
Chapter II

The Constructible Universe

In Zermelo-Fraenkel set theory, the notion of what consitutes a set is not really
defined, but rather is taken as a basic concept. The Zermelo-Fraenkel axioms
describe the properties of sets and the set-theoretic universe. For instance, if X is
an infinite set, the Power Set Axiom tells us that there is a set, 9 (X), which consists
of all subsets of X. But the other axioms do not tell us very much about the
members of & (X), or give any indication as to how big a set this is. The Axiom
of Comprehension says that & (X) will contain all sets which are descrίbable in a
certain, well-defined sense, and AC will provide various choice sets and well-
orderings. But the word "all" in the phrase "all subsets of X" is not really ex-
plained. Of course, as mathematicians we are (are we not?) quite happy with the
notion of 0> (X), and so long as there are no problems, Zermelo-Fraenkel set
theory can be taken as a perfectly reasonable theory. But as we know, ZFC set
theory does have a major drawback: there are several easily formulated questions
which cannot be answered on the basis of the ZFC axioms alone. A classic
example is the status of the continuum hypothesis, 2ω = ωx. It can be argued that
this cannot be decided in ZFC because the ZFC axioms do not say just what
constitutes a subset of ω; hence we cannot relate the size of 0>(ω) to the infinite
cardinal numbers ωα, α e On. (The formal proof of the undecidability of CH is
rather different from the above "plausibility argument".)

One way of overcoming the difficulty of undecidable questions is to extend the
theory ZFC, to obtain a richer theory which provides more information about
sets. (An alternative solution is simply to accept as a fact of life that some questions
have no answer.) One highly successful extension of ZFC is the constructible set
theory of Godel. In this theory the notion of a "set" is made precise (at least
relative to the ordinals). The idea is as follows.

The fundamental picture of the set-theoretic universe which the Zermelo-
Fraenkel axioms supply is embodied in the cumulative hierarchy of sets. We
commence with the null set, 0, and obtain all other sets by iteratively applying the
(undescribed) power set operation, ^ . Thus:

Then

Vo = 0; Va+ί = ^(Fα); Vλ = (J Va9 if lim(λ).
α<λ

v= U K.
αeOn
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In constructίble set theory we do not take as basic the (so called "unrestricted")
power set operator, 0>. Rather we say that a set can only be said to exist if it is
definable over existing sets in much the same way that classes are obtained. Recall
from 1.10 that a subset y of a set x is said to be x-definable iff there is a formula
φ (v0) of 5£x such that

y = {aex\¥xφ{ά)}.

To obtain the constructible universe of sets, we start with the empty set and iterate
the operation of taking all the definable subsets at each stage. This provides us
with a universe of sets in which the notion of what constitutes a set is very precisely
defined (relative to the ordinals).

Now, although we can regard constructible set theory as an alternative to
Zermelo-Fraenkel set theory, as axiomatic theories the former is an extension of
the latter: in fact constructible set theory is just ZFC together with one additional
axiom - the Axiom of Constructibility. In this volume we are taking ZFC as our
basic set theory, and we shall study the notion of constructibility in its own right.
Indeed, many mathematicians feel that constructible set theory is not a reasonable
fundamental set theory in the sense that ZFC is, and that constructibility should
only be studied as an interesting notion within the ZFC framework. In any event,
the notion is an interesting and fruitful one, as we hope to demonstrate in the
ensuing pages.

In this chapter we define the constructible universe and develop its elementary
theory.

ί. Definition of the Constructίble Universe

Let X be any set. By

Def(X)

we mean the set of all subsets of X which are X-definable (in the sense of 1.10).
That is, Def(X) consists of all sets, α, such that for some formula φ(v0) of 5£x,

a = {xeX\txφ(x)}.

The function Def is a well-defined set-theoretic function, and indeed has the
definition:

v = Def (μ) <-> (V x e v) (3 φ) [Fml (φ, u) A Fr (φ, {v0})

A (x = {z e u 13 ψ(Sub(ψ, φ, υ0, z) A Sat (u, φ))})]

->(]χeι?)(x = {zew|3ι^(Sub(^, φ, vθ9z) A

(We shall presently examine the logical complexity of this definition.)
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By recursion on α e On we define

L o = 0; L α + 1 = Def (Lα); Lλ = (J Lα, if lim(A).

(Lα I α e On) is the constructible hierarchy, and is clearly a well-defined function (in
the class sense) of ZF set theory (see later for more details). Hence L is a well-
defined class (again, more details later), where we set:

L= U La-
αeOn

L is the constructible universe. A set x is said to be constructible iff x e L.
Our first lemma below establishes various simple and basic results about the

constructible hierarchy.

1.1 Lemma.

(i) α ̂  β implies La^Lβ.
(ii) Each La is transitive. (Hence L is transitive)
(iii) Lβc7JorflBα.
(iv) α < β implies α, Lae Lβ. (Hence On c L.)
(v) For all oc, Lnoc = Lar\ On = α.

(vi) For α ̂  ω, Lα = Fα.
(vii) For α ̂  ω, |L α | = | α | .

Proo/ (i) and (ii). We prove by simultaneous induction on α that;

(a) y < α -• Ly c Lα;

(b) Lα is transitive.

For α = 0 this is trivial. For limit α, we have Lα = (J L γ, so (a) and (b) are
y<α

immediate consequences of the induction hypothesis. (In particular, note that any
union of transitive sets is transitive.) In order to prove that (a) and (b) for α + 1
follow from (a) and (b) for α, let us start with (a) for α + 1. It clearly suffices to
prove that Lα c L α + 1 . Let xeLa. Then by (b) for α, x ^ Lα, so by Σ0-ab-
soluteness,

x = {y e Lα I NLα "y e Γ} e Def (Lα) = La+ί.

To prove (b) for α + 1 now, let x e y G L α + x . Since y e La+1 = Def (Lα) c ^(L α ) ,
we have 3; c Lα. But then x e Lα, so by (a) for α + 1 just proved, we have xe La+ί,
and we are done.

(iii) By induction on α. For α = 0 we have

At limit stages A, we have

LΛ = U ί . and Vλ =
α<Λ
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so if Lα c Fα for all α < λ, then Lλ^Vλ. Finally, if La^Va, then

L α + 1 = Def(Lα) c ^ (L α ) <= ̂ (F α ) = F α + 1 .

(iv) By (i) it suffices to prove that α , L α e L α + 1 for all α. Well, for any α,

Lα = {x G Lα I NLα"x - x"} G Def(Lα) = L α + x .

To prove that oce La+1 we proceed by induction on α. Assume that y e L y + 1 for
all y < α. Then by (i), y G Lα for all y < α, i.e. α c Lα. Thus by (ii), α = Lα n On. But
On(i;0) is a Σ o formula and is thus absolute for Lα. Hence

α = {x G Lα I NLα On(x)} G Def (L J = La+1.

(Actually we are being a bit sloppy here. As we defined it, On (x) is a formula of
LST, and thus not available for use as above. However, if we take instead the
corresponding j£?-formula, as described in 1.9.11, then by 1.9.15 we see that for any
x and any transitive set M which contains x:

x is an ordinal «-> t=MOn(x).

In future we shall not bother too much about fine points of this nature.)
(v) That Lα n On = α was proved during the proof of (iv). In view of (ii), this

proves all of the equalities in (v).
(vi) For α = 0 we have L o = 0 = Vo. Let α < ω and assume that Lα = Va. We

prove that La+ί = Va+ x . By (ii) it suffices to prove that Va+1^ La+1. Let xeV(X+1.

Then x c Va = Lα, and there are α l 5 . . . , an e Lα such that

x = {au...,an}.

(Because Va is finite for each α < ω.) Hence

X = {ZG La\ NLα(z = d 1 v . . . v z = άn)} e Def(Lα) = L α + 1 .

Thus by induction, Lα = Fα for all α < ω. It follows at once that

Lω= U K= U K=^ω
α<ω α<ω

(vii) By (v) we have |α | ^ \La\ for all α. By induction on α ^ ω we prove that
|L α | ^ |α | for all α ^ ω. For α = ω this holds by (vi), since

Suppose next that lim(/l) and we know that \La\ ^ |α | for all α < λ. Then

| L λ | = H J i « l < Σ | L β | ^ Σ l«l = μ | .
a<λ a<λ a<λ
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Finally, suppose that | L J < |α | . We prove that | L α + 1 | < | α | ( = | α + l | ) . Well,
since <£ is countable, the set of formulas of 5£ha is easily seen to have cardinality
|L α | . But this at once implies that

| L β + 1 | = | D e f ( L J | < | L β | < | α | ,

and we are done. D

Let M be a transitive proper class, and let T be a theory in LST. We say that
M is an inner model of T iff ΦM for every axiom Φ of ϋ (The name "inner model"
arises from the case where T is the theory ZF, in which case M is a sort of "inner
universe" of set theory. But it is convenient to formulate the definition to cover all
LST theories T.) The following result is fundamental to all work on constructibil-
ity theory.

1.2 Theorem. The class L is an inner model of ZF. More precisely, for every axiom
Φ of ZF,

ZF\-ΦL.

Proof For each axiom Φ of ZF in turn, we argue in ZF to prove ΦL.

I. Extensionalίty. We must prove

Thus, given x, y e L, we must prove

This is the same as

(Vz e L)(z e x<r+ z e y) -+ (x = y).

But since L is transitive, x, y c L, so this is the same as

(V z) (z £ x <-• z 6 y) -> (x = y).

And this is true by virtue of the (real) Axiom of Extensionality itself.

II. Union. We must prove

Thus, given an x e L we must find a y e L such that

[Vz(zej;^(3wex)(zew)] L ,

i.e. such that

(V z G L) (z G y <-• (3 u e x) (z 6 ύ)).
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By the Axiom of Union itself, let

y=[jx.

Since xe L there is an ordinal α such that xeL α . Since Lα is transitive, y c Lα.
Moreover,

y = {z G Lα I NLα(31?! e x)(z e vj},
so

y eDef (Lα) = L α + 1 g: L .

But since y = |J x,

(Vz)(zey~(3uex)(zGu)),

so in particular

(VzeL)(ze}/^(]M6 x)(z e u))9

as required.

III. Infinity. We must show that

[3x[3y(ycx)Λ(Vyex)(3zGx)(yez)]L.

But by 1.1 (iv), ω e L ω + 1 g L , so this is immediate.

IV. Power Set. We must show that

So, given x e L we must find a y G L such that

By the Axioms of Power Set and Comprehension, let

y = {ze0>{x)\zeL}.

We prove that y e L, in which case y is clearly as required.
For each z e y, let /(z) be the least α such that z e La. By the Axiom of

Collection, let α exceed all/(z) for zey. Thus y c Lα. But then

y = {z G Lα I NLα(z c x)} G Def (Lα) = Lα + x .

Thus y G L.
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V. Foundation. We must prove that

Let x E L be given, x φ 0. We must find a y e L such that yex and

[(VzGj)(zφx)] L .

By the Axiom of Foundation itself there is a y e x such that

(Vze)O(zφx).

But L is transitive, so y e L. Clearly, y is as required.

VI. Comprehension. Let Φ(v0,..., vn) be a formula of LST. We must prove that

Let x, α 1 ? . . . , an e L be given. We seek a y e L such that

(V z e L)[(z e y)~(z e x) Λ ΦL(z,aι, ...,an)].

Pick α so that x9al9...9ane La. Applying the Generalised Reflection Principle
(1.8.1) to the constructible hierarchy, we can find a β > oc such that

Let φ(vθ9...,vn) be the ^-formula corresponding to Φ, and set

y = {zeLβ\ \=Lβ [φ(z, άί9..., άn) Λ (z e x)]} .

Then y e Lβ + 1 c L. But by 1.9.11,

So by choice of β,

y = {zGx\ΦL(z,a1,...,an)}.

Since y e Lwe are done.

