), and hence j ! (g, ; (j(x))) = x is defined. Again, suppose
X€ Py Then j(x)€j(Pn) = 0,  (Pw)- SO 04, 1,i(9) €07,  (pn) But oy (p,)
= j(p,) € ran(j) < J,. So as p,, is a finite subset of the finite set p, o;_ ' (p,,) € ran (j).
Thus j = (6,,,.5, () =~ (65, * (p,)) is defined.

Thus we can define an embedding

O_'ms: Jém <n J-s
by setting

Gms (MG, (X15 - X)) = hE. (7 (04, i, G (X)) -5 71 (04,1, (T (1)),
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for any X, formula ¢ (v, ...,v,) and any x,..., X; € &, U p,.. (By 5.8, this does
define a X,-elementary embedding.) Then

<(J§m)m <ws (O-_ms)m < s>

is a directed Z,-elementary system, and moreover the following infinite diagram
commutes:

Jéo itg, Je(io)

Go1 %io, iy
 ————) .
ng it Jo(n)

G2 %iy, iz

Let KU, E), (6 )m<wy be the direct limit of the system

<(J§m)m <w> (O-—ms)m $s> .

We have 6m: Jém <n <U, E>, O'im: Je(im) <nJ6’ and O'im, is — Ui:l © Uim for m < s. SO
we can define an embedding

e: KU, E)<,{Js,€)

as follows. Let ue U. Pick m < @ so that u = g,(x) for some xeJ, . Set
e(w) = o, (j(x)). (Itis routine to check that e is well-defined and X,-elementary.)
In particular, (U, E) is well-founded, and we may assume that (U, E> = {J5,€)>
for some 6.

So, starting with a system

<(Jn(e(im)))m<wa (TC (aim, is))is>

which has a non-well-founded limit (witnessed by the elements b,,), we picked a
6 < w, sufficiently large for us to be able to use j ="' o 7, (s0 j: J, < J,) in
order to “pull-back” from J, the system

<(Ja(im))m <w1 (Gim. is)m$s>

to a system

<(Jg'm)m <w1 (&ms)m <s>
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with limit
<J5’ (G_m)m<w> .

We shall show that for # = sup,,<,, &, the direct limit of =} S3(1) is not well-
founded. Indeed, we shall show that 7y (G,,,) = 7 (0;,, ;) for m < s, so that the same
elements b,, witness this non-well-foundedness, just as they did for the original
system.

Let 7 = sup<e &y Since (a,,|m < w) is strictly increasing and j(a,,) = o,
(&n| m < ) is strictly increasing. Hence &,, < 7 for all m < w. Since 6,,: J;,, <, J5,
we have &, < 0.0, < ®.dforallm < w. Hence j < wd. So we may consider the
directed X, -elementary system S% (7).

Set 4 = G (Pm)s im = (&ms G,)- Then i, € I*(7j) and m < s implies i,, < i,. And
for the system S%(7) we have g,, = 0 (im), G = 0%, Gms = 0%, 1. (This is not a fact
that requires any proof. We have simply started with a system {(J;, )m<w> (Fmsm<s)
and then defined 6, 7, i,, so that the above equalities are true by definition.)

5.19 Lemma. In the system S}(#), for each i€ I}(%) there is an m <  such that
0" Joy S O3 o) -

Proof. Let i = (o, p) € I5(7). Since p = J;s is finite and Jy is the direct limit of the
system

<(J§m)m <w1 (G—ms)m < s>,

there is an m < w such that p = 6,,"J;, . Moreover, since « < 7§ we can choose m
her'e so that &, > a. But 6,=o0;, and o;: J,g,) = H5 (@, U qn), SO Gy | &y
=1id | &,. Thus

aUp<Sa,"t; <,J5.
It follows that H}(x L p) = 6,,"J,,,. But in S3(#), by definition,
0 J,p = Hy(x L p).

Thus 6,"J, < 6,"J,,,. Since 6, = o3, 0 = 0 (i) We are done. [

It follows from 5.19 that S}(#) is below y (6). To see this, let i € I$(7) be given.
Pick m < w so that 6;,"J, ;) < 03, "J, .- Since o;, o7, are one-one and e-preserving,
it follows that (i) < ¢(i,,) = 0, < 7(0), as required.

