
Chapter V
The Story of

In this chapter we investigate the effect upon V = L of the postulated existence of
various large cardinals in the universe. This represents a different approach to
constructibility from that adopted hitherto. Previously we have been looking at
the internal structure of the constructible universe. We now step back and regard
L from the outside as it were.

It is assumed that the reader has a prior acquaintance with large cardinal
theory. Admittedly, our account is self-contained (except for the omission of some
proofs); but the results we shall obtain cannot really be appreciated without some
familiarity with the standard theory of the cardinal properties concerned. The
relevant material can be found in Drake (1974) and Jech (1978).

We shall make considerable use of model-theoretic techniques, usually for
models of the languages J?(Al9..., Λn). It will be convenient to use some of the
standard notation of model theory. In particular, we shall write the satisfaction
relation as

<M,e, Au ...,Any ¥φ

rather than

We shall also not bother to distinguish between an element, x, of a structure and
the constant, x, of if v which denotes it. If t (x 0 , . . . , xm) is a term of ifM (Au ...,An)
(so x 0 , . . . , xm e M), we write t^ (x 0 , . . . , xm) for the interpretation of the term
t (x 0 , . . . , xm) in the structure si = <M, ,Al9...9 An}.

We shall also speak of models of ZFC, BS, etc. In each such case we mean these
theories formulated in the language if, and not in LST as was originally the case.

1. A Brief Review of Large Cardinals

A cardinal K is said to be weakly inaccessible iff it is an uncountable, regular limit
cardinal, and (strongly) inaccessible iff it is uncountable and regular and has the
property that (V λ < K) (2λ < K). It is clear that all inaccessible cardinals are weakly
inaccessible, and that if the GCH be assumed then the two notions of inacces-
sibility coincide.
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If K is inaccessible, then Vκ (and Lκ) is a model of ZFC. Hence by GόdeΓs
Second Incompleteness Theorem, the existence of inaccessible cardinals is not
provable in ZFC.

1.1 Theorem.
(i) Ifκ is a cardinal, then [K is a cardinal]1.

(ii) Ifκ is a limit cardinal, then [K is a limit cardinal]1.
(iii) If K is a regular cardinal, then [K is a regular cardίnal]L.
(iv) Ifκ is a weakly inaccessible cardinal, then [K is an inaccessible cardinal]1.

Proof, (i)-(iϋ). Each of the properties is easily seen to be U1, and hence D-absolute.
(iv) By (i)-(iii) and the fact that [GCH]L. D

A cardinal K is said to be Mahlo iff it is inaccessible and the set

{λ G K I λ is inaccessible}

is stationary in K.

1.2 Theorem. If K is Mahlo, then [K is Mahlo]L.

Proof. Again, this property is easily seen to be D-absolute. D

A cardinal K is said to be weakly compact iff it is uncountable and satisfies the
partition property

#c->(*)!.

What does this mean? In order to explain we need some notation. If X is a set of
ordinals and α is an ordinal, [X]a denotes the set of all strictly increasing
α-sequences of members of X. We set

Let X be a set of ordinals, cc an ordinal, μ a cardinal. By a μ-partition of [X]α we
mean a function

which we regard as partitioning [X]a into μ disjoint classes. A subset Y of X is said
to be homogeneous for the partition / iff

\Γ[Y]*\ = U

i.e. iff all strictly increasing α-sequences of members of Y lie in the same partition
class. We write
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iff every μ-partition of [κ:]α has a homogeneous set of cardinality λ. This notation
is due to Erdόs and Rado. The idea behind it is the easily observed fact that a valid
partition relation remains valid if the parameter on the left of the arrow is in-
creased or if any parameter on the right of the arrow is decreased.

The well known Ramsey's Theorem states that

for all m,neω. Generalising this to some extent is the Erdδs-Rado Theorem that
for any cardinal K and any ne ω,

where βn (K) is the n-th iterate of the exponential function 2λ, starting from K (i.e.
/0(κ) = κ9 Λ(/c) = 2\ /2(κ) = 2* ( κ ), etc.).

A weakly compact cardinal, then, is one for which the generalised Ramsey's
Theorem

K

holds. All weakly compact cardinals are Mahlo. The name "weakly compact"
stems from the equivalent definition that a weakly compact cardinal is a cardinal
K for which the "κ>compactness property" is valid for any "/c-language". By a
κ-language we mean a first-order language having K many basic symbols, whose
syntax allows conjunctions and disjunctions of any length less than K and quan-
tification over any sequence of variables of length less than K. (In this context, an
ordinary first-order language would be called an "ω-language".) The κ-com-
pactness property for such a language says that if a set of at most K sentences of
the language is κ-satisfiable (i.e. any subset of cardinality less than K has a model),
then the entire set has a model. The whole idea is to generalise to an uncountable
cardinal /c, everything connected with the compactness theorem of ordinary logic.

The following theorem lists several standard, equivalent formulations of the
notion of weak compactness. Proofs of the various equivalences may be found in
Drake (1974) or Jech (1978).

1.3 Theorem. Let K be an uncountable cardinal. The following are equivalent:

(i) K is weakly compact (i.e. K -> (κ)l);

(ii) (Vneω)(Vλ<ιc) [K-φβ];
(iii) the κ-compactness property holds for any K-language;
(iv) K is Tl\-ίndescribable: i.e. if φ is a sentence ofJ£(U, Au . . . , An) such that

for Au ...,An^ Vκ9 then for some α < K ,

(v) K has Keisler's Extension Property, every structure of the form <FK, ε, [/>
has a transitive elementary extension which contains κ;
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(vi) lf!F is a κ-complete field of sets which is κ-generated by a set of cardinality
at most K, then 3F has a K-complete ultrafilter',

(vii) K is inaccessible and if 3* is a κ-complete field of sets of cardinality K, then
3F has a κ-complete ultrafilter•;

(viii) K is inaccessible and there is no κ-Aronszajn tree. D

The following lemma is relevant to our present purposes.

1.4 Lemma. Let xbe a weakly compact cardinal, and let A ^K. If A note Lfor all
oc < K, then AeL.

Proof By assumption,

By Keisler's Extension Property, let M be a transitive set such that Vκ u {K} C M
and for some set A' ̂  M,

We have

<M,e,i4'>h(Vα)(i4'nαeL).

In particular, since K G M,

(M,e,A')\=A'nκeL.

But A' n K = A. So, noting that set-membership is absolute for M,

Ae(L)M.

Now, as K is inaccessible, Vκ is a model of ZFC. Thus M is a model of ZFC. So
by II.2.10, (L)M c L. Thus AeL, and we are done. D

Utilising 1.4 we have (see also Exercise 1.):

1.5 Theorem. Ifκ is weakly compact, then [K is weakly compact^.

Proof By 1.1 we know that [K is inaccessible]1-. So by 1.3 it suffices to prove that
[there are no jc-Aronszajn trees]L.

Let Te L be, in L, a κ;-tree. We may assume that T has domain K and that
oc <τβ implies α < β. It is clear that T is a κ-tree in the real world. Hence as K is
weakly compact, there is (in V) a /c-branch, b, of T. For any a <κ, let γ be the least
ordinal in b — α. Then

bna = {ξeT\ξ<τy}eL.

So by 1.4, b e L. But clearly,

[b is a κ>branch of T]L .

Thus T is not a Jc-Aronszajn tree in the sense of L. The proof is complete. D
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We shall return to the notion of weak compactness, and a strengthening of it
(ineffability) in Chapter VII. In the meantime we consider a much more powerful
large cardinal notion.

We write

if, whenever / is a μ-partition of [κ]<ω (i.e./: [κ]<ω^>μ) there is a set X c K of
cardinality λ such that

Thus, X is simultaneously homogeneous for each of the partitions/ \ [X]n, neω.
We cannot expect X to be "homogeneous" for all of / in the sense that
|/"[X]< ω | = 1, since the value of/ could depend upon the length of the argument.
There is thus no real danger of confusion if we agree to say that a set X for which
(Vne ω)[|///[X]M| = 1] is homogeneous for/

Already the existence of a cardinal K such that

is a powerful assumption, implying the existence of (many) weakly compact car-
dinals.

For any cardinal λ9 if there is a cardinal K such that

then the least such K is denoted by K (λ). The cardinals K (λ) are called the Erdδs
cardinals. They are all inaccessible, and K (ω) excceeds the first weakly compact
cardinal (and the first ineffable cardinal). If λ < μ, then κ(λ) <κ(μ). (See Drake
(1974) or Jech (1978) for all details.)

A cardinal K such that K (K) — K is called a Ramsey cardinal. Thus K is a
Ramsey cardinal iff

Since this is not a simple generalisation of Ramsey's Theorem (the obvious gener-
alisation being provided by the weakly compact cardinals), the name "Ramsey
cardinal" is slightly misleading, but is now well established.

The Erdόs cardinals have powerful model-theoretic properties, as we show
next. We consider structures of the form

where <A linearly orders some subset of A, called the field of <A. By the length
of s/ we mean the cardinality of the set of all functions, relations and constants
of si. If the length of si is infinite, then this is just the cardinality of the language
oisi.
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An infinite subset, H, of the field of <A is said to be sέ'-indiscernible iff for each
neω and each pair (ao,...,an% (bθ9..., bn) e [H]n + 1 it is the case that for all
formulas φ (f0,..., vn) in the language of si:

siYφ (aΌ,..., an) iff s/ N φ (bθ9..., bn).

In other words, as far as first-order properties are concerned, for each neω, all
increasing rc-tuples from H look the same to si.

1.6 Theorem. Let λ be an infinite cardinal. The following conditions on K are
equivalent:

(i) κ^(λ)}»;

(iii) for all μ
(iv) every structure of the form

of countable length, such that K C field (<A) and <A \ K is the usual order on K, has
an si-indiscernible subset of cardinality λ;

(v) as in (iv) except that si may have any length less than K (λ).

Proof The proofs of the equivalence of (i), (ii) and (iii) can be found in Drake (1974)
and Jech (1978), but, since they are not really relevant to us here we shall not give
them. We prove the equivalence of (iii) and (v), this being the result that we require.
(A similar argument yields the equivalence of (iv) and (ii), as is easily seen.)

Assume (iii). Let si be a stated in (v). Define a function / on [κ]<(0 by letting
f(a0,..., an) be the set of all formulas φ(υo,...,vn) in the language of si such that

sitφ(ao,...,an).

Since length (si) < K (λ) and K (λ) is inaccessible, the range of/ has cardinality less
than K (λ). So, by (iii), / has a homogeneous set, H, of cardinality λ. Clearly, H is
jZ-indiscernible.

Now assume (v). Given a partition

consider the structure

si = <κ, <9(f\[κ]\<ω9(ξ)ζ<β>.

The length of si is less than K (λ\ so by (v), si has an j^-indiscernible subset, H,
of cardinality λ. Clearly, H is homogeneous for/ D

A measurable cardinal is an uncountable cardinal K such that there is a func-
tion

μ:0>(κ) ^2
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with the properties:

(i) μ({α}) = Oforallαeκ;;

(ii) μ(κ) = l;

(iii) if Xa, α < λ, are disjoint subsets of TC, where λ < K, then

OL<λ OL<λ

(Such a function μ is called a two-valued measure on K) Measurable cardinals are
extremely large. In particular, if K is measurable, then K is Ramsey, and indeed is
the κ>th Ramsey cardinal. However, as far as L is concerned, cardinals well below
the first measurable cardinal (if it exists) already have a highly significant effect.
The critical point is the jump from κ(ω) to ^ ( ω j , as we show next.

1.7 Theorem. Ifκ^> (ω)2

<ω, then [K -> (ω)ί ω ] L .

Proof. Let fe L be such that, in the sense of L, /: [κ]<ω -• 2. Then, clearly, / is such
a function in the real world. Define

Notice that the definition of H is absolute for L. We regard H as a poset under
the ordering ^ . Since K -• (ω)2

 ω, / has an infinite homogeneous set X. Let σn

consist of the first n elements of X, for each neω. Then σn e H, and (σv | n < ω) is
a ^-decreasing chain in the poset H. Thus i ί is not well-founded. So by 1.8.7 and
1.8.3,

[H is not well-founded]L.

So let (τn\n < ω) be a ^-decreasing chain from H in L. Then Y= (J τM e L is an
infinite homogeneous set for /. This proves the theorem. D n<ω

1.8 Theorem. If there exists a K such that K -• (ω 1) 2

< ω, then ^L(ω) is countable (so
in particular, V =f= L).

Proof Let K = κ(ωλ), and consider the structure

Let X c /c be an uncountable, ^/-indiscernible set, and let

be the smallest 0& <srf such that I ς β (see Π.5.3). Then every element of B is of
the form ΐ**(x) for some term t of set theory and some (x) e [X]<ω. Suppose that
t**(x) £ ω. Now, each neω is definable in s/, and the validity of the sentence

ne t(x)
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in si is independent of the exact choice of (x) from [X] < ω . Hence ί^(x) does not
depend upon x. But there are only countably many terms t. Thus ^ L ( ω ) n B must
be countable.

Now let

π : ^ ^ ^ = <Lλ,G, l/>.

Since λ ^ ω 1 ? we have ^ L ( ω ) c L λ . But

so

Hence 0>L(ω) <Ξ c/. But | [7| = | ^ L ( ω ) n B| = ω, so we are done. D

2. L-Indiscernίbles and 0 #

In this section we shall obtain a considerable strengthening of 1.8, by proving that
if κ(ωγ) exists, then the class of all uncountable cardinals is L-indiscernible. (In
particular, this will imply that every uncountable cardinal is inaccessible in the
sense of L, giving the conclusion of 1.8 at once.) The existence of κ(ωx) will also
be shown to imply the existence of a truth definition for L, so we may consider the
set of all formulas φ (v0,..., υn) of ϊ£ such that ¥L φ (τc0,..., κn) for any strictly
increasing sequence κo,...9κn of uncountable cardinals. Denoting the set of all
Gόdel numbers of formulas in this set by the symbol 0 # , we shall go on to show
that the set 0* has an alternative definition, which does not depend upon the
existence of L-indiscernibles and a truth definition for L, and that the mere
existence of a set of integers satisfying this definition is itself sufficient to ensure
that the uncountable cardinals are L-indiscernible.

