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Advanced Topics in
Abstract Model Theory

Abstract model theory is the attempt to systematize the study of logics by studying
the relationships between them and between various of their properties. The
perspective taken in abstract model theory is discussed in Section 2 of Chapter I.
The basic definitions and results of the subject were presented in Part A. Other
results are scattered throughout the book. This final part of the book is devoted to
more advanced topics in abstract model theory.

Chapter XVII views part of our experience with concrete logics in an abstract
light. A concrete logic is presented by describing a class of structures, telling how
the formulas are built up, and how formulas are interpreted in structures. Since
formulas can be viewed as well-founded trees, they can be represented as set-
theoretical objects. Similarly, structures are usually thought of as certain kinds of
set-theoretical objects. Thus, we can think of a logic 5£ as given by two predicates
of sets: "x is a sentence of <£" and "the structure x satisfies the sentence y of if."
Chapter XVII deals with the following general problem: What can we say about
the model-theoretic properties of <£ if we have information about how these
predicates can be defined ? Two forms of definitions are considered, implicit (Section
1) and explicit (the rest). The usual style of the inductive definition of truth is of
the first kind, with its set-theoretical explanation being of the second kind.

When the inductive clauses for a logic S£' can be written down in a logic if, in a
suitable precise sense, one says that i f is adequate to truth in if'. This gives a useful
"effective" relation between logics which, in certain cases, agrees with the relation
S£' < R P C ^£, though not in general. Of special interest are logics which are ade-
quate to truth in themselves.

On the explicit side, one may consider the complexity of the definition of a
logic in terms of the Levy hierarchy of set-theoretic predicates, and in terms of the
strength of the meta-theory T needed for the definitions. Particularly significant
are the cases where the satisfaction relation for i f is Δ2 relative to a set theory T,
which is the same as its being absolute relative to models of T. This insures that
the meaning of a sentence is not sensitive to which universe of set theory is being
considered. Absoluteness has a number of applications to the characterization of
the infinitary logics i ^ , i f OOG> a n d ^σov discussed in Chapters VIII and X. The
discussions of the implicit and explicit approaches in this chapter are largely
independent.
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Chapter XVIII explores the relation between certain compactness, embedding,
and definability properties. Refinements and generalizations of compactness are
presented and treated at the outset. Analogues of various well-known properties
from first-order model theory, such as amalgamation Robinson consistency and
Beth definability are introduced and related to the various notions of compactness.
Striking results emerge, such as the equivalence under certain conditions of full
compactness and an abstract version of amalgamation. Also surprising is the
appearance of large cardinals in both hypotheses and conclusions of many of the
results in this chapter.

Chapter XIX studies the relationship between abstract equivalence relations on
structures and logics. Each logic !£ determines an equivalence relation =^ on
if-structures, that of being if-equivalent. Isomorphic structures are always if-
equivalent. Many properties of !£ can be stated in terms of these equivalence
relations, but it often happens that two quite different logics can give rise to the
same equivalence relation.

The primary emphasis in Chapter XIX is on the relation between the equiva-
lence relations for logics and the Robinson consistency property for logics. In
Chapter I we discussed the relationship between the interpolation property and
the Robinson consistency property. In Chapter XIX quite general results are
obtained in an abstract setting on the relationship between compactness, inter-
polation and the Robinson property. There is also an extensive abstract treatment
of (projective) embedding relations and the amalgamation property. Certain
dualities are established between logics, equivalence relations, and embedding
relations. The chapter concludes with a general study of back-and-forth systems
for equivalence relations.



Chapter XVII

Set-Theoretic Definability of Logics

by J. Vaananen

Simply put, an abstract logic is determined by two predicates of set theory, " x e J ^ "
and "y \=# x." The general problem to be considered in this chapter is as follows:
What can we say of the model-theoretic properties of ££ if we known how the
predicates "x e 5£" and "y \=&x" behave as predicates of set theory?

Typical model-theoretic properties that are relevant here are Lόwenheim-
Skolem-type properties, various interpolation properties, completeness and
compactness properties, and the conditions that are related to inductive de-
finability of truth. Typical set-theoretic conditions that can be imposed o n " x e i f "
and "y f=^ x" are various forms of absoluteness. A simple example of the use of
set theory in abstract model theory is the following result (see Corollary 2.2.3):
If the predicates "yeJίf" and "x \=# y" are Σί in set theory, then every φe<£ such
that φ e HC and φ has a model, has a countable model, where HC denotes the set of
hereditarily countable sets.

An important tool throughout this chapter will be the notion of adequacy
to truth, a concept that is due to S. Feferman. This notion provides an analysis of
implicit definability of the actual truth-definition of a logic and is, therefore,
naturally connected with the explicit set-theoretical definability of "xe i f " and
"y N^x." A study of adequacy to truth is presented in Section 1.