Since S§(#) is below 7y (0), n§ S%(#) is defined. Now,

i i) = Hi (0 O P) s
05 Jouy = Hi (s U py).
Thus

(*) Oinis =04, © 04, oy = Hpiy (@ U 61, (P)) -
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Now, by choice of 0, ¢ (i,,), o (i), &, € ran (j). Moreover, the choice of 6 ensures
that o, ! (p,) € ran(j), so as p,, is a finite subset of the finite set p,, we have o;_ *(p,,)
eran (j). Thus as j: J,4 < J,, we have g, ; eran(j). But j(g,) = 0 (i), j (@) =
0 (i), j (&,) = a,. Thus from (*), applying j~ !, we get

(**) N0, ) o = Hy (@m0 00, (Pw).
Now,
J oo M (pw) =j oot 0a;,0j(Pm)  (by choice of p,)
=jtoo;, i.°J(Pm) (by definition of o, , ;)
= G pus(Pm) (by commutativity of the diagram above)
=3,"'°G (Pm (by definition of G,,, G5)
=6, ' (qn) (by definition of g,,).

Thus by (**),
J7HO, 1) Jg = Hy, (G O 5 (@)

In other words, since g,, = 0 (i), @5 = 0 (iy), G, = o5

J- I(O'i,,., is): o = Hy (G v oy, ! (Gm)) -

But i,, = (&, Gm), is = (&, 4s)- Thus, in the same way that we deduced (*), we may
obtain

O Jao = Ho iy @m Y 07, 1 (@) -
Hence
j_l(o'im, is) = 03,7
ie.
J(05,.,%) = G-
Therefore, applying 7,
nej(oz,.7) = n(0,, ).
Butj =n"1!om,. So,
n(0%,.,7) = 7 (03,1,
Thus by choice of the elements b,,,
b+ 1€ [m9(0%,,, 5, ) ] (bm)

for all m < w. Hence the direct limit of the system =g S} (7) is not well-founded.
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We have now arrived at the following situation. We started with a § > y and
a0 < n < w,such that S (y) is below y and the limit of 7* S} (y) is not well-founded.
By choosing a suitable embedding j: J, 4 < J,, we were able to “pull back” Sj(y)
(or at least a subsystem of this large enough to give a non-well-founded n-image)
to a system S%(#) which is below y (6), such that the direct limit of =¥ S%(#) is not
well-founded. (Remember also that © = =#,,,.)

Consider now the definition of My, . When the pair (n, 77) was considered, &
was, by the above, a candidate in the choice of what we then called J,. Hence as
8o was chosen minimally, d, < . Let (a,| k < w), (ji| k < w) be the sequences
chosen for &y, n as described: that is, ji, € I5, (1), jx <Jjk+1> % € JrpGi)> +1
€ [m9(0 5, jur ) (@) Let ji = (B, qi)-

It is easy to construct an increasing sequence (m; | k < ) of integers such that
B < Gmy» i < 07, "Jo5,,)» and in case o < d, such that J; € o7 "Jyq o> Where, as
before, these relate to the system S5 (7). (To get By < &,, we use the fact that B <t
= sup; <, &. To get g, < oy, "J, ) We use the facts that 6, < 6 and Jjis the direct
limit of S}(#), together with 5.19. Likewise to obtain Js0 € 03, "o G, 1D CASE Og < J.)

For each k < o,

ﬂk U gk c [O_i_mh/'Jo(ka)] N Jéo <n J50 .
(For if §, = &, this just says that

"
) <nJ5>

which we know already. Whilst if 6, <&, then from the fact that

O To oy <uJ5

and

"
Js0 € 03, Jotip) s

we deduce easily that
[a.i_mhr/ e(“—mk)] N Jéo < ‘I&o s
ie. full elementarity.) It follows that, if ¢;,, ¢ (ji) refer to the system S3, (1),

o.jk” o) = Hgo(ﬂk VW s [O'imk o (im,) ]n‘léo

Thus we can define embeddings

et ot <o JoG
by

e, o7 !