VII. Collection. We must show that if Φ ( v 0 , . . . , vn) is any LST formula, then

Let a2, ...,ane Lbε given, and suppose that
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We must show that, if we are given a u e L then there is a υ e L such that

ι;) ΦL(y, x, α 2 , . . . , απ).

(Since u,v^L here, by the transitivity of L, we do not need to bind x, y by L.)
Well, for each xeu, let /(x) be the least ordinal y such that

(3yeLγ)ΦL(y,x,a2i...9an).

By the Axiom of Collection (in V), let α exceed all/(x) for x e u. Let υ = Lα. By
l.l(iv), ί e L . Clearly,

(Vx e u)(3 y e ϋ) ΦL(y, x, α 2 , . . . , an),

so we are done.
The theorem is proved. D

We shall in fact prove that

Z F h ( A C ) L ,

so L is an inner model of ZFC. This in turn will enable us to prove that AC cannot
be disproved in ZF set theory. But first we must establish some further technical
results about the constructible hierarchy. This is the business of the next section.

2. The Constructible Hierarchy. The Axiom
of Constructibility

Recall from 1.10 that a transitive set M is amenable iff:

(i)(Vx,yeM)({xj}6M);

(ii) (VxeM)dJxeM);

(iii) ω e M;

(iv) (Vx, yeM)(xxy eM);

(v) if R <= M is Σ0(M), then (Vx e M)(R nxeM).

(Intuitively, M is a "model" of the theory BS of 1.9.) Our first lemma enables us
to apply the results of 1.9 and 1.10 to the limit levels of the constructible hierarchy.

2.1 Lemma. For each limit ordinal α > ω, Lα is amenable.

Proof, (i) Let x, y e Lα. Since

K = U L/»
β<OL
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there is a β < a such that x,yeLβ. Then

{x, y} = {zeLβ\tLβ(z = x v z = y)}eLβ+1^ Lα.

(ii) Let x e Lα. For some β < α, x e Lβ. Since Lβ is transitive, I J x c L ^ , and
we have

(iii) By 1.1 (iv), ω e La.

(iv) Let x.yeL^. For some β < cc,x,y e Lβ. Since L^ is transitive, x,y^
Let αex,fce}/. Then α,ί)e L^, so clearly (see the proof of (i)) {a}, {α, b} e Lβ

and hence (a, b) = {{a}, {a, b}} e Lβ + 2. Thus x x y g Lβ + 2 and we have

xxy = {ze Lβ + 2 \ ¥Lβ + 2 (3 α G X)(3 b e y) [z = (a, b)]} eLβ + 3^ La.

x y e L ^ + 2 . Why?)

(v) Let JR c Lα be Σ o (Lα), u e Lα. We show that R n u e Lα. Let φ(v0,...,

be a Σ o formula of S£ and let au ..., an G Lα be such that

Pick jS < α such that u,a1,...,aneLβ. Since L^ is transitive, u £ L^, so

^ n w = { x | x e M Λ x e R } = { x e L i 3 | x e w Λ 3 C 6 R } .

Now, being Σ o , <p is absolute for L^, L α (by 1.9.14), so for x e Lβ,

\=Lβ φ (x, d 1 ? . . . , α M ) ^ NLα φ (x, d l 9 . . . , άn).

Hence

R n w = {x e L^ I x e u A NLα φ (x, άl9..., άn)}

= {xeLβ\xeu A ¥Lpφ(x,άl9...9 άn)}

= {xeLβ\tLβ[xeύ A φ(x,άl9...,άn)]} eLp + ί c L α .

The proof is complete. D

Towards the end of Chapter I, we mentioned on more than one occasion that
it would be necessary to carry through two parallel developments concerning
logical complexity, one of a metamathematical nature, involving the language
LST, the other within set theory, utilising the language if. We are now at the point
where we must begin this process.

In 1.9, we investigated the logical complexity of the basic syntactical and
semantical notions of the language ifF, showing that each concept could be
defined by means of a formula of LST which is Δ?s. We shall make direct use of
these results. However, we shall require analogous results obtained within set
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theory. More precisely, working within the theory ZF (in fact KP will suffice, as
we shall see), we shall need to examine the construction of the constructible
hierarchy with regards to its definability properties along the lines of 1.10. As a
starting point, let us observe that now that we have the language if available, we
can use it to analyse the syntax and semantics of S£v instead of working in LST.
For this, it is convenient to agree to identify each formula of LST with the class
it determines. With which convention it should be clear that each of the BS-
complexity results of 1.9 provides (by means of the replacement of LST by !£) a
uniform definability result for amenable sets. For example, by repeating the proof
of 1.9.10 for if in place of LST, we obtain a proof of the fact that the class Sat
(= {(w, φ)\ Sat(w, φ)}) is uniformly Δ^ for amenable sets M. That is, there is a Σ t

formula φ (x, y) of if and a Γ^ formula θ (x, y) of ^£ such that for any amenable
set M, if u, φ e M, then

Sat (u, φ) «-> NM φ (ύ, φ) <-• NM θ (ά, φ).

(The formulas φ and θ are just the 5£ analogues of the LST formulas described in
1.9.10.)

Let Seq(y, x) be the LST formula which says that y is the set of all finite
sequence from x. More precisely (cf. 1.9.5), let Seq(y, x) be the LST formula:

(3/) [(/is a function) Λ (dom(/) = ω) Λ (/(O) - 0) Λ (y = (J ran(/))

Λ (V n G ω) (V s ef(n + 1)) (3 t ef(n)) (3aex)(s = tu {(a, n)})

A (Vn E ω)(Vs ef(n))(Vαex)(3ί ef(n + 1))(t = su {(a, n)})].

2.2 Lemma.
(i) The LST formula Seq(y, x) is Δf\

(ii) The class Seq is uniformly A[*for limit α > ω.

Proof (i) As it stands, Seq(y, x) is Σί. Or rather, it is Σ x provided we eliminate
explicit mention of ω by means of the prefix (to the entire formula)

3 w [On (w) Λ (V u G w) (u is a natural number) Λ (V u e w) (3 v e w) (u e v)

Λ ],

thereafter replacing each mention of ω by w.
Now, in KP, using the Recursion Theorem (1.11.8), for any set x we can

construct a function / as in Seq(y, x), so

KPhVx3.ySeq(j;,x).

Clearly, any such y must be unique. Thus,

KP h Seq(y, x)<-» Vz [Seq(z, x)^z = y].

This shows that Seq(y, x) is Δ^p.
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(ii) The ideas employed in the proof of this part of the lemma will be used
several times in what follows, so we shall first of all consider in general how we
can get from a Σ^p definability result to a Σfα definability result.

Suppose then that Φ(/, x) is a Σ o formula of LST, determining the class
A = {x 13/Φ (/, x)}. We wish to prove that the class A is Σ\* for some limit ordinal
α > ω. Consider the if-analogue of 3/Φ(/, x), which will be of the form 3fφ (/, x),
where φ is a Σ o formula of if. We prove that for any xeL α ,

XEA iff hLα3/φ(/,x).

Now by 1.9.15, if X,/G Lα, we have

Φ(/,x)~NL αφ(/,x).

Consequently, for x G Lα,

hLα 3/(?(/, x) implies 3/Φ(/,x).

This leaves us with the proof that

3/Φ(/,x) implies hLα3/<p(/, x).

So, in practice what we must prove is that if there is an / such that Φ (/, x), then
there is such an/ in Lα. (In all the cases we shall encounter, any such / will be
unique, so what we shall prove is that if Φ(/, x), where x e Lα, then/e Lα.) Now
let us see how this works in the case of the problem in hand.

Let φ(y, x) be the if-analogue of the LST-formula Seq(y, x). Let α > ω,
lim(oc). We prove that for any x,yeLa,

Seq(y,x)^l=Lαφ(y, x).

This will show that the class Seq is uniformly Σ[* for limit α > ω. We shall also
prove that for any x e Lα there is a (necessarily unique) y e La such that Seq (y, x),
from which fact it follows as in part (i) that Seq is also Πfα (uniformly for limit
α > ω).

Let x G Lα. Pick y < α so that γ > ω and x e Lγ. If a e x, then we have (α, ή)
= {{a}, {a, n}} e Lγ+1 for any n e ω, so if s is any finite sequence from x, then
5 G L y + 2 . Thus Seq(y, x), where

y = {s G L y + 2 I l=Lv + 2"s0 is a finite sequence from x"}.

But y G Lγ + 3 c Lα. Consider now the function / which figures in the formula
Seq(y, x). If it exists (i.e. if Seq(y, x)), then clearly,

/ = {(5, n)\s = nx A neω} .

It is easily seen that for any n G ω, "xe Ly + 3 , so (πx, n ) e L y + 5 , giving fe Lγ + 6.
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Thus / e Lα, which implies (see the above discussion):

The proof is complete.4 D

Let Pow(j , x) be the LST formula which says that y is the set of all finite
subsets of x. More precisely, let Pow(y, x) be as follows:

3 z [Seq (z, x) A y = {ran (w) | u e z} ].

2.3 Lemma.

(i) The LSΊ formula Pow(y, x) is Δf\
(ii) 77ze c/αss Pow is uniformly Δ\" for limit oc > ω.

Proof (i) As it stands, Pow(y, x) is Σ x . Moreover,

so as in 2.2 it follows that Pow(y, x) is in fact Δ^p.
(ii) This follows from part (i) by a straightforward application of the technique

discussed above. (The details are left as an exercise for the reader.) D

We shall now write down an LST formula A (v, u) such that

A (v, u) <-> v = Def (u).

Namely:

(Vxe υ)(3 φ) [Fml(φ, u) A Fr(φ, {v0}) A (x ^ u)

eu)(z e x <-• 3 φ(Sub(ι^, φ, ι;0,^) A Sat(w,

(3x G v)[(x ^ u) A (Vz e u)(z e x

++ 3 ιA (Sub OA, φ, ι;0,2) A Sat (u,

Our task now is to modify this formula in order to obtain a Σ1 formula equivalent
to it. Broadly speaking, the idea is to find a single bound for all of the unbounded
quantifiers in A (v, u\ much as we did when we formulated the formula Sat (w, φ)
prior to 1.9.10. What happened there was that we commenced with a formula
S (u, φ), which embodied the canonical definition of the notion

"φ is a sentence of 5£u which is true in <w,e>",

and then found a bound for all unbounded quantifiers in S (w, φ). Now, the binding
set used there is not large enough to handle the quantifiers involved in A (v, u)

4 This is not quite accurate, since we did not bother with the quantifier 3 w mentioned in the
proof of 2.2. This was because we knew already that ω e Lα. In practice we shall always restrict
our attention only to the "significant" quantifier(s).
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(though it will clearly suffice for those quantifiers involved in those parts of A (v, u)
concerning Sat). So, as there is clearly no point in rebinding quantifiers which are
already bound, let us at once amend A (v, u) by replacing each occurrence of the
formula Sat (w, φ) in A (v, u) by S (u, φ), denoting the resulting formula by B (v, u).
Since S (w, φ) is equivalent to Sat (u, φ\ B (v, u) will be equivalent to A (v, u). We
now seek a bound for all the unbounded quantifiers in B (v, u). (This bound will
have to be large enough to rebind all of the quantifiers we have just freed in
passing from A (v, u) to B (v, u), of course.) Let C (w, v, u) be the formula obtained
from B (v, u) by binding all unbounded quantifiers by w. (Thus C (w, v, u) is a Σ o

formula.) We must now see what sort of set we can take for the bound w.
The unbounded quantifiers involved in B(υ, u) fall into three types: those that

range over formulas (3φ and Vφ as in A(v, u)), those that range over finite
sequences of formulas (such quantifiers occur in Fml, Fr, Sub, and S (u9 φ)\ and
those ranging over finite sequences of finite sets of variables (these occur in Fr).
Hence, all unbounded quantifiers in B (v, u) can (without loss of meaning) be
bound by the set

K (u) = [the set of finite sequences of members of the set
9 u {vi I ί G ω} u {x I x e u) ]

u [the set of finite sequences of finite sequences of members

of the set 9 u {vt \ i e ω} u {x | x e u) ]

u [the set of finite sequences of finite subsets of the
set {Vi\ίeω}].