The techniques which we shall employ are essentially model-theoretic, and
originate with some work of Ehrenfeucht and Mostowski concerning models with
indiscernibles.

By examining the proof of Π.2.9, we see that there is an extension of the
S£-theory BS, let us call it BSL, which consists of BS together with finitely many
instances of the Σ0-Collection Schema of KP, such that:

(i) Lλ N BSL for any limit ordinal λ > ω; and
(ii) if M is a transitive model of BSL, then for any α e M, (Lα)M = Lα.

(This relates to the proof of Π.2.12. We simply require enough instances of
Σ0-Collection to enable us to define the constructible hierarchy.)

Suppose si = <v4, E} is a model of the J^-theory BSL + (V = L). If X c A, we
denote by si \ X the set

{t^(x0,..., xn) 11 is a term of i f and x0,..., xn e X).
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It follows from the fact that L has a definable well-ordering that si \ X < si. (See
Π.5.3 in this connection.) We say that si \ X is the elementary substructure of si
generated by X.

We shall call a set, Σ, of formulas of @ an Ehrenfeucht-Mostowski set (or E-M
set for short) iff there is a model si = (A, £> of BSL + (V = L) and an infinite set
H c O n ^ which is j/-indiscernible, such that Σ is the set of all if-formulas which
are valid in si on increasing sequences of indiscernibles from H.

Let Σ be an E-M set, and let α be an infinite ordinal. By a (Σ, (ή-model we
mean a pair (si, H) such that:

(i) si = (A, £> is a model of BSL + (V = L);

(ii) H c O n ^ is an j/-indiscernible set of order-type α (under -<oή);

(iii) j / = Λ/ Ϊ H (i.e. /f generates si);

(iv) Σ is the set of all if-formulas which are valid in si on increasing tuples
from H.

2.1 Lemma. Let Σ be an E-M set, and let α, β be infinite ordinals, α =ξ β. Let
(siΛ9 Ha) be a (Σ, (ή-model, (siβ9 Hβ) a (Σ, β)-model, and let h: Ha-> Hβ be order-
preserving. Then there is an embedding Tι: s/a^s/β such that i c ϊ . Moreover, if
β = α and h is onto Hβ, then % is an isomorphism of srfa onto siβ; so in particular,
the (Σ, (x)-model is unique up to isomorphism.

Proof. Since Ha generates s/a9 for any α e i a there is a term t and elements x of
Ha such that a = t^(x). Set l(a) = ί^(Λx).

We must first of all check that Ίίi is well-defined. Suppose that there are terms
ίx, t2 and elements xί9..., xn, yί9..., ym of Ha such that

Let zl9..., zk enumerate the set {xl9..., xn, yl9..., ym} in increasing order, and let
φ (zί9..., zk) be the formula

tι(xu...,xn) = t2(y1,...,ym).

Then φ(zί9..., zk) e Σ, since φ is true in sia on the increasing sequence zu...,zk

from f/α. Hence φ is true in s/β on any increasing sequence from Hβ. But
/ φ O , . . . , h(zk) is an increasing sequence from Hβ. Thus

In other words,

tf' (h(x,),...,h (xn)) = ίf/ (λ (y Λ . , h (ym)),

so h is well-defined.
Similarly, we can show that % is one-one and preserves the e-relations of the

two models. To show that h is elementary, it suffices to show that Hi preserves the
validity of formulas on tuples from Ha only (since Ha generates s/a), which again
can be done by passing through Σ as above. The rest of the lemma follows easily
now. D
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2.2 Lemma. Let Σbe an E-M set. For each infinite ordinal α there is a unique (up
to isomorphism) (Σ, a)-model.

Proof. Uniqueness was established in 2.1, so we need only concentrate on exis-
tence. We introduce new individual constants cv, v < α, to the language if. Let si
be a model of BSL + (V = L), and let H c On^ be an j^-indiscernible set such
that Σ is the set of all if-formulas true in si on increasing sequences from H. (Such
si, H exist because Σ is an E-M set.) Consider the following theory in the
language if u {cv| v < α}:

T = {φ I φ is a sentence of if and si N φ} u {On (cv) | v < α}

u {cv < cτI v < τ < α} u {φ (c v o , . . . , cvπ) | φ e Σ & v0 < ... < vn < α}.

It is clear that T is finitely satisflable in si. So by the compactness theorem, T has
a model, say ^ . Let

K = {cf | v < α } .

Clearly, J^ is a model of BSL + (7 = L), X c On^ is a J^-indiscernible set of
order-type α, and Σ is the set of formulas of if which are valid in & on increasing
tuples from K. Thus (β \ K, K) is a (Σ, α)-model. D

So far we have said nothing regarding the existence of an E-M set. In fact the
results of this section will depend not just upon the existence of an E-M set, but
of an E-M set with some very special properties. We shall describe these proper-
ties and their implications for the (Σ, α)-models next, before turning out attention
to the construction of an E-M set of the type desired (which will require the
existence of large cardinals).

An E-M set Σ is said to be cofinal if it contains all formulas of the form:

O n ( ί ( υ 0 , . . . , !;„_!)) -• t(v0,..., υn_ x) < vn

for any if-term t.

2.3 Lemma. Let Σ be an E-M set. The following are equivalent:

(i) Σ is cofinal;
(ii) for every limit ordinal α, if (si, H) is the (Σ, cή-model, then H is cofinal in

On^;
(iii) for some limit ordinal α, if (si, H) is the (Σ, oc)-model, then H is cofinal in

On^.

Proof, (i) -• (ii). If (si, H) is the (Σ, α)-model and x e On^, then there is a term t and
elements h of H such that x = t^(h). But then if k e H, k > h, we have x < k by
the requirements on Σ.

(ii) -• (iii). Trivial.

(iii) -• (i). Let t be any term, and let φ(v0,..., vn) be the formula

, ^ - i ) ) - > Φ o , . ,^n-i) < vn.
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We must show that φ e Σ. It suffices to show that for some increasing sequence
ho,...,hn from H,

s/\=φ(ho,...,hn).

Choose h0,..., /zn_ x arbitrary increasing from H. If t* (h0,..., /zM_ x) φ On^, we
are done already. Otherwise, by our assumption on H we can find hn e H,
hn> hn_1, such that hn> ϊ**(h0, ...,hn_ x), and again we are done. D

An E-M set Σ is said to be remarkable if, for every term t of JSf, if the formula

is in Σ, then so too is the formula

t(vo,...,vn_1,vn,...,vn + m) = t(vo,...,vn.ί,vn+m+ί,...,vn+2m+1).

2.4 Lemma. Let Σbe a remarkable, cofinal, E-M set. Let λbe a limit ordinal, and
let (s/, H) be the (Σ, λ)-model. Let (hγ\y < λ) be the monotone enumeration ofH. Let
α < λbe a limit ordinal, and set K = {hy\y < oc}. Let 0H = srf \ K. Then (β, K) is the
(Σ, oc)-model and

Proof. It is immediate (by uniqueness) that (^, K) is the (Σ, α)-model. And since Σ
is cofϊnal, 2.3 (ii) tells us that K is cofinal in On^, so

Hence the lemma boils down to proving that if x e On^ and x < ha, then in fact
x E Oπ*.

Well, since H generates &i9 there is a term t and elements k0, ...,kn-ί of K,
l0,..., lm of H - K, such that k0 < ,.. < fcB_ t < Jo < ... < lm and x = t*(k, T). By
virtue of our convention concerning the indication of variables present in terms,
we may assume that l0 = ha here. Now, x < ha, so t* (k, T) <ha. Thus the formula

t(vo,...,vn-ί,vn,...,vn+m) <vn

is in Σ. So, by remarkability, the formula

t(vo,...,vn-ί,vn,...,vn+m) =

is in Σ. Thus for any increasing sequence ΐo,...,ΐm from H with /cn_ x < l'θ9 we have
t** (fc? /) = f** (fc? T). But α is a limit ordinal, so we can find such ΐo,...,ΐm with
Γm < ha. Then, since k, V e K, we have

x = t^{k, T) = t^(k, T)ej*\K = a,

as required. D
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Thus, if Σ is a remarkable, cofϊnal, E-M set and (si, H) is the (Σ, Λ)-model for
some limit ordinal λ, then if we pick any limit ordinal α < λ and let K consist of
the first α elements of H, the ordinals of the (Σ, α)-model (si \ K, K) form an initial
segment of the ordinals of si. Another consequence of remarkability is that the
indiscernibles form a club subset of the ordinals of the model:

2.5 Lemma. Let Σbe a remarkable, cofinal E-M set. Let λbe a limit ordinal, and
let (si, H) be the (Σ, X)-model. Then H is closed and unbounded in On^.

Proof. Unboundedness was proved in 2.3. We verify closure. Let (hγ\y < λ) be the
monotone enumeration of H. Let α < λ be a limit ordinal. We must prove that ha

is the least upper bound of the set K = {hy\ γ < α} in On^. Well, we know from
2.4 that (si \ K, K) is the (Σ, α)-model. But Σ is cofinal, so K is a cofinal subset of
On"* r κ. It thus suffices to show that ha is the least upper bound of O n ^ r κ in ^
But by 2.4 again,

so in particular, ha is the least upper bound of O n ^ r κ in On^. D

We shall be particularly interested in well-founded (Σ, α)-models. For suppose
si is a well-founded (Σ, α)-model. Then si is a well-founded model of the Axiom
of Extensionality, in particular, so by the collapsing lemma there is an isomor-
phism

π: si = <M,e>,

where M is a transitive set, Now, M is a transitive model of the theory
BSL + (V = L). So by virtue of our choice of this theory (see earlier)

M = (V)M = (L)M = Lλ,

where λ = sup(M n On). Hence si ^ Lλ.
The well-foundedness of the (Σ, α)-model will depend upon the E-M set Σ. We

shall call an E-M set Σ well-founded if, for all infinite ordinals α, the (Σ, α)-model
is well-founded.

2.6 Lemma. Let Σ be an E-M set. The following are equivalent:

(i) Σ is well-founded

(ii) for some oc^ ωl9 the (Σ, a)-model is well-founded',

(iii) for all infinite α < ω 1 ? the (Σ, a)-model is well-founded.

Proof, (i) -• (ii). Immediate.

(ii) -> (iii). Choose α ^ c ΰ j so that the (Σ, α)-model is well-founded. As we ob-
served earlier, up to isomorphism the (Σ, β)-model is a submodel of the (Σ, α)-
model for any infinite β < ωl9 which proves (iii).

(iii)->(i). Suppose Σ were not well-founded. Then for some infinite α, the
(Σ, α)-model, (si, H) say, is not well-founded. Let an e A, n < ω, be such that
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an+ γEan, where si = {A, £>. Each an is of the form tf (hn) for some i f -term t and
some Jιn e H. Let K be a countably infinite subset of H which contains all hn,
n < ω. Let Λ = srf \ K. Then (β, K) is the (Σ, β)-model, where β = otp (K) < ωι.
But ccne B for all n, where ^ = (β, £>, so ^ is not well-founded. This contradicts

(iϋ). •
If Σ is a well-founded E-M set, then for any infinite ordinal α, there is a unique

transitive (Σ, α)-model. We denote this model by M (Σ, α). We observed above that
M(Σ, α) has the form «L λ ,e>, H), where A is a limit ordinal greater than ω, and
where H c X. In case α is an uncountable cardinal, we can say even more, namely:

2.7 Lemma. Let Σ be a well-founded, remarkable, cofinal, E-M set. If K is an
uncountable cardinal, then the universe of M(Σ, K) is Lκ.

Proof Let M(Σ, K) be (Ly, H). Since H ^γ and | i / | = K, we know that y ^ K.
Suppose that γ > K. Since H = {ha \ α < K) is cofinal in γ, we can find a limit
ordinal α < K such that /iα > K. Let K = {ή l̂ β < a} and set N = Ly\ K. By 2.4,

OnN = {xey\x<K} = ha.

Thus 7c c OnN. But | N \ = | K \ = \ α | < K, SO this is absurd. Hence y = K and we are
done. D

For each uncountable cardinal K, let Hκ denote the unique subset of K (if it
exists) such that (Lκ, Hκ) is the (Σ, κ:)-model M(Σ, K). By 2.5, we know that Hκ is
a club subset of κ\

2.8 Lemma. If K < λ are uncountable cardinals, then Hκ = Hλnκ and Lκ =
Lλ\Hκ.

Proof Let (hv\ v < λ) enumerate Hλ in increasing order. Set K = {hv\ v < K}, and
let N = Lλ\K. Then (N, K) is a (Σ, /c)-model, so JV ^ Lκ. But On^ is an initial
segment of λ. Hence N must be transitive. But then we must have N = Lκ, and
moreover K = Hκ, hκ = K, and Hκ = K = Hλnκ. D

2.9 Corollary. // λ is an uncountable cardinal, then Hλ contains all uncountable
cardinals below λ.

Proof Let K < λ be an uncountable cardinal. Then, as we saw above,

κ = hκeHλ. G

Of course, we have still said nothing concerning the existence of E-M sets. We
are now about to rectify this omission. We show first that if there is a well-founded,
remarkable, cofinal E-M set, then it must be unique.

2.10 Lemma. If there is a well-founded, remarkable, cofinal, E-M set, then it is
unique.

Proof Let Σ be a well-founded, remarkable, cofinal E-M set. Now, (L ω ω , HωJ is
the transitive (Σ, coj-model, and by 2.9, ωn e Hωω for all n < ω. Thus for any
if-formula φ,

φ(vl9 ...,vn)eΣ iff L ω ω t= φ(ωl9..., ωn).