As opposed to the model-theoretic approach taken in Section 1, Section 2 is
devoted to set-theoretic criteria. The simplest and best known example in this
direction is the notion of absoluteness of a logic, due to J. Barwise. Set theoretic
methods have shown themselves to be more fruitful in connection with absolute
logics than anywhere else. When we pass to non-absolute logics, the various
independence results of set theory blur the picture. The developments in Section 3
establish the exact relationships between model-theoretic and set-theoretic
definability of truth. This is, in effect, the main part of the chapter. We will obtain
set-theoretical characterizations of logics such as J£?ωω and <£A and characterize
definability in the Δ-extensions of various logics.

The results of Section 4 apply the methods of the previous sections and present
some new examples of the interplay between model-theoretic and set-theoretic
definability. We will conclude the section by making some remarks on possible
further work in the area.
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1. Model-Theoretic Definability Criteria

The sole purpose of this section is to introduce the notion of adequacy to truth
together with its main properties and applications. This notion was first defined
by Feferman [1974a] and has its origins in generalized recursion theory. Essentially,
it is part of an entire program whose aim is to bring recursion-theoretic notions
to bear in abstract model theory.

1.1. Adequacy to Truth

The definitions of most logics, at least of those we would call "syntactic", are given
by a recursive definition: For non-atomic φ,

(*) SR \=# φ if and only if 9M and the subformulae φt (i e /) of φ have
the property . . . ,

where the property . . . is expressed in terms of the sequence of assertions 501 \=# φi

(i e I). Although (*) is usually written in plain English, it may also be formalizable
in another logic, a logic which we would then call "adequate to truth" in if. Before
we examine the exact definition, we will give careful consideration to a special
case.

1.1.1 Preliminary Example. Consider the logic cS?ωω. Let us think of formulae of
5£ωω as elements of HF, where HF denotes the collection of hereditarily finite sets.
A set a G HF is an i?ωω-formula if it has one of the forms

(1) atomic, —\φ, φ A φ, φ v φ, 3υnφ, Vvnφ,

where φ and φ are J^ωω-formulae and υn is a variable symbol. We can write out an
i?ωω-formula Form(x) such that

HF |= Form(α) if and only if a is an J^ωω-formula.

The truth-relation |= of J5?ωω is a relation between HF and the model under con-
sideration. Let 9ί be the structure ( M < ω , P), where P maps seM<ω and n G ω onto
the nth element sn of s. By writing out the usual clauses of the inductive truth
definition, we obtain a formula η in 5£ωω containing a new binary predicate S(x, y)
such that

(2) If (SDΪ, HF, S, 91) \= η, then for each formula φ with free variables
among xί9..., xn we have S(φ, s) iff
m \= φl9..., 5n).
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Thus we can formalize the truth of j£?ωω in J^ωω up to the definition of HF. But now
comes the crucial observation: In contrast to 901, all of HF is not needed in (2)—
we can replace HF by any set-theoretical structure which is standard as far as
subformulas of φ(xί,..., xn) are concerned.

Let © be a set-theoretical structure, 33 = (B, E). Let πφ be a sentence in the
language of 33 which says that 95 contains φ(xι, . . . , xn). (φ with free variables
^ {x l 5..., xn}.) That is, inside 33, regarded as a set-theoretical object, φ(xl9 , xn)
has the same set-theoretical structure as it has in the real world. Then, of course,
HF 1= πφ. But, moreover, for any 33

(3) If(m, 93, S\ 91) \= η A πφ, then S\φ9 s) if and only if

9Jl\=φ(su...9sn).

Let θ be the JSPωω-sentence

η A Vx(Th(x) <-+ 3s S(x, s)),

where Th is a new unary predicate symbol. If we merge S into 9ί, we then have, for

(4) If (9K, 93, Γ, 91) \= θ A πφ9 then φeT if and only if 9JΪ N φ.

We thus have an implicit definition of truth of Jέfωω inside £fωω using extra symbols
and the infinitary sentences πφ. This is what adequacy of Jέfωω to truth means in
itself.

Before proceeding to the definition of adequacy to truth in general, we need
some conventions concerning representation of syntax and the definition of the
formulas πφ.

For any set a, let μa(z) be the following (possibly) infinitary formula in the
vocabulary τ s e t = {e}:

/*«(*) = Vy(y e x <-* V ^iy)\
bea

This recursive definition has the intuitive content μa(x) <-+ x = a, which indeed
takes place in any transitive set containing TC({α}). For example, μ{βlf...,αn}(x) is

Vy(y GX^μaι(y) v v μan(y)).

