
Chapter XIX

Abstract Equivalence Relations

by J. A. MAKOWSKY and D. MUNDICI

For a regular logic if, let ~ = = ^ be the equivalence relation obtained by saying
that two structures are ~ -equivalent iff they satisfy the same sentences of if. The
isomorphism relation £ is automatically a refinement of ~ —that is, isomorphic
structures are ~-equivalent— ~ itself is a refinement of elementary equivalence
=, and ~ is preserved under both renaming and reduct. This last property simply
means that upon renaming, or taking reducts of ~ -equivalent structures, we obtain
~-equivalent structures. Furthermore, if if [τ] is a set for every vocabulary τ, then
the collection of equivalence classes given by ~ on Str(τ) has a cardinality. (Briefly,
we say that ~ is bounded). This paper is mainly concerned with abstract equiva-
lence relations ~ on (Jτ Str(τ), having the above-mentioned properties as well as
the Robinson property so that for every SDt, 91, and τ with τ = τ^nτ^,

if 9JI Is τ - 91 Is τ then for some 91,

Ϊ R ~ 21 [τm and 91-91 fτΛ.

If ~ = =#, then — has the Robinson property iff if satisfies the Robinson
consistency theorem. If, in addition, ̂ [_τ] is a set for all τ, and if all sentences in ^£
have a finite vocabulary, then the Robinson consistency theorem holds in if iff if
is compact and has the interpolation property (see Corollary 1.4). Every bounded
equivalence relation ~ with the Robinson property satisfies the equation — = = #
for at most one logic S£ (see Corollary 3.4). This result can be extended to equiva-
lence relations corresponding to compact logics (see Theorem 3.11). Moreover,
we have that ~ = = ^ for exactly one logic if iff — is separable by quantifiers, in
the sense that whenever SPt and 91 are not —-equivalent, there is a quantifier Q
such that — is a refinement of =^iQ) and 9)1 φ^(Q) 91 (see (ii) of Theorem 3.10).
Even if - is not separable by quantifiers, there is still a strongest logic if such that
— refines =#. This 5£ is compact and can be written as if = ££{Q | — is a refine-
ment of =^iQ)} (see Corollary 3.3 and (i) of Theorem 3.10).

The Robinson property of 5£ can also be coupled with such properties as [ω]-
incompactness. Then =# will coincide with ^ below the first uncountable measur-
able cardinal μ0 (see Theorem 1.7), and the infinitary logic <£μoω can be interpreted
in ^ in some natural sense (refer to Theorem 1.12).

Some of the results in Section 1 can be extended to logics for enriched struc-
tures, such as topological, uniform, and proximity structures, as discussed in
Section 2.
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With any logic i f we can associate an embedding relation ->#, where 21 -»^ 91
means that τ κ 3 τ ,̂ and SΆA =#9l+ for some expansion 91+ of 91 Γ %, with SΆA

denoting, as usual, the diagram expansion of 21. In Definition 4.1 we define em-
bedding relations by abstracting these properties of the -+# relation. Any such
relation -> generates an equivalence relation ~ = ->* by writing 21 ~ 91 iff 21
and 91 are connected by a finite path of arrows. Conversely, every equivalence
relation ~ generates an embedding relation -> = ~ * by writing 21 -> 91 iff
τm 3 τ̂ j and SΆA ~ 91+, for some expansion 91+ of 9ί [ τ ^ . The mapping * sends
equivalence relations with the Robinson property into embedding relations with the
expanded amalgamation property (AP + ) in a one-one way, the latter being a natural
strengthening of the usual amalgamation property (AP). The mapping * becomes
a bijection with ** = identity, provided we restrict ourselves to embedding
relations with A P + and such that ->** = -• (see Theorem 4.8). In particular,
first-order logic ifωω is uniquely determined by the familiar elementary embed-
dability relation < (see Theorem 4.9).

Every countably generated logic i f = ^{(£)i<ω determines, for each finite
vocabulary τ, a sequence {^τ"}n<ω of finite partitions over Str(τ), by writing
9R ~" 91 iff 2R and 91 satisfy the same i f [τ]-sentences of quantifier rank < n.
We study an abstract notion of back-and forth systems (see Definition 5.1);
the latter generalize the celebrated Fraϊsse-Ehrenfeucht games for = (see Examples
5.2 and Theorem 5.3) and are in one-one correspondence with their associated
logics, under the Robinson assumption (see Theorem 5.4). By use of Theorems
3.11 and 5.7 and the argument in Theorem 5.4 this correspondence can be extended
to the realm of compact logics.

Any back-and-forth game G for if-elementary equivalence determines not
only a back-and-forth system in the above sense, but also a game G(2I, 95) for
pairs of structures, or—equivalently—a decreasing sequence of sets of partial
isomorphisms from 21 to 95. We regard the former as a global version of G (since
each partition acts on the whole of Str(τ)), and the latter as a local version of G.
Global and local versions have the same extreme generality (see Theorems 5.7
and 5.10) and are closely related, as is discussed in Section 5.

As this chapter will show, the Robinson property is very strong. Indeed, one
of the main open problems of abstract model theory—a problem originally posed
by Feferman—asks whether compactness and interpolation together are strong
enough to characterize first-order logic. A negative answer would exhibit a proper
extension of <£ωω still having many important features in common with j ^ ω ω (by
the very results of this chapter) while a positive answer would characterize <£ωω in
terms of properties which are generally reputed to be desirable for a logic ^£. As a
matter of fact, compactness is related to the finiteness of sentences and proofs in 5£
and makes available a number of methods for constructing models interpolation
(together with its most notable consequence, Δ-closure—or equivalently—truth-
maximality) is related to the equilibrium between syntax and semantics in ^£.

Whatever the ultimate answer to this problem, the techniques and results of
this chapter can be applied to logics for enriched structures (see Section 2). Further-
more, even for ordinary structures, several theorems originally stated under the
Robinson assumption, can now be proved under the (weaker) compactness, or
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JEP assumption (see Theorems 1.1, 2.4, 3.11, Lemma 3.11.1, Corollary 3.12,
Remark 4.10, and Theorem 5.7) by simply refining the methods developed for the
study of the Robinson property. Sometimes there are even applications to first-
order logic itself (see Corollary 3.5, Theorem 4.9, and Corollary 5.5).

Throughout this chapter logics are assumed to satisfy the occurrence axiom,
stating that for each sentence φ in <£ there is a smallest τ = τφ such that
φ e J2Ί>]. We will write i f (β ' ) i e i instead of &ωω(Q)ieI and will always assume that
Qι is a quantifier with built in relativization, as in Proposition Π.4.1.5. Given
equivalence relations ~ and ~', instead of saying that ~ is a refinement of ~ ' we
will usually say that ~ is finer than ~ ' (or, that ~ ' is coarser than ~ ) . We will
constantly work with many-sorted structures and logics, so that our expansions
may very well involve new sorts. Vocabularies and universes of structures are
always assumed to be sets, while J^[τ] may be a proper class. However, when we
want to exclude this possibility for i f we will simply say that i f [τ] is a set for each τ.

The first author would like to thank the Swiss National Science Foundation
for their support. The second author wishes to express his gratitude to the
Heidelberger Akademie der Wissenschaften for their financial support; and, in
particular, he extends thanks to Professor Gert Muller for his constant support
and stimulating suggestions.

1. Logics with the Robinson Property

In Chapter XVIII we saw that logics satisfying the amalgamation property are
compact, provided they have the finite dependence property, or even if the depen-
dence number is smaller than the first uncountable measurable cardinal. The
amalgamation property is both a consequence of the Robinson property, and of the
joint embedding property. In this section we will review the relationship between
the latter two properties and compactness, since under these stronger hypotheses
many of the proofs are simpler and generalize to the case of logics whose underlying
structures need not be first-order structures. Recall that a logic i f has the joint
embedding property (abbreviated JEP) iff whenever 91, 33 e Str(τ) and 91 =# 23,
then 91 and 95 are jointly embeddable in some structure SR. That is, SCR \=<? Th^(9I^)
u Th^(93β), where 91^ (resp., 23β) is the diagram expansion of 91 (resp., of 93) in
vocabulary τA = τ u {ca}aeA (resp., τB = τ u {cb}heB\ and τA n τB = τ.

1.1 Theorem. Let $£ be a regular logic such that ϊ£\τ\ is a set for every τ. Assume
that for every countable τ 0 , | i f [ τ o ] | < λ for some fixed λ. If $£ satisfies the JEP,
then there are at most 2λ many regular cardinals K such that <£ is not \κ\-compact.

Proof Let S be a set of regular cardinals such that 5£ is not [κ]-compact for each
KES. By Definition XVIΠ.1.2.1, K is cofinally characterizable in 5£\ hence, there
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is a structure 3tκ = </c, <, . . .> whose diagram expansion

SΆA = </c, < , { c j α < κ , . . . )

has the following property:

(*) whenever 23 =# SlίA the set {c®}α<κ is unbounded in the order < β .

Adding, if necessary, more sorts and elements, and using the regularity properties
of if, we can safely assume that the vocabulary τκ of 9IK is countable (we can code
n-ary relations into a single "universal" (n + l)-ary relation). Indeed, we can
safely assume that for some fixed countable vocabulary τ ^ {<}, the τκ are all
equal to τ, for any KES. Let Γκbe the complete if-theory of 9ίκ in vocabulary τ. By
hypothesis, there are at most 2λ such theories. Therefore, if | S \ > 2A, then for two
regular cardinals μ < v in S, we must have that 2Iμ =# 2IV. Let 901 = 2Iμ, 91 = 9IV.
Suppose 90Ϊ and 91 are joint embeddable in a structure T) (absurdum hypothesis), say
D l= Th(2RM) u Th(9lN), and let τM = τ u {cm}m e M and T ^ T U {^}MeN be the
vocabularies of StRM and 9lN, respectively, with τM nτN = τ. Since

the set {cm}m e M contains a subset {cα}α<μ whose interpretation in 90ϊM are the
ordinals α < μ. Similarly, {gn}neN contains a subset {gβ}β<v whose interpretation
in yiN are the ordinals β < v. Now consider the linear order < φ . Since T> 1= Th $RM

then <μ, <> ^ <{c^}α<μ, <φ>, and the set {c*}a<μ is unbounded in <*, by (*).
Similarly, from D N Th 9lN, we obtain that <v, <> ^ ({g*}β<v, <I )> and the
set {g^}β<x is unbounded in < φ . Therefore, we get that μ is cofinal in v > μ, thus
contradicting the assumed regularity of v. Therefore, the JEP fails in i f if | S | > 2λ.