This determines Σ uniquely. D
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The unique well-founded, remarkable, cofϊnal E-M set, if it exists, is denoted
by the symbol 0* ("zero sharp"). It is possible to carry out a similar development
for the relativised universe L [a] for any set a c cυ, in which case the corresponding
E-M set is denoted by α*. (This is considered in Exercise 2.) Summarising our
previous results, we have:

2.11 Theorem. Assume 0* exists. Then there is a club class H of ordinals such that:

(i) H contains all uncountable cardinals;

and for any uncountable cardinal K, if we set Hκ = H nκ9 then:

(ii) Hκ has order-type K and is club in κ\

(iii) Hκ is Lκ-ίndiscernible;

(iv) LK = LK\HK.

Proof We set H = \J Hκ, where Hκ is a described earlier. The theorem is immedi-
ate now. D κ

2.12 Theorem. Assume 0* exists. lfκ < λ are uncountable cardinals, then Lκ^Lλ.

Proof We know that

So, by 2.8, we have

Lκ = Lλ\Hκ<Lλ. D

The existence of 0* also provides us with a truth definition for L:

2.13 Theorem (Metatheorem). There is a formula Θ(x) o/LST such that, for any
LST formula Φ(v0,..., vn), if φ is the £?-formula corresponding to Φ (as in 1.9.11),
ZF h "i/O* exists, then (Vα o,...,flne L) [ΦL(a0, ...9aj~θ(φ(άo,...9 W

Proof Given any formula Φ(f 0 , . . . , vn) of LST, the reflection principle (1.8.2)
provides us with an uncountable cardinal K such that

But by 2.12, together with 1.9.11, the actual choice of K here is irrelevant in the case
that 0* exists. Thus, given any a e L, if K is any uncountable cardinal such that
άe L κ, then providing that 0* exists, we have (using 1.9.11)

Thus Θ(x) is the LST formula which says:

"x is a sentence of 5£L, and if K is the least uncountable cardinal such that

xeLκ, then ^LK

X"-
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By virtue of 2.13, we may speak about "elementary submodels of L" quite
openly, and indeed may state the following theorem:

2.14 Theorem. 7/0* exists, then for any uncountable cardinal K, LK<L.

Proof. Since

L = (J {Lκ I K is an uncountable cardinal},

this follows easily from 2.12. D

Before we turn to an existence proof for 0*, we give one more consequence of
its existence.

2.15 Theorem. Assume that 0* exists, and let K be any uncountable cardinal. Then:

(i) [K is inaccessible]L

(ii) [κ-*(ω)}»]L;

(iii) \0>L(κ)\ = κ.

Proof (i) If λ = ω x , then

[λ is regular]L,

and if μ = ωω, then

[μ is a limit cardinal]L.

So by the L-indiscernibility of the cardinals,

[K is a regular limit cardinal]L.

Since [GCH]L, this proves (i).

(ii) Suppose not, and le t/e L,/: [κ]<(0-+ 2 be the <L-least partition with no
infinite homogeneous set (in the sense of L). In the real world,/: [κ]<ω-*2, of
course. Now, / is definable from K in Lκ+ (by the above definition, which is clearly
absolute for Lκ+). It follows that, in the real world, 77K is homogeneous for/. For
if t is a term such that

for all σ e [κ]<ω, t h e n for a n y ocx < ... < ocn, βt< ... < βn f rom Hκ, if i = 0, 1, t h e n

/ ( a l 5 . . . , a n ) = i iff Lκ+ \=t{<xi,...,ocn,κ) = i

iff Lκ+¥t(βί,...,βn,κ) = i

mf(β1,...,βn) = i.

But then, exactly as in 1.7 it follows that there is, in L, an infinite set which is
homogeneous for / (in the sense of L), contradicting the choice of / This proves

(a).
(iii) By (i) [λ is inaccessible]1, where λ = κ+. This implies (iii) at once. D
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Note that a particular consequence of the above (and previous) results is that
the existence of 0* cannot be established in ZFC alone. We shall now look into
this question of existence of 0*.

2.16 Theorem. The following are equivalent:

(i) 0* exists;

(ii) for every uncountable cardinal K, L K has an uncountable set of ίndίs-

cernibles;

(iii) for some uncountable cardinal K, L K has an uncountable set of indiscernible s.

Proof (i)->(ϋ). By 2.11 (iii).

(ii) -• (iii). Trivial.

(iii) -» (i). Let λ be the least limit ordinal such that Lλ has an uncountable set of
indiscernibles. Let H c λ be an LA-indiscernible set of order-type ω 1 ? chosen so
that hω is as small as possible, where (hv\v < ω^is the monotone enumeration of
H. Let Σ be the E-M set determined by the indiscernible set H in Lλ. We show
that Σ is well-founded, remarkable, and cofinal.

(a) Σ is well-founded. Well, clearly, Lλ \ H is well-founded. But (Lλ \ H, H) is the
(Σ, ωj-model. So by 2.6, Σ is well-founded.

(b) Σ is cofinal. For suppose not. Then by 2.3, H is not cofional in (the ordinals
of) Lλ ϊ H. So for some if-term t and some vx < ... < vn < ω l 5

We may assume that y is a limit ordinal here. (For otherwise, if y = δ + m, we may
replace t by the term

t' (ΛV1,..., hVn) = t(hVί,..., hj -m)

Let

X = { f t v | v l l < v < ω 1 } .

Clearly, K is a set of indiscernibles for Ly. But y < λ9 so this contradicts the choice
of λ. Hence Σ must be cofinal.

(c) Σ is remarkable. To see this, suppose that the formula

t(vo,...,vn-l9υn,...,vn+J<vn

is in Σ, for some if-term t. Partition H into increasing, finite pieces

c,Sθ92l9...,SV9... (v < ωx)9

where c has length n and each c?v has length m + 1, and where

max(c) < min(ί 0 ) < max(5o) < m i n ( ^ ) < max(^) < min(<?2) < ... .
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Notice that, in particular,

"ω = »ωj "ω + 1? J "ω + m

By indiscernibility, one of the following must occur:

(A) tLχ(c, 3V) = tLλ{c, 3τ) for all v < τ < ω x ;

(B) tLλ{c, 3V) < tLA(c, 3τ) for all v < τ < ω x ;

(C) tLλ{c, 3V) > tLλ (c, 3τ) for all v < τ < ω1.

Since Σ is determined by if in L λ , if we can prove that (A) must occur, we shall
be done, since this will imply that Σ contains the formula

Well, (C) is clearly impossible, since that would give us a decreasing
ωx-sequence of ordinals. So let us assume (B) and work for a contradiction. Set

Λ'v = tL*(cJv), v < ω l β

By (B), the sequence (h'v\ v < ω x) is strictly increasing. And it is easily checked that
{hv\ v < ωγ} is LA-indiscernible. But by choice of ί, h'ω < hω, so this contradicts our
choice of H, hω, and we are done. D

2.17 Corollary. If κ(ωι) exists, then 0* exists. Hence if there is a measurable
cardinal, then 0 # exists.

Proof By 1.6. •

3. Definability o/0*

We have already seen that the existence of 0 # has a profound effect upon the
constructible universe. In this section we investigate the logical complexity of the
set 0* as a subset of the set of all formulas of JSf. In particular we shall show that
0* has strong absoluteness properties.

3.1 Lemma. There is a ^ formula Φ(x) o/LST such that

Φ(x)^x = 0 * .

Proof By 2.10, 0* is unique, if it exists, and what we must show is that the
predicate

"x is a well-founded, remarkable, cofinal E-M set"

can be expressed in a Γ^ fashion.
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We commence by examining the predicate

" Σ is an E-M set".

Let if+ be the language !£ together with the extra constant symbols cn,n<ω.
For any set, Σ, of if-formulas, let Σ + be the set of if+-sentences which consists
of:

(i) the axioms of BSL + (V = L);

(ii) φ(c0,..., O , for each φ (υθ9..., vn) e Σ;

(iii) On(cM), for all n < ω;

(iv) (cn < cm), for all n < m < ω;

(v) φ(ch,..., cin)<-• φ(ch9..., cjr)9 for each φ ( i ; 0 , . . . , V i ) e Σ and each

ϊi < ... < in<ωjί < ... <jn<ω.

Claim. Σ is an E-M set iff Σ + is consistent.

Proof of claim: Suppose Σ is an E-M set. Then Σ is the set of all if-formulas
which are true on increasing tuples from an ^/-indiscernible set {an\n < ω} in
some model si of BSL + (V = L). Clearly, < J / , (an)n<ω} is a model of Σ + , so Σ +

is consistent.
Conversely, suppose Σ + is consistent, and let < J / , (an)n<ω} be a model of Σ + .

Clearly, {an\ n < ω} is ̂ /-indiscernible and (si, {an\n < ω}) is a (Σ, ω)-model, so
Σ is an E-M set. The claim is proved.

By the claim we have:

Σ is an E-M set iff there does not exist a proof of the sentence (0 = 1)
from the sentences in Σ + .

More precisely:

Σ is an E-M set iff there does not exist a finite sequence of J£ + -
formulas such that the last formula in the sequence is (0 = 1) and each
formula of the sequence is either a consequence of previous formulas by
modus ponens or else is an axiom of logic or else an axiom of
BSL + (V =L) or else is of the form φ (c0,..., cn) for some
φ(vΌ,...,vn)eΣoi else of the form On (cn) for some n < ω or else of the
form (cn < cm) for some n < m < ω or else of the form (φ (ciι9..., cin) <-•
φ ( c j ι 9 . . . , c j n ) ) f o r s o m e φ ( υ θ 9 . . . 9 v n - ί ) i n Σ a n d s o m e iί< ... <in< ω ,

Now, provided that the constants cn are suitably chosen (e.g. take <£ω as the
language J^+ and use the constant symbol ή for cn% all quantifiers in the above
definition can be bound (without loss of generality) by Vω. Thus the above charac-
terisation of the predicate "Σ is an E-M set" is Σ o in the parameter Vω.

It is easily seen that the predicates "Σ is cofinal" and "Σ is remarkable" are also
Σ o in the parameter Vω. Thus there is a Σ o formula Ψ(x, y) of LST such that

Σ is a remarkable, cofinal E-M set <-> Ψ(Σ, Vω).
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But Vω = Lω. Hence

Σ is a remarkable, cofinal E-M set

<-»VαVw[[On(α) Λ lim(α) Λ (Vβeoc)(β = 0 v succ(β)) A u = La]

The formula on the right here is Ht. (In fact there is an equivalent Σ x formula, as
the reader may readily verify, but we do not require this fact.) So we are left with
proving that the predicate

"Σ is well-founded"

(for a remarkable, cofinal E-M set Σ) is Π ^
By definition,

Σ is well-founded iff for all α, the (Σ, α)-model is well-founded.

Now, if Σ is a remarkable, cofinal E-M set, then for every limit ordinal α there
is a unique (up to isomorphism) (Σ, α)-model, and we can find one of the form
«v4, £>, α), where E n (α x α) = e n (α x α). Let us call such a model a standardised
(Σ, α)-model. Then:

«,4, £>, α) is a standardised (Σ, α)-model iff

(i) (A, £> is a model of BSL + (V = L) Λ

(ii) α c On < A > E > A En(α xα) = e n ( α x α ) Λ

(iii) α is <̂ 4, £>-indiscernible Λ

(iv) α generates <̂ 4, £> Λ

(v) Σ is the set of all if-formulas valid in <̂ 4, E} on increasing

tuples from α.

Now, in each of the clauses (i)-(v) above, all necessary quantifiers may be bound
either by A or by α or by Vω. (This is a routine matter which we leave to the reader
to check.) Thus there is a Σ o formula Θ (w, x, y, z) of LST such that

((A, £>, α) is a standardised (Σ, α)-model iff Θ (Σ, {A, £>, α, F J .

But, clearly,

Θ (Σ, <A, £>, α, Vω) iff 3 y Ξ u [On (y) Λ lim (y)

A (Vyβ e y)G» = 0 v succ(iS)) Λ (U = Ly)

Thus the predicate "«v4, £>, α) is a standardised (Σ, α)-model" (as a predicate on
<̂ 4, £>, α, Σ) is Σ x . But (for a remarkable, cofinal E-M set Σ):

Σ is well-founded «-> V α V <A, £> [if «v4, £>, α) is a standardised

(Σ, α)-model, then E is well-founded on A].

This is easily seen to be Γ^, so we are done. D
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3.2 Corollary. 0 * φ L .

Proof. If 0* G L, then since Uί properties are D-absolute, Φ(0 # ) implies Φ L (0 # ),
where Φ is the Γ^ formula from 3.1. But then we can prove all of the results of
section 2 inside L, which is absurd. D

4. 0# and Elementary Embeddίngs

The existence of 0* is closely connected with the existence of elementary embed-
dings of the form j : LK<LK, where K is a cardinal. The simplest such result is the
following:

4.1 Theorem. I/O* exists, then for any uncountable cardinal K there is a non-trivial
embedding j : LK<LK.

Proof Let (ha\ a < K) be the monotone enumeration of Hκ. Define j : Hκ^> Hκ by
j (ha) = ha+ί. By 2.1, j extends to an embedding /: LK<LK. D

The main effort in this section is directed towards proving the converse to 4.1.
In fact we shall prove a stronger result. In order to imply the existence of 0* it
is enough to have an embedding j : La^Lβ for some limit ordinals α, β such
that j (y) Φ y for some γ < |α | . In order to do this we shall first of all prove a con-
verse to 4.1 under some additional assumptions. We require some prior defini-
tions.

Say that a cardinal K is of y-type 0 if it is a limit cardinal and cf(κ ) > y. Notice
that there are arbitrarily large cardinals of y-type 0, for any given ordinal y.
Moreover, if (κv | v < θ) is an increasing sequence of cardinals of y-type 0 such that
d(θ) > y, then supv <θκv is of y-type 0.

A cardinal K is said to be of y-type 1 if it is of y-type 0 and

I {λ e K I λ is of y-type 0} | = K .

Since the y-type 0 cardinals are closed under limits of ^/-sequences whenever
cf (η) > y, it is easily proved that there are arbitrarily large cardinals of y-type 1.
Moreover, it is clear that the y-type 1 cardinals are closed under limits of
^/-sequences whenever cf(η) > y.

Proceeding in a recursive fashion now, say that a cardinal K is of y-type v + 1
if it is of y-type v and

I {λ e K I λ is of y-type v} | = K .