Now, let

πβ(x) = μa(x) A Λ IWbίy)'
fceTC(α)

If S = (B, E) is a model of the axiom of extensionality, 93O the well-founded part

of 93, and 31 the transitive collapse of 93O via i: 93O -• % then:

331= π f l( x) if and only if xεB0,aeA and ι(x) = α.
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1.1.2 Convention. We have made no requirements on the way the syntax of various
logics is defined. Henceforth, we will assume that associated with the logic <£ is
a transitive set A such that i f (τ) c A , for all τ considered. Moreover, it is assumed
that

Mod(πα) e EC^ [ T s e t ] for as A.

In other words, <£ is supposed to be strong enough to fix—or "pin down", as it
were—each element of A. Finally, A is assumed to be closed under primitive
recursive set functions. In this case, we say that the syntax ofJ£ is represented on A.
As a standing piece of notation, !£ is represented on a set denoted by A, JSf' on
A', <£" on A" etc. Clearly, the syntax of the logics

is represented on A, the syntax of Jίfωiωi on HC, etc. In this chapter,
means J2?(Qi). The logic Δ(J5f) is more problematic. However, we may identify
sentences of Δ(J£?) with triples <τ, φ, φ'} where the reductions of Mod(φ) and the
complement of Mod(φ') to the vocabulary τ coincide. Understood in this way,
Δ(j£?) has a canonical representation of syntax on A. We use 91, 91', 91", etc. to
denote the set-theoretical structures (A, e\A), (A\ e\A>)9 etc.

1.1.3 Definition. We say that a logic Jέf is adequate to truth in a logic !£' if for
every τ there is τ + = [τ, τ s e t , Th, τ'] and θ e ^ [ τ + ] such that for every ΪR e Str[τ],
the following conditions hold:

(ATI) (2R, 91', TMSW), 9t) \=<? θ for some 91.
(AT2) If (SR, 95, T, 9ί) | = * 0 Λ πφ(b), then ft e T if and only if ΪR \=#. φ, what-

ever </)ei' and fte5.

Compare (AT2) with (4) above. The role of τ' is to provide the auxiliary tools
(such as the pairing function and S(x, y) in Example 1.1.1) that are mainly needed
for coding.

1.1.4 Example. The logic j£?ωω is adequate to truth in <?A. To prove this, we need
only make some additions to Example 1.1.1. There the sentence η is supposed to
conjoin the different cases of the inductive truth-definition of S£ωω. To extend this
to <£A, we simply conjoin η with something like

) Λ S(φh s)).
iel

Note here that na will not be in j2Lffl unless a e HF.
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1.1.5 Example. The logic &ωω(Q) is adequate to truth in ^A{Q\ whatever Q. This
time, we extend Example 1.1.1 by a case for Q. Suppose, for the sake of simplicity,
that Q is of signature <2>. Then we add the following case to η:

S(Qx1x2φ(xux2\s)

<-* QXiX2 3s'(si = Xi Λ s'2 = x2 A (s'n = sn for n > 2)

A S(φ(xί9 x2\ s')).

Then η will contain Q and will no longer be a sentence of J?ωω but rather of ifω ω(g).

1.1.6 Example. The logic !£2

ωω is adequate to truth in <£\. This case needs some-
what more changes to Example 1.1.1 than the previous ones. In Example 1.1.1
9Ϊ contained a new sort for sequences of elements of 50ί. Now we add to 91 a new sort
No for subsets of the domains of SCR and a new sort Nί for finite sequences of such
subsets as well as the projection function for JVj. With these new sorts at hand, we
can easily extend the implicit truth-definition, coded in η, to !£ \. At the same time,
we must add the obvious axioms for No and Nt to η as well. Similarly, we see that
JSf ωω *s a l s o adequate to truth in a variety of higher-order logics.

1.1.7 Example, (i) ifω ω(aa) is adequate to truth in ifA(aa).
(ii) i f λλ is adequate to truth in 5£κλ for all K.

(iii) J£ωίG and ££ωιV are adequate to truth in themselves. The reader should see
Chapter X for the definition of these game logics.

1.1.8 Example. Let S£ = ^ωω(Qn)n<ω, where Qn is the quantifier "there exists at
least ωnΓ This logic is not adequate to truth in itself, if represented in the canonical
way on HF. The proof of this is simple enough. The Lδwenheim-Skolem theorem
of i f shows that no θ in ifω ω(βπ)π < m (m < ω) can capture Qmx(x = x\ for example.

As we proceed, we will meet other examples of the failure of adequacy to truth.
The failure of ^ωω(Qn)n<ω t 0 be self-adequate follows intuitively from the fact that
the inductive truth-definition has an infinity of genuinely different cases (in fact,
one for each Qn) and there is no way of putting them all together. A similar situation
occurs in i f 2

ωω—here, there is one case for each arity of predicate-variables—but
the expressive power of ^2

ωω allows us to take the long conjunction.