D

To be able to prove that no incompactness exists, we will need some set-
theoretic hypotheses, as discussed in Section XVIII. 1.3. However, if we assume the
Robinson property, we can get even more. Recall that a logic i f satisfies the
Robinson consistency theorem (for short, !£ has the Robinson property) iff for
arbitrary vocabularies τ, τ', τ" and classes of sentences T, T", T", if T is complete
in τ and T' and T" are consistent extensions of T in τ' and τ", respectively, with
τ = τ' n τ", then T" u T" is consistent (that is, T' u T" has some model). Equiva-
lently, we might assume also that T" and T" in the above definition are complete.
In fact, the Robinson property only depends on the complete theories of ^£ and
may thus be regarded as a property of the equivalence relation = ^ . This notion
will be pursued further in later sections, for in this section we will only be concerned
with the effect of the Robinson property on logics.

1.2 Theorem. Let !£ be a regular logic with dependence number o(J£) < the first
uncountable measurable cardinal μo—if it exists—or o{^) < oo otherwise. If ££
has the Robinson property, then i f has the finite dependence property.
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Proof. The proof follows immediately from Chapter XVIII, Corollary 3.3.5,
Theorem 2.2.1, and Proposition 2.1.2. D

For logics of the form ^(βOϊe/ there is an easy, self-contained proof that the
Robinson property implies compactness. This is given in the following result.

1.3 Theorem. Let ££ be a regular logic. Assume that each sentence of££ is of finite
vocabulary—or even assume that o(<£) satisfies the hypotheses of Theorem 1.2. //
<£ has the Robinson property, then ϊ£ is compact.

Proof In the light of Theorem 1.2, it suffices to prove the theorem under the
assumption that sentences in <£ are of finite vocabulary. Now assume that <£ has
the Robinson property and is not compact (absurdum hypothesis). Let K be the
smallest cardinal such that 5£ is not (/c, ω)-compact. There is a vocabulary τ and a
set of sentences T = {φα|α < K} ^ S£\τ\ such that T has no model, while for
each β < K, the subtheory Tβ = {φa\oc < β} does have a model S&β. In S£ we can
replace function by relation symbols (by regularity); constant symbols are elimin-
able by using instead unary relations which represent singletons. This can be done
in the usual manner for <£ωω without using the substitution property. Thus,
replace, for example, φ(c, d) by 3! cRc A 3! dSd A VC, d(Rc A Sd -• φ(c, d)). For
arbitrary φ\ we proceed similarly, recalling that | τ ^ | < ω, where τ ^ is the smallest
vocabulary of φ\ as given by the occurrence axiom. For the sake of notational
simplicity we will also assume that τ is single-sorted (the proof for the many-
sorted case only requires some additional notation). Without loss of generality the
SΆβ's have pairwise disjoint universes. Recalling that τ may be assumed to contain
only relation symbols, define the disjoint union 91 = <v4,.. .> of the 21 '̂s by

A =U Λβ9 R* = (J R*' for each Reτ.
β<κ β<κ

Define the function /: A -• K by f(a) = β iff a e Aβ9 for each aeA,β<κ, and let
SOΪ be the two-sorted structure given by

where, as usual, symbols are identified with their natural interpretation; and, in
particular, cψ = β for every β < K.

Claim. Whenever 91 =<? 9K, the set {cf}β<κ is unbounded in <*.

Proof of Claim. Otherwise (absurdum hypothesis) let 91 be a counterexample so

that, for some fixed element n in the second sort of 91, we have

(yt9 ny \=# cβ < n for each β < K.

For every β < /c, let φβ be the sentence of 5£ given by

φβ =
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This is the only place in this proof where we use the assumption that !£ is closed
under relativization. Indeed, we only need that <£ be closed under relativization
to atomic sentences. Observe that for each β < K, we have 30Ϊ N ^ φβ Hence,
91 \=<? φβ. Then for each β < K,

which implies that 9l\{xeN\(% x> \=<?f(x) = n} \=<? T. This contradicts the
assumed inconsistency of T and our claim is thus established. Now expand 9DΪ to
W e Str(τ'), τ' = τm u τ 0 with τ 0 = {Pβ}β<κ a set of new unary relations, to be
interpreted in W as initial segments,

pf = {α |α < β} for each β < K.

Let Γ = Th^(9K) u {\/x(Pβx^x < cβ)\β < κ}> and observe that W \=<? V. On
the other hand, let τ" = τ 0 u {c}, with c a new constant, and let

T" =

Consider the structure 9M" of vocabulary τ" given by

that is, 9JΓ is obtained by adding one element at the end of K and by interpreting
each Pβ exactly as in W. Then we have that W \=# T". For every finite τ* c τ 0 ,
we have that 9JI' |" τ* ^ 901" |" τ* (it is easy to get an isomorphism). Hence,

W Γ τ* Ξ ^ 9«" p τ*

by the isomorphism property of logics. Whence SOΪ' Γ τ 0 =_^ 50Ϊ" |" τ 0 , recalling
that each sentence of 5£ is of finite vocabulary. Now τ ^ n τ^,, = τ' n τ" = τ 0 .
Hence, by the assumed Robinson property of if, there is T) of vocabulary τ' u τ"
such that T) Is τ' =_^ 9Kr and D f τ" Ξ ^ W. In particular, ί ^ Γ u Tr/, and c*
is a strict upper bound for the {c*}β < κ. But D [ τm =^ 9W then stands as a counter-
example to our claim. Therefore, i f is compact. D

1.4 Corollary. Let J£ be a logic satisfying the hypotheses of Theorem 1.3. Assume
further that i f [ τ ] is a set for every τ. Then i f has the Robinson property iff ^ is
compact and satisfies Craig's interpolation theorem.

Proof This proof requires use of Theorem 1.3 and Proposition II.7.1.5. The
assumption that $£\τ\ is a set for every τ is needed in the proof that compactness
plus Robinson property imply interpolation. In order to apply compactness, we
must guarantee that complete theories are sets of sentences. D

1.5 Remark. Although it is stated only for regular I£, Theorem 1.3 still holds if
the relativization axiom is replaced by the weaker requirement that 5£ allow
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relativizations to atomic sentences. Also, the substitution axiom can be relaxed
for the requirement that in 5£ we are allowed to replace a function/by a relation R
representing the graph of/ This will be important in the sequel (see Section
3.11.2, and Theorem 5.4).

1.6 Corollary. Assume that ££ is a logic with the Robinson property, and that S£\τ\
is a set for every τ, and \τφ\ < ω for every sentence φ. Assume further that $£ is
closed under the atom, Boole, and particularization property of Definition II. 1.2.1.
Then the following are equivalent:

(i) i f is closed under relatiυization to atomic sentences and allows elimination of
function symbols',

(ii) 5£ is regular.

Proof. That (ii) implies (i) is evident in the light of Definition Π.l.2.3. To prove that
(i) implies (ii), we first note that, by Remark 1.5, Theorem 1.3 can be applied to Jέf.
Since ££[τ] is always a set, then !£ satisfies Craig's interpolation theorem, by
Corollary 1.4; and, in particular, i f is Δ-closed (Definition Π.7.2.1), whence
regularity follows immediately. D

We now look at logics i f which satisfy the Robinson property but are not
[ω]-compact. In contrast to the above results, no restriction is here imposed on the
size of ££\τ\ or on that of o(J£). On the other hand, we require that relativization
in S£ incorporate τ-closure; that is, 95 \=<? φ{xla(x)} implies that the set B' =
{beB\(S8, b} \=&oi(x)} contains all the constants of τφ\ and, for e a c h / e τ φ , if
bί9 . . . , bn e B', then f(bί9 ..., bn)eB' (see Barwise [1974a, p. 235], and Flum
[1975b, p. 294]). All the infinitary logics mentioned in the literature have this
property; for logics in which all sentences have a finite vocabulary, the present
form of relativization is exactly the same as the usual relativization as defined
in Definition II. 1.2.2, since τ-closure is expressible by a first-order sentence when-
ever τ is finite.

1.7 Theorem. If ^ is a regular logic with the Robinson property and $£ is not [ω]-
compact, then for every 91, 33 with |9t | of cardinality < μ0, we have that 91 =# 33
implies 91 = 93. If no uncountable measurable cardinal exists, then =#> = = .

Proof To prove this theorem, we establish three formal claims.

Claim 1. <ω, <,£„>„<ω is characterized up to isomorphism by its own complete
theory in !£.

Proof of Claim 1. The proof is reminiscent of the proof of the first part of Theorem
1.3. Let the pair T = {φ^i < ω}, Δ be a counterexample to [ω]-compactness in
^. For every m < ω, let Tm = {φt \ i < m) u Δ, and let 9lm N= Tm. For the moment,
assume the vocabulary τ of T u Δ is single-sorted and has only relations. Assume
further that the universes of the 9Iw's are pair wise disjoint. Define the disjoint
union 91 = (A,.. .> of the 9lm's by

A= [)Am9 R*= U R*™ for each Reτ.
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Let/: A -> ω be defined by/(α) = m iff a e Am. Let finally the two-sorted structure
TO be given by 9JΪ = [SI, <ω, <, cm}m<ω9f]. By arguing as in the proof of Claim 1
in Theorem 1.3, we see that whenever 91 =^3R, the {c*}m < ω are unbounded in
< w . We can now prove that whenever X) = ^ <ω, <,O*<ω> we also have X) ^
<ω, <, cn}n<ω. As a matter of fact, if this were not the case and X> were a counter-
example, then we expand X> to T>+ = <X>, c,#>, where # maps the set W of pre-
decessors of c one-one onto W u {c}. We expand <ω, <, cn}n<ω to the structure
W defined above. Using the Robinson property of if, we exhibit 23 such that
93 Γ τm =# 9K and 93 Γ τ Φ + = ^ D + . Then the {cj}π < ω are unbounded in < β , by the
discussion above. But they are also bounded by c®, because 23 N ^ c > cπ for all
n < ω—a contradiction which establishes our claim in case τ is single-sorted
and only contains relation symbols. The many-sorted case (for τ only containing
relations) can be established, with the help of additional notation. We now con-
sider in detail the case in which some sentence φ of T is such that the set τ^ of
symbols occurring in φ, as given by the occurrence axiom, also contains constants
(but no functions). If there are only finitely many such constants, then we can get
rid of them by using unary relations and renamings, without using the substitution
property of i f (see the proof of Theorem 1.3). Otherwise, if τψ has infinitely many
constants, display them as {bα}α < κ, for some κ> ω. Recalling that we assumed
that relativization incorporates τ^-closure, whenever U is a new relation, we have

(1) (φ v -i φ){xlUx} is equivalent to Ub0 A Ub1 A .

Similarly, letting θ be the sentence in i f given by

(2) θd=fVy-π((ιA v -^)**l**">),

we must have

(3) θ is equivalent to \/y(y = b0 v y = bγ v •)•

Add a new relation V and let theory Γ be given by

(4) Γ = f {Vbβ\β < ω} u {~iVbγ\y > ω}.

By (2) and (3), for every structure S, we have

(5) S N Γ u { S } implies F s = {be

β}β<ω.