Provided the y-type v cardinals are unbounded and closed under limits of
^-sequences whenever cf (η) > δ for some δ ^ y, the same will be true of the y-type
v + 1 cardinals.
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• If τ is a limit ordinal, we say that a cardinal K is of y-type τ iff it is of y-type v
for every v < τ. If, for each v < τ, the y-type v cardinals are unbounded and closed
under limits of ff-sequences whenever cf (η) > δ for some δ ^ y, then, provided
τ < (5, the same will be true of the y-type τ cardinals.

4.2 Theorem. Let K be a cardinal. Suppose that there is an embedding

e:Lκ<Lκ

such that for some ordinal y < κ\

(i) e \y = id \y;

(ii) e(y) > y;

(iii) if λ> K is of y-type 0, then e(λ) = λ.

Suppose further that K is of y-type ωγ. Then 0* exists.

Proof. By 2.16, it suffices to show that Lκ has an uncountable, indiscernible subset.
For each v < ω l 9 let

Uγ = {λ e K I λ is a y-type v cardinal}.

Since K has y-type ω 1 ? \UX\ = K for each v < ω1. Moreover,

L/0Ξ> l / ^ . . . => l / v 3 . . . (v

and for each v < ω l 5

l/ v + 1 = μ e l 7 v | | l 7 v n A | = λ},

with

17, = Π fv, if Hm(δ), δ<ωγ.
v<δ

For each v < ω l 9 let

Thus,

MX<LK and | M v | = ι c .

In particular, the transitive collapse of M v is Lκ. Let

iv: LK^MV.

Thus

ιv: Lκ^ Lκ.

Set

yv = »v(r)
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Claim 1. Let v, τ < ωγ. Then:

(i) yv is the least ordinal in M v — (y + 1);

(ii) if v < τ and x e M τ , then iv{x) = x;

(iii) if v < τ, then ΐv(yτ) = yτ;

(iv) if v < τ, then yv < yτ.

Proof, (i) Since y G M V , iv \ y = id Γ γ and zv(y) is the least element of M v — y. So it
suffices to prove that y φ M. Since M o ^ M x ^ ... ^ M v ^ ... (v < ω j , it is
enough to prove that y φ M o . Consider any x e Mo. Then x = tL* (ηί9..., ηn) for
some if-term ί and some 1719 ...,ηn e y u l/0. By the assumptions (i) and (iii) of the
lemma, e(*h) = >7i e(f/Λ) = ηn. Thus

= e(tL«(ηu . . . , >/„)) = ίL κ(e(f?!),..., e(ηn)) =

So by assumption (ii) of the lemma, x + y. Thus y φ M o .

(ii) Let x e M τ . Then for some if-term ί and some ηu ...,ηneyvUτ,
x = tLχ (ηu ..., ηn). lϊη ey, then since y c M v , iv (̂ ) = 77. If */ G Uτ, then since v < τ,
|l/v n 171 = ^ so zV1 (η) = η, so iv(η) = η. Thus

iv (x) = zv (ίL^ (fji,..., ηn)) = tL« (ίv (ηj,..., ίv (ηn)) = tL* (ηί9..., ηn) = x.

(iii) An immediate consequence of (ii).

(iv) If v < τ, then M v c M τ , so yv ^ yτ. Now by result (i) of this claim, yv > 7, so
applying iv, we get iv(yv) > ΐv(y) = yv. But by result (iii), iv(γτ) = yτ. Hence yv + yτ.
T h u s y v < y τ .

The claim is proved.
For v < τ < ωl9 set

M v ( = L κ r ( y v u [ / I ) .

Let

i v τ : L κ ^ M v τ .

Thus

ιvt' Lκ^ζ Lκ.

Claim 2. Let v < τ. Then:

(i) if ξ < v, then ivτ(yξ) = yξ;

(ϋ) UΛyv) = yτι

(iii) if ξ > τ , then ivτ{yξ) = yξ.

Proof, (i) Since yv £ M v τ , we have zvτ Γ yv = id P yv, so this is immediate.

(ii) Since yv > 7, we have Mτ c M v τ , so yτ e M v τ . But zvτ Γ yv = id f yv, so zvτ(7v) is
the least ordinal in M v τ greater than or equal to yv. Hence yv ^ ivτ(yv) ^yτ- It
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therefore suffices to show that there is no ordinal δ e M v τ such that yv < δ < yτ.
Suppose that there were such a δ. Then for some J^-term ί, δ = tLκ(ξu . . . , ξn,
ηί9...9 ηk\ where ξ l 9 . . . , ξn e yv and ηί,...,ηkε Uτ. Thus

L κ N (3 ξ l 5 . . . , ξn < yv) [yv ^ t (ξl9 ...,ξn,ηu...,ηk) < yτ].

Applying ί;\ we get (since ίv(yτ) = yτ9 ίv \ Uτ = id \ Uτ9 and iv(y) = yv)

Lκ\=(3ξί,...,ξn<γ)[γ^it (ξl9..., ξn, ηl9..., ηk) < yτ].

So for some ξl9..., ξn < y we have

But tLκ (ξί9..., ξn9 ηu ..., ηk) G Mτ, so this contradicts (i) of Claim 1.

(iii) If x e Mτ+ x , then x = tLκ (ηu . . . , ηn) for some ^f-term ί and some ηl9...,ηn

εyvUτ+1. Now, ιvτ tyv = id \yV9 so z v j y = id iy . And if ηeUτ+ί, then
| C / τ n ^ | = ^, so i~ι(η)=:η, giving ivτ(η) = η. Thus zvτ(x) = x. In particular,
ϊ'vτ(^) = 7ξfor all £ > τ .

The claim is proved.

Claim 3. The set {yγ\ v < ω x} is Lκ-indiscernible.

Proo/. Let φ(vl9...9vn) be any ^f-formula, and let vί < ... < vn < ω x ,
τ x < ... < τn < ω1. We show that

L κ hφ(y V l , . . . ,y V l ) iff Lκ N φ(y τ i , . . . , γj.

Pick 5 1 < . . . < δ M < ω 1 so that v n , τ n < 5 1 . Applying iVn<5n we get, using
Claim 2,

Vί, , 7vn_ 1 ? 7δ n )

Applying iVn_ 1 δn_ ί now gives

^ κ 1= φ (7v1? ? 7vn_2? 7vn_!, 7 J iff ^K 1= φ(7v!,..., 7vn_2,7δn_ t, 7 J

Successively applying Kn_2δn-2^"Jx1δι now gives, in the end, the equivalence

L κ h φ ( y V l , . . . , y J iff L ^ N φ ^ , . . . , y j .

Repeating the above procedure with τί9..., τn in place of v l 5 . . . , vM, we get

Lκ N φ (y τ x,..., γj iff L κ N φ (yδx,..., y J .

The above two equivalences combine to give the desired result. That proves the
claim, and with it the theorem. D
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We shall make use of 4.2 in our proof of the next result, the (strong) converse
to 4.1.

4.3 Theorem. Assume there is an embedding j : La~KLβ, where α, β are limit or-
dinals, and thatj(y) + Ί foγ s o m e 7 < lαl Then 0* exists. D

The proof of 4.3 will take some time. Fix j , α, β as above, and let γ be the least
ordinal such that j(γ) φ y. Thus j \ y = id \y andy(y) > y. Let /cbea cardinal of
y-type ωί. We prove 4.3 by using7 to construct an embedding e: Lκ -< Lκ to satis-
fy the hypotheses of 4.2.

Let λ = κ + . Notice that since y < |α|, 0>(y) n L c Lα. Hence we may define

Since): Lα-< L^ is elementary, the following lemma is easily proved.

4.4 Lemma.

(i) yeD and0$D;

(ii) ifX e D and Ye D, then XnYeD;

(iii) ίfXeDandX^Y^y, where Ye L, then Ye D;

(iv) ifX c y9 X G L, ίhβπ dίfer X e D or else y — X e D;

(v) iff < y and {Xξ\ ξ < y} ^ D and (Xξ\ ξ<y)eL, then f]XξeD. D

Thus D is an ultrafilter in the field of sets έ?L(y) which is y-complete with
regards to families of sets in L. We do not necessarily have D e L; indeed, it is a
consequence of our ensuing results that D φ L.

We use D to construct a kind of "ultrapower" of Lλ. Set

Notice that as d(λ) = λ> y, if fe F then in fact/e LA. This fact will be relevant
later on. Define an equivalence relation on F by

/ ~ 0 iff {v6y|/(v) = ^(v)}eD.

(Since {vey |/(v) = g(v)} e L whenever/, geF, this definition makes sense. And,
using the results of 4.4, it is easily checked that ~ is an equivalence relation.) Let
[f] denote the equivalence class of /, and set

M = {[f)\feF}.

Define a binary relation, £, on M by

[f]E[g] iff {vey\f(v)eg(v)}eD.

(Again, for/, g e F, {v ey |/(v) e g (v)} G L. And using 4.4 it is easily seen that E is
well-defined on M.)
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4.5 Lemma. Let φ (v0,..., vn) be any ^-formula, and let [f0], ...,[/„] e M. Then

iff{veγ\Lλ¥φ(f0(v)9...Jn{v))}eD.

Proof. Notice first that, since / 0 , . . . ,/π e L λ , {vey\Lλtφ (f0 (v), ...,/„ (v))} G L.
The lemma is proved by induction on the length of φ.

If φ is primitive, the result is true by definition of <M, £>.
If φ is of the form —i ψ or else \jj1 A \j/2, the induction step is trivial, using the

results of 4.4.
Suppose finally that φ has the form 3y\j/(y,vO9..., vn) and that the result holds

for φ. If

then for some [#] e M,

so by induction hypothesis

But clearly,

Hence

Conversely, suppose that

Y={vey\Lλ\=3yψ(yJ0(vl...Jn(v))}eD.

In particular, 7 G L. Define #: y -> Lλ by

[the <L-least y such that Lλ ¥ φ (yjo(v)9...,/n(v)), if v e 7,

Clearly, g e L. Hence fef] e M. But

So by induction hypothesis,

Hence

The proof is complete. D
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4.6 Lemma. <M, £> is well-founded.

Proof. Suppose not, and let [gn+ J 3[gn] for all n < ω. Now, gn e Lλ for all n < ω,
so pick X < Lλ such that (y + l)u{gn\n < ω} ^ Z a n d | Z | = |y | .Letσ: X = Lδ.
Then |(5| = | y | < | α | , and hence δ < α. Thus gneLa, where we set gn = σ (gn). Now,
σ~1: Lδ^Lλ and σ f y = id f y, so for each n < ω,

{vey\gn+1(v) e^M(v)} = {v ey |^M +!(v) egn(v)} e D .

Thus for each n < ω,

V ej({v e y | ^ + 1 ( v ) e ^M(v)}) = {v ej(γ)\ \J(gn+1)](v) e [/'(^)](v)}.

In other words, for all n < ω, we have

But this is absurd. The lemma is proved. D

We can define a map k: Lλ -• M by

where cx is the constant function (x | v < y). Using 4.5, it is easily seen that

so by 4.6 there is an isomorphism

for some μ ^ λ. Let π = ρ ° k. Thus

4.7 Lemma.

(i) π Γy = id Γy;

(ii) π(y)>y;

(iii) ifθ<λίsa cardinal ofy-type 0, ί/zen π(θ) = θ.

Proof (i) Let v < y. Then

π(v) = ρofc(v) = ρ([cv]).

So, as ρ is the collapsing isomorphism for <M, £>,

where

A = {[f]eM\{f]E[cv]}.
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Now,

[f]E[cv] iff{ξeγ\f(ξ)ecv(ξ)}eD
iff {ξey\f(ξ)ev}eD
iff {j{ξey\f(ξ) = ζ}eD.

ζ<v

Using 4.4 (v), we get

[f] E [cv] iff (3 ζ < v) [{ξ G y |/(£) = ζ}eD]

iϊt(3ζ<v)[[f]=[cζ]].
Thus

,4 = {[cζ]|C< v}.

But

ξ<ζ-»[cJE[c ζ ] .

Thus

π(v) = o t p « ^ , E » = v.

(ii) For all v < y, y — v G D, so

v < y ->Γ

Thus π(y)^y + 1.

(iii) Suppose that [g] E [c0]. Thus

{ v G y | g f ( v ) G 0 } G D .

Define /: y -> 0 by

0, if g(v)eθ9
f{v) [0 , ifflf(v)φβ.

Then/G L, SO/G F, and [/"] = [̂ ]. But cf (0) > y, so f" y <^v for some v < 0. Thus
[/]£[cv], i.e. [g]£[cv]. We have therefore shown that the set {[cv]|v < 0} is E-
cofϊnal in [cθ], i.e. that {k (v) | v < 0} is E-cofinal in k (0). But ρ is the collapsing
isomorphism for <M, E>. Thus

= supv<βρ(fe(v)),

i.e.

π(0) = supv < θπ(v).

But for v < 0, if [gf] £ [cv], then as above we have [g] = [f] for some/e (7v) n L, so,
noting that θ is a limit cardinal and that [GCH]L, we have

])| = \{[g]\ \g]E[cv]}\ ̂  \(yv)nL\ < θ.

Thus π (0) ^ 0, and so, in fact, π (0) = 0. D
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Since K < λ is of y-type ωί9 it follows from 4.7 (iii) that π (K) = K. Hence

(π\Lκ):Lκ<Lκ.

Setting e = π \ Lκ, 4.7 implies that e is as in 4.2. That completes the proof of 4.3.

5. 77ze Covering Lemma

It is the very essence of 0* that its existence implies that V is very different from
L. In this section we show that if 0* does not exist, then V is very similar to L.
More precisely, we shall prove the following result.

5.1 Theorem (The Covering Lemma). Assume 0* does not exist. If X is an un-
countable set of ordinals, then there is a constructίble set, Y, of ordinals such that
X ς= Y and \Y\ = \X\. (Thus, every uncountable set of ordinals is covered by a
constructible set of ordinals of the same (real) cardinality.)