Let K(w, u) be the LST formula which says "w = K(ύf\ namely:

(3 α, ft, c, d, ej) [[(Vz e d) Vbl (z) Λ (V ί e ω)(v( e d)]

A [(Vz e e) Const (z, u) A (Vz e u)(z e e)]

A [Seq(α,9udue)]

Λ [Seq(ft,fl)]

Λ[Pow(/,d)ΛSeq(c,/)]

Λ [w = α u due]] .

Provided we remove the explicit mention of ω as in 2.2, we see that the formula
K (w, ύ) is Σ x . If we now let D (v, ύ) be the formula

3W[K(W,U)AC(W,V,U)1

then clearly,

D(v,u) <-• t; = Def(tt).

Moreover, we have:

2.4 Lemma.
(i) The LST formula D(v, u) is Σx and Δf.

(ii) The class D is uniformly A^for limit α > ω.
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Proof. As in 2.2 and 2.3. (The details are left as an exercise for the reader.) D

Noting that if lim (α) and α > ω, the set Lα is closed under the function Def (this
observation forms part of the proof of 2.4), we often state part (ii) of 2.4 in the
following form:

2.5 Corollary. The function Def is uniformly Δ\" for limit α > ω. D

We now write down an LST formula, E (f α) such that

Namely:

On(α) Λ (/is a function) Λ (dom(/) = α + 1) Λ (/(O) = 0)

Λ (V y E dom (/)) [((lim (y) A y > 0) -> (f(γ) = (J /(δ)))

Clearly, £ (/, α) says what we want it to, and our next task is to modify this formula
to obtain an equivalent Σ1 formula, just as we just did for D(v, u). Let F(w,f α)
be the Σ o formula obtained from E(f α) by replacing the clause D(f(y),f(γ — 1))
by C(w,f(γ),f(y — 1)), and rendering the clause

f(y)= \jm
δ<γ

in the form

(Vxef(y))(3δey)(xef(δ)) A (Vδey)(/(δ) s/(y)).

Comparing the present situation with that which led up to 2.4, we see that all the
unbounded quantifiers which figure in E (f α) (namely as part of the clause
D(f(y\f(y — 1))) can be bound by the set

X((Jran(/)).

So if we let G(f α) be the Σ1 formula

3w[K(w, U ran (/)) Λ F(w,/,α)],

we have

Moreover:

2.6 Lemma.
(i) The LST formula G(f α) is A^p.

(ii) The class G is uniformly Δ^α for limit α > ω.

Proo/. (i) The proof boils down to proving that

KPhVα3/G(/,α).
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But this follows from 2.4 (i) together with the KP-Recursion Theorem (1.11.8),
which enables us to construct, within KP, the function (Lγ \ y ^ α) for any or-
dinal α.

(ii) Here we quickly reduce to proving that for any limit ordinal α > ω, if δ < α
then {Ly\γ ^δ)e Lα. In fact it is not hard to see that if δ > ω, then
(Ly\y ^ δ)e L δ + 4 , so we are done. (We leave all the details to the reader.) D

Let H(x, α) be the LST formula which says that "x = Lα", namely:

3/[G(/,α)Λ(x=/(α))].

The following lemma follows easily from 2.6 using the by now familiar arguments:

2.7 Lemma.

(i) The LST formula H(x, α) is Δ?p.

(ii) The class H is uniformly Δ\« for limit a > ω. D

Noting that if α > ω is a limit ordinal, then Lα is closed under the function
yι—>>Lγ, we have, by the above:

2.8 Lemma. The function y\->Lγ is uniformly Δ\* for limit cc > ω. D

The following absoluteness results may now be proved.

2.9 Lemma. Let M be an inner model of KP. For any α e On, Lae M and (Lα)M

= Lα. {This equality means that if[H(x, α)]M, then x = Lα.) Hence (L)M = L.

Proof As we observed above, the KP-Recursion Theorem enables us to construct
(Ly I y ^ α) for any ordinal α. Hence if α e On, then we have (L^ | y ^ α) G M, SO in
particular L%eM. But by 2.7 (i) and 1.8.3 (iv), we have the absoluteness result
ϋ/[ = Lα. The lemma is proved. D

2.10 Lemma. Let M be an admissible set, and let λ = sup (M n On). For any cue λ,
(LJM = La. Hence (L)M = Lλ.

Proof Analogous to the proof of 2.9. D

2.11 Lemma. For any α, (Lα)L = Lα. iίercce (L)L = L.

Proo/. Directly from 2.9. D

2.12 Lemma. Let OL> ω be a limit ordinal. For all y < oc, (L y ) L α = Ly. Hence

(L)L* = La.

Proof Much as for 2.10, except that we use the closure properties of Lα rather than
admissibility. The details are left to the reader. D

2.13 Lemma. The LST formula

"x is constructible"

isΣψ1.
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Proof.

x is constructίble <-• x e L

o]α(xGLα)

<r+3cclu(u = Lα Λ x eu).

The result follows from 2.7 (i) now. D

The Axiom of Constructibility is the assertion that all sets are constructible:

Vx(xeL).

This is usually abbreviated as:

V=L.

For the most part we shall be treating the assertion K = L a s a particularly
interesting set-theoretical statement, not as a fundamental axiom of set theory in
the sense of the axioms of ZFC. Thus the use of the word "axiom" in this connec-
tion is somewhat different from the more common usage. From our standpoint it
would perhaps be more suitable to refer to V= L as the "Hypothesis of Construc-
tibility". However, we shall stick to the accepted usage of the phrase "Axiom of
Constructibility".

2.14 Lemma. The LST formula V=Lis Πfp .

Proof F = L <-• V x(x e L), which is Πfp by virtue of 2.13. D

2.15 Theorem. ZF\-(V = L)L. Hence L is an inner model of the theory
ZF + (V= L).

Proof By 2.11, (L)L = L. But clearly, (V)L = L. Hence,

(V)L = (L)L.

In other words,

(V=L)L. D

3. The Axiom of Choice in L

In this section we shall show that

ZFh(AC)L .

We do this in a very strong fashion. We exhibit a formula Φ(v0, vj of LST such
that (suitably expressed)

ZF I- ["Φ well-orders the universe" ] L .
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In order to describe the formula Φ, it is necessary to look once more at the
definition of the constructible hierarchy. Recall that in passing from Lα to L α + 1 ,
we allow any elements of Lα to figure as parameters in definitions of the new sets
appearing in L α + 1 . The following lemma shows that we may be rather more
restrictive than this, and provides us with a slightly more convenient characterisa-
tion of L α + 1 in terms of Lα.

3.1 Lemma. Let xe La+ι. Then there is a formula φ(v0,...,vn)of^? (so in partic-
ular φ contains no individual constant symbols) and ordinals yl9..., yn < α such that

x = iz e Lα I NLα φ (z, Ln,..., L J } .

Proof. By induction on α. For α = 0 there is nothing to prove, since 0 is the only
possible set x. Let α > 0 now, and suppose that the lemma is valid below α. If
xe La+1 there is an S£ -formula ψ(vθ9...9vn) and elements Pχ,...,pn of Lα such
that

Pick γ < α so that pl9 ...,pne Lγ+ x. By induction hypothesis, for each i = l,...,n
there is an if-formula ψi (vθ9..., ι;fc(ί)) and ordinals γ\9..., yι

kii) < y such that

Pi = {zeLγ\ VLyψt(z, L y i , . . . , LyikJ} .

F o r each i, let Ψi{vo,.>.9vk{i)9vk{i)+ί) be the if-formula obtained from
Ψi(vθ9...9 vk(i)) by binding all unbounded quantifiers by vk{i) + ι . Then clearly,

Pi = {z G La I NLα [(z G L y) Λ i A ; ( z , L y l i , . . . , L ^ ( i ) , L y ) ] } .

Hence,

Λ ψ'ί(v,lyi9...9Lγί^9lγ))] A

The lemma is proved. D

We shall now fix a simple, effective well-ordering of the formulas of if. The
precise definition is not important. For definiteness, we say that if φ and φ are
formulas of if, so in particular, φ and φ are both finite sequences of sets, then
φ^φ iff either φ is an initial segment of φ or else k (φ (i)) < k{φ {i)\ where i is the
least integer such that φ (ΐ) Φ φ (i) and where the function k is defined on the set

9\j{vn\neω}
by

jx, if xe9
(X)-\n + 9, iΐx = vn(=(2,n)).
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We also define < * to be the lexicographic well-ordering of the finite sequences
of ordinals, i.e. if s and t are finite sequences of ordinals, then s < * t iff

(i) dom (s) < dom (ί), or else
(ii) dom (s) = dom (ί) and s (ί) < t (i), where i is least such that s (i) Φ t (i).

Using 3.1, we now define a well-ordering of the class L. Let x, y e L. We set
x <Ly iff either:

(A) The least α such that x e L α + x is smaller than the least β such that y e Lβ + 1;
or else

(B) there is an α such that x and y both lie in L α + 1 — Lα and either:
(Bl) the —$ -least formula φ(ι ; 0 , . . . , O of i f for which there are ordinals

-^-precedes the —3 -least formula φ (v0,..., vm) of i f for which there are
ordinals <5X,..., <5m < α such that

y = {z e L α I N L > (z, Lδl,..., LδJ}; or else

(B2) the formulas φ and ^ in (Bl) coincide, but the <*-least n-sequence
<7i? j y«) of ordinals yf < α which defines x as in (Bl) < *-precedes the
<*-least π-sequence < δ l 5 . . . , δn} of ordinals (5f < α which defines y.

It is easily seen that < L is indeed a well-ordering of L. Our task now is to
investigate the logical complexity of this well-ordering.

The following LST-formula, N (α, x, φ, t) says that φ is a formula of if, ί is a
finite sequence of ordinals less than α, the free variables of φ are υ0,..., vn9 where
n = dom(ί), and x = {z 6 Lα | NLα φ (z, Lί(o), , 4<π-1))}

3 u 3/3 n 3 ̂  [Fml (φ, 0) Λ Finseq (ί) Λ (dom (ί) = w) Λ (V i e n) (t (i) e α)

Λ Fr(φ, ii) Λ (/: n + 1 ̂ w ) Λ (VΪ e n + l)(/(i) = vt)

A Finseq (φ) A (dom(ι^) = n + 1) A (φ(0) = φ)

A (Vί e n)Sub(^(i + 1), φ(i), vi+1,tm) A (X C Lα)

Λ (Vz G Lα)(z e x<->3 0(Sub(0, tfr (n), r o ? i) Λ Sat (Lα, θ)))].

The following LST-formula, M (α, x, φ), says that φ is the —ί -least formula of

^ such that JV(α, x, φ, ί) for some t:

(3t)N(a9x9φ,t) A (Vφ')[(3 t')N(a, x, φ', ί') -> (φ φ' v φ = φ')].

The next formula of LST, P (α, x, φ, ί)? says that ί is the < *-least suitable
sequence of ordinals less than α such that iV(α, x, φ, ί) :

JV(α, x, φ, t) A (Vί')[JV(α, x, φ, ί') - (ί ^ * ί')]
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We are now able to write down a formula of LST which expresses the relation
x <Ly outlined above. We shall not bother to replace the relations —3 and < * by
their LST-definitions, since it should be obvious how this can be done, and is thus
not worth causing further complications. Let X (x, y) be the following LST-
formula (to express x < L y ) :

(3 α) [(x e Lα) Λ (y φ L J ] v (3 α) Q (x, y, α),

where Q (x, y, α) is the LST-formula

[(x 6 L α + i) Λ(ye L α + 0 Λ (x φ L J Λ (y φ L J ]

Λ [(3 φ, (A) [M(α, x, <p) Λ M(α, y, φ) A (φ-^ ψ)]

v (3 φ) [M (α, x, φ) A M (α, y, φ)

A (3s, ί)[P(α, x, φ, s) Λ P(α, y, φ, ί) Λ (S <*ί)]]]

Now, it is easily seen that any unbounded quantifiers in the formula Q (x, y, α)
may be bound by L m a x ( ω α + 4 ) . (This includes the quantifiers which are required
in order to define —3 and <*.) So if R(x, y, α, w) is the formula obtained from
Q (x, y, α) by binding all quantifiers not already bound by w, we see that the
relation x < L y is expressed by the formula

(3α)[(xeLα) Λ ( y φ L J ] V (3α)(3 w)[w = L m a x ( ω , α + 4 ) Λ R(x9y9<x,w)].