Let T" be defined by T" = f Th^<ω, <, cn}n<ω u Γ u { θ , η}, where η says that/is
a one-one mapping from the new sort of the {cn}n<ω onto V = {bβ}β<ω. Then, by
(5), each model of T will be an expansion of <ω, <, cn>„ < ω, the latter being defined
on a new sort. We now complete the proof of Claim 1. Assume Th_^<ω, <, cn}n<ω

has a non-standard model X) (absurdum hypothesis). Expand X) to £ ' = <£>, c, #>,
where c is a strict upper bound for the {cn}n<ω, and gf maps the set K of pre-
decessors of c one-one onto K u {c}. Then Th^ X)' u Γ' has no models, thus
contradicting the Robinson property of 5£. This completes the proof of Claim 1
(the case in which τψ has function symbols can be reduced to the cases considered
above).



1. Logics with the Robinson Property 725

Claim 2. Let K > ω be an arbitrary cardinal Assume </c, <, c α > α < κ is character-
ized (up to isomorphism by its own complete theory in 5£\ and also each 9Γ with
\A'\ < K is characterized. Then every 91 with \A\ = K is characterized.

Proof of Claim 2. To establish this claim, we consider two cases, the first being the

Special Case. Here 91 = <κ, <,cΛ,R^9 ...}a<κ is a single-sorted expansion of
<κ, <9ca\<κ. Then let τ = % and assume 33 = ̂ 9t , but 95 qk 91 (absurdum
hypothesis). By assumption (and by the reduct and isomorphism axioms given in
Definition II. 1.1.1) we can safely write 95 = </c, <, ca9 R*9.. > α < κ . Since 35 ^ 91,
then without loss of generality we must have R® φ R®. For the sake of definiteness
assume that R is a unary relation (the other cases being treated similarly). We then
have that for some β < K, R®β holds and R^β does not (or vice versa). Now by the
assumed characterizability of </?, <, ca}a<β we have that cf = cf = β, so that
91 \=# Rcβ and 95 \=# ~\Rcβ, thus contradicting 91 =# 95. Consider now the

General Case. Here we assume that 91 = & 95, | A \ = K. For the moment, let 91 be
single-sorted; let \B\ = λ. Then we must have that λ < κ; for, otherwise, by ex-
panding 91 to 9I+ = <9I, κ9 < , c α > α < κ and 95 to 95' = <&,bpyβ<λ9 using the
Robinson property, we exhibit 9JΪ with 9K [ τ^+ =^ 91+ and 9W [ τ9. =# 95'. Hence,
by hypothesis 9W \ {<} s (κ9 <> and \M\ > λ > κ9 since bf Φ bf for β ψ α.
This is a contradiction. Having seen that \B\ = λ < K, we now expand © to 93 + =
<33, λ, <', dβ}β<λ, where < ' is a new binary relation symbol having the natural
interpretation in 95+ . By the Robinson property, we let 91 be such that 91 [τm+

= ^ 9 I + and 91 [τ&+ Ξ ^ 9 5 + . NOW 91+ is taken care of by the special case just
considered, and so is 95+ —unless λ < fc, in which case 95 + is characterized up to
isomorphism by hypothesis. In definitive, we have that 91 {τm+ = $l+ and
91 \τίB+ £ 95+ . By taking reducts, we finally obtain 91 ^ 91 fτffl = 91 [τ^ ̂  95.
If 91 and 95 are many-sorted, one proceeds similarly, by first excluding the pos-
sibility of 95 having sorts of cardinality > K, and by adding one copy of < | S |, < ' , . . .>
over each sort S in 23. This completes the proof of Claim 2.

Claim 3. All structures of cardinality <μ0 are characterized.

Proof of Claim 3. Let K be the least cardinal such that there are two j£?-equivalent
non-isomorphic structures 91' and 91", with K = \A'\ < \A"\. Clearly K > ω, and
by Claim 2 it follows that 91 = <κ, <, c α > α < κ is not characterized. By Claim 1, we
see that K is uncountable. We will now prove that K is measurable. Let © =
<B, <, c α > α < κ with 33 = ^ 9 1 and 95 ^ 91. Using standard arguments of model
theory, along with the characterizability of each ordinal β < K, we conclude that
there must be some beB such that 95+ \=&b > cα for all α < /c, where 95+ =
<95, b}. Expand 91 to 9l+, adding symbols for all unary functions and relations on
K, as follows:

•*• = \ K > ̂ ί ^ α ? Us>Jj/a<κ,seP(κ),jeκκ

with

UΓ=s and ff=j,
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where P(κ) is the power set of K. Using the Robinson property, let ΪTC be such that

2TC Γ τ β +

 Ξ * ® + a n d 9Jl Γ ^ + = ^ 9 Γ . Define D c p(κ) by

5 e D iff s c /c and 2R l=^ C/β(ft);

that is, s e D iff the unary relation Us whose interpretation is s in 91+ has bm among
its elements when interpreted in STC. Clearly D is a nonprincipal ultrafilter on K. We
now show that D is κ>complete. If not (absurdum hypothesis), D is μ-descendingly
incomplete for some μ < κ\ that is, there is a descending chain D' = {s'a}Λ<μ with
si G D and P | α < μ 5 ^ D. Hence, without loss of generality, f]a<μ s'a = 0. Without
loss of generality, we may also assume that for every limit ordinal ε < μ, f]a<ε s'a
= s'ε. Define h: K -• μ by h(β) = α iff β G S^\5^+ 1S for j8 < K, α < μ, so that intui-
tively h tells us how long an element β e K stays in the descending, and eventually
vanishing, chain D'. h is well defined, by our assumption that for every β the first η
such that β φ s'η is a successor ordinal. Let Ua = Us>a (α < μ). Then, for every α < μ,
we have

arc N ^ fc(fe) > cα since ΪR N ^ Ua+ί(b),

9Ji Nj^ Vx(x < cμ -• /z(fo) > x) since μ < K is characterizable,

R, 91+ N ^ 3y(Vx(x < cμ ^ Λ(y) > x)),

so that Π«<μ s« # 0 — a contradiction. Therefore, D is ^-complete, and K is mea-
surable, indeed uncountable and measurable. This completes the proof of Claim 3
and of the theorem as well. D

1.8 Corollary. //Ί£ is a regular logic with the Robinson property, and there are < μ 0

many sentences in the pure identity language of S£> then $£ is [ω~]-compact. D

1.9 Examples, (a) The logic JS^α, = Si has the Robinson property and is not
[ω]-compact. Here S£\τ\ is a proper class and =# = = .

(b) If K is an extendible cardinal, then JSf JJK, infinitary logic with conjunctions
and quantifications of elements and relations of length <κ, has the
Robinson property and is not [ω]-compact. Here S£λ^κ -equivalence
coincides with isomorphism below K, and K > μ0. Indeed K > the first
supercompact cardinal (see Magidor [1971], and Examples XVIII.3.3.7).

The above examples, together with Theorem 1.7, simply tell us that if S£ fares
well with the interpolation or definability properties, but does not do so with
compactness, then its expressive power is extremely strong below some measurable
cardinal. The prototype of this sort of result is Scott's theorem which yields for each
countable structure 91 a sentence φ% of J^ω i ω whose countable models are exactly
those which are isomorphic to 91 (see Theorem VIΠ.4.1.1). A partial converse is
given by the following result.

1.10 Theorem. Let S£ be a logic such that for every countable structure 91 there is a
sentence φ^ of vocabulary τm having the property that for any countable 33 e S t r ^ ) ,
® ^ ^ <Pvi implies © = 91. Then ΔS£ is an extension of S£ωχω.
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Proof. See Section XVII.3.2. D

Since JS£,iω is Δ-closed, Theorem 1.10 implies that J*Pωiω can be characterized
as the smallest Δ-closed logic satisfying Scott's theorem. Using Theorem 1.7, we
can now prove an analogue of Theorem 1.10.

1.11 Definition. Let JSP, JSP' be logics. We say that JSP' is weakly interpretable in !£
iff for every sentence φ e JSP'[τ] there is a vocabulary σ ^ τ and a set of sentences
Σ c JSP[(T] such that Mod(φ) = (Mod(Σ)) [ τ.

1.12 Theorem. 7/*JSP is a regular logic with the Robinson property which is not [ω]-
compact, then:

(i) i P μ o ω is weakly interpretable in 5£\ and,
(ii) =2 is finer than =seμ ω ; ί/zαί is, 91 = ^ 93 implies 21 = ^ ω 93.

Proof. For (i). If φ e JS^oω[τ], then we can assume that φ e H(κ ), for some K < μ0.
We now follow Feferman [1974a, b, 1975] and find an expansion )ΰlφ of (H(κ), e>
and a set Σφ c jSP[σ], for some σ ^ τ, such that for all 91 e Str(τ) we have that

1= φ iff the pair <9I, SRφ> |= Σ
ψ'

The existence of SOΪ̂  and Σ^ with the required properties is guaranteed by Theorem

1.7.
Deny (ii). Then there is 91 e Str(τ) and φ e ^Pμ o ω[τ] such that if we let T =

TM91), then both Γ u {φ} and Γ u {~ι φ) have a model. Let σ, σ' 3 τ, Σ^ c jjf [ σ ]
and Σ_,φ c jjf [σ '] be as in the proof of (i), and σ n σ' = τ. By (i) each of T u Σ φ

and T u Σ_,φ has a model, and by the Robinson property of <£ we can write 93 \=#
Γ u Σ ^ u Σ_,^, for some 93. Hence, 93 |= T u {φ, —\φ}—a contradiction. D

To some extent, Theorem 1.12 clarifies how a non-[ω]-compact logic with
the Robinson property resembles an infinitary logic built on a measurable cardinal.
Indeed, the only known examples of such logics involve an extendible cardinal
(see Example 1.9(b)). Shelah has constructed a logic JSP with the amalgamation
property, (a property which is weaker than the Robinson property) and which still
does not contain JS£,iωi. This result was given in a private communication, and it
seems an interesting problem to explore it with the view of making possible im-
provements of Theorem 1.12.

1.13 Notes and Remarks. A more detailed proof of Theorem 1.1 can be extracted
from Mundici [1982b, pp. 64-66], where it is shown that compactness = JEP
(for logics where i f [τ] is a set) under such set-theoretical hypotheses as V = L or
- ι θ # . Theorem 1.2 was originally proved by Makowsky-Shelah [1983]. Theorem
1.3 and Corollary 1.4 are independently due to Mundici [1982b], and Makowsky-
Shelah [1983]. The proof presented here is given by Lindstrom in a private com-
munication. Theorem 1.7 is due to Mundici [1982f] (see also [1982a] for results
on the many-sorted case). The proof given here uses a number of ingredients from
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Rabin [1959], Keisler [1963b], Lindstrόm [1968] and Makowsky-Shelah [1979b].
In this latter reference, a variant of Corollary 1.8 was proven using a weaker notion
of Robinson property together with the Feferman-Vaught property and different
assumptions about |JSf[τ]|. For Example 1.9(b) see Magidor [1971] and
Makowsky-Shelah [1983]. Theorem 1.10 is due to Makowsky [1973] and
Barwise [1974a]. Actually, the theorem still holds under the weaker hypothesis that
we can characterize by a sentence of i f every structure of the form <ω, <, P> with
P an arbitrary subset of ω (see Makowsky-Shelah-Stavi [1976]). Theorem 1.12 is
an unpublished result of Makowsky.