The proof will take some time. Before we commence, let us notice that if 0*
does exist, then the conclusion of 5.1 fails badly. For example, if 0* exists, then ωω

is inaccessible in L, so the countable set {ωn\n < ω}, being cofϊnal in ωω, can only
be covered by a constructible set of cardinality at least ωω.

It is also instructive to give some examples of how the covering lemma effects
the set theory of V, making it resemble L to some extent.

5.2 Theorem. Assume 0* does not exist. Let K be a singular cardinal. if2cΐ{κ)+ωι

^κ + , then κcΐ{κ) = κ + . In particular, if K is a singular cardinal such that
(\/λ<κ)(2λ<κ),then2κ = κ + .

Proof Let K be a singular cardinal such that 2cf ( κ ) + ω i ^ κ + . Let A be the set of all
subsets of K of cardinality cf (K). We know (see 1.5.8) that \A | > K, SO we must prove
here that \A\ ̂ κ+ in order to obtain the first part of the theorem. (The second
part follows easily by cardinal arithmetic.)

Let X e A. By the covering lemma there is a set YeL,Y^ K, such that X c Y
and I Y\ = cϊ(κ) + ωγ. Given such a set Y, how many subsets can it have (in V)Ί
It has 2'y many, of course. So, by hypothesis, Y has at most κ+ subsets (in V). Now
we ask ourselves how many such sets Y there are? Clearly, there are at most
|(2K)L |. But GCH is valid in L. So the number of possible sets Y is at most
|(τc+)L | ^ κ + . So the set X is one of at most κ+ subsets of one of at most κ +

constructible sets. There are thus at most K + sets X e A. D

Further consequences of the covering lemma for cardinal arithmetic are con-
sidered in Exercise 3.

5.3 Theorem. Assume 0* does not exist. Let K be a singular cardinal. Then [K is
singular]1.

Proof. L e t l c / c be cofinal in K, \X\ = d{κ). Let X c 7 c κ, γe L, \ Y\ = \X\
+ ωγ. Since YeL,\Y\< K, and sup(Y) = K, we must have \κ is singular]L. D



5. The Covering Lemma 197

Notice that as an immediate consequence of 5.3 we have:

0* exists iff ωω is regular in L.

5.4 Theorem. Assume 0* does not exist. Let K be a singular cardinal. If
(V α < K) \»{μ) <Ξ L], then &{κ) <Ξ L.

Proof. Let ,4 c K. We show that ,4 e L. Let A = cfL()c), and let (κv\ v < λ) e L be
cofinal in /c. By 5.3, λ <κ. Let / e L,f:κ<-+Lκ. For each v < 2, 4 n /cv e L, so
Anκve Lκ, and we can find an αv < /c so that ,4 n τcv =/(α v ) . Let X = {αv| v < A}.
Pick Ye L,Yς^κ, so that X c 7 and 17| = |X | + ω x < K. Then μ - | Y\L < K.
Let; G L j : μ <-• Y. Since;~ ι "X ^ μ < K, we have;~ ι "X e L. So, as; e L, we have
XeL. But / e L, so it follows that A = [j {/(α) | α e X} e L. D

5.5 Theorem. Assume 0* does πoί exz'sί. Ifκ is a singular cardinal, then (κ+)L = κ + .

Proof. Let λ = (κ+)L. Suppose that λ <κ + . Thus \λ\ = κ, and so cf (λ) < K. Let
X c A be cofinal in A, |X | - cf (A). Let YeL, X^ Y^ λ, \Y\ = \X\ +ω1<κ.
Then \Y\L<κ. So as Y is cofinal in λ, [d(λ)]L<κ < λ. But [λ is regular]L.
Contradiction. D

5.6 Theorem. Assume 0* does not exist. Let K be a singular cardinal. Then D κ

holds.

Proof. In L, D κ is valid, so let (Cα \a <(κ+)L A lim (α)) e L be a D κ-sequence in the
sense of L. By 5.5, this sequence is clearly a Dκ-sequence in the real world. D

5.7 Theorem. Assume 0* does not exist. / / G C H holds, then for every singular
cardinal K there is a κ + -Souslin tree.

Proof By 5.6 and IV.2.11. D

A slight strengthening of 5.7 is considered in Exercise ID.
We turn now to the proof of the Covering Lemma. It turns out to be a little

more convenient to work with the Jensen hierarchy of constructible sets,
( J J α e O n ) , rather than the hierarchy ( L J α e O n ) . The Jensen hierarchy was
introduced briefly in IV.4, and is studied in detail in Chapter VI. In the meantime,
we summarise the facts we need concerning this hierarchy. Note that although the
Covering Lemma can be proved using the Fine Structure Theory outlined in IV.4,
we shall give here a proof which is free of Fine Structure. Consequently, this
section may be read independently of IV.4.

The rudimentary functions were defined in IV.4, so, even though you are not
require to have read IV.4, there seems little point in repeating the definition here.
For any set U, rud(U) denotes the closure of U u {U} under the rudimentary
functions. If U is transitive, so is rud(l/). The Jensen hierarchy is defined by the
recursion

J α + 1 = rud(Jα);

Jλ= U Jβ, if lim (A).
OL<λ
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Each Jα is transitive, α < β implies J α u {Jα} c J^, and Jα n On = ω α. We have
La^Ja^ Lωα, so Jα = Lα iff ωα = α. Each Jα is an amenable set, and for all α,

The Jensen hierarchy thus resembles the usual Lα-hierarchy to a great extent, the
main difference being that the slightly more rapid growth of the Jensen hierarchy
makes each level amenable, not just the limit levels as is the case with the
Lα-hierarchy.

There is a single rudimentary function S such that 17 u {17} e S(ί/), and in
case U is transitive, rud (17) = (J SΠ(C7), where S" denotes the n'th iterate of S. We

define a refinement of the Jensen hierarchy by the recursion

Sλ=[jSx, i

Then α < β implies Sa u {Sa} c sβ9 Sa n On = α, and Jα = Sωα.
Every rudimentary function is Σ o and uniformly ΣQ* for all α > 0. Consequent-

ly, both (Ja\ α e On) and (Sβ| α e On) are Σ l 5 and if α > 0, then (Jv |v < α) and
(Sv| v < ωα) are uniformly Σία.

There is a well-ordering <3 of L, which is Σ 1 ? such that < 7 n (Jα x Jα) is an
initial segment of <jn(JβxJβ) whenever a < β. If α > 0, x <3y e Jα implies
xeJa. Moreover, < 7 n (Jα x Jα) is uniformly Σ{α for α > 0.

The Condensation Lemma is valid for the Jensen hierarchy: if α > 0 and
X ^ ! Jα, then X = Jβ for some unique jS < α.

We have already mentioned that we shall give here a proof of the Covering
Lemma which does not require any of the Fine Structure Theory. For those
familiar with that theory (from IV.4, perhaps) we mention that it is the following,
relatively crude notion which suffices here in place of the full Fine Structure
apparatus.

Let φ (v0, vu ..., vm) be any if-formula. Let α > 0. The Ja-skolem function for
hi φ is the function ήj: (Jα)w -• Ja defined by

I the < j-least y e Ja such that l=Jα φ (y, xl9..., x J ,
if such a y exists,

0, if no such y exists.

H"(A) Let α > 0, n < ω, A c Jα. We denote by #"(,4) the closure of ,4 under all
Jα-skolem functions hi for which φ is ΣM. It is easily seen that if n > 0,

i/α

ω(^) 4 £ H (^) -<M Jα. Similarly, if we denote by H?{A) the closure of A under all
Jα-skolem functions, then A c fl® (4) •< Jα. (We sometimes write -<ω to mean <;in
such contexts.) We also have A ^ H^(A)-KιJa. To see this, suppose φ (v0,..., vn)
is Σ x and that xl9..., xn G fί^ (A) are such that
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Let φ be a Σ o formula such that φ (y, x) is equivalent to 3 zφ (z, y, x). Then

By definition,

So

i.e.

So we shall be done if we can show that (h%(x))1 e H° (A). Well, for any ordered

(z)i = the <j-least yeJa such that NJαθ(y, z),

where 0 is the Σ0-formula (3 x e z)[z = (x, 3;)]. Hence (z)x = /i£(z) e //α° (̂ 1), and we
are done.

5.8 Lemma. Let a > 0, 1 =ζ n ^ ω. Let j : JΛ<nJβ. Let φ(v0, ...,vk) be any
Σn-formula of i f . Then for all xu...,xke J α ,

Proo/. Suppose first that there is no y e Jα such that NJα φ (y, x l 9 . . . , xk). Thus

NJ α-i 3yφ

Applying), we get

Hence in this case, we have

ΛJ(x1,...,xk) = 0 and ^O'(^i), ...,j(x*)) = 0,

and the lemma is immediate.
Now suppose there is a y e Jα such that NJα φ (y, xί9..., xfc). Set

Then

So, applying),
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Thus iϊj(y0) * AJ?(/(*i)> ...J(xk)), we must have

VJβlz[z <jj(y0) Λ φ(zJ(x1),...J{xk))].

Applying)"1, we get

* v β 3 φ < j ) > o Λ φ(z,xu...,xk)]9

contrary to the choice of y0. D

The main technique involved in the proof of the Covering Lemma is that of
constructing limits of directed systems of embeddings. For the benefit of readers
not familiar with this technique, we give here a brief outline of what is involved.

A directed set is a poset (7, =ξ) such that whenever ij e I there is a k e I such
that ij sζ k. A simple example of such is the set ([X]<ω, c) of all finite subsets of
a set X, ordered by inclusion.

L e t n ίζ ω. A directed Σn-elementary system c o n s i s t s o f a f a m i l y (sίi\iel) o f

structures (of the same kind), indexed by members of a directed set 7, together with
embeddings σι7: st{ <n s^j for each i,j e 7, i ^ j , satisfying the commutativity condi-
tion σik = σjk o atj for i ^ j ^ k. In case n = ω, here, we speak simply of a directed
elementary system.

A direct limit of a directed Σπ-elementary system <(«s/j)iej, (̂ yX-̂ j) consists of
a structure sf (of the same kind as all the ^ f ) , together with embeddings σt :
«fl/f -<„ «β/ such that σfj = σjι ° σt for i ^ j , satisfying the condition that if x e si
then x e ranfo) for some ί e 7. If <J/, (σj)i6/>, <J*, (τf)fe/> are direct limits of the
same system <(^)i e j, (σ^^j) we may define an isomorphism π: stf ^ Jf as fol-
lows: let x e i . Pick ie I so that x = σt (x) for some x ' e i j . Let π (x) = τf (x). It is
easily checked (using the commutativity condition) that the choice of i is un-
important here, and that π is a well-defined isomorphism. Since any two direct
limits are isomorphic, we often speak of the direct limit of a directed elementary
system. That there always is a direct limit may be demonstrated as follows.

Let <(^i) i6/, (σfj)î j> be a directed ΣM-elementary system. For simplicity, sup-
pose that so-, = <i4f, Λj>, where Rt c 4|». Set

U
ie/

Define an equivalence relation ~ on (7 as follows. Let x, y e (7. Pick ij e 7 so that
x e i j j G ;4y. Say x ~ y iff there is a fc ̂  i,j such that σίk(x) = σjk(y). (We leave
it to the reader to check that this is an equivalence relation.) Let A be the set of
equivalence classes of elements of U under ~. Define a relation R ^ An as follows.
Let X 1 ?..., Xn G A. Since 7 is directed we can find an i e I such that there are
elements x1 e X1 n 4,-,..., xn e Xn n ^ . Set Λ (X1 ?..., Xn) iff R^Xi,..., xn). (We
leave it to the reader to check that R is well-defined here.) Let srf = (A, R}. For
i e 7, define σf: At-^ Aby letting σf(x) be the equivalence class of x. It is routine
to show that σf: stf{<^nsrf.

In cases where the direct limit of a system is well-founded, we usually take the
transitive collapse of the limit as "the direct limit" to work with. In this connec-
tion, the following result is sometimes useful.



5. The Covering Lemma 201

5.9 Lemma. Ife: Ja~<0M, where M is transitive, then e(Sv) = Se(v)for all v < ωα.

Proof. Let φ be the canonical Σ o formula which defines the Sv-hierarchy: that is,
for any y and any v < ωy, if N is a transitive set such that Jγ c jV, then

x = Sv iff \=N3yφ(y,x,v).

Let v < ωα be given. Set x = Sv. Then

So for some y e Jα,

tJaφ(y,x, v).

Applying e:Ja<0M,

Thus

Thus e(x) = Sβ(v), as required. D

There are various ways of obtaining a structure Jδ as a direct limit of a directed
system of smaller structues. We describe below three methods that will be of use
to us.

Let δ > ω be given. For each integer n > 0 and each infinite ordinal η < ωδ,
we define a directed Σπ-elementary system SJJ(f/) whose limit is Jδ, as follows. Let S^Oί)
/ = I$(η) be the set of pairs (α,/?) such that cc < η and /? is a finite subset of Jδ. Γδ(rj)
Partially order / by setting

(α,/?) ^ (/?, g) iff α ^ jβ and /? c ^.

Under this ordering, / is a directed set. We use / to index the system Sn

δ (η).
Let ί = (α, p) e /. Then

By the Condensation Lemma, let

σt: JQ{V)^Hn

δ{wp).

For i,jel, i ^j, set

σij=σ[1 oσ..

(This is clearly well-defined.) Thus

σij: /?(i)^πΛ?U)»

and

Then Sδ(η) = φQiϊ))iel9 (ffy)î j> is a directed ΣM-elementary system whose direct
limit is <Jδ, (aj i e J >.
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S$ (η) We may also represent Jδ as the limit of a directed Σ ί -elementary system Sδ (η\
I*°(η) described next. As above, let ω ^ η < ωδ. Let / = Iδ(η) be the set of all triples

(fc, (x,p) such that 0 < k < ω, α < η, and p is a finite subset of J 5 . Partially order
/ by setting

(k, 0L9p) ^ (/, β, q) iff fc < / and α < J? and ^ c 9 .