1.1.9 Remark. Suppose that i f is a logic and T: Str[τ] -• &(A). Feferman [1975]
calls T #-uίίdx in <£ if there is τ+ = [τ,τ s e t ,Th,τ '] and θe^lτ+^ such that if
9KeStr[τ],then:

( # 1) [9JI, 91, T,yϊ]ϊ=θ for some 91;

and

( # 2 ) If [2K, 93, Γ , 91] N θ A πa(a'), then aeT if and only if a' e Γ.
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This is a notion which arises naturally from analogous notions in generalized
recursion theory, such as the invariant implicit definability of Kunen [1968]. The
("uiid" is short for "uniformly invariantly implicitly definable," and the " x " is
used to indicate the possibility of extra sorts in <£'). With this notion at hand, we
could define adequacy of ί ? to truth in !£' by simply saying that the mapping
Γ(30ϊ) = Th^,(9Jl) is # -uiidx in if. The notion # -uiidx permits many variations,
such as #-usiidx ("s" for "semi") which replaces "if and only if" by "only if" in
( # 2). The corresponding weaker form of adequacy to truth could be called semi-
adequacy to truth.

The notion of adequacy to truth bears a special relation to the Δ-operation
defined in Chapter II. The rest of this section is devoted to a study of this. Also
recall from Chapter II the notion R P C ^ of relational projective class in i f

1.1.10 Lemma. Suppose that <£ is adequate to truth in £", φe$£' and πφ is RPC^-
definable. Then Mod(φ) is A(J?)-definable.

Proof. Suppose φ e JS?'[τ]. Let θ e <&[τ+] be as in Definition 1.1.3. The following
conditions are equivalent for any $R e Str[τ]:

(a) m\=^φ;
(b) [9R, 93, 9t] N θ Λ πφ(b) Λ Th(b) for some 93, 31, and ft;
(c) [STO, 93, 91] N θ Λ πφ(b) -> Th(fe) for all 93, % and b.

By substituting the RPC^-definition of πφ into (b) and (c), we obtain a Δ(J?)-
definition of φ. D

1.1.11 Remarks, (i) If i f is only semi-adequate to truth in 5£' as given in Lemma
1.1.10, we can still obtain a co-RPC(if)-definition for φ from the proof.

(ii) Lemma 1.1.10 has interesting consequences for logics which have more
power than their syntax suggests. Take, for example, 3?2

ωω. Many set-
theoretically definable φ e 5£\ω satisfy the assumption that πφ is R P C ^ .
Whence, Mod(φ) is Δ(if ^ω)-definable. This shows clearly the infinitary
nature of Δ( i fL) .

1.1.12 Corrollary. If 5£ is adequate to truth in <£' and A c A, then S£' < R P C ^£. D

1.1.13 Lemma. lfS£" < R P C i f and <£" is adequate to truth in <£\ then 5£ is adequate
to truth in <£'.

Proof Let τ be a vocabulary and let θ' e J£"[τ + ~\ witness the adequacy of ££" to
truth in <£'. Let τγ Ώ τ+ and θ e <£\τ^\ such that

TO 1= θγ if and only if (9W, 91) I- θ for some 91.

Clearly, θ satisfies (ATI) for ^ and ^'. For (AT2), suppose that

(9M, 93, T, 91', 91) \= θ A πφ(b).
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Then (SR, 93, T, 31') N ^ Λ πφ(b), whence

b e T if and only if ϊ ϊ i μ φ ,

as required. D

1.1.14 Proposition. Suppose that <£' is adequate to truth in itself and A' c A. Then
the following are equivalent:

(a) i f is adequate to truth in i?'.

(b) i ? ' < R p c ^ . D

Discussion. The proposition shows that for syntacticly natural logics, adequacy to
truth reduces to the familiar and much simpler concept of < R P C . However, this
does not take place in general. Rather, we may construe the relation of adequacy
to truth as an effective version of < R P C This effectivity can be demonstrated by
examples. Thus, unlike < R P C , adequacy to truth preserves Σι -compactness and
Σί-definability of validity (see Section 4.3).

1.1.15 Proposition. Suppose that i f and <£' are logics such that A' c A. Then the
following are equivalent:

(a) Δ(JSf) < Se1.
(b) Whenever <£ is adequate to truth in 5£\ with A" c A, then <£" < <£'.

Proof The argument for (a) implies (b) follows from Corollary 1.1.12. To prove the
converse, suppose that X' is a Δ(JS?)-definable model class. Let Q be the generalized
quantifier associated with XI By Proposition 1.1.14, we have that t£ is adequate
to truth in S£A{Q). Thus, by letting <£" = &A(Q) in (b), we get 2A(Q) < &'.
Whence, Q is Jέf'-definable. D

1.1.16 Definition. A logic i f is truth maximal if i f ' < i f whenever ^£ is adequate
to truth in ^£' with A' <= A. If, in addition, ^ is adequate to truth in itself, we say
that J^ is truth complete.