2. Abstract Model Theory for
Enriched Structures

This short section is devoted to extending the results of Section 1 to logics for
enriched structures, such as topological, uniform, proximity structures (see
Chapter XV). The reader who is only interested in the usual (first-order) structures
may safely proceed to Section 3 at first reading.

For an arbitrary nonempty set B, the superstructure VB

ω of B is given by
VB = B, VB

+1 = VB u PVB, VB

ω = \Jn VB, where P is the power-set operation.
An enriched structure of vocabulary τ is a pair W = <9W, μ> where TO e Str(τ) is
an ordinary structure (as defined in Chapter II), and μ e Fjf. The many-sorted case
is an immediate generalization of this notion. Examples of enriched structures
are topological, weak, uniform, monotone, proximity, ordinary structures, as well
as the structures studied in Chang [1973] in the framework of modal model
theory. The forgetful functor || || transforms 5DΪ' into 9DΪ; the operations of reduct,
renaming, diagram expansion, disjoint union (for structures of disjoint vocabu-
laries) are the same as in the ordinary case. A strict expansion of 3QΪ' = <SOΪ, μ> is
any structure 301" = <SDΪ+, μ>, where SR+ is an expansion of 9K. The ordinary
semantic domain is the function Θ assigning to every vocabulary τ the category
Θ(τ) = <Str(τ), Emb(τ)> whose arrows are the isomorphic embeddings equipped
with composition. More generally we consider

2.1 Definition. A semantic domain is a function # assigning to every vocabulary τ
a category #(τ) = <Ob(τ), Ar(τ)> whose objects are enriched structures of vo-
cabulary τ and whose arrows, called the isomorphic embeddings of <#, are functions
equipped with composition, satisfying the following seven conditions:

(a) || || preserves identities and commutative diagrams;
(b) u τ Ob(τ) is closed under reduct, renaming, strict expansion, formation of

disjoint pairs, and disjoint union; that is, for every set {95α}α<κ £ Ob(τ), τ
without constants, there are 93eOb(τ) and arrows gα:93α --• 95 (α < K)
having pairwise disjoint ranges whose union is B (here we essentially
require that all the operations on structures used in the proof of Theorem
1.3 are also available for our enriched structures);



2. Abstract Model Theory for Enriched Structures 729

(c) for each ordinary structure 91 there is a structure 95 in ^ with the same
vocabulary and such that ||93|| = 91 (this amounts to requiring that #
extends the ordinary semantic domain);

(d) g: SEW -• 9ί iff g: 9KP -> 9tp for any renaming p;
(e) g: 9K -• 9t iff g: 9K Is τ -> 91 [ τ for all finite τ c TαR = T j | ;
(f) / : 9Ji -» 9t, #: 91 -• 95 and r ^ n ^ = 0 imply/u #: [SR, 91] -> [91, 95];
(g) g: 9PΪ -+ 91 implies #: SRM -> 9l^(M), 9QΪM = diagram expansion of 3W.

We also say that # has substructures iff # satisfies the following two additional
conditions:

(h) whenever B' c B is the range of an isomorphic embedding into ||95|| (with
respect to Θ\ then F is also the range of some isomorphic embedding into
the whole of 95 (with respect to ^ ) ;

(i) whenever 50ί -f 95 <̂  91 and range(/) c range(^), then there exists

h: 9K -> 91 such that/ = # ° ft.

2.2 Examples. The following are semantic domains with substructures: the
category of topological structures with homeomorphic embeddings (see Chapter
XV); the monotone structures with monotone embeddings (see Makowsky-
Tulipani [1977]); the uniform structures with uniformly continuous embeddings
(see Flum-Ziegler [1980]), the proximity structures with proximity-preserving
embeddings.

The notion of a logic i f over a semantic domain # is exactly the same as for
the ordinary case (see Chapter II), except for the definition of relativization, which
requires a little more care:

2.3 Definition. A logic i f over ^ has relativization iff # has substructures and for
every boolean combination α of atomic sentences with τα ^ {x}, and every sen-
tence φ G JSf[τφ] there is ψ e jSf[τ'] (with τ' = τ φ u (τα\{*})), denoted φ = φ{xW\
such that for all 95 e Str(τ'), 95 \=# φ iff {b eB\ ||<95, b}\\ \= α} is the range of an
isomorphic embedding g: 91 -• © Γ τ φ , for some 91 e Str(τφ) with 91 \=# φ.

The assumption that ^ has substructures ensures that 91 in the above definition
is unique up to the isomorphism relation in c€. Furthermore we have incorporated
τ-closure in relativization. In other words, 93 \=# φ { x | α } implies that the substructure
951α® contains all the constants of τφ and is closed under all the functions of τφ.
We can recover the ordinary definition given in Definition II. 1.2.2 simply by noting
that for ordinary structures the following holds, for any isomorphic embedding g:

0 : 9 1 ^ 9 5 r τ φ iff 91 s (95 [τφ)\ranged).

In Chapter XV the reader encountered a logic if1 which stands to topological
structures as S£ωω stands to ordinary structures. In Chapter HI it is shown that
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large portions of ordinary abstract model theory can be extended to the realm of
enriched structures. As for extensions of the results of Section 1, we have:

2.4 Theorem. For Ή an arbitrary semantic domain with substructures, and !£ a logic
over <β obeying the hypotheses of Theorem 1.1, the conclusion of the theorem still
holds.

Proof. See Mundici [1982c, II and 198?b]. D

It remains an open problem whether or not the main results of Chapter XVIII—
notably, the implication AP => compactness—or even Theorem 1.3 above can
be extended to logics over arbitrary ζ€. With the help of such axioms as V = L or
~Ί O * we can strengthen Theorem 1.1 to the effect that if j£? is not compact, then
there is a proper class of regular cardinals K such that S£ is not [τc]-compact. By
using Theorem 2.4, the proof of this fact for & can be extended to arbitrary <β.
Hence, we have

2.5 Theorem (V = L, or even ~ Ί O # ) . For <β an arbitrary semantic domain with
substructures and S£ a regular logic over %>, assume that J5f[τ] is a set for every τ
and that \τφ\ < ωfor every sentence φ. Then if'Z£ has the Robinson property, i f is
compact.

Proof. The reader is referred to Mundici [1982c, II and 198?b]. Actually, the
theorem is proven there under the weaker assumption (denoted fc]) that for every
infinite regular cardinal K and for every uniform ultrafilter D over K, D is λ-
descendingly incomplete for all infinite λ <κ. For a proof that fcj is weaker than
~ Ί O # , the reader should consult D. Donder, R. B. Jensen, and B. J. Koppelberg;
Lecture Notes in Mathematics, 872 (1981), p. 91. D

3. Duality Between Logics and
Equivalence Relations

We now return to ordinary (first-order) structures. As we remarked in Section 1,
the Robinson property of a logic i f only depends on =#. In general, for ~ an
arbitrary equivalence relation on the class of all structures, we say that ~ has the
Robinson property iff for every 9Γ e Str(τ'), 21" e Str(τ"), if SΓ Γ τ ~ 91" Γ τ and τ =
τ' n τ" then there is 951 e Str(τ' u τ") such that 9K [ τ' - 91' and 9W {τ" - W.
It is immediately seen that whenever ~ = = ^ for some logic J^, the relation ~
has the Robinson property iff $£ satisfies the Robinson consistency theorem.
Among the equivalence relations with the Robinson property, we mention ele-
mentary equivalence = , isomorphism ^ , equality = and = ^ for i f = ^ κ (see
Example 1.9(b)). All the equivalence relations considered in this paper will satisfy
a few natural prerequisites which the attentive reader may find reminiscent of
the simplest axiomatic properties of logics.
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3.1 Definition. Let ~ be an equivalence relation on the class of all structures. Then
~ is said to be regular iff ~ satisfies the following conditions (for every two
structures 50Ϊ and 9t):

vocabulary: 9JΪ ~ 9i implies τm = %;
renaming: 30? ~ 91 implies $KP ~ 9lp for any p:τm-^ τ'\
reduct: 9W - 91 implies 9K f τ - 91 \ τ for any τ c Tαrι;
isomorphism: 9DΪ ̂  91 implies 9Jί ~ 9Ϊ;
expressiveness: SOΪ ~ 91 implies 9JΪ = 91.

Moreover, we say that ~ is bounded iff for every vocabulary τ there is a seί 5τ c
Str(τ) such that for every 91 E Str(τ) there is 95 e Sτ with 93 - SI. Thus, all equiva-
lence classes have a representative in Sτ. Observe that this has nothing to do with
"bounded" logics. When ~ is a regular equivalence relation on the class of all
structures and has the Robinson property, then we simply say that ~ is a Robinson
equivalence relation. Of the four equivalence relations given above, = and Ξ ^ Π
are bounded Robinson equivalence relations. If i f [τ] is a set for every τ, then =#
is (regular and) bounded. Conversely, if ~ = =# then !£ is (equivalent to) a
logic where i f [τ] is a set for all τ, provided ~ is bounded. Finally, we say that ~
has the finite vocabulary property iff for every τ and 91, 33 e Str(τ), we have that
91 - 93 iff 91 Is τ 0 ~ 93 Is τ 0 for each finite vocabulary τ 0 c τ .

As remarked in the introduction, an open problem of abstract model theory is
whether = is the only bounded Robinson equivalence relation — having the
finite vocabulary property and satisfying ~ = = >̂ for some logic if. In the follow-
ing pages we will see that if any such relation ~ Φ = exists, then that relation ~
has many properties in common with = .

3.2 Theorem (Relative Compactness Theorem). Let ~ be a Robinson equivalence
relation having the finite vocabulary property. Let <£' = J?(Qι)ieI and 5£" =
<y(QJ')jej be logics, with =#< and =#„ both coarser than ~ . Let ι^eif"[τ] and
Γ c £"[τ] be an arbitrary set. IfY f= ψ, then Γ o |= ψ,for some finite Γ o £ Γ, where
Γ \= ψ means Mod^> Γ c Mod^» ψ.

Proof. Assume that Γ N ψ holds but for no finite Γ o c Γ do we have Γ o 1= ψ
(absurdum hypothesis). Since Γ is a set, we can write Γ = {φa\oί < K}. We can
safely assume K is minimal, so that each Tβ = {-[\j/} u {φa\a < β} has a model
SΆβ, for each β < K. NOW, construct the disjoint union 91 of the 91^ and let 9Ji =
[91, <κ, <,cβyβ<κ,f] exactly as in the proof of Theorem 1.3 (here we use the
hypothesis that all sentences in if' and 3?" have a finite vocabulary). The claim in
the proof of Theorem 1.3 now reads as follows:

Whenever 9i ~ W, the {cf}β<κ are unbounded in the order <*.