The directed set / is used to index the system S™(η).
Let i = (k,<x9p)el. Then

αu/? <^

Since fc > 0, by the Condensation Lemma we may let

σt: Jρii)^Hk

δ(ccup).

Then σf: Jρ(i)<ι Λ, and in fact σf: Jρ(i)<kJδ F ° r ^ ̂ Λ w e m a Y clearly define

Then

is the directed Σx-elementary system

Its direct limit is, of course,

Our third directed system to give Jδ as its limit will apply only in the case when
δ is a limit ordinal. For ω ^ η < ωδ, we define the directed Σx-elementary system

Ss in\ $δ in) as follows. Let I = Iδ (η) be the set of all triples (v, α, p) such that 0 < v < δ9

Iδ (η) α < η, α ^ v, and /> is a finite subset of J v . Partially order / by setting

(v, α,/?) ^ (μ, β, g) iff [v = μ or Jv e ^] and α ^ jβ and /? c ^.

The directed set / will be used to index the system Sδ (η).
Let i = (V,OC,P)EL Then

By the Condensation Lemma,

Thus
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Suppose that i = (v, α,/?), j = (μ, β, q) are elements of J, i ̂ j. Let
XEH° (α U/?). If v = μ, then x e H°μ (α u p ) c #£(/? u g). If v Φ μ, then since ί <
we must have J v e q. Now, x is Σx-definable from elements of α up in J v . So there
is a Σ0-formula φ oϊ ̂  such that x is the unique element of J v such that

NJμ φ (x, ^ 1 ? . . . , ηn9 yu . . ., ym9 Jv),

where ηu...,ηneoc and yl9 ...,ymep. [To obtain φ, take a formula which defines
x from elements of α u p in J v and bind all quantifiers by Jv.] Thus xeH°μ(β\j q).
So we have proved that H° ( α u / ? ) ί H°μ (β u g). Hence we may define

Since Σ o formulas are absolute for transitive sets (1.9.14), Jv<0Jμ. Hence

σij' JQ(Ϊ)~<OJQU)'

Ss (η) is the directed Σ0-elementary system

<( Jρ(i))ieJ>(σy)i^j>

Its direct limit is

(Again, by Σ0-absoluteness, Jv<0Jδ f° r aU v < (5, so σt : ^ ( ^ o ^ )
The relevance of the above directed system "representations" of structures Jδ

lies in the fact that they enable us to represent a possibly large Jδ in terms of small
structures J ρ ( i ) . For, although the directed system will have to be large, in the sense
that the index set / must be large, the individual structures Jρii) may all be
relatively small. We investigate this phenomenon next.

Consider any of the systems Sδ (η) just defined, where δ > ω, 0 ζ n ̂  ω,
ω ^ η < δ, with lim (δ) in case n = 0. Let y be any admissible ordinal. We shall say
that Sn

δ(η) is below y if ρ(i) < y for all ί e Γδ{η).

5.10 Lemma. IfSδ(η) is below γ, then σtj e Jyfor all ij e Iδ(η), i ^j.

Proof. Consider first the case 0 < n < ω. Let ij e Iδ(η), ί ^ , i = (a,p)J = (/?, q).
Then Gij = σj1 ° σh where

σt: Je{i) £ HS(αup), σ,-: J ρ 0 ) s Hn

δ(βvq).

Now, Hδ((x^jp) is the closure of α u/? under the ΣM skolem functions /$. Since
α ^ β and p ^ q, Hn

δ{aκjp) ^ Hδ(β u g). Using 5.8 and applying

"backwards", we see that the set

ran {σjι o σi) = στ * "Hn

δ (α u
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is the closure of α u σjι{p) under the ΣM skolem functions ή£ ω , i.e.

ran (σϋ) = flj

Consider the definition of fljω (α u σjx (p)) from ρ (/)> n> α> σ 7 * (Z7)- It *s the subset
of JβU) consisting of all those elements x of J ρ 0 ) which may be obtained from
elements of α u σjι (p) by finitely many applications of functions of the form h%U)

where ψ is a Σn formula of if. Thus, it is easily seen that H ρ ω (α u σj1 (/?)) is a
Ai(Jy) subset of J ρ 0 ) . But Jγ is admissible. Hence by Ax-Comprehension (1.11.1),

Q { j ) { j ( p ) ) y

Again, σV}

 x is the collapsing isomorphism for the set HQU) (α u σj 1 (/?)), so σ o

 x

is a Ai(Jy) subset of J ρ 0 ) , whence σ^ 1 e J r Thus σi} e Jγ, as required.
Consider next the case n = ω. If z,y' e /^ (^), ι ^ j9 ί = (/c, α, p)J = (/, jS, ̂ f), then,

much as above, we have

σ y : J ρ ( ί ) ^ Hρ

fc

(j) (α u σj1 (p)),

and again as before this implies that σ o e J r

Finally suppose π = 0. Let ij e 1% (η), i ^ j , ί = (v, α, /?), j = (μ, jS, q). If v = μ,
then

σ,: J ρ ( 0 ^ fl{(αu/ι), σs: JeU) s H°v(βuq),

so as in the above cases

and as before we can conclude that ctj e Jγ.
Now suppose J v G q. Then

σ. : J ρ ( 0 ^ f l ? ( a u p ) , σy. Jρ{j) ^H°μ(

Now, if φ is Σ o and x l 5 . . . , xm, y G J V , then, as is easily seen,

y = fcy(x!,...,xj iff y = ΛJ(xi,...,x l i l).

Thus we may in fact apply the same argument as before to obtain

Again this implies that σtj G Jy, so we are done in all cases. D

We are now ready to begin our proof of the Covering Lemma. We shall
τ assume from now on that the Covering Lemma is false. We fix τ the least ordinal

X such that there is an uncountable set X c % which is not a subset of any construc-
tible set of cardinality \X\. This choice of τ has two immediate consequences.

5.11 Lemma, [τ is a cardinal]L.
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Proof. Suppose otherwise. Let λ = | τ | L , and let j e L, j : Λ,<->τ. Let X =j~ι "X.
Since X c λ < τ, the minimality of τ guarantees the existence of a set Fe L, X c y
<= A, | F | = |X| . Let y = / ' F . Then y e L , X c Γ c T , and | y | = |X| . Contradic-
tion. D

5.12 Lemma. // Ye L and \ Y\L < τ, then Y cannot cover X.

Proof. Let λ = \ Y\L, and let; e LJ: λ^Y. Suppose X j= Y Let X =j~x "X. Then
X c λ < τ, so by choice of τ there is a set Z e L, X c Z c A, | Z | = |Jf |. Let
Z = / Z . Then Z e L, X <^Z <= τ , | Z | = |X|, contrary to the choice of X. D

The overall strategy behind our proof of the Covering Lemma is as follows.
Let M < Jτ, \M\ = \X\, X c M, and let π: Jγ ^ M. Since X c τ , we know that (by
choice of X) IXI < | τ | (for otherwise τ e L is a cover of X of cardinality | X |). Thus
I Jy I < I τ I. But X is cofinal in τ and X c ran (π). Hence π: J γ -< J t is non-trivial. Let
β be least such that π(β) > β. If β < \γ\, then by 4.3, 0* exists, and we have our
sought-after contradiction. What if β ^ |y|? Then we try to find a δ ^ 7, |<5| > β,
such that it is possible to find an embedding π: Jδ<Jv which extends π (so
π(jβ) > β), in which case 4.3 may again be applied. The question is, how might we
extend π as desired? Well, by choosing M carefully in the first place, we find a δ
such that Jδ is the direct limit of a system which is below 7. (Note that as Jγ = Jτi

y is admissible, by virtue of 5.11.) Thus the map π sends the members of this system
to a directed system inside Jτ. If the direct limit of this system is well-founded, and
thus of the form J v for some v, then it will be easy to construct an embedding π:
Jδ -< J v which extends π, as we shall see. However, as we shall discover, the choice
of M, in particular, must be made very carefully indeed, making use of the special
properties of τ and X.

We defer until later the actual choice of the submodel M -<Jτ. We assume
simply that we have found some embedding π: Jγ -< Jτ. Note that by 5.11, γ will π, y
be an admissible ordinal. Let us further assume that δ, n, η are such that δ > ω, δ9 n, η
O^n^ω, ω^η<δ and that Sn

δ (η) is below γ. Then we may define a directed
system π* Sn

δ (η), of the same degree of elementarity as Sn

δ (η\ as follows. As index π* Sn

δ (η)
set we take the set In

δ(η). Associated with ί e Γδ(η) will be the structure Λ(ρ(0) For
i, j E Γδ (η\ i < j , the embedding associated with ij will be π (σl7 ). Since π is elemen-
tary, if σ o : Jβ(i)<kJρu), then π(σ o ): Jπ<ρ<i))"<fcJπ <«,<./))> s o t h i s makes sense, and
moreover, π* S3 (f?) so defined is a directed system. The lemma below shows how,
under these circumstances, it is possible to extend π from Jγ to Jδ. (Actually, in the
form stated, all that we get is that π extends π \ η, but in our main application of
the lemma we shall have η = 7, in which case we really will have π c π.)

5.13 Lemma. Let «17, £>, (0i)ie7> fee ί/ie dzrecί /ΐmΐί o/ίfte system π* SJjfa).
ί/iβrβ is an embedding ft: <J^,e> -<x +„<£/, £>. Moreover, if(Ό, E} is well-founded,
we may take <[/, £> ίo foe of the form < J μ , e>/or some μ, m w/izc/z case π f η = π \ η.

Proof Let x e 4 For some ί eln

δ(η),xe ran (σ )̂, say x = σt (x), where x e J ρ ( i ) . Let
y = π (x), and set π (x) = θt (y). (Thus π (x) = 0f ° π ° σf~

x (x).) It is routine to verify
that π is well-defined. And in the cases n < ω, it is immediate that ft is
ΣΠ-elementary. To show that in these cases π is in fact Σn+ x -elementary, we argue
as follows.
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Suppose that φ is Ππ and that

<U,E}ϊ3yφ(y,π(x)).

Then for some yeU,

Pick i so that π(x),ye ran(0f), say π(x) = θi(x), y = θi(y). Since

we have

But x = θf1 ° π(x) = π ° σ^1 (x). So we may rewrite the above as

Thus

Jπ ( f l ( i ) ) 1=

Then, since π: Jy-< J τ, we deduce that

JQ{i)¥3zφ(z9σr1(x)).

So for some z eJρ{i),

Je{ΐ)¥φ{z9σΓ1{x)).

Butσ. : JQ{i)<HJδ. So

Jah<p(σ£(z),x).

Thus

Λ 1= lyφ(y,χ).

The argument in the other direction is similar, and we leave it to the reader to
supply.

In the case n = ω, to prove that ft is elementary, we argue as follows. Let φ be
a formula which we wish to show is preserved by π. Suppose that φ is Σm. Pick
/ = (fe, α, /?) in If (η) "large" enough so that ran (σ;) contains all parameters in-
volved and so that k^m. Then use the fact that σt and 0f are Σfc-elementary. (We
leave the details to the reader.)

Now suppose that <[/, E} is well-founded. Then we may assume that U is
transitive and that E =enU2. Let U n On = ωμ. (It is clear that U n On must
be a limit ordinal.) We prove that U = Jμ. First of all set xeU. Pick i so that
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x = θi(x) for some x e Λ(ρ(o) F o r s o m e v < ω π(ρ (ι)), xeSv. Applying θt\ J π ( ρ ( 0 )

< 0 U and using 5.9, we have

x = θi(x)eθi(Sv) = Sθi(v)ς: (J Sξ = Jμ.
ξ<ωμ

Now let x e Jμ. For some v < ωμ, x e Sv. Since v e ί / w e can find an ί such that
v = 0f(v), where v < π(ρ(ί)). Then by 5.9 again, 9^) = Sθ.(v) = Sv, so Sv e ran(0f).
Thus Sv e t/. But 17 is transitive. Hence xeU.

Finally, assume now that U = Jμ. We show that π fij = π \ η. Let ξ < η be
given. Pick ι e /J (77) so that ξeoc, where i = (α, p) if 0 < n < ω, i = (v, α, /?) if n = 0,
and i = (fc, α,/?) if rc = ω. Then σy(£) = ξ for a l l ; ̂  i, so σf(ξ) = ξ. Again, since
σ o (ξ) = ξ for all j ^ i, applying π: Jy-< Jτ we have [π(σy)](π(ξ)) = π(ξ) for all
j ^ I Hence as [7 is transitive, ί { (π(9) = π(ξ). Thus π(ξ) = π(^). D

The proof of the following lemma is very complicated, and is deferred until
later.

5.14 Lemma. There is an admissible ordinal y and an embedding π: Jy-< Jτ such
that I γ I = | X \, X c ran (π), and whenever δ ^ y, ί/ien S^ (y) is be/ow y and ί/ie direct
limit of π* S£ (y) is well-founded. D

Using 5.14, it is very easy to obtain the contradiction which proves the Cover-
ing Lemma. Namely:

5.15 Lemma. 0* exists.

Proof Since X c ran(π) and \y\ = \X\ < | τ | we can find a β such that π(β) φ β.
Pick (5 ̂  y, |(5| > jS. By 5.14, S%(γ) is below y and the direct limit of π* S£(y) is
well-founded. So by 5.13 we may take this limit to be Jμ for some μ, and there is
an embedding π: Jδ<Jμ such that π f y = π \y. But π(jg) φ β and jS < | δ | . So by
4.3, 0* exists. D

Now let us begin our attack on 5.14. The part that makes use of the fact that
X cannot be covered by a constructible set Y such that | Y\L < τ (see 5.12) is the
proof that 5"(y) is below y for any δ ^ y. In fact, we shall prove, by induction on
(5, n, that if δ ^ y and 0 < n ̂  ω, then SJ (y) is below y. (This is why we need to
consider three types of directed system, not just Sf(γ).) This in turn means that we
must be even more careful in our original choice of y, π. More precisely, instead
of simply proving 5.14 as stated, we prove the following two results, which togeth-
er imply 5.14 at once.