1.1.17 Corollary. ^ has the ^-interpolation property if and only if£? is truth maxi-
mal Ώ

1.1.18 Examples. If A Q HC is admissible, then 5£A is truth complete. If A is the
union of countable admissible sets, then t£A is truth maximal but not necessarily
truth complete, in the case where A is not admissible. The Δ-extension of any logic
is truth maximal.

The concepts of truth maximality and truth completeness were introduced by
Feferman [1974a] and Corollary 1.1.17 was also proven there. Feferman's paper
was among the first to discuss Souslin-Kleene interpolation in an abstract setting,
and it provided strong support for further work on the Δ-operation.
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1.2. Definability of Syntax Set

We have assumed that there is associated with every logic JSf a syntax set A on
which the syntax of i f is represented. Part of this convention is that every element
of A is definable in if. For some if, it happens that A itself is in one form or another
definable in if. The results below suggest that such i f have been defined without
proper concern to the balance between syntax and semantics. Recall that we use
91 for (A, ε \A). Along these same lines, let us use J{A) for the isomorphism class of
91, £(A) for the class of structures isomorphic to an end-extension of 91. That is,

= {33 ε Str[τ s e t] \<€ ^ e ©, for some <€ e S(A)}.

We will now consider definability of J(A) and $(A).

1.2.1 Examples, (i) <f (HF) e EC <*, .

(iii) <S(A) e PC#Λ ύA = B+, B admissible (see Barwise [1975, V. 3.9]).
(iv)

1.2.2 Proposition. Suppose i f is adequate to truth in ϊ£' and Φ <= ̂ £'. Then Mod(Φ)
is RPC_^ if either of the following conditions holds:

(a) S(A') is RPC^ and ΦisaΣι subset of A.
(b) J{A') is R P C ^ and Φ is a Π} subset of A. D

Remarks. The method of proving this proposition is similar to that used in the
proof of Lemma 1.1.10. In (b) we only need to know that Φ is definable by a
co-RPC^-formula over A'. If A' c A , then Σ1 can be replaced by Σ x and Π}
by Π}. If J(A') is Δ(i^)-definable in (b), and if Φ is Δ}, then Mod(Φ) is A(^)-
definable.

Applications. The Kleene-Craig-Vaught theorem says that recursively axio-
matizable theories in J£ωω can be finitely axiomatized using extra predicates (see
Craig-Vaught [1958]). This is exactly what Proposition 1.2.2(a) says if i f =
3" = &ωω and A = A' = HF. By letting ^ = $£' = seA{Q\ we get the same the-
orem for

An element of paradox is always near when we speak about definability of
truth. The following application of this paradoxical element has a long history:

1.2.3 Proposition. Suppose that !£ is adequate to truth in $£' and J'(A') is
definable. Then Δ(JS?) ^ <£'.
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Proof. Let τ be a vocabulary, and let 0e J2?[τ+] witness the adequacy of if to
truth in <£'. Also, let θ' be the conjunction of θ and the RPC^-definition of
and let

X = {(9W, 95, fc)|39ϊ(9Jl, 95, 9i) 1= 0' Λ

By its definition, Jf is RPC^-definable. On the other hand, we claim that

(*) (9M,95,b)£X if and only if ^BφJ(Λf) or

39t((2TC, 95,9t) N 0' Λ -ιTh(fc)).

Suppose first that (3M, 95, b) φ JΓ but 95 e ./(Λ'). By (ATI), (2R, 95, 91) |= 0' holds,
for some 91. By the definition of Jf, (9K, 95, 91) h= -ιTh(fc). Now, for the converse,
we suppose that (9JΪ, 95, b) e Jf. By the definition of jf, 95 e ^ ( ^ ' ) and (2R, 95,91)
N β Ά Th(ft), for some 9ί. Now if 001, 95, 91') \= θ' A -ιTh(fe), for some 9l\ then
by (AT2), SJi Nj2» b and $R ^ = ^ fo, which is absurd. This ends the proof of (*). It
follows that Jf is Δ(j£?)-definable. To conclude the proof we show that JΓ is not
definable in if'. To this end, suppose that Jf = Mod(φ), for some

φ G JSf'[τ u τ s e t u {c}].

For any 901 e Str[τ] and φ e ££'\τ\ we thus have:

( # ) 9Kμ=^,^ if and only if (9K, 2Γ, ^) 1=^ <p.