To prove the present claim, for each β < K, let \\ι'β and φβ be defined by
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Observe that since 901 \=#, φ'β and 9Ji \=<?» φ"β, then so does 91 ~ 9JI, since =_^, and
=_̂ » are assumed to be coarser than ~ . Therefore, if 91 were a counterexample to
the claim, i.e., for some neN, (91, n}\=cβ<n (for all β < K), then

would provide a model o f Γ u { π i ^ } . But this is impossible and our claim is thus
established.

At this point, we consider W and SPΐ", of vocabulary τ' and τ", respectively,
exactly as in the final part of the proof of Theorem 1.3, where τ' = τm u τ 0 and
τ 0 = {Pβ}β<κ, and τ" = τ 0 u {c}. Using the assumed finite vocabulary property
of ~ , we must have that W \ τ 0 ~ SR" \ τ 0 . By the Robinson property of ~ , there
is D with £ Is τ' - $R' and T) \τ" ~ SR". In particular, W, £ 1= -iP^c, for
every β < K, so that c15 is a strict upper bound for the set {c*}β<κ. In definitive,
X) Γ Tga ~ SOί is counterexample to our claim. Having thus obtained a contra-
diction, we conclude the proof of the theorem. D

3.3 Corollary. Let ~ be a Robinson equivalence relation with the finite vocabulary
property. For a set /, let <£ = ^{Q!)iSι be a logic with =# coarser than ~ . Then
$£ is compact.

Proof. The proof follows immediately from Theorem 3.2. D

The following corollary is a "unique representability" result:

3.4 Corollary. Let ~ be a bounded Robinson equivalence relation. Then there is at
most one (up to equivalence) logic !£ = ^(Ql)iei such that =# = ~ . Furthermore,
if any such <£ exists, then ££ is compact and has the interpolation property.

Proof. Let £' = &(Qj)jej be such that =#, = =<? = ~. Observe that - neces-
sarily has the finite vocabulary property. Also, / and J may be assumed to be sets,
for ~ is bounded. For arbitrary φ in i f [τ φ ], φ has the same models as

' Ψ

Using Theorem 3.2 and noting that Th^(2l) is a set, we see that for every 91 N ^ φ
there is φm e Th^(2I) such that M o d ^ i / ^ ) c Mod^ φ. Applying Theorem 3.2 to
"Ίφ, there exist 91^ . . . , 9ϊn such that φ has the same models as φ 511 v v φ^n.
Therefore, φ is equivalent to some sentence in if'. Finally, the fact that i f is com-
pact and has the interpolation property now follows from Theorem 1.3 and
Corollary 1.4 (recall that / and J are sets). D

3.5 Corollary. Up to equivalence, first-order logic is the only logic $£ — <&(Qι)iei
such that =# = = . •

For an alternative proof of Corollary 3.5, see Theorem ΠI.2.1.4. Observe also
that the (generalized downward) Lόwenheim-Skolem theorem coupled with
Lindstrom's theorem (see Theorem III. 1.1.4) implies that ifωω is the only countably
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compact logic if with =# = =. The point of Corollary 3.5 is that = uniquely
characterizes £fωω among all logics if = ^(Qι)ieI.

Corollary 3.4 shows that at most one logic <£ exists with =^ = ~, whenever ~
is a bounded Robinson equivalence relation. The problem of whether at least one
such if exists will be settled in the remainder of this section.

3.6 Notational Convention. If φ is a sentence in if of vocabulary τ u {cl9..., cn}
with cl9...,cnφτ, then for 91 e Str(τ) we define the set φ® by

<PΆ

 dTf ftfli> * *' ^ ) e ^ π | < 9 1 , fll,..., an} \=<? φ).

3.7 Lemma. Let <£ = ^(Q!)iei be a logic such that =# is coarser than a Robinson
equivalence relation ~. Given 91, 23 e Str(τ) with 91 ~ S,

/eί R be a new n-ary relation symbol and let structures 9l+, 93 + e Str(τ u [R]) be
defined by 9I+ = <9I, ̂  + > and 95+ = <95, R®'), where R*+ = φ* and R*+ = φ®.

Proof. Let K1? R2 be new n-ary relation symbols, and let p1 be the renaming on
τ u {î } which maps R into # ! and is equal to the identity on τ. Let p 2 similarly,
map R into R 2. Let p x(9I+) and p 2 (® + ) be the correspondingly renamed structures
(see Definition IL1.1.1). By the assumed Robinson property of ~ , there exists
91 e Str(τ u {Rl9 R2}) such that

(1) S R Γ τ u { R 1 } - p 1 ( « I + ) and 91 [τ u {R2}

Therefore, we have

(2) 3K, P!(9i+) μ ^ Vc l 9..., cπ(φ ^ Λ l C l , . . . , c j , and

ϊl, p2(95 + ) Ks, Vc l 9 . . ., cn(φ ^> R2cu . . . , cn\

whence R* = Kf. Now using (1) and the renaming property of ~ we get

(3) M + - p Γ 1 ( 9 l Γ τ u { l ί 1 } ) = p 2 - 1 ( 9 i r τ u { J l 2 } ) - β + . D

3.8 CoroUary. Let <£' = ^(Qι)ieI and S£" = i f ( β j ) j e J , where I n J = 0 , be
logics such that =#, and =#» are both coarser than a Robinson equivalence relation
~. Let ££ = ^(Q^keiuj Then =# is coarser than ~.

Proof. Let 91, 93 e Str(τ) with 91 ~ ©. We must prove that 91 \=<? φ iff S Ks? Φ»
for every φ in 5£. To this purpose, it suffices to show that for every ^ in if of vo-
cabulary τ u {cl9..., cn) we have <9l, ψ*) ~ <93, ̂ ®>, as structures of vocabulary
τ u {R} (recall the notational convention (3.6) and the notation of Lemma 3.7). We
proceed by induction on the complexity (quantifier rank) of φ. The only nontrivial
step is when, say,

Φ = f Q'XQXU -->Xm Φ θ ( ^ θ λ Φ l ( ^ l X > Φm(^m) f θ Γ SOme ί G /.
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By the induction hypothesis, we have

<9I, φl φl . . . , φ*> ~ <», φl φ?, . •., φl\

as structures of vocabulary {Ro, Ru . . . , Rm} u τ. By Lemma 3.7, after noting that

t,..., xmRo*o#i*i> > #m^m is a sentence in <£', we have

as structures of vocabulary τ u {R0>*i» >R

m>R} Finally, by the reduct property
of ~, we have the desired conclusion. D

3.9 Definition. We say that a regular equivalence relation ~ is separable by quanti-
fiers iff whenever τ ,̂ = τ s and not-9t ~ 95, then there is a quantifier Q such that
= ^ ( Q ) is coarser than ~, and 91 Φ#iQ) 95.

Notice that if ~ is representable as ~ = = ^ for i f = ^?(Qi)ieI, then ~ is
separable by quantifiers. The next theorem shows that separability is not only
necessary, but also sufficient for the representability of ~, provided ~ has the
Robinson property and is bounded.

3.10 Theorem. Let ~ be an arbitrary bounded Robinson equivalence relation. Let
= S£{Q\ =&(Q) is coarser than ~}. Then we have:

(i) if* is the strongest logic i f of the form i f = i f ( β ' ) i e / such that =<? is
coarser than ~.

(ii) The identity ~ = =#* holds iff ~ is separable by quantifiers. If this is the
case, then Jίf* is uniquely determined by ~ (up to equivalence) and is a
compact logic with the interpolation property.

Proof. The assertion in (i) is immediate from Corollary 3.8. As for (ii) clearly, if ~
is separable by quantifiers, then ~ is coarser than =#*. Hence, ~ = =^>*. Con-
versely, if ~ = =^*, not-9ϊ ^ ©, and τ̂ , = τ β , then 91 #^*95 so that 911=^* φ
and S N= *̂-i φ for some φ in J^*. Let Qφ be the quantifier given by the class
Moά<?*(φ). Then ^(Qψ) < if* by the regularity properties of logics generated by
quantifiers (see Section Π.4.1), hence =^Qψ) is coarser tjhan ^ and 91 # ^ ( Q ^ ) ®
Therefore, ~ is separable by quantifiers. To conclude the proof, the uniqueness of
J^* follows from Corollary 3.4, while the compactness and interpolation properties
of ^* follow from Theorem 1.3 and Corollary 1.4 upon noting that since ~ is
bounded, then S£*\τ\ is a set for all τ. D

Can the duality given by (Corollary 3.4 and) Theorem 3.10 be extended
beyond the realm of logics and equivalence relations with the Robinson property?
The answer is partially affirmative. As a matter of fact, using the equivalence
between JEP and compactness (see Chapter XVIII), we have that the bijection given
by Theorem 3.10 can be extended to an injection from compact logics into equiv-
alence relations via the following generalization of Corollary 3.4:

3.11 Theorem. Let ~ be an arbitrary regular equivalence relation such that
~ = =<z,*for some logic <£* = ^((Σ\^ι, where I is a set. If <£* is compact (or,
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equίvalently, if 5£* has the JEP) then J£* is uniquely determined by ~ up to equiva-
lence.

Proof. First observe that the JEP is indeed equivalent to compactness (see Examples
4.2 below and Theorem XVIII.3.3.3). We now prove the following lemma, which
is of independent interest:

3.11.1 Lemma. Let X' = ^(QJ)jeJ, &" = &(Qk)keκ, J, K disjoint sets; let <£ be
the weakest logic closed under existential quantification and boolean operations with
<£><£' and <£> <£". If =#. is finer than =#„, then =<? = =#..