5.16 Lemma. There is an admissible ordinal γ and an embedding π: Jγ^Jτ such
that:

(i) |y| = |X|αndX^ran(π);

(ii) ifδ ^ y, n < ω, and if lim (δ) in case n = 0, then, IF Sn

δ (y) is below y, then the
direct limit ofπ*Sn

δ(γ) is well-founded. D

5.17 Lemma. Let δ ^ y, 0 < n ̂  ω. Then Sn

δ(y) is below y. D

We prove 5.17 first, since 5.16 is the more complex of the two. It is clear that
5.17 follows directly from the following lemma (which is in fact only a reformula-
tion of 5.17 in the cases n < ω, being stronger only in the case n = ω).
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5.18 Lemma. Let δ ^ y, 0 < n *ζ ω. For every a <y and every finite set p c Jδ9

otp[Hn

δ(aup)nOn]<y.

Proof. Suppose the lemma is false. Let δ ^ y be the least ordinal for which it fails
(for some n), and let n be least such that 0 < n =ζ ω and the lemma fails for δ, n.
We wish to apply 5.16 (ii) to δ, n — 1. In order to do this we must know that if
n = 1, then lim((5). This is in fact the case, but we shall defer the proof for a
moment, and simply assume it.

Claim 1. Sn

δ~
x (y) is below γ. (If n = ω, then of course n — 1 = ω)

Proof. Suppose first that n > 1. Let z e /J" 1 ^) . Then

for some k,0 < k < n and some finite /? c Jδ. (If π < ω, then in fact k = n — 1.) By
the minimality of rc,

otp [Hj(α u/?) n On] < y.

Hence ρ(i) <y.
Now consider the case n = 1. Let ι e /£(y). Then

for some μ < δ,(x <y, and some finite /? ̂  Jμ.lϊμ^ y, then by the minimality of (5,

otp[#2(αu/?)nθn]<y,

whilst if μ < y, then trivially

otp [#£ (α up) n On] ^ ωμ < y,

so again we have ρ(i) < y. The claim is proved.

Claim 2. There are α0 <y,po^Jδ, p0 finite, such that

Proof. Pick a <y,p ^ Jδ,p finite, such that

Let

Set oco = θL,po=Γ1(p). By 5.8,

But 5" ̂  y. So by the minimality of (5 we have δ = δ. The claim is proved.
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By Claim 1 and 5.16 (ii), the direct limit of π* Sn

δ~
x (y) is well-founded. Thus by

5.13 we may take this limit to be of the form J v , and there is an embedding π:
Jδ <n J v such that π \ y = π \ y. Let β0 = ft (α0), q0 = π (p0). By Claim 2 and 5.8, we
have, applying π,

ran(π) = π"JΛ = π"#3(α 0 up 0 ) ̂ Hn

v(βou q0).

But X c ran (π) c ran (π). Hence

Now, clearly, Y = Hn

v(β0 u q0) e L. Moreover | Y\L = \βo\
L + ω. But

j80 = π(α0) = π(α o )e J τ,

so βo < τ. Thus by 5.11, \βo\
L <τ. Thus Y contradicts 5.12, and we are done.

We are left with the proof that if n = 1, then lim ((5).5 Suppose, on the contrary,
that we had n = 1 and δ = β + 1. Note that as δ ̂  y and γ is a limit ordinal, we
must have β^y. Choose oc <y, p ^ Jδ finite, so that

γ.

Now,

Hi(ocup)n On = H\(αu/?)

Since (5 = β + 1, if we intersect H\(μyjp)rΛωδ with ωβ we lose at most ω ele-
ments. But

otp [Hi (α u/?) n ωδ] ^ y = ωy.

Thus we must have

Let p = {au . . . , at}. Since al9..., ax e J^ = rud (J^), there are rudimentary
functionsfί9 ...Jx and elements bu...,bι of Jβ such that

ai=fi(Jβ,b1),...,aί=fι(Jβ,bι).

Let ^ = {ftl5..., ft^}. We prove that

(**) Hl(oc up) nωβ^Hω

β{a\jq)nωβ.

5 This part of the proof makes use of some technical facts concerning the Jensen hierarchy of
constructible sets and the properties of rudimentary functions. These facts are proved in
Chapter VI, and we simply quote them in the present account. Consequently, the reader not
already familiar with the Jensen hierarchy may prefer to simply take the result n = 1 -• lim (δ)
on trust, or else to merely skip through the account given. In any event, it hardly seems worth
postponing a proof of the Covering Lemma until after Chapter VI, when this one technical
detail in the proof is the only point where such knowledge is required.
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By (*), this implies that otp [H^ (α u g) n On] 3? y9 contrary to the choice of <5,
which completes the proof.

So let ξeHl(aκjp)nωβ. We must prove that ξGH(β(ocvq). Let φ be a
Σo-formula, and let ξl9..., ξk < α be such that ξ is the least (which for ordinals is
the same as the <j-least) ordinal in ωδ such that

(1) tJδ3xφ(x,ξ9ξί9..., ξk9 aί9..., aj).

Pick xe Jδ such that

(2) \=Jδ φ (x9 ξ,ξl9...9 ξk9 a l 9 . . . 9 a t ) .

Then we can find a rudimentary function / and an element y of Jβ such that

x=f(Jβ,y)' So,

(3) N J ό φ (/(J β 9 y\ ξ,ξl9...9 ξk9h {Jβ, bx)9... Jx(Jβ9 bύ)

Since φ is Σ o and f,fu ...,fι are rudimentary, the formula

φ(f(x9 y\ ξ9ξί9...9 ξkJΛx, bt)9.. . , // (* , bj)

is Σ o in the variables x, y, ξ9ξu..., ξk9 bί9..., bt. This depends upon a property of
rudimentary functions that we have not mentioned before, that if R(x) is a Σ o

predicate and / is rudimentary, then R(f(x)) is a Σ o predicate. For a proof of this
fact we refer the reader to VI. 1.3. It follows that there is a formula ψ of JS? such
that (3) is equivalent to

(4) ϊJβψ(y9ξ,ξ»...,ξk,bu...9bd.

This requires another result not yet proved, which says that Σ0-definability over
rud(U) for elements of a transitive rud closed set U, using parameters U, a, where
a e U, is equivalent to definability over U using parameters a. This is proved in
VI.1.18. By (4) we have

(5) tβ

Moreover, ξ is the least such. For suppose, on the contrary, that ξ' < ξ is such that

(6) tjβ3yψ(y,ξf

9ξl9...9ξk9bl9...9bd.

Then, using the equivalence of (3) and (4) we can find a y' e Jβ such that

(7) hΛφU'{Jβ,yΊ,ξ',ξi9 9ξkJΛJβ,b1)9...9MJβ9bd).

So, setting xf =f(Jβ9 yr\ we have

(8) tjaφ(x'>?>ξi>'~>ξk,al9. 9ad.

This contradicts the choice of ξ. Since ξ is the least ordinal satisfying (5), we have
ξeH(β(a\j q). This proves (**), and completes our proof of the lemma. D
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This leaves us with the proof of 5.16. We shall define, by recursion, a chain of
submodels

M0<Mί<...<Mθ<...<Jτ (θ

such that X £ M o . Setting

πθ: Jγ(θ) £ Mθ πθ9 y(θ)

for each θ *ζ ωx, we shall let y = y ( ω j , π = π ω i to obtain the lemma. That is, we y, π
shall have |y | = \X\, and whenever δ ̂  γ and n ?ζ ω, with lim ((5) in case n = 0, if
Sδ (y) is below y, then the direct limit of π* Sn

δ (y) is well-founded. The idea is to
include in the models Mθ, θ < ωί9 withnesses to any possible failure of well-
foundedness of any eventual π* Sδ(y), so that the well-foundedness can be estab-
lished by a proof by contradiction.

To commence, we set

And a limit stages θ < ωl9 we set

Mθ = U M9.
Φ<Θ

This leaves us with the case where θ < ωt and Mθ has been defined.
Consider a pair (n, η) such that n ^ ω and ω < η < y (θ). Suppose that there is

a δ ̂  η such that 5^ (η) is below y (θ) and the direct limit of π$ Ŝ  (η) is not well-
founded. Let <50 be the least such δ. Since the limit of π£ Sn

δo (η) is not well-founded,
we can find a sequence (αk \ k < ώ) and elements j k e In

δo {r\\ j k ^ A+ I » s u c h that
αk e Jπθ(euk)) a n d % i e [πθ(σA, j k + Mαkl where ρ(z), σ o relate to the system Sn

δo(η)
here.6

For each pair (n, fy) as above, we pick one such sequence (αk\k < ω). We let Nθ

be the set of all elements αk9 k < ω, chosen in this way. (Of course, it is possible
that Nθ = 0.) We set

By induction on θ < ωί we easily see that \NΘ\ ̂  \X\ for all θ < ω1. Thus
\MΘ\ = \X\ for all θ ̂  ω1. In particular, if γ = y{ωγ\ then |y| = \X\. Setting
7c = π ω i , we have π: Jγ^Jτ and X c ran(π). So what we must show is that if

6 To avoid the necessity of extra notation in a situation where the notational complexity is
already at the limit of human tolerance, we shall frequently use the symbols ρ (i), σψ etc. to
refer to various dirceted systems of any of the three basic types described earlier, and merely
observe which system is referred to each time. In each case, ρ (i), σip etc. will have the meaning
originally defined, but for the system under consideration at the time. This desire for notational
"simplicity" is also the reason why we made no notational distinction between the three types
of directed system which we introduced; with ρ(z), ρfj, etc. having the same meaning in each
case.
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S,n δ^y and n ̂  ω, with lim (δ) in case n = 0, and if SJ(y) is below y, then the limit
of π* S£ (y) is well-founded. We assume otherwise and work for a contradiction.

We consider first the case 0 < n < ω. Pick sequences (bm\ m < ω), (im\ m < ω)

bmiίm so that imeln

δ(y\ L^im+u im = (<Xm,Pm% α m < α w + 1 , bme Jπ(ρ(irn)), bm+1e
αm, pm [π (σίm, i m +,)](6 J , where ρ (i), σ o refer to the system S? (y).

Now, in order to obtain a contradiction with the construction of M, what we
require is that such a sequence (&J m < ω) exists for a system which is below y (θ)
for some θ <ωx. But all that we know about Ss(y) is that it is below y. (Indeed,
for the system SΊ (y) itself, the ordinal y is clearly the least ordinal such that the
system is below y.) However, the subsystem ((Jρiim))m<ω9 (σίw> i β ) m < s > is such that
the limit of <(Jπiβ(ind))m<ω, iΦi^ ϋ)m^s> is not well-founded. The idea now is to
use this countable system to construct a system S$(ή) which is below y (θ) for some
θ < ωx and for which the direct limit of π^ Sf (ή) is not well-founded.

Now, SI(y) is below y, so for each m, ρ (im), αm, σ^ 1 (pm) e Jy. Thus for each m,
θ π(ρ(ίj), π(αm), π(σ^ x (p j ) e M ω i . Since M ω i = \J Mθ9 we can find a θ < ωx

θ<ω\

j such that π (ρ (ij), π ( α j , π (σ^ x (^w)) e Mθ for all m < ω. Let = π ~ ι ° πβ . Thus

: Jyiθ)<Jγ.

Our next move is to use j in order to "pull back" from Jγ to Jy(θ) the system

<(y f i(Jm<ω 5 (σ i m fik)m< t>. Since ran (/) = r a n ( π " x t Mθ), we have ρ ( ΐ j , αm,
σϊ~mX (Pm)E r an (j) for all m < ω. For each m < ω, let ρ m < y ( # ) be such that

£m> αm jf(ρm) = ρ ( i j , let αw ̂  ωρm be such that j ( α j = αm, and let pm c Jρ-w be such that
1

Now, by definition,

σ im : Λ?(ίm) = ^ ^ m Vpm) <nJδ.

So, using 5.8,

JQdm) = HQdm) (αm u σrj (p J ) .

But j : Jγ(θ)^ Jγ>
 s o applying j " 1 we have

Let m ̂  s. Now, if x e αm, then j(x) e j ( ά j = αm. So as σίmt ίβ f αm = id t αw, we
have σlVm iβ (/ (x)) = j (x), and hence j ~1 (σim> iβ 0' W)) = x is defined. Again, suppose
xεpm. Then j{x)εj(pm) = σ^ipj. So σimt is(j(x)) e σΓβ

 x {pm\ But σ ^ 1 ^ )
= j (ps) G ran (/) -< J r So aspm is a finite subset of the finite set/?s, σf"

x (/?J e ran (/).

Thus j- 1 K i i . (/W)) = Γ ' K ' ί p J ) is defined.
Thus we can define an embedding

by setting

«ίms (ΛL (χi, ., x*)) = < 0 " x (^.«. 0' (
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for any Σ n formula φ (vί9..., vk) and any x 1 , . . . , x k e α m ^>pm- (By 5.8, this does
define a Σn-elementary embedding.) Then

\\rQm)m < ω ? \σms)m ^ s/

is a directed ΣM-elementary system, and moreover the following infinite diagram
commutes:

Let «[/, £>, (σm)m < ω> be the direct limit of the system

We have σm: J^m <n <(7, £>, σim: J ρ ( i m ) -<n J5, and σίw> iβ = σ^1 ° σirn for m ^ s. So
we can define an embedding

e: < £ / , £ > < < J , , e >

as follows. Let u e ί / . Pick m < ω so that u = σm(x) for some xeJ^m. Set
e(w) = σ iw (/(*))• (It is routine to check that e is well-defined and ΣM-elementary.)
In particular, <[/, £> is well-founded, and we may assume that <£/, £> = < J^, G>
for some J.

So, starting with a system

^(Λr(ρ(im)))m<ω> ( π ( σ i w , is))m^s)

which has a non-well-founded limit (witnessed by the elements bm), we picked a
θ < ωx sufficiently large for us to be able to use j = π~1 o πθ (so j : Jγ(θ) •< Jγ) in
order to "pull-back" from Jy the system

to a system
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with limit

fj We shall show that for ή = s u p m < ω α m , the direct limit of π$ S%(f\) is not well-
founded. Indeed, we shall show that πθ (σms) = π (σίm> is) for m < s, so that the same
elements bm witness this non-well-foundedness, just as they did for the original
system.