Iy Jr*
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Now,

O-jk: JQUk) = Hgo(bk o qk)’
and

O"i‘mk: Jémk g H% (&mk % ‘jmk) b
SO

e’ Jogio = Hy (B v O'i‘,_,,: (9v),
where

v = ai—"":, if 6o <6

B Q_mks lf 50 = 5_

Thus e, € J, ), and so 7y(ey) is defined. Moreover, the following diagram clearly
commutes:

J

JQ (l_m o)

e(o) e,
Tjo, jr ai_mo’i_ml
Je(jx) —'e—l—'—’ Je(i_m,)
Oji.j2 o-i_ml’i—mz
Joiin e Je(i_mz)

Applying ©, we obtain the commutative diagram:

J""‘Q‘j"”——*n,,(eo) S0 ny)

(0o, 5:) o (05 m,)
Jrot0i J o
mg(e (1) 7’59(31) ﬂe(Q(lml))
Tg (ajt s J'z) Ty (O-i_ml’i_mz)

Jroein———— Jnotei
mo(e(j2)) To(e,) mo (e (ip,))
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Let ¢, = [m(ex)](ar)- We know that a, € M, and that my(e,) € M,,,. So, as
M, < J,, we have ¢, e M,, . Let ¢, = ™' (cy).

By its definition, ¢, € Ju, o)+ AlSO, Qi+ € [Me(0, i, )1(ay). So, referring to
the above diagram, we have (by commutativity)

Cr+ 1= [Mo(e) 1(ar+ 1) € [molex) © o (0, D@
= [no("i‘mk, [ ,) o mg(ex) J(a) = [no(Uka, i‘mkﬂ)](ck)-

But 75(0(i,)) = 7 (0 (i) and 7y (07, 1) = (0, ;) (The first of these equalities is
easily seen, the second was proved earlier.) So, applying 7~ ! to the above results,
we get

C€Jyiy and Cpyq €0y () -

my tmyc 4 1

But then

iper (Chr1) €0y, (C)

for all k < w, which is absurd. That completes the proof in the case 0 < n < w.

The case n = w is handled in an entirely similar fashion. The only difference
is that we must ensure that the sequences (b,,|m < w), (i,,| m < w) are chosen so
that, if i,, = (k,,, 0, P), then k,, < k,,, . We may then proceed as for 0 < n < w.
(We leave it to the reader to check all the details. Note that we dealt with the proof
of 5.10 in this fashion, giving full details for the case 0 < n < w and simply
indicating the modifications required for the case n = w. With this as a model,
there should be no difficulty for the reader in handling the case n = w here as well.)

The case n = 0 is also similar. We start with sequences (b,,| m < w), (i,,| m < )
chosen so that u, < f,+1, where i, = (i, %, Pm), SO that, in particular,
J .. € Pm+1 for all m. It is then easy to modify the proof for the case 0 < n < w to
work in this case. At various points we need to rely upon ,-absoluteness between
the structures J;, J, involved. Again, the proof of 5.10 indicates the type of modi-
fication required, so once again we leave it to the reader to supply the missing
details.

That completes our proof of 5.16, and with it the Covering Lemma.

Exercises

1. The Tree Property (Section 1)

An uncountable regular cardinal « is said to have the tree property iff there is no
x-Aronszajn tree. By Theorem 1.3 (viii), if  is weakly compact then k has the tree
property. It follows from Theorems IV.2.4 and VIL.1.3 that if V= L, the tree
property is equivalent to weak compactness. On the other hand, Silver has proved
(see Mitchell (1972)) that if ZFC + “there is a weakly compact cardinal” is consis-
tent, so too is ZFC + “w, has the tree property”. The results below show that the
assumption concerning weak compactness here is essential. It is shown that if x
has the tree property, then « is a weakly compact cardinal in the sense of L.
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1 A. Show that if x has the tree property and [« is inaccessible]%, then [k is weakly
compact]”.

(Outline: Use Theorem 1.3 (vii). Let & € L be, in the sense of L, a k-complete
field of subsets of # of cardinality x. Pick A < (x*)’ admissible such that ||+
=k.LetceL,c:k—?(k) NnL,. For each a < x, let

T,={fe2nL||{cOfO) =1 n){x—cWI|fO) =0} =x},
and set
T=\ T.

a<k

Show that, under inclusion, T is a tree of height x and width x. By the tree
property, let f: k — 2 define a x-branch of T, and set

D={xe?xnL|f(c"'(x)=1}.
Show that D is a k-complete non-principal ultrafilter on 2 (k) " L,. Let
M = {feL,|f:x— L},

and form the ultrapower M/D. Let i: L< M/D be the canonical embedding. M/D
is well-founded, so let J: M/D =~ L, be the collapsing isomorphism. Let ge L,,
g:k—%. Then jeoi(g)e L and jei(g) [k =(Goi(g(v)|v <k), so U ={g(mv)|x
€joi(g(v)} e L. Since U is, in the sense of L, a k-complete ultrafilter on &, the
proof is complete.)