Proof of Lemma. Assume =# Φ =#,, so that for some 9JI, 91 with 30Ϊ =#, Jl, we
have 90t \=# φ and 91 \=# ~i φ for some φ in 5£. It is easy to see that φ can be
written in the form

Ψ = 6i>Ί> > Qryr B(ΨΊ, >-,φ'P, φ'ί, , φ"q\

where Qn G {3, V} for each n = 1, . . . , r, B is a boolean function, that is, a finite
composition of Λ , V , Ί , each φ\ is a sentence in if' and each φ'j is in <£". Let
Rl9 . . . , Rp be new r-ary relation symbols, and let W+ = <9M, Rl9..., Rp},
9l+ = <«, Rl9..., Rp) be given by

Riy)> w i t h y = ^ - ^

Let sentence δ in <£" be defined by δ = f Qxyl9..., βr>;r B ( R l 9 . . . , Rp, φ"u . . . , φ'£9

and observe that these substitutions are legitimate and 9W+ \=#»δ, 9l+ \=#», ~\δ.
Since =#. is finer than =#„ and 9W+ _̂̂ » 91+, then, for some sentence χ in Jέ?', we
have W+ \=#. χ and 91+ \=#. ~iχ. Define sentence θ in S£' by

that is, θ is obtained from χ by replacing each occurrence of Rt in χ by φ\. Again,
these substitutions are allowed in J2". In conclusion, recalling (1), we have
SR+ \=jp. θ and 5R+ N^ ' ~\θ. Whence 9W |=^, 0 and 91 [=#. ~ΊΘ, which contradicts

3.11.2 End of Proof of Theorem 3.11. Assume that both if* and if" = -S?(βk)keκ
have =2* = =#» = ~ . Let JS? be as in Lemma 3.11.1 (with regard to if* and
if"). Using this lemma twice, we get =# = ~ . Now, «Sf[τ] is a set for every τ, as
can be seen by examining the form of any sentence φ in 5£, according to the proof
of Lemma 3.11.1. Moreover, 5£ is closed under relativizations to boolean combina-
tions of atomic sentences, and functions can be replaced by relations in ^£. Now the
fact that ^£ has the joint embedding property is enough to prove that ^£ is compact
(our assertions in Remarks 1.5 can be extended to the present case, to the effect
that the results in Theorem XVIΠ.3.3.3 can be applied to ^). By a familiar finite
cover argument such as the one given in Theorem III. 1.1.5 we finally conclude that
^, <£\ and ^ are equivalent. D

3.12 Corollary. Let <£ be an arbitrary logic with & < Δ i f (ρ c f ω ) . Then =#, = =<?

iff !£' is equivalent to t£.
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Proof. The Δ-closure of any compact logic is still compact (see Proposition Π.7.2.5),

and sublogics of compact logics are compact; J5?(βcfω) is compact (see Theorem

II.3.2.3). D

3.13 Notes and Remarks. Regular equivalence relations in abstract model theory
were introduced in Nadel [1980a]. In Theorem 7 of his paper, we proves that
whenever ~ = =<?o, for some logic i f 0 (i) if ~ is bounded, then there is a strongest
logic <£ with ~ = =# and which is closed under negation, conjunction and dis-
junction. By constrast, he also shows (ii) that no such strongest i f exists if the
transitive closures <3c, e> and <y, e> of any two sets x Φ y are never ~-equivalent.
NadeΓs logics are systems of sentences obeying only the basic axioms given in
Definition II. 1.1.1. He also has a number of results about logics closed under
Scott sentences, that is, logics $£ in which each = ̂ -equivalence class of structures
is E C ^ .

Corollaries 3.4 and 3.5, and the duality theorem (Theorem 3.10) of this section
were orginally proved in Mundici [1982a]. The assumption used there that there
are no uncountable measurable cardinals is unnecessary and was subsequently
dropped (see Mundici [1982e, Section 1.1]). In Mundici [1982c, II and 198?b],
Theorem 3.10 is extended to logics and equivalence relations for enriched struc-
tures (see Section 2). For instance, it is proved that topological, monotone, uniform
logics are uniquely determined by their own elementary equivalence relations.
The proof of Theorem 3.10 given here depends on Theorem 3.2, Corollary 3.3,
Lemma 3.7 and Corollary 3.8, which were given by Flum in a private communica-
tion. Theorem 3.11 is due to Lipparini [1982].

4. Duality Between Embedding and
Equivalence Relations

The notion of if-(elementary) equivalence is generalized in Definition 3.1; the
notion of if-(elementary) embedding is generalized in the following:

4.1 Definition. An arbitrary binary relation -• on the class of all structures is called
an (abstract) embedding relation iff -• satisfies the following axioms (for every two
structures 9K, 9t):

vocabulary: 9R -* 91 implies τm^ τn;

Γ r o ;
renaming: 901 -> 91 implies 9ΆP -• 9lp for any renaming p of τ«
reduct: 9W -> 91 implies Wl [ τ -• 91 {τ for all τ c τm;
isomorphism: SOΪ £ 91 implies 9Dΐ -• 91;
expressiveness: 9K -> 91 implies 9KM = 9i+ for some expansion 91+ of 91 [τm;
transitivity: 9K -• 91 and 91 -• 95 implies 9K -• 93.
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Recall that 9JlM denotes the diagram expansion of 301 An embedding relation -•
has the expanded amalgamation property, denoted by A P + (resp., the amalgamation
property, denoted by AP) iff whenever 21 <- 91 -• 93 and τ^nτss = τ^ (resp.,
τ?ί = τ® = %),then 2ί ^ 9K ~̂ 93 for some structure SOΪ. Given an embedding -•
and an equivalence relation ~, we say that the pair (~, ->) has the joint embedding
property, denoted as before by JEP, iff whenever 91 ~ 93 then 91 -> SDΐ <- 33 for
some 30Ϊ. When ~ = = ̂  this agrees with Section 1. If ~ is a regular equivalence
relation (on the class of all structures), then ~ generates an embedding relation ->
by stipulating that 91 -> 23 iff τ s 2 % and 91^ ~ S + for some expansion 93+ of
93 Γ τ^. We denote by ~ * the embedding relation generated by ~ . Conversely, any
embedding relation -• generates a regular equivalence relation ~ by stipulating
that 91 ~ S iff Tg, = τ<B and there is a finite path:

with τ Λ o = = τW κ and — being either -> or <-, depending on i (i = 1, . . . , k).
We denote by ->* the regular equivalence relation generated by ->.

4.2 Examples, (a) If ^f is a logic, define ->^ by stipulating that 91 -># 93 iff τ^ Ώ τm

and 91,4 = ̂  S + for some expansion © + of 93 [ τ^. Then -• # is an embedding
relation, called <£-embedding. Observe that ->^ = (=^f. For the particu-
lar case S£ = &ωω, we have that 91 - ^ 93 iff 91 < 93 {%; that is, 91 is
elementarily embedded into 93 Γτsι Returning now to the general case,
assume that -• = ->#, for ££ — J?(Qι)ieI, where / is a set. Let ~ = =^(so
that -• = ^ * ) . Then <£ is compact iff -> has the AP, iff the pair ( ^ , ^ )
has the JEP. For a proof of this fact see Theorem XVIΠ.3.3.3. The above
equivalences—originally proved in Mundici [1982b] (compactness =
JEP) and, independently, in Makowsky-Shelah [1983] (compactness =
AP = JEP)—enable us to regard the notion of compactness as an algebraic
property of embedding or equivalence relations in much the same way
as compactness + interpolation is algebraized via the Robinson property.
The latter, in turn, has an equivalent counterpart for embeddings in terms of
the AP + , as will be shown in Theorem 4.8.

(b) If J^7 is a logic, define -+% by stipulating that 91 ->J> © iff τ β 2 % and
91 * ΞΞ^93" for some expansion 93" of 93 \τ%, where 91 * denotes the
complete expansion of 91 (see Section XVIII. 1.2). Then -*% is an embedding
relation, called the ^-complete embedding relation. In case i f = &ωω it is
well known that -*% has AP + . Indeed, ( = , ->J>) has the JEP; also,

(->£)• = -

We now begin consideration of the (preservation) properties of the map *.

4.3 Proposition. Let ~ be a regular equivalence relation. Let -> = ~*, and
« = -•*. Then « is finer than ~.
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Proof. First observe that if τ^ = % and 91 ~ * 25 then 91 ~ 23. As a matter of fact,
91 ~* 95 means that 91^ ~ 95+, for some expansion 95+ of 95 Γ ^ ( = 95, in the
present case). Therefore, by the reduct axiom, 91 = 91^ [τ^ ~ 95+ Γτ^ = 23.
Now, to conclude the proof of our proposition, if $R « 91, then by definition there
is a path

with τ ^ = = τs&κ and -r = -• or — = <- by the above initial remark we have

that 9l0 ~ ~ 9lk, as required. D

4.4 Proposition. Let -• be an embedding relation with AP + . Let ~ = -•*; ί/ien w^

(i) ίfte pα/r (->*, -•) has the JEP;
(ii) ~ is a regular Robinson equivalence relation.

Proof. For (i), we assume 9JI ~ 91, and let τ = τm = τ^. By definition there is a
path:

with Tgj. = τ, for each i = 0 , . . . , π, and — being either -• or <-. If n = 1, then let

ϊ> = 91 or T) = 9ER, according to whether — = -• or — = <- is the case; then

SOΪ -• I) <- 91, and we are done. Proceeding now by induction on n, we obtain from

Now, if — = <-, then by transitivity we see that SOΪ ̂  S ^- 9i. If — = -», then by
the A P + (actually only the AP is needed here) we have

hence SOΪ -• D <- 91, as required.
As for (ii), we see that the regularity of -•* is an immediate consequence of

Definition 4.1. Let TO Γ τ ^ 91 [ τ, where 1 = 1 ^ 0 % . From (i) above and the
regularity properties of ~, we must have, for some T) e Str(τ), that

By repeated application of the AP + , we obtain, for some 91 e Str(τOT), 95 e Str(τ^)
a n d β e S t r ^ u % ) :

m -> 91 <- T) -> » *- 9i
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We thus conclude that 9Jί -• 6 [ τ ^ and 91 -• 8 p %. By definition of ~ , we finally
obtain that 9W ~ S p τ ^ and 91 ~ ® p τ^, thus showing that ~ has the Robinson
property. D

4.5 Proposition. Let ~ be a regular Robinson equivalence relation. Let -• = ~*.
Then we have:

(i) the pair (~, ~*) Λαs the JEP;
(ii) -> is an embedding relation with the AP + .

Proof. If SDΐ ~ % let SOΪM and 9lN be obtained by using different constants so that
τ = τm = τ9i = τanM

 n % N

 a n c * ^ M Γ τ ~ ^ Γ τ Using the Robinson property of
~, we let 21 be such that 91 [ τ^M ~ SRM and 91 [ τmN - 9lN. By definition of -•,
9JΪ -• 91 <- 91 Turning now to (ii) Assume SDΪ <- 95 -> 91 with % n τ 9 , = τ ί B. By the
initial remark in the proof of Proposition 4.3 we automatically have that
9 0 Ϊ Γ τ s B ~ ® ~ 9 ί Γ τ s If different constants are used in the diagram expansions
of SDt and % we also have that SDΪM [ % ~ S ~ 9IN p τ β , and, by the Robinson
property of ~ , there is some X) such that T) p τW w ~ 9lN and I) p τO T M ~ $RM.
From the definition of -•, we obtain SDΪ -* T) <- 91, which establishes the desired
A P + property for ->. D

4.6 Proposition, (i) // ~ is α regular Robinson equivalence relation then ( ~ * ) * = ~

(ii) // ^ i and ~ 2

 a r e different regular Robinson equivalence relations, then
~\ is different from ~f.

Proo/. For (i), we observe that in view of Proposition-4.3, it suffices to show that ~
is finer than - * * . Now, if 9Λ - 91, then for some D we have SER -• D <- 91, by
Proposition 4.5(i), where -• = ~*. From the definition of ->*, we thus have
9JI ̂ * * 91, as required.