Now we choose τ = τ s e t u {c}, ψ = —\φ and 9DΪ = (91', ̂ r). Then ( # ) gives

l μ ^ , ψ if and only if m\=<?>φ

if and only if 9K ^ ^.

This contradiction completes the proof. D

1.2.4 Corollary. If J{A) is Δ(J?)-definable9 then Δ(£f) is not adequate to truth irΐ

itself D

Applications. Δ(if) is not selfadequate if S£ happens to be one of i?ωω(ί?o)> ^ L »
JSζoiωi among many others.

Remark. We will later prove that Δ(j£?ωω(Q0)) = <^^ f o r ^ = (HF) + , the smallest
admissible set containing HF. Thus, Δ(j£?ωω(Q0)) is selfadequate if represented on
(HF) + rather than on HF. This provides an example of the importance of the exact
manner in which the syntax is defined.
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Some Refinements. The notion of adequacy to truth is based very heavily on the

use of extra predicates. Our prime example (see Example 1.1.1) uses the extra

symbols

M<ω—finite sequences of elements of the model,

P(s, ή)—the nth element of the sequence 5,

S(x, y)—the sequence y satisfies the formula x.

The use of the new sort M<ω is actually unnecessary if the model 9W is infinite. Let
us say that Jδf is simply adequate to truth in S£' if Definition 1.1.3 can be satisfied (for
infinite models) with no new sorts of τ' over those of τ u τ s e t . The following are
examples of simply selfadequate logics:

The above results connecting adequacy to truth and RPC carry over to simple
adequacy to truth if RPC is replaced by PC and all models are infinite. As P C ^ =
E C ^ , for i f = t£2

ωω, we see from the analogue of Proposition 1.2.3 that $£2

ωω is not
simply adequate to truth in itself.

Another refinement arises in the following way. Looking again at Example 1.1.1,
we notice that the only really new symbol one needs is S. That is, we can allow 9K
in Example 1.1.1(4) to contain the symbols M<ω and P. On the other hand, S is
implicitly defined by θ as soon as there are no non-standard formulae. This
observation motivates the following definition. We say that 5£ is uniquely adequate
to truth in if' if there is a vocabulary τ c o d e such that Lemma 1.1.13 can be satisfied
with 9W G Str[τ u τ c o d e ] and, moreover, the relations of τ' — τ c o d e are implicitly
defined by θ. The following are examples of uniquely selfadequate logics:

Φ (Π \ cpi,™ cpi cp cp

If J2? is uniquely adequate to truth in <£' and J(A') is WB(j£>definable, then it
can be proven as in Proposition 1.2.3 that WB(i?) ^ g". Thus, WB(if) is not
uniquely adequate to truth in itself for i f as above.

Another uniform feature in the examples we have is the following: The new
type τ + is obtained from τ effectively. This gives rise to the following refinement,
i f is effectively adequate to truth in ££' if 1.1.3 can be satisfied in such a way that
τ + is obtained from τ via a Σ : operation on A.

Historical and Bibliographical Remarks. The notion of adequacy to truth was
introduced in Feferman [1974a] and has been further developed in Feferman
[1975]. Indeed, Corollary 1.1.17 is from Feferman [1974a]. Definability of syntax
set is discussed in Paulos [1976] where Proposition 1.2.3 is (essentially) proven.
The roots of Proposition 1.2.3 go back to Craig [1965] and Kreisel [1967]. While
Craig only considered higher-order logics, it was Mostowski [1968] who first



2. Set-Theoretic Definability Criteria 609

explicitly proved the failure of interpolation and Beth-definability (see Section 4.1
for this) for logics which can define their own syntax set. On the other hand, we
may trace the roots of the application of self-reference and the Liar Paradox in
logic back to K. Gόdel and A. Tarski. The Kleene-Craig-Vaught theorem is proven
in Craig-Vaught [1958] and its generalization to ^ωω(Q) was used in Lindstrόm
[1969]. Its generalization (see Proposition 1.2.2(a)) to abstract model theory was
remarked in Feferman [1974a]. The reader is referred to Barwise [1975] for a
proof of Example 1.2.1(iii).

2. Set-Theoretic Definability Criteria

Suppose that we are given a logic $£. The predicates φeJ? and SDΪ \=# φ of φ
and SOΪ are certain set-theoretic predicates, and we may raise the following question:
What is the set-theoretic complexity of these predicates? In this section we will
study logics with a fixed upper bound for these complexities. Moreover, we will be
particularly interested in those definitions of the predicates whose meaning does
not depend on the particular interpretation given to set-theoretical axioms.