Let ή = s u p m < ω α m . Since ( α j m < ω) is strictly increasing and j ( α j = αw,
(αm | m < ω) is strictly increasing. Hence αm < ή for all m < ω. Since σm: Jgm~<nJδ,
we have αw ^ ω. ρm ^ ω . 3" for all m < ω. Hence ή ^ ωJ. So we may consider the
directed Σπ-elementary system S$(ή).

qm, 7 m Set qm = σm{pm\ Tm = (αm, ̂ J . Then Γm e IUη) and m ^ s implies Tm < ζ. And
for the system S$(ή) we have ρm = ρ (ίm), σm = σfm, σms = σΓw> Γs. (This is not a fact
that requires any proof. We have simply started with a system <( Jρm)m < £ 0, (σms)m^ s>
and then defined 5", ή, Tm so that the above equalities are true by definition.)

5.19 Lemma. In the system S$(ή),for each i e I%(rj) there is an m < ω such that

Proof. Let i = (α,/>) e I}(ή). Since p c Jz is finite and J^ is the direct limit of the
system

there is an m < ω such that p c σm"Jρm. Moreover, since α < ^ we can choose m
here so that αm ^ α. But σw = σΓyn and σίw: Jρ ( Γ m ) ^ Hf(αm u ^ J , so σ m t α m

= id ϊα m . Thus

It follows that H} (α u/?) c σm"Jρ-w. But in SJ(j/), by definition,

Thus σ/'Jρ^) c ^ " J ^ . Since σm = σΓw, ρm = ρ(Γj we are done. D

It follows from 5.19 that S}(η) is below γ(θ). To see this, let i e l}{ή) be given.
Pick m < ω so that σ f

r/Jρ(i) ^ σrw"Λ(Γm) Since σί5 σΓm are one-one and e-preserving,
it follows that ρ(i) ^ ρ(im) = ρm < y(θ), as required.

Since SUη) is below yψ\ π$ SUή) is defined. Now,

σim: JQ{irn)

σis\JQ{is)^

Thus

(*) σim, is =
 σΰ1 ° σ ^ : Λ(iw) = «J(i.)(αm u σ,;x (pm)).
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Now, by choice of θ, ρ (ΐm), ρ (is), αm G ran (j). Moreover, the choice of θ ensures
that σf~

1 (ps) G ran (/), so as /?m is a finite subset of the finite set ps, we have σ[~s

 x (^m)
G ran (j). Thus as 7: J y ( β ) -< Jγ, we have σiim iβ G ran (7). But 7 ( ρ j = ρ ( i j , 7 (ρs) =
Q(QJ(*m) = αw. Thus from (*), applying j " 1 , we get

(**) Γ X ( ^ ί m , J : JQm = HI(αm u j - 1 o σ r 1 ( p J ) .

Now,

j ~x ° σ f ;
x (/?m) = 7 " x o σ " 1 o σirn o j ( p j (by choice of p j

= Γ x ° σ i w , i. ° J (Pm) (by definition of σim> is)
= Gms(Pm) (by commutativity of the diagram above)

= σ~ίo σm(pm) (by definition of σm9 σs)

= σ s "
x {qm) (by definition of qm).

Thus by (**),

Γ ' (σ i r n , J : Jρ-W = ^ - s ( α m u σ s "
1 (^J) .

In other words, since ρm = ρ(iw), ρs = ρ(is), σs = σΓs,

Γ 1 (σίw, J : Jρ(rw) = Hn

ρ(Γs)(αm u σΓ;x (§J) .

But ίm = (αm, ̂ m ) , ΪS = (αs, qs). Thus, in the same way that we deduced (*), we may
obtain

x (9 J ) .

Hence

i.e.

Therefore, applying π,

But7 = π " 1 ° πθ. So,

Thus by choice of the elements bm,

for all m < ω. Hence the direct limit of the system π$ Sf(ή) is not well-founded.
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We have now arrived at the following situation. We started with a δ ^ y and
a 0 < n < ω, such that Sδ (y) is below y and the limit of π* Sδ (y) is not well-founded.
By choosing a suitable embedding j : Jy{θ) < Jy, we were able to "pull back" Sn

δ(y)
(or at least a subsystem of this large enough to give a non-well-founded π-image)
to a system S}(ή) which is below y (0), such that the direct limit of πjf S^(η) is not
well-founded. (Remember also that π = π ω i .)

Consider now the definition of Mθ+ί. When the pair (n, ή) was considered, J
was, by the above, a candidate in the choice of what we then called δ0. Hence as
δ0 was chosen minimally, δ0 ^ δ. Let (ak\k < ω\ (jk\k < ω) be the sequences

akjk chosen for δ0, n as described: that is, j k e Γδo (η), j k tζjk+u akε Jπθ(ρUk)), ak+1

βk, qk e [πθ(σjkjk+ί)](ak). Letjk = (βk, qk).
It is easy to construct an increasing sequence (mk \ k < ω) of integers such that

βk < αm k, qk c σΐmyρ(Jmk), and in case δ0 < δ, such that Jδo G σ ς J J ^ , where, as
before, these relate to the system S}(η). (To get βk ^ αm k we use the fact that βk < ή
= s u p ί < ω αf. To get qk c σTm "JQ<jm > we use the facts that δ0 ^ J a n d %is the direct
limit of Sf (fy), together with 5.19. Likewise to obtain Jδo e στm"Jρ(rm > in case <50 < 5".)

For each fe < ω,

(For if δ0 = δ, this just says that

which we know already. Whilst if δ0 < δ, then from the fact that

and

we deduce easily that

i.e. full elementarity.) It follows that, if σjk,ρ{jk) refer to the system

' Λ % ( ω = H"δ0(βk<Jqk) ^ [σΓm V ρ ( W ] n J a o .

Thus we can define embeddings

by

ek: σf1 ° σ,
κ ιmk J
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Now,

and

so

where

lQmk , II OQ = O .

Thus ek e Jy(β)9 and so πθ(ek) is defined. Moreover, the following diagram clearly
commutes:

JQ(J2)~

Applying πθ we obtain the commutative diagram:

JπθiρUo)) nθ(e0)

π (e j
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ck Let ck = [πθ(ek)]{ak). We know that akeMωι and that πθ(ek)eMωr So, as
Ck Mωi < J τ, we have ck e Mωi. Let ck = π~1 (ck).

By its definition, ck e JπΘ{ρ(rmk)) Also, ak+1 e [πθ(σht jk+ J](ak). So, referring to
the above diagram, we have (by commutativity)

+ί) e [πθ(ek) ° πθ(σjkJk+ί)](ak)

But πθ(ρ(Γj) = π(ρ(iw)) and πθ(σΓw?Γs) = π(σ ί m t iβ). (The first of these equalities is
easily seen, the second was proved earlier.) So, applying π~* to the above results,
we get

ckeJρiik) and c ^ ^ ^ ^ j c j .

But then

for all k < ω, which is absurd. That completes the proof in the case 0 < n < ω.
The case n = ω is handled in an entirely similar fashion. The only difference

is that we must ensure that the sequences (bm\ m < ω), (im\m < ω) are chosen so
that, if ίm = (fcw, αm,/?J, then km<km+1. We may then proceed as for 0 < n < ω.
(We leave it to the reader to check all the details. Note that we dealt with the proof
of 5.10 in this fashion, giving full details for the case 0 < n < ω and simply
indicating the modifications required for the case n = ω. With this as a model,
there should be no difficulty for the reader in handling the case n = ω here as well.)

The case n = 0 is also similar. We start with sequences (bm\m < ω), (ίm\m < ω)
chosen so that μm<μm+l9 where im = (μm,αm,/?m), so that, in particular,
Jμm ePm+i f°Γ aH m- It is then easy to modify the proof for the case 0 < n < ω to
work in this case. At various points we need to rely upon Σ0-absoluteness between
the structures Jδ, Jη involved. Again, the proof of 5.10 indicates the type of modi-
fication required, so once again we leave it to the reader to supply the missing
details.

That completes our proof of 5.16, and with it the Covering Lemma.

Exercises

1. The Tree Property (Section 1)

An uncountable regular cardinal K is said to have the tree property iff there is no
jc-Aronszajn tree. By Theorem 1.3 (viii), if K is weakly compact then K has the tree
property. It follows from Theorems IV.2.4 and VII.1.3 that if V= L, the tree
property is equivalent to weak compactness. On the other hand, Silver has proved
(see Mitchell (1972)) that if ZFC + "there is a weakly compact cardinal" is consis-
tent, so too is ZFC + "ω 2 has the tree property". The results below show that the
assumption concerning weak compactness here is essential. It is shown that if K
has the tree property, then K is a weakly compact cardinal in the sense of L.
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1 A. Show that if K has the tree property and [K is inaccessible]1', then \κ is weakly
comρact]L.

(Outline: Use Theorem 1.3 (vii). Let J^e L be, in the sense of L, a /c-complete
field of subsets of 3F of cardinality K. Pick λ < (κ+)L admissible such that \tF\Lλ

= K. Let c e L, c: κ<r+g?(κ)nLλ. For each α < /c, let

Tα = { / e α 2 n L | |Π {c(v)|/(v) = 1} n f| {* - c(v)|/(v) = 0}| = ιc},

and set

OL<K

Show that, under inclusion, T is a tree of height K and width K. By the tree
property, let/: K: -• 2 define a jc-branch of 7̂  and set

D = {xe0>(κ)nL\f(c~1(x)) = 1} .

Show that D is a jc-complete non-principal ultrafilter on <P(κ) n Lλ. Let

and form the ultrapower MID. Let i: L< M/D be the canonical embedding. M/D
is well-founded, so let J : M/D ^ L γ be the collapsing isomorphism. Let g e LA,
g\κ^^. Then j ° i(^) e L and j ° ί(gf) tιc = (/ ° ifeM) I v < k), so C7 = {gf(v) | K
e J ° ife(v))} 6 £• Since t/ is, in the sense of L, a ^-complete ultrafilter on # ; the
proof is complete.)

1 B. Show that if K has the tree property, then \κ is weakly compact]L.
(Hint: By 1A it suffices to show that \κ is inaccessible]1-. Suppose not. Then for

some μ < κ,κ = (μ+)L. By Exercise IV. 1, in L let Tbe a special μ + -Aronszajn tree.
In V, T is a κ>tree. Since Tα c {/|/; α 1 - 1 > μ} for all α < K: and the ordering on
T is inclusion, T is /c-Aronszajn. Contradiction.)

The following exercise provides an alternative solution to 1 B.

1 C. Let K be a regular cardinal in L, not weakly compact in L. Show that there
is a tree T on K in L such that if, in the real world, there is a κ;-branch through T,
then cf (K) = ω.

(Hint: Let To be, in L, a κ>Aronszajn tree. We may assume that To is an initial
part of 2 < κ. Define T by putting a triple (α, M, b) into T iff α < K, M = Lβ for some
limit ordinal j8, ft e M, α c M, M is the smallest M < M such that α u { & } ς M,
b is a function with domain containing α as a subset, and b fα G ΓO. We have
(α, M,b) <τ (α', M r, b') iff α < α', M is the transitive collapse of the skolem hull of
α u {b'} in M\ and b' collapses to b. Show that T is a tree, Te L, and that (α, M, b)
has height α in Γ Show further that if ((α, Mα, bα) | α < jc) is a branch through T,
and <M, £, b> is the limit of the elementary system <Mα, e, bα>, <x <κ, then
<M, £> is a model of BS + V = L + "b is a function", K ̂  M, and for each α < κ;,
b f α e Γo. Thus b fκ; is a branch through To. Thus b φ L , which implies that
<M, E> cannot be well-founded. This implies that cf (K) = ω.)
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1D. The following result extends Theorem 5.7. Assume 0 # does not exist. Then
for every strong limit cardinal /c, there is a Souslin κ+-tree.

(Hint: Use Exercise IV.8 to strengthen IV.2.11 appropriately, and combine this
with 5.2 and 5.6.)

2. The Sharp Operation (Section 2)

Show that for any set a c ω there is a set α # ^ ω which has the same effect upon
L[a] as does 0* upon L. (i.e. Show that the development of section 2 goes through
for L[ά] whenever a c ω.) Is it the case that if a, b c ω are such that a e L[b]9 then
a* G L[b*]Ί Investigate the relationship between the various sets a*, a c ω.

3. On the Existence o/0* (Section 2)

Show that 0* exists iff for some (all) uncountable regular cardinal K, every con-
structible set X c K either contains or is disjoint from a club subset of K.

(Hint: If 0 # exists, show that if X c κ9 X e L, then either X or else K — X
contains Hκ — γ for some γ <κ. For the converse, let

D = {X G & (K) n LIX contains a club},

show that D is an ultrafilter on ^(κ)nL which is κ>complete for families in L, and
use D to construct an ultrapower which allows the use of Theorem 4.3.).

4. The Covering Lemma and Cardinal Arithmetic (Section 5)

By the Singular Cardinals Hypothesis (SCH) we mean the assertion that for all
singular cardinals JC,

2 c f ( κ ) < κ : implies κc{(κ) = κ+ .

Clearly, GCH implies SCH. As is shown in the following exercises, SCH complete-
ly determines the cardinal exponentiation of singular cardinals.

4 A. Show that (in ZFC) if K is a singular cardinal, then

2κ — (2 < κ ) c f ^

4 B. Show that SCH implies that for any singular cardinal K,

Γ2<κ, if (3λ<κ)(2<κ=2λ)

[ (2 < κ ) + , otherwise.

4 C. Show that SCH implies that for any cardinals K, λ9 singular or regular,

if 2λ ^ K

if λ <cf(κ)and2 A <κ;

otherwise.
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4D. Use the Covering Lemma to show that if 0* does not exist, then SCH is
valid.

5. An Application of the Covering Lemma

Prove that if 0* does not exist, and K ̂  ω2 is any cardinal such that 2<κ = K, then
there is a set A c K such that X e L[A] for every set X ^ On such that \X\ <κ.