Turning now to (ii), we assume SDΪ ~ x 91 and not-StR ^ 2 ^ Let -^x = ^ ? and
->2 = ^*. We also that assume ->! = ->2 (absurdum hypothesis). By Proposition
4.5(i), for some D, we have SCR - ^ I) ^ 91. Hence, 9K ^ 2 T) 2<- 91, whence it
follows that 91 ^ 2 SOΪ (by the first remark in Proposition 4.3). This contradicts our
assumption. D

4.7 Remark. The counterpart of Proposition 4.6(i) and (ii) does not hold for
embeddings with the AP + in place of Robinson equivalence relations. For ex-
ample, the complete embedding relation -*% arising from <£ = Jέfωω (see Example
4.2(b)) generates = , and = in turn generates ->#, which is different from ->%. To
obtain the analogue of Proposition 4.6, we must restrict attention to involutive
embedding relations -• with A P + (where -* is involutive iff -• = -»**). An
example of involutive embedding relation with A P + is - ^ ^ ω ω . Indeed, we have
the following quite general fact:

4.8 Theorem. Let 01 be the family of all regular Robinson equivalence relations; let
si be the family of all involutive embedding relations with AP + . Then * maps s/ one-
one onto ^?, and vice versa. Furthermore, ** is the identity function on si\J 8%.
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Proof. Map * sends elements of 0t into elements of si by Proposition 4.5(ii), and
by noting that (~*)** = (~**)* = ~*, see Proposition 4.6(i). Also, * is injective
from 0t into si by Proposition 4.6(ii). Map * sends elements of si into elements of
01 by Proposition 4.4(ii) and is injective from si into 01. As a matter of fact, if
->! and ->2

 a r e i n ^ a n d -** = -**> then also -•?* = ->f *. Whence it follows that
->! = ->2> by definition of J / . Map ** is the identity on si by definition, and is
the identity on 01 by Proposition 4.6(i). Finally, * maps si onto 01, and 0ί onto si,
because every element in si u 01 is the *-image of its own *-image. D

From Example 4.2(a) we now recall the definition of i?ωω-embedding, ->^ ω ω

in terms of < :

4.9 Theorem. First-order logic is the only (up to equivalence) logic J£ = ^(Qι)ieI

such that -*# = -> f̂ωω

Proof. Assume $£ is a logic with ->_̂  = ->&„„. By definition of - ^ , we have that
=*, = =*. Hence =%* = =** = = (the fact that = * * = = is a consequence of
Proposition 4.6(i), since = has the Robinson property). By Proposition 4.3, = ^ is
coarser than =%* = = . Conversely, =# is finer than = , as <£ > <£ωω. Therefore,
we have =# = =. We now apply Corollary 3.5 to conclude that 5£ is equivalent
to first-order logic. D

4.10 Remarks. Abstract embedding relations were introduced in Mundici
[1982d, 1983a and 198?a]. The results of the present section are extracted from the
last paper. Notice that if we delete the expressiveness axiom from both definitions
of ~ and ->, the duality between (the resulting, weaker) embedding and equiva-
lence relations can still be shown to hold exactly as in Theorem 4.8. In Mundici
[198?a], Theorem 4.8 is partially extended, replacing the Robinson (or the AP + )
assumption by the weaker requirement that (~, ~*) has the JEP.

5. Sequences of Finite Partitions,
Global and Local Back-and-Forth
Games

The separability assumption in Theorem 3.10(ii) can be neglected in the important
case of equivalence relations associated with countably generated compact logics
with interpolation. In general, countably generated logics are given by sequences of
finite partitions on structures; and these are, in turn, related to the back-and-forth
games for <£-elementary equivalence. Throughout this section, the vocabularies
will only contain relation and constant symbols, for the sake of simplicity.

5.1 Definition. A back-and-forth system is a function ^ assigning to every finite
vocabulary τ a sequence {^"}π<ω, with ~" a finite partition on Str(τ), that is, an
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equivalence relation with finitely many classes, coarser than isomorphism and
satisfying the following conditions, for every 31, 33 e Str(τ):

renaming: 31 ~" 95 implies 3IP ~" 95P for any p: τ -• τ';
reduct: 31 ~J 95 implies 3ί Γ τ' ~" 95 Γ τ' for any τ' c τ ;

atomic: 31 ~° 95 iff 31 and 23 satisfy the same atomic sentences of vo-
cabulary τ;

diagram: 31 ~ " + * 95 implies Va e ^ 3b e B with <3Ϊ, a> ~" <95, 6>, where
τ' is obtained from τ by adding one constant symbol;

substructure: 31 ~" 33 implies

whenever α(x) is a boolean combination of atomic sentences of
vocabulary τα ^ τ u {x}, xφτ. SΆ\Ar is the substructure of 31
generated by A' c A

Note that the diagram condition together with the reduct axiom imply that
~n

τ

 + ί is finer than ~J.

5.2 Examples. In Theorem 5.3 we will see that every count ably generated logic
S£ = J?(Ql)i<(O determines a back-and-forth system ~, if we let 31 ~ " © mean that
τ^ = TJB = τ finite, and 31 and 3? satisfy the same sentences of Jέf of vocabulary τ
and quantifier rank < n. In the particular case i f = ifωω, we get the Fraϊssέ-
Ehrenfeucht back-and-forth system, which can be equivalently obtained by
writing "iff" instead of "implies" in the diagram axiom above; and, if this is done,
the substructure axiom becomes superfluous. Back-and-forth systems are a natural
generalization of the familiar games for if-equivalence. For the case <£ = J?ωω,
see Section Π.4.2 and Section IX.4. For many other Jδf's the reader should consult
Weese [1980], Caicedo [1979], Makowsky-Shelah [1981], Flum-Ziegler [1980].
In a final subsection we shall relate the back-and-forth games existing in the lit-
erature to our present back-and-forth systems. Given a logic if, the question of the
existence and uniqueness of a back and forth system characterizing =^ arises.
In Theorem 5.4 we will use the Robinsion assumption to establish a one-one
correspondence between back-and-forth systems and countably generated logics.
Before defining the proper uniqueness notion for back-and-forth systems, however,
let us remark that any such system ^ generates a bounded regular equivalence
relation ~ on the class of all structures by letting 31 ~ 95 mean that τ^ = τ^ and
3Ϊ Γ τ ~" 95 Γ τ for every finite τ c= τ^ and all n < ω. Now, given two back-and-
forth systems ~! and ~", we say that ~" is finer than ~' iff for every finite τ and
n < ω, there is m < ω such that ~"J" is finer than ~'?. In case ~' is finer than ~"
and vice versa, we say that ~! and ~" are equivalent.

The great generality of the notion of a back-and-forth system is shown by the
following result.

5.3 Theorem. Let $£ bea countably generated logic. Then =# is generated by some
back-and-forth system.
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Proof. Write i f as <&(Qι)i<ω

 a n d assign a rank rt = 2 + i to each Q\ the rank 1
being assigned to 3 and to V. Then the sentences of i f inherit a quantifier rank as
in Definition II.4.2.5. Notice that for any finite τ and n < ω, there are in i f [τ]
only a finite number of pairwise inequivalent sentences with quantifier rank < n.
Define ~" by

SΆ ~" 93 iff τ<a = % = τ, τ finite, and ?l and 95 satisfy the same
sentences of ^[τ] with quantifier rank < n.

Then the equivalence relation ~" on Str(τ) has finitely many equivalence classes
and is coarser than isomorphism. Moreover, the reduct, renaming and atomic
properties follow immediately from the basic closure properties of S£. As to the
diagram axiom, let 31 ~ " + * 93 and aeA; let T = {φl9...,φt} display, without
repetitions of equivalent sentences, the finitely many sentences of i f [τ] having
quantifier rank < n, and which are satisfied by <2l, α>. Since <2I, a} \=^>φ1 A
Λ φt9 then 21 \=<? 3a(φί A Λ φt); since the quantifier rank of this latter sen-
tence is < n + 1, then by assumption, 93 is among its models. Hence <33, b} \=#>
φγ A - Λ φt, for some beB, whence <93, b} ~" <2I, a}, thus establishing the
diagram property of ~ (τ' is given by τ plus one constant). Concerning the sub-
structure axiom, let 31 ~" 93. Assume further that φ e $£\τ\ is an arbitrary sen-
tence with quantifier rank < n, such that 9ΪO = 9Ϊ| {a e A | <9l, a} \= oc(a)} \=&φ.
It then follows that 91 N ^ φ W α ( * ) } . But the latter sentence has the same quantifier
rank as φ: to see this, we first note that τ-closure amounts to saying that all the
constants of τ satisfy α, and this can be expressed by an atomic sentence in light of
the finiteness of τ and of our assumption that τ has no function symbols. Moreover,
as ^£ is generated by quantifiers, we see that writing down φ { x | α ( x ) } involves the
conjunction of α with the sentences in the scope of Qι (if φ is of the form Qιχ).
Thus, the quantifier rank is not increased; in case φ is of the form ~iχ, or χ v φ,
or χ A φ, the quantifier rank of the relativization to α is still not increased. In
definitive, φ { x | α ( * ) } has quantifier rank < n. Hence, by assumption, 93 1= % φ{*lα(x» so
that 93O = 93|{bef*|<93, b} \= α(b)} ]=# φ. Since φ is arbitrary, we have proven
that 9l0 ^ " 93O, which yields the substructure property of ^ . Finally, it is clear that
^ generates =#, for two structures 501 and 91 are if-equivalent iff they satisfy the
same sentences of quantifier rank < n and vocabulary τ for all n < ω and all
finite τ c τ ^ = τm. D

When ~ has the Robinson property we have a strong converse of the above
theorem, as follows.

5.4 Theorem. For ~ an arbitrary Robinson equivalence relation the following are
equivalent:

(i) ~ = =#for some countably generated logic S£\
(ii) ~ = =y for a unique (up to equivalence) countably generated logic 5£\

further, !£ is compact and has the interpolation property;
(iii) ~ is generated by some back-and-forth system;
(iv) ~ is generated by precisely one (up to equivalence) back-and-forth system.
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Proof. The implications (ii) => (i), and (iv) => (iii) are trivial. The implication
(i) => (iii) has been shown in Theorem 5.3. In order to prove that (iii) implies (ii)
we proceed as follows: In the light of Theorem 1.3 and Corollary 3.4, it suffices to
prove that (iii) implies (i). To this purpose, let ~ be a back-and-forth system gen-
erating ~.

Define [if, N^] by

(*) φ G ££{τ\ iff φ is a union of equivalence classes of ~" for some
n < ω and some (necessarily unique and finite)
vocabulary τφ ^ τ; and,

($) ®t=j?φ iff ( p e ^ M and W[τφeφ.