2.1. Absolute Logics

The idea of absoluteness of a logic is that the truth or falsity of the predicate
9Dt \=y> φ should not depend on the entire set-theoretical universe but rather should
depend on the sets that are required to exist (in addition to 901 and φ) by the axioms
of a fixed set theory T only. An important candidate for such a set theory T is the
Kripke-Platek axioms KP (with the axiom of infinity included). For details on
KP and the set-theoretic notion of absoluteness the reader is referred to Barwise
[1975], where the following crucial characterization (due to Feferman and Kreisel)
can also be found on page 35: For any T, a predicate is absolute in models of T
if and only if it is Δx with respect to T (see Feferman [1974a] for a proof of this
result). Absolute logics were first studied systematically by Barwise [1972a].

2.1.1 Definition. Let if be a logic and T a set theory. We say that if is absolute
relative to T if there is a predicate 5(x, y\ Aλ with respect to T, such that for
φeA and for any 9M

(A) S(9W, φ)^φe<£ and 9KN^φ,

and the syntactic operations of if are Aί with respect to T. The logic if is (strictly)
absolute if it is absolute relative to some T (relative to KP) which is true in the real
world.
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Explanations. By " syntactic operations " we mean finitary conjunction, disjunction,
permutation, πα(x), etc., which are built into the definition of an abstract logic. By
" true in the real world " we mean that T is a consequence of the axioms of our meta-
set-theory. It would make little sense to allow T to be, for instance, inconsistent!
The most important consequence of T being a true set theory is that if 04, ) is a
transitive model of T and 5£ is absolute relative to T, and if φ e <£ and $R, φ e A,
then we have

04,e) 1= "SR \=<? φ" if and only if SDΪ \=# φ.

2.1.2 Example. The infinitary logic JSf̂  is strictly absolute. The fact that the
satisfaction relation of <£ A is A1 in KP-Inf-(= Axiom of Infinity) is proven in
Barwise [1975]. The crucial property of KP-Inf is that it allows the definition of
Δ-predicates by recursion. All the syntactic and semantic notions of !£A can be
defined in KP-Inf by set-recursion using Δ-predicates.

2.1.3 Example. The logics J£ωω(Q0) and J ^ ' w are strictly absolute. This can be
seen by reducing these logics to Ϊ£A or by considering the proof of the selfadequacy
of these logics. The point to note here is that the predicate "x is finite" is Δx in
KP. However, the predicate "x is countable" is not A1 in any first-order set-
theory; and, indeed, the logic JS?ωω(βi) turns out to be non-absolute.

2.1.4 Example. The game logics &AG, ££\v, and ££AS are absolute relative to
KP + Σ1 -separation + DC (= Axiom of Dependent Choices) (see Chapter X).
Burgess [1977] introduced the Borel game logic <£^B which extends ££'^v by
allowing the operation

/\ Vi?o V 3υi - - - {n\<Pio...iSυo> ?

 V2n+i) true} EB,
ioel i\sl

where B is any Borel set of sets of natural numbers and / is a set. It follows from
Martin's Borel Determinacy Theorem that &AB is absolute relative to ZFC.

2.2. Some Properties of Absolute Logics

The two principal properties of absolute logics are the downward Lόwenheim-
Skolem theorem (see Theorem 2.2.2) and the approximation theorem (see Theorem
2.2.8). Many useful implications can be drawn from these two results. Interestingly
enough, both have the form of an approximation result, although the two notions
of approximation are unrelated. The notion of countable approximation, to be
studied first, is due to Kueker [1972, 1977]. It leads to a very strong formulation of
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the downward Lowenheim-Skolem theorem. The second notion of approximation
is the result of gradual development starting from Moschovakis.

The Lόwenheim-Skolem Theorem. In order to obtain a particularly simple formu-
lation of the Lόwenheim-Skolem theorem, we will assume for a moment that there
is a proper class of urelements and that the elements of all models are urelements.
This is not an essential restriction, because every model is isomorphic to one
consisting of urelements. Moreover, urelements could be avoided by using a more
cumbersome notation.

For any sets a and 5, let

as = a if a urelement, as = {xs\xes na} otherwise.

If s is countable, then as is called a countable approximation of a. Note that if α e On,
then αs < ωί9 for all countable s. If SCR is a (relational) structure, then 9Jίs is a count-
able substructure of 9M.
If P(xu . . . , xn) is a predicate of set theory, then we say that

P(a\,..., as

n) holds almost everywhere (abbreviated by a.e.)

if P(a\,..., as

n) holds for all s in a closed unbounded (cub) set of countable subsets
of ΎC({al9..., an}). See Chapter II, and Chapter IV, Section 4 for more on "almost
all countable sets".

2.2.1 Lemma. If P(xu.. .,xn) is a Σrpredicate and P(au...,an) holds, then
P(a\,..., as

n) holds almost everywhere. D

2.2.2 Downward Lowenheim-Skolem Theorem. Suppose that 5£ is an absolute logic,

φ e JS? and 30Ϊ is a model. Then φs e i ? almost everywhere and

yίi\=2>φ if and only if 9WS N ^ φs almost everywhere.