We denote this formula by WO(x, y). It is clearly Σx. Moreover,

3.2 Lemma.

(i) The LST formula WO(x, y) is Δ f + ( F = L ) .
(ii) KP h "{(x, y) I WO (x, y)} is α well-ordering of L\

Proof We prove (ii) first. From the way we evolved the formula WO (x, y) above,
it is clear that what we must prove is that (working in KP) if x, y e L, x + y, then
either WO (x, y) or else WO (y, x). But if x, y are as stated, then either x < L y or
else y < L x, of course. So we are reduced to proving that if x < L y, then the sets
required to exist by virtue of the existential quantifiers involved in the formula
WO (x, y) can all be constructed (from x, y) in KP. This is easily seen, and is left
as an exercise for the reader.

We now prove (i). We know that the formula WO(x, y)isΣί. But by (ii) we
have

Hence WO (x, y) is also Π ? p + { V = L \ D

Let wo(x, y) be the analogue of WO(x, y) in if. Then:

3.3 Lemma.

(i) Ifx,yeLa, then

where y = max (ω, α + 5).
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(ii) If GC > ω is a limit ordinal, then

{(x, y)\ t=Lα wo (x, y)} is a well-ordering of L α .

(iii) The relation x <Ly is uniformly Δ^α for limit α > ω.

Proof (i) This follows from 3.2 by the kind of argument outlined in 2.2. The heart

of the proof is to show that the existential quantifiers involved in wo (x, y) can be

bound by Ly, where y is as stated. The details are left as an exercise for the reader,

(ii) This follows immediately from (i).

(iii) This also follows from (i). D

We often write x < L y in place of both WO (x, y) and wo (x, y).
The following lemma is clear from the definition of < L, and will often be used

without mention.

3.4 Lemma.

(i) If x <Ly and y e La, then x e L α .
(ii) // x e Lα and y φ Lα, then x <Ly.

(iii) If x e y e L, then x <Ly. •

For later use we also prove the following result.

3.5 Lemma. Let pr be the predecessor function defined on L by

pr(x) = { z | z < L x } .

(i) x e L -• pr (x) e L.
(ii) ifcoωίsa limit ordinal, then x e Lα -• pr (x) e Lα .

(iii) pr is uniformly A^x for limit α > ω.

Proo/. (i) follows directly from (ii).

(ii) Let XE La. Choose β < α so that xe Lβ. We know that

Moreover by 3.3 (i),

(Vα,be Lj) [WO (α, b) <-• NLy wo (d, b°)],

where y = max (ω, β + 5). Hence

pr(x) = {z e Ly I NLy wo ( z , ί ) } e L y + 1 <Ξ Lα.

(iii) Let w(z, x, 1) be the if-formula obtained from wo(z, x) by binding any
unbounded quantifiers by 1. By 3.3 (i),

y = pr (x) <-> NLα (3 j8) [(x e L^) Λ (y e L^)
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So pr is uniformly Σία for limit α > ω. Hence by 1.10.4, pr is uniformly A[« for limit
α > ω. D

The following result is also fundamental to much of the work on constructi-
bility.

3.6 Lemma. There is a Σx formula Enum(α, x) o/LST, absolute for L, such that

KP h "// F = {(x, α) I Enum (α, x)}, then F: On <-• L".

Proo/. Intuitively, Enum (α, x) says that x is the α-the member of L under the
well-ordering < L . Thus, Enum(α, x) is the formula:

(3/) [(/is a function) Λ (dom(/) = α + 1)

Λ (V ξ, ζ E α + l)(ξ < C -^/(ί) < L / ( 0 )

Λ (3z)[(z = pr(x)) Λ (Vyez)(3j8eα)(y =/(j5))] Λ (/(α) = x)].

It is easily seen that this formula is as stated in the lemma. D

As an illustration of the use of 3.6 we show that V = L can be reduced to an
"axiom of constructibility for sets of ordinals".

3.7 Lemma. K P h V α ( α c O n ^ α e L) -» (V=L).

Proof. (In KP.) Assume all sets of ordinals are constructible. We prove by
G-induction that

Vx(xeL).

Let x be given, and suppose that

y ex -» y e L.

By Σx-Collection, let

a = {α I α e On Λ (3 y e x) Enum (α, y)} .

By hypothesis, α e L. Hence, using the induction hypothesis,

x' = {y I (3 α e α) Enum (α, y)L} e L.

But by the absoluteness of Enum, x = x\ so we have x e L, as required. D

3.8 Theorem. ZF h (AC)L.

Proof An immediate consequence of 3.6. (The function F well-orders L.) D

Notice that we made no use of AC in the above proof. This will be important
to us in the next section.
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4. Constructibility and Relative Consistency Results

The construction of inner models such as L provides us with a useful method for
obtaining relative consistency results. The idea is as follows. Suppose Φ is some
statement in LST, and that there is a class M such that

Z F h ( Z F + Φ)M.

Then the consistency of the theory ZF + Φ follows from the consistency of ZF.
Indeed, given a proof of an inconsistency in ZF + Φ we could, in a highly effective
manner, produce from it a proof of an inconsistency in ZF. To see this, let
^ o , . . . , Ψn be a proof (in the formal sense) of an inconsistency in ZF + Φ. Thus,
for each ί = 0,..., π, Ψt is a formula of LST which is either an axiom of the theory
ZF + Φ or else follows from some of Ψo,..., Ψt_ x by an application of a rule of
logic, and Ψn is a statement such as (0 = 1). Consider the sequence ΨQ*9 . . ., Ψ™. If
Ψt is an axiom of ZF + Φ, then Ψt

M is a theorem of ZF, by the assumption on M.
And if Ψt follows from some of Ψ o , . . . , Ψt_ x by means of a rule of logic, then Ψt

M

follows from the corresponding members of ΨQ*9 . . ., Ψ?ί 1 by means of the same
rule. Hence Ψ™ is a theorem of ZF. But since Ψn is an inconsistency, so too is Ψ™.

As a particular instance of the above considerations, we have

4.1 Theorem. / / Z F is a consistent theory, so too is ZFC.

Proof. By 1.2 and 3.8,

Z F h ( Z F + AC)L. D

Similarly, using 2.15, we obtain

4.2 Theorem. If ZF is a consistent theory, so too is ZFC + (V= L). D

A consequence of this last result is that any statement Φ which we can prove
in the theory ZFC + (V= L) will have automatically been shown to be consistent
with ZFC. Thus proofs of results in the theory ZFC + (V = L) have a significance
in terms of ZFC set theory, regardless of the light in which V = L is viewed.

We end this short section by giving a characterisation of L in terms of inner
models.

4.3 Theorem (The Minimal Model Property). L is the smallest inner model of ZF.

Proof By 1.1, L is a transitive proper class. By 1.2, L is thus an inner model of ZF.
Let M be any other inner model of ZF. By 2.9, (L)M = L. Thus L^M. D

In fact the above proof tells us more, namely:

4.4 Theorem (The Minimal Model Property for KP). L is the smallest inner model
o/KP. D
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5. The Condensation Lemma. The GCH in L

Recall from 1.10 the definitions of the notions of elementary substructure,
Σn-elementary substructure, elementary embedding, etc., together with the notation
we established concerning these notions.

The following lemma is often useful in this connection.

5.1 Lemma. Let M = <M,e, Aί9..., An}, where M is an amenable set, and let
N = <JV,... > be a substructure ofM. Let n > 0. The following are equivalent:

(i) N<nM;
(ii) if A is a non-empty ΣjJ1 (N) subset of M, then AnN φ 0.

Proof Before we start, we recall that in the definition of Σπ in the case of the
language jSf F we do not allow repeated quantifiers.

(i) -> (ii). Let A be a non-empty Σj1 (N) subset of M, and let φ (x, y) be a Ππ_ t

formula of the M-language, with parameters from N, such that

A = {xeM\\=M3yφ(x,y)}.

Since A + 0,

¥M3x3yφ(x,y).

So, as M is amenable,

So,

So for some x e N,

But 3 yφ (x, y) is a Σn formula of the M-language with parameters from N, so by
(i) again,

NM 3 y φ (x, y).

Hence x e A. But xe N also. Thus, as required,

AnN Φ0.

(ii) -* (i). We prove by induction on the length of formulas that for any sen-
tence φ of the M-language with parameters from N which is at most Σn,

NN φ iff NM φ.
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If φ is primitive the result is trivial. If φ is of the form —1 ψ or else of the form
Φi Λ \l/2, the induction step is immediate. There remains the case where φ is of the
form 3xψ(x). Suppose first that

Thus,

So for some x e AT,

Now, ι/f(x) is shorter than φ and is at most Π M _ 1 ? so by induction hypothesis,

Thus

i.e.

Conversely, assume now this last fact. Then

\=M3xψ(x).

Let

Then yl is non-empty, and is a Σj1 (AT) subset of M. (In fact A is ΠjL x (AT).) So by

Let x e AnN. Then

But ^ (i) has parameters from AT, is shorter than φ, and is at most Ππ_ 2 . So by
induction hypothesis,

Thus,

i.e.

The proof is complete. •
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The following theorem is arguably the most important single result in con-
structibility theory (as far as applications are concerned).

5.2 Theorem (The Condensation Lemma). Let cube a limit ordinal If

then there are unique π and β such that β ^ α and:

(i) π:<X,e>
(ii) ϊ / Y c I is transitive, then π \ Y = id \ Y\

(iii) π (x) ^ L x for all x e X.

Proof Notice first that by an easy induction on m we can prove that Lm c X for
all m < ω. Indeed, if x e Lm+ x, then x is of the form

x = {aί9...,ak}

for some al9...,akG Lm, and

^ B x t ^ e x ) Λ ... Λ (dk ex) Λ (Vzex)((z = d j v ... v (z = άk))],

so if Lm c X this sentence is true in X, which means that x e l Since Lm^X for
all m < ω, we have L ω c X. Thus in the case α = ω, we have X = Lα, and the
theorem is trivially valid. So from now on we shall assume that α > ω.

Note first that X is extensional. For suppose that x,yeX,xή=y. Then

so as X <1LOί,

which means that for some z e X,

z e x<-+ z φ y.

Since X is extensional, by the Collapsing Lemma (1.7.1) there is a unique π and a
unique transitive set M such that

π: X ^

We shall show that M = Lβ for a (unique) ordinal β ^ a.
By 2.7 there is a Σ o formula Φ (z, ι;, γ) of LST such that

(a) V y

and moreover, if φ(z, υ9 y) is the ££-analogue of Φ(z, f, y), then (using 1.9.15)

(b) (Vy < α)(Vϋ)[t; = Lγ^veLa A NL α3zφ(z, ι;, y)].
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Now, π " 1 : M <x Lα, so if l=MOn(x) then π " 1 (x) e α. Moreover, by (b) we have

(c) (Vy<α)[NL β3i;3zφ(z si;,f)].

Hence, applying π " 1 , we get

(d) (\/yeM)[¥M3v3zφ(z,υ,y)]

So,

(e) (Vy ε M)(3 i; e M)(3z e M)[NMφ(z, ί, f)].

Thus as M is transitive, 1.9.15 gives

(f) (Vy e Af)(31? e Af)(3z ε M)Φ(z, Ό, y).

Thus by (a)

(g) VyeM){LyeM).