1 B. Show that if x has the tree property, then [k is weakly compact]-.

(Hint: By 1 A it suffices to show that [k is inaccessible |*. Suppose not. Then for
some u < k,k = (u*)L. By Exercise IV.1,in Llet T be a special u* -Aronszajn tree.
In V, T is a k-tree. Since T, < {f|f: « —~—% u} for all & < x and the ordering on
T is inclusion, T is xk-Aronszajn. Contradiction.)

The following exercise provides an alternative solution to 1 B.

1C. Let x be a regular cardinal in L, not weakly compact in L. Show that there
is a tree T on k in L such that if, in the real world, there is a x-branch through T,
then cf (k) = w.

(Hint: Let T, be, in L, a x-Aronszajn tree. We may assume that Tj is an initial
part of 2=, Define T by putting a triple (x, M, b)into T'iff« < x, M = L, for some
limit ordinal B, b e M, a = M, M is the smallest M < M such that a U {b} = M,
b is a function with domain containing « as a subset, and b [« € T,. We have
(o, M, b) <y (o, M, b') iff & < o, M is the transitive collapse of the skolem hull of
o {b'} in M’, and b’ collapses to b. Show that T is a tree, Te L, and that («, M, b)
has height « in T Show further that if (o, M,, b,) |« < k) is a branch through T,
and (M, E, b) is the limit of the elementary system (M, €, b,>, o < k, then
{M, E)isamodel of BS + V= L+ “bis afunction”, k = M, and for each « < k,
blaeT,. Thus b [k is a branch through Tj,. Thus b ¢ L, which implies that
{M, E) cannot be well-founded. This implies that cf (k) = w.)
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1D. The following result extends Theorem 5.7. Assume 0% does not exist. Then
for every strong limit cardinal «, there is a Souslin x *-tree.

(Hint: Use Exercise IV.8 to strengthen IV.2.11 appropriately, and combine this
with 5.2 and 5.6.)

2. The Sharp Operation (Section 2)

Show that for any set a < w there is a set a* < w which has the same effect upon
L[a]as does 0* upon L. (i.e. Show that the development of section 2 goes through
for L[a] whenever a = w.) Is it the case that if ¢, b = w are such that a € L[b], then
a* e L[b*]? Investigate the relationship between the various sets a*, a < w.

3. On the Existence of 0* (Section 2)

Show that 0* exists iff for some (all) uncountable regular cardinal «, every con-
structible set X < x either contains or is disjoint from a club subset of «.

(Hint: If 0% exists, show that if X < k, X € L, then either X or else k¥ — X
contains H, — y for some y < x. For the converse, let

D ={X e?(x)nL|X contains a club},

show that D is an ultrafilter on 2 (k) N L which is xk-complete for families in L, and
use D to construct an ultrapower which allows the use of Theorem 4.3.).

4. The Covering Lemma and Cardinal Arithmetic (Section 5)

By the Singular Cardinals Hypothesis (SCH) we mean the assertion that for all
singular cardinals x,

200 < i implies xF® =g,

Clearly, GCH implies SCH. As is shown in the following exercises, SCH complete-
ly determines the cardinal exponentiation of singular cardinals.

4 A. Show that (in ZFC) if k is a singular cardinal, then
2:( — (2<x)cf (x).
4 B. Show that SCH implies that for any singular cardinal «,

2 @2<0ET=2)
l(25%7F,  otherwise.

4 C. Show that SCH implies that for any cardinals , A, singular or regular,

2% if 22>«
k*=qk, if A<cf(x)and 2*<x

k¥, otherwise.
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4D. Use the Covering Lemma to show that if 0* does not exist, then SCH is
valid.
5. An Application of the Covering Lemma

Prove that if 0* does not exist, and x > w, is any cardinal such that 2<* = «, then
there is a set A < k such that X € L[A] for every set X < On such that | X| < k.