Then clearly if satisfies the isomorphism, (finite) occurrence, renaming, reduct
axioms for logics (the reader is referred to Definition II. 1.1.1), and if contains
the classes of models of atomic sentences and is closed under the boolean opera-
tions. To prove that if is closed under 3, we assume that φ is a union of equivalence
classes of ~" . It now suffices to prove that 3cφ is also a union of equivalence
classes of ~" + \ where τ = τφ\{c}. Here we pose a denial (absurdum hypothesis) so
that for some 91 and 93, with 91 ~" +1 93 we have that 91 e 3cφ and 93 φ 3cφ. Now
<9l, a)eφ for some aeA. The assumed diagram property of ~ assures us that
<93, b} ~"φ <9l, a} for some b e B. Hence <93, b} G φ, whence we have that
93 e 3cφ—a contradiction. To prove that ^ is closed under relativization, we
first show that S£ is closed under relativization to any boolean combination α of
atomic sentences. Assume then that φ is a union of equivalence classes of ~J , then
it suffices to show that φ {x'α(x)} is also a union of equivalence classes of ~", with
τ = τφ u (τα\{x}). Again, we pose a denial (absurdum hypothesis) so that for
some 91 and 93, with 91 ~; 93, we have 91 e φ{φ{x)) and 93 φ φ { x | α ( x ) }. By definition of
relativization, 9I0Gφ and 930<£φ, where 9ί0 = 911 {αG ,4 |<9I, α> N α(α)} \τφ,
and 93O = 93|{bG#|<93, b} \= α(fc)} [τφ. In contrast, however, the substructure
together with the reduct axiom for ~ are to the effect that 9I0 ~n

τ 93O; hence,
9ΪO G φ iff 93O G φ. But this is a contradiction, which proves that 5£ is closed under
relativization to α, as required. By conditions (*) and (*), =# is coarser than ~.
On the other hand, if τ̂ , = τ s and not-9l ~ 93, then, since ~ is generated by ~,
there is a finite i g ^ and n < ω such that not-9I Γ τ ^" 93 ϊ τ. Thus, there is a
<p G t£\τ\ such that 91 N=̂  φ and 93 1=^ ~ι φ, whence it follows that 91 φ# 93 and
= ^ = ~. We now prove that 1£ is countably generated. Hence, let ψ be an
if [τ]-sentence, with τ = {Rί9... 9 Rn} (without constants for the sake of notational
simplicity). Also, let Qψ be the quantifier given by Mod^t/O, and let θ be the sen-
tence of if+ = ^(QΦ) u ^ given by

θ dTf Q*XθXl> ">Xn <Pθ(*θ)> <Pl(*l)> » <Pn(Xn),

where the φ,. are arbitrary sentences in 5£. By definition of Qφ, we have SCR \=#+ θ
iff 9K has an expansion 91 = [501, <s, Rl9..., #„>,/] w i t h the following properties:
s is a new sort, <s, /?!,. . . , Kw> f=^ ̂ ,/maρs sort 5 one-one onto φ^ (recalling
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Notational Convention 3.6), and 91 \=# η A δ, where

ΐ = l

η = f\ VXi((Pi(Xi) -> the coordinates of xt satisfy φ0).
i=l

To conform to our stipulation that function symbols are absent in this section,
we regard / as a binary relation symbol. The above shows that Mod^+(0) is
RPC^p (see Definition IL3.1.1). Similarly, we prove that Mod^ + (~i θ) is also R P C ^ .
Now Corollary 1.6 and Theorem 1.3 can be applied to if, since if is closed under
relativization to atomic sentences (and there are no function symbols whatsoever).
Therefore, $£ is compact; whence the Robinson property also implies that i f obeys
Craig's interpolation theorem (see Corollary 1.4), and so, a fortiori, i f is Δ-closed
(see Section II.3.1). In particular, θ must be a sentence of if, which shows that
application of Qψ in ^£ does not lead beyond !£\ in short, J^iQφ) < <&. Observe
also that as a Δ-closed logic !£ is closed under full relativization and substitution.
Now let φ range over all sentences of S£\τ\. Because of the finiteness of each parti-
tion ~", there exists a countable set Z τ of quantifiers such that every sentence of
i f [ τ ] can be written down using only the quantifiers in Z τ . By the renaming
and reduct properties of ~ , we are now able to exhibit a countable set Z of quanti-
fiers such that every sentence of !£ (no matter the τ involved) can be expressed
using only the quantifiers in Z. In other words, ^£ has been shown to be countably
generated, as was required to complete the proof that (iii) implies (ii).

Finally, we must prove that (iii) implies (iv). Assume that both ~ ' and ~" are
back-and-forth systems generating ~ . Observe first of all that ~ is a bounded
Robinson equivalence relation. Now, as in the above proof of (iii) => (ii), let !£' and
<£" arise from ~! and ~", respectively, via definitions (*) and (*). By Corollary 3.4

if' and <£" are equivalent, since = #, = = #.. = ~. Now let ε be an equivalence
class of ~'J. By clause (*), ε is also a sentence of 3?'[τ] and is (equivalent to) a
sentence of ££"\τ\ Whence it follows that ε is a union of equivalence classes of
^ ' 7 ε , for some mε < ω. Letting ε range over all the equivalence classes of ~'?>
there will be a fixed m < ω providing an upper bound for the totality of the mε's.
Indeed, ^ ' " has only finitely many equivalence classes. Therefore, ~"™ is finer
than ^ ' " . Reversing the roles of ~' and ^", we finally establish that ^ ' and ~"
are equivalent. This completes the proof of our theorem. D

5.5 Corollary. Elementary equivalence is generated by a unique (up to equivalence)
back-and-forth system, namely the Fraϊssέ-Ehrenfeucht system of Example 5.2. D

5.6 Remarks. Abstract back-and-forth systems were introduced in Mundici
[1982e], where Theorem 5.4 is also proven. We might wonder whether the above
duality between countably generated logics and systems of sequences of finite
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partitions can be extended in the absence of the Robinson property. Lipparini
[1982] considers special back-and-forth systems satisfying the following addi-
tional condition:

Expansion Axiom: For any finite τ, c = (cl9..., cr\ Rφτ an r-ary relation
symbol, φ a union of components of the partition ^n

τu{t}, if
91 ~?+n 23, then <9l, Λ*> ~ £ , w <93, tf*>, where, e.g., R* =
{aeAr\(%a>eφ}.

We then have the following converse of Theorem 5.3, namely

5.7 Theorem. For every equivalence relation ~ we have that ~ = =# for some
countably generated logic <£ iff ~ is generated by some back-and-forth system with
the expansion property.

Proof. See Lipparini [1982]. D

Using Theorems 3.11 and 5.7, Theorem 5.4 can be extended to yield a bijection
between countably generated compact logics and back-and-forth systems with
the expansion property such that (~, ~*) has the JEP (where ~ is the equivalence
relation generated by ~, and ~ * is the embedding relation generated by ~, see
Definition 4.1). Thus the expansion property seems to be the right counterpart of
the substitution axiom for logics in all general contexts where the latter property
is not taken care of by the Robinson property.

5.8 Global Versus Local Versions of Back-and-Forth Games. The celebrated
Fraϊsse-Ehrenfeucht game G for elementary equivalence determines a sequence of
finite partitions on Str(τ), for each finite τ, as was remarked in Example 5.2. For
more details the reader should consult Lemma Π.4.2.6, where each partition is
related to (the models of) the so-called Scott-Vaught-Hintikka sentences of the
corresponding quantifier rank. We may regard this system of partitions as a
global version of G, since each partition is defined over the whole of Str(τ). On the
other hand, given structures 91 and 23, G also determines a game G(9I, 95) or,
equivalently, a decreasing sequence of sets of partial isomorphisms from 91 into 23
(see also Section IX.4 for further information on this matter), and this may be
regarded as a local version of G. Passing now to an arbitrary logic i?(β ι)i<ω>
we may fruitfully use the notion of back-and-forth system (see Definition 5.1)
to study the global aspects of back-and-forth games in the general case. For
example, Theorem 5.4 or Theorem 5.7 might be the starting point for investigating
the abstract model-theoretical counterparts of the notion of subformula.

Is there a corresponding local version of back-and-forth game having the same
degree of generality? To give an affirmative answer to this question we must first
make the latter precise. We will restrict attention to J?(Q) with Q an s-ary quanti-
fier. Q determines a function which assigns to each structure 91 a set Q9I c P(AS) of
s-ary relations on A; and (recalling Notational Convention 3.6) we have the fami-
liar clause:

iff <pβ
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Now let SI, 95 e Str(τ) with τ finite. We let 4 * be the set of finite words over A,
namely A* = {0} u A u A2 u . Arbitrary words over A will be denoted by
a, x, t, and | a | is the length of an arbitrary word a. Similarly, b, y, u will be arbitrary
words over B, and w, W arbitrary elements of A* u B*. Following Caicedo [1979],
we give the following

5.9 Definition. With the above notation, a back-and-forth game from <Sl, β9ί> to
<33, Q23> is a sequence {~p}p<ω, where each ~p is a partition (i.e. an equivalence
relation) on i * u β* and, for all p < ω, we have

(i) w ~ p W implies \w\ = |w'|

(ϋ) 0 ~ P 0 ;
(iii) a ~pb implies that the assignment α, ι-> bt is a partial isomorphism from 91

into 95 (as structures of vocabulary τ);
(iv) whenever a ~p+s b, there is a map/ : As -• £ s obeying conditions (iv') and

(iv") below:
(iv') ax ~p bf(x) for all x e A\ where ax denotes the juxtaposition of a

and x;
(iv") for any X c Xs, if {r e X s | α ί - p α x for some xeX}eQ% then

{ u e F | f c w - p fcy, for some yef(X)} e Q95;
(v) same as (iv) with the roles of A and B interchanged.

5.10 Theorem. For arbitrary & = S£(Q), 31, 95eStr(τ), τ finite, the following are

equivalent:

(i) 9I^S;
(ii) ί/ẑ rβ is a back-and-forth game from <3l, Q9I> ίo <95, Q95>.

Proo/ See Caicedo [1979, Section 3.5]. D

Actually, Caicedo [1979] proves Theorem 5.10 for the general case $£ =
^(Qι)iei' Indeed, he also gives a back-and-forth characterization of ^ o
using the notion of a back-and-forth game from <Sl, Q ί 3I> ί e / to <95,
The latter is still a sequence { ~p}p< ω of equivalence relations o n i * u β * satisfying,
roughly, the cartesian product of Definition 5.9 and / (see Caicedo [1979, Section
2.1]). Caicedo's (local) equivalence relations on A* u B* generalize back-and-
forth technology for specific quantifiers as developed by Fraϊsse, Ehrenfeucht,
Lipner, Brown, Vinner, Slomson, Krawczyk, Krynicki, Badger, Makowsky,
Shelah, Tulipani, Kaufmann, and others. Weese [1980] proves an analogue of
Theorem 5.10 for sets of monotone quantifiers (see Section Π.4.2). Summing up
the results of this section: Theorem 5.10 yields a map from logics onto (local) back-
and-forth games for sets of quantifiers; with the help of Theorem 5.7 we now have a
map from global onto local versions of back-and-forth games for countably gen-
erated logics.