Now, M is transitive, so

M n On = β

for some ordinal β. Thus (g) becomes

(h) (Vyeβ)(LγeM).

So, as M is transitive, we conclude that

(i) [jLy^M.
y<β

Again, since

K= \JLV
γ<a.

we have

(j) (VxεLβ)[NLβ3y3f;3z(φ(z,ι;,y)Λ(iει;))].

Applying π " 1 ,

(k) (VxεAf)[l=M3y3ι;3z(φ(z,ι;,y)Λ(iεi;))].

Thus,

(1) (Vx G M ) ( 3 y G M)(31; ε Af)(3z ε M ) [ N M φ ( z , ΰ, y) A (x e v)].



82 Π. The Constructible Universe

So by 1.9.15,

(m) (Vxe M)(3γ e Λf)(31; e M)(3z e Aί)[Φ(z, ι>, 7) Λ (X e ι?)].

Hence by (a),

(n) (VxeM)0yGM)(xeL y ) .

Thus by definition of β,

(o) (\/xeM)(3yeβ)(xeLγ).

In other words,

(p) M c = U L y .

Combining (i) and (p) we conclude that

(q) M = U ί-r

But lim (α), so

(Vi;eoc)[hLα3τ(v<τ)],

which implies that

(VveM)[h M 3τ(v<τ)].

Thus,

(Vveβ)(3τeβ)(v<τ).

Hence lim (β)9 and (q) becomes

That completes the proof of part (i) of the theorem.
Part (ii) follows immediately from 1.7.1. We are left with the proof of part (iii).
Suppose that π(x) >Lx for some x e X. Let x0 be the <L-least such x. Since

x0 G X, π(x0) G Lβ. But x0 < L π(x 0 ). So by 3.4(i), xoe Lβ. Hence x0 = π(xx) for
some xxe X. Thus

But < L is uniformly Σ\λ for limit λ > ω and π'1: Lβ<1La (and moreover α and
jβ are limit ordinals), so the above inequality yields

x ι <LXO-

But this means that Xι<Ln(xι), which contadicts the choice of x0. The proof is
complete. D
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Using the Condensation Lemma, we shall prove that the GCH is valid in L.
We require the following lemma, which though stated for limit levels of the
constructible hierarchy is really a result about structures with definable well-
orders.

5.3 Lemma. Let cube a limit ordinal, and let X <Ξ Lα. Let M be the set of all elements
ofLa which are definable in Lafrom elements ofX. (i.e. ae M iff for some formula
φ(v0) of £?x, a is the unique element ofLa such that N

Then

and moreover M is the smallest elementary substructure of Lα which contains all
elements of X.

Proof If α = ω then as in the proof of 5.2 we see at once that M = Lα, and that
the only elementary submodel of Lα is Lα itself. So we may assume that α > ω from
now on.

If x e X, then x is definable in Lα by means of the formula

(i>o = x)

so X c M. To show that M < Lα we prove that for any formula φ(v0) of S£x>

t=Lα 3 xφ (x) implies (3 x e M) [NLα φ(x)].

(This is Tarskΐs Criterion for being an elementary submodel.) Let φ (v0) be the
following ifx-formula:

φ(υ0) A (VϋiHϋ! <Lv0 - > - Ί φ K ) ) .

If NL α3xφ(x) then t=La3xi^(x). But there is clearly just one x e Lα such that
^L. ^ (*)• Hence the formula ^ (ϋ0) defines x from elements of X in Lα. Thus xeM.
Since NLαφ(x), we are done.

Suppose now that X c iV -< Lα. We show that M c JV. Let x e M. For some
formula φ(v0) of JS?X, x is the unique element of Lα such that NLαφ(x). Now,
NLα3ι;oφ(ι;o), so as X ^N <LΛ, we have \=N3voφ(vo). So for some yeJV,
^N Ψ (y) But JV -< Lα, so NLα φ (y). Hence y = x, and we are done. D

5.4 Corollary. Let (x be a limit ordinal. For any X c Lα ί/iere is α unique smallest
M <La such that X c M. For ί/iίs M,

| M | = m a x ( | Z | , ω ) .

Proo/. Let M be as in 5.3. Since <£x has max( |X | , ω) many formulas, we clearly
have \M\ = max(|X|, ω). D

Now, one striking difference between the constructible hierarchy and the
cumulative hierarchy of sets is the rate of growth. By definition, if x e Va9 then at
level F α + 1 , all subsets of x appear. But the same is not true for the constructible
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hierarchy. For instance, Lω + 2 will contain some subsets of ω, but not all of them.
More will appear at level L ω + 3 , still more at level L ω + 4 , etc. However, as our next
lemma shows, there is a bound to this "gradual growth" process.

5.5 Lemma. Assume V = L. Let K be a cardinal. Ifx is a bounded subset ofκ (or
more generally ifx <Ξ Lafor some α < κ\ then x e Lκ.

Proof. For K ^ ω the result is trivial, since then Lκ= Vκ. So assume κ> ω. Pick
α < K so that α ^ ω and x c Lα, and let λ be a limit ordinal such that λ^κ and
x e LΛ. By 5.4, let M < Lλ be such that Lα u {x} <Ξ M and | M | = | L α | . By the
Condensation Lemma, let π: M ^ L r Since Lα u {x} is a transitive subset of M,
π\La\j {x} = id \ Lα u {x}. In particular, π (x) = x. Thus xe Ly. Now by 1.1 (vii),
| L J = |α | and | L y | = |y|. Hence,

Thus γ < K. But then Ly c Lκ, so x e Lκ, and we are done. D

5.6 Theorem. V— L implies GCH.

Proof By 5.5, &>(κ) c L κ + for all infinite cardinals K:. SO by 1.1 (vii),

The result follows at once. D

5.7 Corollary. ZFh(GCH)L.

Proof We know that

ZFh[ZFC + ( F = L ) ] L .

By 5.6,

ZFC + ( F = L ) h G C H .

The result follows at once. D

5.8 Corollary. If ZF is consistent, so too is ZFC + GCH.

Proof. By the discussion in section 4. D

We finish this section by proving two special cases of the Condensation Lem-
ma for later use. First a technical lemma.

5.9 Lemma. Let oc> ωbea limit ordinal, N c Lα. Let A (x) be a non-empty Σoα (N)
predicate on Lα. Let x be the <L-least element of La such that A(x). Then x is
Σx-definable from elements of N in Lα.

Proof We can define x in Lα by the predicate

A(x) A (3u)[u = pr(x) Λ (yzeu)-ΊA(z)].

By 3.5, this is Σt. D
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5.10 Lemma. Assume V= L. If X -<x L ω i , then X = Lα /or some α ̂  ωγ.

Proof. By the condensation lemma, there are π, α such that α ^ ω x and π: X ^ Lα.
If 7 c X is transitive, then π | Y = id f K So if we can show that X itself is transi-
tive we shall be done.

Let x e X. Then x e L ω i = IJ L y, so x e Ly for some y < α^. But
y<ωx

\Ly\ ^ |y | + co = ω, so as Ly is transitive, x is countable. There is thus a function
/: ω-^^x. Let / be in fact the <L-least such function. By 5.5,/e Lω i. So by 5.9,
/isΣ1-definablefromxinLωi.Butx e l <1Lωι.Ίhus fe X. But clearly ω c Z.
Thus/(n) e X for all n < ω. Thus x =f" ω ^ X. Hence X is transitive, and we are
done. D

5.11 Lemma. Assume V= L. Let κ> ωx be a cardinal. If ωγ eX ^γLκ, then
X n L ω i = Lα for some α ̂  ω1.

Proof Since ω1e X and X <1 Lκ, we have L ω i e X (by 2.8). Clearly,

XnLωι = {xeX\ N x "x e L ω i " } .

But X -<! L κ . So, using an obvious extension of our established notation, for any

Σ1 sentence φ of ^χnLω » w e have

N L φ iff NLφLωi iff Nxφ
Lωi iff N X n L ω φ .

Thus X nLωi -<1LC O l, and we are done by 5.10. (Note that in fact the above
argument works for any φ, Σ1 or not, so that we actually have XnLωι

<Lωι.) •

In connection with 5.11, let us just mention that if K > ω x is a cardinal and
X < 2 Lκ, then we automatically have ωx, L ω i e X, since L ω i is definable in Lκ by
the Σ2-formula (in free variable u)

(3V)(M = Lv) Λ (VXGW)(3/GW)(/: ω >x) >

. ΣM Skolem Functions

The notion of a ΣΠ skolem function for a structure Lα plays an important role in
some of the deeper parts of constructibility theory (the so-called fine structure
theory). In this section we introduce the basic ideas, and in section 7 we give an
application, but a detailed study will not be begun until Chapter VI.

Let (ψi I i < ω) enumerate all ΠΠ_ x formulas of i f with free variables vθ9 vγ. Fix
α a limit ordinal grater than ω. For each i < ω and each x e Lα, if
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let hi (x) be some element y of Lα such that

This defines an ω-sequence (ht \i < ω) of partial functions h( from Lα to Lα. By the
usual methods of contracting quantifiers and parameters, if X c Lα is closed
under ordered pairs, and if Y is the closure of X under the functions hi9 ί < ω, then
Y<nLa. (The argument is given, in effect, in 6.2 below.) Now, as far as generating
Σn elementary substructures is concerned, the exact definition of the functions ftf

is not important. But we shall require something rather more than this, though at
this stage the reader will simply have to postpone a proper motivation until later,
since the situation we are leading towards is rather complicated. What we require
is a particularly "nice", canonical definition of the functions ftf. In particular, we
want the functions ht to be definable over Lα in as logically simple as fashion as
possible. Now, the most obvious canonical definition of the functions ftf would be
to make use of the canonical well-ordering < L of L, setting h^x) ~ the <L-least
y G Lα such that \=La(pi(y, x). (The symbol ~ is standard when partial functions
are concerned: to write f(x) ~ g(x) means that f(x) is defined iff g(x) is defined,
in which case they are equal.) It is easily seen that each function ht so defined will
be Ππ. It turns out that we want functions ftf that are Σn (and in fact rather more
than that), so this obvious definition is not adequate for our purposes. To be
precise, what we require is the following. Let h be the partial function defined on
ω x Lα by

Then the function h should be Σn (Lα).
The construction of a function h as outlined above requires some considerable

effort, and will be postponed until much later. For the moment we investigate the
general properties such a function will have.

Let M be an amenable set, and let

M = ( A ί , e , 4 . . . , i 4 k ) .

Let O 1. A ΣM skolem function for M is a Σn(M) function h such that dom(/z)
ί ω x M , ran(/ϊ) c M, for which there is a p e M such that h is Σj1 ({/?}), and
whenever A is a non-empty Σjf ({/?, x}) subset of M for some x e M, there is an
i e ω such that h (ί, x) e A. (In this situation we say that p is a good parameter
for ft.)

6.1 Lemma. Let M be an amenable set, and let

Let n ^ 1, and let h be aΣn skolem function for M. Then:

(i) ifxeM, then

x G h" (ω x {x})<nM;
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(ii) ίfqeM and ifX c M is closed under ordered pairs, then

Xu{q}^h"{ωx{Xx{q}))<nM.

Proof. Let p be a good parameter for h. We prove (i) first, Set

N = h"(ωx{x}).

Since {x} is a Σj? ({*}) subset of M,

h(i,x)e{x}

for some i < ω , s o x ε N. To show that AT ̂ <π M we use 5.1. Let A be a non-empty
Σ^AΓ) subset of M. We must show that A n JV φ 0. Pick y 1 ? . . . , ym e AT so that
A e Σ j 1 ({)>!,..., ym}) By definition of N there are 7\, ...Jm<ω such that

Let φ (v0,..., vm) be a Σπ formula of the M-language, having no individual con-
stants, such that for any ae M,

aeA iff NMφ(α, j?1 ?..., ym);

and let ψ(vo,v1,v2, v3) be a ΣM formula of the M-language, also having no individ-
ual constants, such that for any w, v e M, ί e ω,

ϋ = Λ(Ϊ,M) iff \=Mψ(ΰ,i,ύ9p).

Then, for any ae M,

αe^l iff N M P } ; ! , . . . , ^ ) ^ ^ ! , ^ , ^ , ^ ) Λ ... Λ \l/{ym,jm,x9p)

A φ(ά,yί9...9ym)].

The predicate 4̂ is thus seen to be Σ™({x9p}). (The parameters^, ...Jm can be
ignored since, being integers they can be replaced by their set-theoretic definitions,
i.e. 0 = 0, 1 = {0}, etc.) So by the definition of the Σπ skolem function concept
there is an i < ω such that

h (i, x) G A.

Thus A n N φ 0, and we are done.
We turn to the proof of (ii). Let

N = h"{ωx(Xx{q})).

As in part (i) we get X u {q} c ]V, and we must show that N <n M. Again, we
begin by picking an arbitrary Σj1 (N) subset A of M, and show that if A φ 0 then
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AnN * 0. Pick yί9...,ymeN so tha t AeΣ^({yί9...,ym}). Pick j u ...Jm< ω
and xί9..., xm e X so that

yx = h(jί9(xί9q)), ...,ym = h(jm, (*«,, Φ)

Set x = (x l 5 . . . , xm). Since X is closed under ordered pairs, x e X. As in part (i) it
is easily seen that A is Σj1 ({/?, (x, q)}). It follows that there is an i < ω such that
ft (i, (x, g)) e A, giving A n AT φ 0. D

6.2 Corollary. Lei M, n, ft be as in 6.1. If X ^ M and ίfh"(ω x X) is closed under
ordered pairs, then

Proof. Let

Y=h"{ωxX).

By 6.1 it suffices to prove that ft"(ω x Y) = Y. Well, since I g 7we clearly have

Conversely, suppose z e h" (ω x 7). Pick i e ω, y e Y so that z = h (ϊ, j;). For some
j e ω, x e X we have y = h(j, x). Thus z = ft (ί, ft(/, ̂ ))5 which shows that z is
Indefinable from p and x in M. Thus {z} is a Σ ^ ({x, p}) subset of M. So for some
fc 6 ω, ft (/c, x) e {z} . Thus z e h" (ω x X) = ί and we are done. D

If α > ω is a limit ordinal, then Lα has a Σπ skolem function for every n ^ 1.
For n > 1, the proof of this fact is quite tricky, and will not be given until
Chapter VI. But for n = 1 the proof is both easy and illuminating, so we deal with
this case now.

For any limit ordinal α > ω and any ne ω, N|̂  denotes the restriction of NLα

to the Σn sentences of j£?Lα.

6.3 Lemma. Let α > ωbe a limit ordinal. Then the relation N|° is (uniformly for all
such α) Δ[α.

Proof For the purposes of this proof, we shall regard the Σ x formula Sat (w, φ) as
being expressed in the language jSf, rather than in LST as defined previously.

If φ is a Σ o sentence of jSfL , then by Σ0-absoluteness, if γ < α is such that
φ e L γ ,

NLαφ iff Vhyφ.

Moreover, absoluteness considerations also tell us that for any ue La and any
formula ψ of S£U9

K > iff NL

Hence, for φ as above,

NLαφ iff NLα(3y)[(φGLy) Λ
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and,

NL αφ iff hL β(Vy)[(φeL y)->Sat(L y,<p)].

By 1.9.12, the class FmlΣ o is Δ^α, and by 1.9.10 the class Sat is Δ^α. Also, by 2.8, the
relation (x = Ly) is Δ^α. Thus the relation t=|° is Δ^α by virtue of the two definitions
above (which are uniform for α). D

6.4 Lemma. Let α > ω be a limit ordinal, and let n^ 1. Then the relation h|° is
(uniformly in α) Σ^«.

Proof. Let φ be a Σn sentence of ifLα. In case n is odd, the following is clearly
equivalent to NL αφ:

ϊLoι[3x1Vx23x3...3xn3φ3u3f3θ[Fm\(φ) A Fr(φ,u) A (/: n^u)
A(Φ = 3/(0) V/(l) 3/(2)... 3/(n - 1) φ) A Finseq (0)

Λ (dom(0) = n + 1) Λ (0O = φ) A (yien)(Sub(θi+l9θhf(ϊ),xi+1))

In case n is even, then equivalent to NLαφ we have:

3x ! V x 2 3 x 3 . . . V X Π V ^ V M V / V 0 [ [ F Π I 1 ( ^ ) Λ F Γ ( ^ , M ) Λ

Λ (φ = 3/(0) V/(l) 3/(2)... V/(n - 1) ̂ ) Λ Finseq (0)

Λ (dom(0) = n + 1) Λ (0O = φ) A (Vi e π)(Sub(0 i + 1 , 0

In either case, the if-formula which says that

φ = 3/(0)V/(l) 3/(2)... -f(n-l)φ

is easily seen to be Σ o (given the values of/(0),... J(n — 1)), being simply a long
sequence of conjuncts concerning the values of the sequence φ. So by 6.3, the
above expressions give a (uniformly in α) Σn definition of N|^. D

Using 6.4, we can now show that for limit α > ω, Lα has a Σ x skolem function.

6.5 Lemma. Let α > ωbea limit ordinal Then Lα has a Σ x skolem function. Indeed,
there is a Σ o formula Θ(v0, v1,v2, v3) of5£ such that for any limit ordinal α > ω,
/zα ί*5 Σ x skolem function for Lα,

3; = Λα(i, x) <-* NLα 3 z Θ (z, j?? i°, x°).

Proof By an argument similar to the proof of 1.9.6 (see also 1.9.13), the relation "φ
is an if-formula of the form 3 v2 φ (v0, vx, v2) where φ is Σ o " is uniformly Δ^α. So,
if we define an enumeration (φ^i < ω) of all formulas of the form φ{ =
3 v2 Φi(vo, vγ, v2) where φ f is Σ o , in the same way that we well-ordered the for-
mulas of i f in our definition of < L (see immediately following 3.1), then it is easily
seen that this enumeration is uniformly Δ^α.
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Define a partial function rα on ω x Lα by:

ra(U x) ^ the <L-least w e Lα such that

NLβ("w is an ordered pair") Λ </>i((w)0, x, (w^).

By (the proof of) 5.9, rα is Σ^α. Hence the partial function ha is Σ^α, where we define
ha on ω x L α by:

We show that /ια is a Σ t skolem function for Lα with good parameter 0 (i.e.
effectively with no parameter).

Let A be a non-empty Σfα({x}) subset of Lα. For some ί < ω,

Since X φ 0,

Hence,

t=Lα3w["w is an ordered pair" Λ φi((w)0, x, (w)x)].

Thus rα (i, x) is defined, say w = ra (Ϊ, X). Hence ha (f, x) is defined and ha (i, x) = (w)0.
Clearly,

Hence ha (i, x) e A, as required.
Notice that the above proof did not depend upon α. Hence there is a single Σ o

formula Θ as described in the lemma. D

Notice that in general, the above procedure will not produce a Σn skolem
function if n > 1. For if the formulas φ{ are Σ π , then the formulas φi will be Πn_ γ,
which means that the function rα will be Π n , as is easily seen by writing out the
definition of rα more fully. (The procedure works in the case n = 1 because a
bounded universal quantifier prefixing a Σ o formula results in another Σ o formula,
whereas if n > 1, a bounded universal quantifier prefixing a Σ M _! formula gives a
Ππ formula.)

The function ha defined in 6.5 is called the canonical Σ x skolem function for Lα.
We illustrate its use in 6.8 below, for which application we require two lemmas.

6.6 Lemma (GόdePs Pairing Function). There is a Δ^p formula Φ(vo,v1, v2) of
LST such that, if

G = {(γ,{*,β))\Φ(*,β,y)},

then:

(i) G is uniformly Σ^α for limit α > ω;
(ii) G: On x On ^> On;

(iii) G&β)^a,βforalla,β.
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Proof. Define a well-ordering < * of On x On by setting (α, β) < * (7, δ) iff:

(i) max(α, β) < max (7, δ); or
(ii) max(α, β) = max(7, δ) and α < 7; or

(iii) max (α, β) = max (7, (5) and α = 7 and β < δ.

Let G(α, β) be the order-type of the set of predecessors of (α, β) under < *. Thus

G:(OnxOn, < * ) ^ ( O n , < ) .

It is not hard to see that:

(I) G(0,j8) = supv</ϊG(v,v);

an(II)

By (I) and (II) we can define the unary function G (0, β) by means of the recursion

(III) G(0, j8) = supv<β(G(0, v) + v + v).

Thus (c.f. the proof of the KP Recursion Theorem, 1.11.8), the function G(0, β) can
be defined by means of a Σ* p formula of LST, and is (by checking that the relevant
existential quantifiers can be restricted to Lα) uniformly Σ\Λ for limit α > ω. But
using (II) we can define the binary function G(α, β) from G(0, β) in Σί fashion.
Hence G is definable by means of a Σ^ p formula of LST and is uniformly Σ^α for
limit α > ω. (In connection with the definability results for Lα in the above, it
should perhaps be emphasised that there is no suggestion that Lα should be closed
under the function G; rather that for each limit α > ω the class Gn(La)

3 is
(uniformly) Σ^.) Since G is a total function on On x On, it is in fact definable by
a Δ^p formula of LST. (But since G n (Lα)3 is not total on α x α, it is not the case
that G is Δία.) D

6.7 Lemma. Let cc > ωbea limit ordinal. Then there is aΣ^L^ map of a onto α x α.

Proof. Before we start, we remark that there is no suggestion of any uniformity
here, and indeed for many ordinals α we shall make use of parameters in order to
define the mapping of α onto α x α.

Set
Q = {cc\ G: α xα<->α} .

It is easily seen that Q is closed and unbounded in On, and that

We prove the lemma by induction on α. Assume that it holds for all β < α. To
prove it for α we consider three cases.

Case 1. α e Q.
In this case G" 1 Γ α is sufficient.
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Case 2. α = y + ω for some limit ordinal y.

Define j: ot*-+y by

Clearly,; is Σf ({ω,y}).
By induction hypothesis there is a Σ^Ly) map

onto

g: y >yxy.

Define a map

/: α-^αxα

by

Clearly, / is Σx (Lα) and maps α onto α x α. (The function g is an element of Lα, and
is thus a parameter in the definition of/.)

Case 3. Otherwise.
Set (v, τ) = G~x (α). Since α φ Q, v, τ < α. Let

C = {z|z<*(u,τ)},

where < * is the well-ordering of On x On defined in the proof of 6.6. Notice that
C e La. Now, g = G \ C maps C one-one onto α (by definition of G from < *). So

by6.6(i),0isΣί ({C}).
Let y > ω be a limit ordinal such that v, τ < y < oc. By the induction hypothe-

sis there is a Σx (Ly) map

, onto

k: y 3

Define

by setting

£"(£ ζ) = the least i such that k (i) = (ξ, ζ).

Then / is one-one from α to y where we set / = k ° g~x. (Since v , τ < y , C c y χ y ,

so r a n ^ " 1 ) = C c y x y = dom(fe).) N o w define

, one-one

n: α x α >y x y

by setting h(ξ, ζ) = (l(ξ), l(ζ)% and define

one-one
p: ocxoc-
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by p = ko h. Now, ran (/) =_k" (g'1" α) = k" C. Hence ran(ft) = ( P C) x ( P C).
Hence ran(p) = k" ran(ft) = JE" [(£" C) x (/c" C)]. But Jfc is indefinable, so keLa.
Since we know that C e Lα, it follows that D G La, where D = ran(/>). Thus the
function

/: α -• α x α

is Σj (Lα), where we set

ξ), if ξ e D ,
f { ξ ) [(0,0), i f ξ φ D .

Since / is clearly onto α x α, we are done. D

We are now able to give our promised use of the Σί skolem function. It is a
"localised" version of 3.6.

6.8 Lemma. Let oc > ω be a limit ordinal. Then there is α Σ 2 (Lα) map ofcc onto Lα.
(The map is not uniformly definable, and may involve parameters in its definition.)

Proof. By 6.7, let / be a Σ^α ({/?}) map of a onto a x α, chosen so that p is the
<L-least element of Lα for which such an / exists. Define "inverse functions" /°,

f1 to / by the requirement

/(v) = (/°(v),/1(v)) (veα).

For each n, define a Σi α ({;?}) function /„ from α onto απ so that the following
conditions are satisfied:

/ i = i d t α ;

(For each n, the precise definition of /„ is obtained by unravelling the above
"recursion".)

Let h = hΛ, the canonical Σ1 skolem function for Lα, and let Θ be the canonical
Σ o formula of $£ which defines h (see 6.5). Set

X = h"(ωx(ocx{p})).

Claim 1. X is closed under ordered pairs.

To see this, let xux2e X. Pick jίj2

 e ω and v l 5 v2 e α so that

Let τ G α be such that

(vi,v2)=/2(τ).

Clearly, {(xl5 x2)} is a Σ^α({(τ,/>)}) predicate on Lα. Hence by the properties of ft,

( X 1 ? X 2 ) G X ,

which proves the claim.
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By claim 1 and 6.2,

X<χLa.

By the Condensation Lemma, let

π: X ̂  Lβ.

Since α £ X, we must have /? = α, so in fact

π : X ^ L α .

C/αzm 2. For all / e ω, x e X,

To see this, suppose first that y = h (/, x) is defined. Since h is Σ^α and x e X
Lα, we have y e X. Since y = h(i9 x), we have

So, as x, y, i e X -<! Lα,

So for some z e X,

txθ{z,pj9x).

Applying π gives

hLα<9(π(ί), π(y), i, π(°x)).

Hence,

NLα 3 z Θ (z, π (y), /° π (x)).

This means that

π(y) = h(i9π(x))

(and in particular that h (i, π (x)) is defined).
Now suppose that h (i, π (x)) is defined. Then h (ί, π (x)) e Lα = π"X, so for some

yex,

/z(ϊ,π(x)) = π(y).

By reversing the argument above we obtain

π-1(Λ(i,π(x))) = Λ(i,x),

and the claim is proved.
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Now, / c α x α x α, and π Γ α = id Γ α, so

</•=/.

Moreover, since /? G X -<ί Lα and π: X ^ Lα, π " / is Σ^α({π (/?)}). So by choice of
p we must havep ^Lπ(p). But by the properties of π (see 5.2), π(p) ^Lp. Hence
71 (p) = P So by claim 2, if i e ω and v e α,

Thus π = id f X, which means that X = Lα. It follows at once that the function r
defined on a subset of α by

is a Σ1(La) map such that r" α = Lα. But this does not prove the lemma, since we
are looking for a total function from α onto Lα. However, a simple modification
to the function r will suffice. Define g from α3 to Lα by:

if NLα 3 w [w = Lτ A (3 z e w) Θ (z, y, ί, (

if- NLα 3 w [w = Lτ Λ (V z G w) ~ι Θ(z,y, i, (v,

It is easily seen that g is Σι(La). And clearly,

0"(α xo(xα) = /i"(ωx(αx {/?})) = Lα.

Thus g o/3 is a required for the lemma. D

We give further applications of the Σί skolem function in the next section.

7. Admissible Ordinals

The notion of an admissible set has already been introduced in 1.11. An ordinal
α is said to be admissible iff there is an admissible set M such that M n On = α.

By 1.11.2, every uncountable cardinal is an admissible ordinal. The converse
is not true, and indeed it is a simple exercise involving the Condensation Lemma
to show that if K is an uncountable cardinal, there are K many admissible ordinals
below K. The starting point for this proof is the following lemma.

7.1 Lemma. An ordinal oc is admissible iff Lα is an admissible set.

Proof. If Lα is an admissible set, then α is an admissible ordinal since Lα n On = α.

Conversely, suppose that α is an admissible ordinal. Let M be an admissible
set such that M n On = α. Clearly, α is a limit ordinal greater than ω. Hence
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by 2.1, Lα is amenable. Thus we must prove that for any Σ0(Lα) relation
Kc=LαxLα,if

(\/xeLa)(3yeLa)R(y,x),

then for any ue La there is a i; e Lα such that

Let φ (v0, vx) be a Σ 0 -formula of j£?Lα such that for all x, y e L α ,

Thus

Let u G L α be given. We seek a i; e L α such that

Define a function g from w to α by

g(x) = the least γ such that (3 y e Ly) [NLα φ (j?, x)].

Since L α = (J L y , ̂ f is well-defined. Now, since φ is Σ o , for x,ye L α , we have , by

1.9.14, y < α

) iff hi

Moreover, by 2.10, ( L y ) M = L y for all y < α. Hence for any x , y e M ,

y = ̂ ( X ) ^ N M [ ( X G I 1 ) Λ (3w)[(w = L°) Λ (3 y e w) φ (y, x)
A (\/vew)-\(3yev)φ(y, x)]].

Thus f̂ is Σ^M). So by Localised Σi Collection (1.11.5) for the admissible set M
there is a D e M such that

(Vxeu)(3yeυ)(y = g(x)).

Since M is amenable,

Then by definition of g,

(Vx e w)(3y G Lj) [NLαφ(j?, x)].

Since ί e M w e have 5 < α, so L^ G Lα and we are done. D
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Using 7.1 we may prove:

7.2 Lemma. Let α > ωbe a limit ordinal Then α is admissible iff there is no Σx (Lα)
mapping from an ordinal δ < <x cofinally into α.

Proof Suppose first that cc is admissible. Let δ < α, and let

b e Σ J L J . Then

(Vξeδ)(3ζeα)(ζ =/(£)).

By Σ x Collection for Lα there is a y < α such that

(Vζeδ)(3ζey)(ζ=M)).

Thus/" δ c y < α, showing that / cannot be cofinal in α.
Conversely, suppose there is no Σi (Lα) function from an ordinal δ < α cofinal-

ly into α. Then certainly α cannot be of the form γ + ω for any y, so α is a limit
of limit ordinals. So by 6.8 there can be no Σx (Lα) function from any L ,̂ (5 < α, into
α whose range is unbounded in α. We show that this implies that Lα is an admis-
sible set. By 2.1, Lα is amenable. So, given a Σ0(Lα) relation K (y, x) on Lα such that

and given a t/ 6 Lα, we must find a z; e Lα such that

Pick <5 < α so that u e Lδ, and define a function/ from L^ to α by:

the least y such that (3 y e Ly) R (y, x), if x e w,

θ, otherwise.

It is easily seen that / is Σx (Lα). By the above remarks, we know that / cannot
be cofinal in α, so there is a ρ < α such that

By definition of /,

(\/xeu)(3yeLρ)R(y,x),

so we are done. D

Our next result strengthens 7.2 considerably. To state the result, it is conve-
nient to introduce the following extension of the concept of amenability, an
extension which we shall make frequent use of during our later development.
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A structure

is said to be amenable if M is an amenable set and for each i = 1,..., k,

ue M implies Atnue M.

(This condition can be regarded as an extension of the "Σ o Comprehension"
axiom for amenable sets, that if R c M is Σ o (M), then R n u e M for all u e M)

7.3 Theorem. Let oc> ω be a limit ordinal. Then the following are equivalent:

(i) α is admissible;
(ii) the structure <(Lα, A} is amenable for any A1(L(X) set A c Lα;

(iii) there is no Δ x(La) function from an ordinal δ < a orcίo a.

Proo/. (i)^(ii). This is an immediate consequence of the A1 Comprehension
Principle (1.11.1).

(ii) -• (iii). We assume that (ii) holds and (iii) fails and use a diagonalisation
argument to obtain a contradiction. By 6.8 and the failure of (iii) there is a δ < a
and a Σx(Lα) map/from δ onto Lα. Being total,/is in fact Ax(La). Hence D is
Δ^LJ, where we set

D = {vεδ\v$f(v)}.

By (iϋ),

D = Dn(5eL α .

Hence D =/(v) for some v < δ. But then

v e/(v)«->VGD^V Φ/(V),

a contradiction.
(iii) -> (i). Suppose (iii) holds but (i) fails. By 7.2 and the failure of (i) there is a

δ < α and a Σ^LJ map/from (5 cofinally into α. Let/ be Σ^α({/?}). By (iii), α
cannot be of the form γ + ω for any y, so we can pick a limit ordinal 7 < α such
that δ,/? G L 7 . Set

Since Ly is closed under ordered pairs, 6.1 (ii) tells us that

L y c z χ < l L α .

By the Condensation Lemma, let

π: X ^ L^.

Notice that π f Ly = id \ Lr
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Claim. π\X = id\X.

To see this, let Θ be as in 6.5 (namely, the canonical Σ o formula of S£ which
defines ha over Lα). Let ie ω, x G Ly, y G Lα be such that

Then

\=Lu3zΘ(z,p,i,x).

Since y, x e X <i Lα, this gives

Applying π,

hL/J3z<9(z, π{y), ι9 x).

By (7-absoluteness (1.9.14), it follows that

\=La3zΘ(z, π(y), ΐ,£).

In other words,

π(y) = K(i,x) = y.

This proves the claim.
By the claim, X = Lβ. Now, / is Σ^α({/?}), and j9 e X < t Lα, so X is closed

under /. But δ ^ X and / is cofinal in α. Thus as X = Lβ, which is transitive, we
must have a ^ X. Thus β = α and X = Lα.

Define a function # from ωxδxLγ into Lα by:

nίi v y\-$y> i f ( 3 z G L/(v)) [N «̂ β (i, y, /, x)],
flflI'v'XJ"|0, otherwise.

It is easily seen that g is Σ^α ({/?}). (We leave this to the reader. A similar argument
was used towards the end of the proof of 6.8.) Also,

(Because / is cofinal in α.) But it follows easily from 6.8 that there is a Σ1(Lγ)
mapj, from y onto ωxδxLy. Then g °j is a Σx(Lα) map from γ onto Lα, contra-
dicting (iii). D

It is perhaps woth noting the following fact, used implicitly in the proof of the
above lemma.

7.4 Lemma. Let α, β be limit ordinals, ω < α < β. Then h^^hβ.
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Proof. Suppose that

y = ha(i,x).

Then with Θ as in 6.5,

By ^/-absoluteness,

Thus

y = hβ(i9x). D

Clearly, it is the uniformity of the Σί skolem function which lies behind 7.4. We
often use 7.4 without mention.

Exercises

1. Primitive Recursive Set Functions (Section 2)

A function f:Vn-±V is said to be primitive recursive (p.r.) iff it is geneated by the
following schemas:

(i)/(x 1 , . . . ,x n ) = Xf (1 < i < n ) ;

(ii) f(xί9..., xπ) = {xf, Xj} (1 < ij < n);

(iii) f(xl9..., x j = xf - x,- (1 < i,7 < n);

(iv) /(x l 9 ...,xn) = Λ(gfi(xi, .., xπ),..., 0 fc(xi,. , xB)), where ft,

gί,...,gkaτQ all p.r.;

(v) / ( y , X i , . ., xn) = [J g(z,xί9...9 xn\ w h e r e g is p.r . ;
zey

(vi)/(x 1,...,xΛ) = ω;

(vii) /(y, x l 5 . . . , xπ) = g(y,xl9..., xn9 (/(z, x l 9 . . . , xn) \ z eh(y))),

where g and ft are p.r. and where

z G ft (y) -* rank (z) < rank (j/).

(Functions generated by schemas (i) through (v) are said to be rudimentary, and
play a basic role in our later work on constructibility theory.)

1 A. Show that the following functions are p.r.:

f(xl9..., xΛ) = xt u xj (1 ^ ΐ, j < n);

/(x l 5 . . . ,x B ) = {x l s . . . , x j ;
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IB. Show that if the function f(y, x l 5 . . . , xn) is p.r., so too is the function
g(y, xί9..., xn) = (f(z, xl9..., xn) \ z e y).

A relation R ^ Vnis said to be primitive recursive (p.r.) iff there is a p.r. function
/: Vn -> V such that

1 C. Prove the following:

(i) If / and R are p.r., so is

•/(x l 5...,xπ), if R(xί9...9xn)

if ~ Ί R(xl9..., xn).

(ii) R is p.r. iff χR (the characteristic function of R) is p.r.

(iii) R is p.r. iff ~i R is p.r.

(iv) L e t / : Vn -> F be p.r. for i = 1,..., m. Let Λf c F" be p.r. for i = 1, . . .,m,

such that H£ nRj = 0 for z + j and Q Kt = F". Define f:Vn-+V by

/ ( * ! , . . . , xπ) = / (x l 5 . . . , xπ) iff JRi(x l 9..., xπ).

Then / is p.r.

(v) If jR (y, x l 5 . . . , xn) is p.r., so too is

f ( y 9 x l 9 . . . 9 x n ) = {zey\R(z9xl9...9 x n ) } .

(vi) Let R (y, xl9..., xn) be p.r. and such that

Define / by

{ that z ey such that R (z, x l 5 . . . , xπ), if such
a z exists,
0, if no such z exists.

Then / is p.r.
(vii) If R(y, xu . . . , xn) is p.r., so too is (3z ey)R(z, x l 5 . . . , xπ).

m m

(viii) If Kj £ J/" are p.r. for i = 1,..., m, so too are (J JRJ and Π Kj.
i = l i = l

(ix) The functions (x)0, (x) l 5 dom(x), ran(x) are p.r.

(x) the relations x = y and x G y are p.r.

1D. Show that if/: F" -• V is p.r., then there is a Σj formula Φ of LST such that

y = f(xί9 ...9xn)++Φ(y9xί9...9 x n ) .

1E. Show that the ordinal functions α + 1, α + β9 α j8, ocβ are p.r.



102 II. The Constructible Universe

1 F. Let f(y9 xl9..., xn) be p.r. By recursion, define functions f\ v e On, by:

Γ+1(y,x1,...,xn)=f(Γ(y,x1,...,xn),x1,...,xn);

fλ (y, x u . . . , x n ) = { J Γ(y, xu..., xn), if lim (λ).

Let g be defined by

g(v, y9 χί9..., xn) = / v (y, Xi,..., xn).

Show that g is p.r.

1 G. Show that the transitive closure function, TC, is p.r.

1 H. Show that any predicate defined by a Σ o formula of LST is p.r. (Hint: By
induction on formulas, using 1C (iii), (vii), and (viii).)

11. Show that the following functions are p.r.:

(i) f(u) = {x I Const (x, w)}

(ii)/(n) = {xVbl(x)};

(iii) fin) = {x I PFml (x, u)}

(iv)/(ιι) = {x|Fml(x,iι)};

fthe set of free variables of x, if Fml (x),

if —i Fml(x);

{ that x' such that Sub(x', x, y, z),

if Fml (x) Λ Vbl(y) Λ Const (Z),

0, otherwise;

(vii) f(u) = {x I Sat(w, x)};

(viii) f(u) = Def (u).

1J. Show that the function (Lv\v e On) is p.r.

2. Relative Constructibίlity (Section 2)

Given some set A9 we define a class L[A] which has many of the nice properties
of L, but in which the set A is, to some extent, available. The class L[A] is called
the universe of sets constructible relative to A, and is defined by analogy with the
definition of L.

If X is a set, Def4 (X) denotes the set of all subsets of X which are definable in
the structure <X,e, A nX} by means of a formula of ^X{A) having one free
variable. (The language <£v (A) was discussed briefly at the end of 1.9 and the
beginning of 1.10.) The hierarchy of sets constructible relative to A is defined by the
following recursion:

LO[A] = Φ; La+ί[A]

Lλ[A]= U LMl if li
<x<λ
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The class L[A] is then defined thus:

L[A]= U La[A].
αeOn

2 A. Prove the following analogues of Lemma 1.1:

(i) α ^ β implies La[A] c Lβ[A];

(ii) La[A] <= Fα for all α;

(iii) Each La[A] is transitive, and (hence) L[A] is transitive;

(iv) α < β implies α, Lα[^4] e L^[A];

(v) L[X] n α = Lβ[A] n α = Lα|>4] n On = α;

(vi) f o r α < ω , L α [ X ] = K β ;

(vii) f o r α ^ ω , \La[A]\ = \a\.

2B. Prove that L[A] is an inner model of ZF (in the sense of 1.2).

2 C. A structure of the form <M, e, A} is said to be amenable iff M is an amenable
set and A n u e M for all u e M. (This notion was introduced in Section 7). Prove
that for any limit ordinal α > ω, the structure <Lα[^4], e,An Lα[A]} is amenable.

Now, the intuition behind the construction of L[A] is that the predicate
"x e A" should be available. Consequently, it is common practice to abbrebriate
by Lα[A] the structure <Lα[yl], E,AΓ\ Lα[A]}, just as we used Lα to mean <Lα, e>.
In particular, to say that Lα[A] is amenable means that the structure <Lα[,4], e,
A n Lα[A]> is amenable, as defined above.

2 D. Show that there is a Δ^p formula D (v, w, α) of LST such that

D(υ,u,α) iff v = Όdα(u).

2E. Show that the function ΌQΪA is uniformly Δ^α[^] for all limit α > ω.

2 F. Show that there is a Δ^p formula H (x, α, α) of LST such that

H(x9*,α) iff x = Lβ[α].

2G. Show that the function v\-+Lv[A] is uniformly A\AA] for limit α > ω.

2 H. Show that if M is an admissible set or else an inner model of KP, and if
αe M, then for any α e M , Lα[α] e M and (Lα[α])M = Lα [α].

21. Show that if α > ω is a limit ordinal, then for any v < α,

where £ = 4 π LV[X]. (By 2C,Be Lα[A].)

2J. Prove that if α > ω is a limit ordinal and B = AnLα[A], then

Lα[A] = Lα[B].
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2 K. Prove that if B = A n L[A], then

Deduce that

(V=L[B])L[Λ\

2 L. Show that there is a Σί formula WO (x, y, a) of LST such that

KP h "{(x, y) I WO (x, y, a)} is a well-ordering of L [α]",

and such that if <L[A] denotes the well-ordering of L[A] determined by WO, then
for any limit ordinal α > ω, <L{A\

 n(La[A])2 is Σ^α [^ ].

2M. Prove (AC)L [ Λ\

2N. Prove that L[A] is the smallest inner model of ZF which contains the set
A nL[A]. (i.e. L[A] is the smallest inner model M of ZF such that A n M e M.)

3. £/se o/ ί/ze Condensation Lemma (Section 5)

We investigate the question: as α varies over all limit ordinals, how many different
sets of J^f-sentences are theories of some Lα?

3 A. Let Σ be the set of all sets of if-sentences of the form

for some limit ordinal α. Show that

(Is it also the case that

3 B. Let (φn\n < ω) be the "lexicographic" enumeration of the sentences of if, as
described in Section 3. Show that there is no formula φ{v0) of i f such that

t=Lαφπ iff NL αφ(π).

(Hint: Diagonalisation. Let (ψn \ n < ω) be the lexicographic enumeration of the
formulas of !£ with free variable at most v0. Consider the formula

"v0 is a natural number" Λ 3 k ["fc is a natural number"

Λ (ψk = *Ψvo(Vθ)*) Λ -

where *ιAm(̂ )* denotes the formula obtained from φm(v0) by replacing every free
occurrence of v0 by the term denoting the integer n)
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3 C. Show that | Σ | = | ω\ \. (Hint: First reduce this to proving that | Σ | L > ω. Then
suppose that | Σ | L = ω and let T be the <L-least subset of ω x ω such that
(T" {n}\n < ω) enumerates all members of Σ via the enumeration (φn\ n < ω) of
the J^-sentences in 3 B above. Now look at the if-theory of LωL and work for a
contradiction with 3 B.)

An alternative solution to the original question can be obtained by exhibiting
an unbounded set A^ω\ such that whenever α, β e A and α φ β, then the theo-
ries of Lα and Lβ are different. This can be done as follows.

3D. Set

A = {α e ω\ I lim(α) Λ every element of Lα is definable (without the

use of parameters) in L J .

Show that A is unbounded in ω\. (Hint: To show that A is non-empty, use 5.3 and
5.10. To show that A is unbounded in ω\, suppose otherwise and consider
A = sup μ).)

3 E. Show that if α, β e A and a φ β, then Lα and Lβ have different theories. (Hint:
Use 3 B again.)

4. The Condensation Lemma and the GCH in L [A] (Section 5)

We continue the investigation of L[A] commenced in Exercises 2 above.

4 A. Prove that if α > ω is a limit ordinal and X -<ι La[A], there are unique π, β
such that

where B = π" (AnX).

4B. Show that if A e LQ[A], α > ρ, α > ω, α a limit ordinal, and if

L β [ X ] s X < L β [ X ] ,

then there are unique π, /? such that

As we saw in 4A above, the "condensation lemma" for L[A] does not in
general lead to a structure in the L [̂ 4] hierarchy. Thus we cannot prove GCH in
L[A] as we did for L. Indeed, if K were a cardinal such that 2K = κ+ +, we could
let A c κ:+ + code all subsets of /c, so 2K ^ κ:+ + would hold in L[A]. However, 4B
enables us to obtain a partial GCH result.

4C. Prove that if V = L[A]9 where A is a subset of an infinite cardinal K, then
2λ = /ί+ for all cardinals /I ̂  κ;.

A strengthening of 4 C is possible. We require a preliminary result.
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4D. Let K be an uncountable regular cardinal, and let M = <M,e, ...> be a
structure such that K C M. Let X c M, |X | < /c. Prove that there is a structure
N <̂ M such that X ^ N and AT r\κ EK. (Hint: Construct N as the union of a
suitably chosen ω-sequence of submodels of M.)

4E. Let V=L[A], where A c κ + . Then 2K = κ + . (Hint: Use 4 D to prove a
special case of 4 A, and note that if y, δ < τc + , then

Ly[Anδ]eLκ+[A].)

4 F . Show that if V = L|/l], where A c ω i , then GCH is valid.

5. Σ n Skolem Functions (Section 6)

We show that there is no uniform Σ 2 skolem function for Lα, where lim (α), α > ω.
(It can be shown that each limit Lα does possess a Σ 2 skolem function, and indeed
a Σn skolem function for any n, but the Σn definitions are not uniform for n ^ 2.
See Chapter VI for details.)

It is convenient to assume V = L throughout. We use α to denote an arbitrary
countable limit ordinal.

5 A. Show that the predicate

is uniformly Π ^ i ^ U ω J ) .

5 B. Show that the predicate

is uniformly Π^ωi + α .

5 C. Show that the predicate

x > en

is uniformly Σ\toι + <x.

5 D. Show that the predicate

Pα(x): lim(x) Λ (α < x <

is uniformly Σ2 ω i + α .

5 E. Suppose that there were a uniform Σ 2 skolem function fιy for L y, where y > ω
is a limit ordinal. Let φ be a Σ o formula of i f such that for any limit ordinal y > ω,

y = fty(i,x) iff NLy3wVt;φ(j?, ί, i , u, v).

Show that for each α there is an integer ίa such that

and deduce that for a stationary set A c cox there is an integer i such that for any
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5 F. Define a sequence (αv | v < ωλ) thus:

α0 = 0;

αv = sup τ < v α τ , if lim(v).

Show that (αv I v < ωλ) is a strictly increasing, continuous sequence of countable
limit ordinals.

5 G. Pick a limit ordinal v such that αv e A and for arbitrarily large τ < v, ατ e A.
Let y = α v + 1 . By considering φ, show that there is a τ < v such that ατ e A and
y = α τ + l J and deduce that there can be no uniform Σ 2 skolem function for limit