Proof. The predicate φ e & is Σ 1 ? and hence φs e J^ a.e., by Lemma 2.2.1. Similarly,
the predicate SOΐ N ^ φ is Σ1 and we get W \=& φs a.e. from Lemma 2.2.1. D

If a G HC, then as = a a.e., since the set ΎC({a}) is countable. Hence, we have

2.2.3 Corollary. Suppose <£ is an absolute logic, φe<£ and φ e HC. Ifφ has a model,

then φ has a countable model. D

Application. J ^ ( β i ) and S£2

A are not absolute as they do not satisfy Corollary 2.2.3.
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For a sharper application of Theorem 2.2.2, we need a sharper cub set calcula-

tion. The proof of the following lemma is not hard.

2.2.4 Lemma. Suppose that X is a cub set of countable subsets of A. Suppose further
that I c A and K is an infinite cardinal such that \I\ <κ <\A\. Then there is a
B a A such that I ^ B9 \B\ = K and the set of countable subsets of B in X form a
cub set on B. D

2.2.5 Corollary. Suppose J5? is an absolute logic, φ e S£, SDΪ \=j? φ, No c M has
cardinality at most K and φeHκ+. Then there is an 91 c 9JI of cardinality K such
that No a N and 91 \=# φ. D

Proof Let A = TC({φ, SCR, κ+}), and let X be a cub set of countable s <= A such
that W \=<?φs. Furthermore, let / = TC({JV0, ψ}). Finally, let B c A be given
by Lemma 2.2.4 and define 91 to be the restriction of SDΪ to B n M. If s is in the cub
set of countable subsets of B that are in X, then 9Jls \=<? ψ\ But W = 91 a.e. on B
and φs = φ a.e. on B. Hence, 91 \=# φ. D

The Approximation Theorem

The countable approximations φs that we studied in the above discussions were
defined from a set-theoretical point of view. We will now associate with every
formula φ of an absolute logic approximations A(φ, a) (α e On) which are formulae
of ^ ?

O O ω and which are logically related to φ. It is instructive to first examine the
approximations of game formulae. This is the historical order of events: The
approximations were developed by Moschovakis and others for game formulae,
and it was only later that Burgess [1977] presented the general case (Theorem
2.2.8).

Let us consider a disjunctive game formula

(*) Vx0 Λ 3JΌV V φioJo-i'Ήxo, Vo, • • •, x», ?„)•
io e / jo e / n < ω

In order to better understand the idea of approximation, it is useful to write (*) in
a new form. Recall that the truth of (*) is determined according to whether player
I or II has a winning strategy in the (determinate) infinite game in which each play
consists of running through (*) from left to right, with3 xn and \Jinei moves of I
(pick an xn or an ίn) and \fyn and /\jneI moves of II (pick a yn or ajn) and I wins if
one of φio' •• in(x0,..., yn) is true in the end. As the truth of φio-jn(x0, ...,yn) does
not depend on the moves number n + 1, n + 2, etc., we may as well construe the
sense of (*) as

(**) V x V
i0 e I joe I

\φίoio(χo, y0) v Vx x Λ 3yi V fo>'°"-'1(*o, •• , y , ) v . . A
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Let us now define approximations A(a, φ) for formulae φ obtained from atomic
formulae using Λ , V, ~ Ί , 3 , V, v , Λ and(**) :

,4(0, φ) = 1(= false),

A(cc + 1, φ) = φ if φ is atomic,

A(a + 1, ~\ψ) = ~iA((x, φ\

A(CL + 1, φ Λ φ) = A(cc, φ) A A(a, φ\

A(oc + I, φ v ψ) = A(a, φ) v A(oc, φ\

A(OL -h 1, 3xφ(x)) = 3xA(a, φ{x)\

A(a + 1, Vxφ(x)) =

ie/ / i e /

iel ) i e /

A(y, φ) = \J A{OL, φ) for limit v.
α<v

In order to see what happens to A(ac, φ) for various α and for φ as in (**) above,
we will assume that Vx0 /\ioei ^o \fjoei <piojo(xo,yo) is true and every φiojo(x0, y0)
is atomic. Then A(6, φ) is true. If the formulae φiojo(x0, y0) are not atomic but are
still in i f ooω, then A(ω + 5, φ) is true. We can now prove that φ is true in a model
SDt if and only if A(oc, φ) is true in SDΪ, for some α e On. Observe that this would not
be true if the syntax (*) were used as no approximation would have reached to
the long disjunction at the end. If we start with a conjuctive game formula φ, we
can define A{OL, φ) = ~ι A(α, φ~ι), where φ~i is the dual of φ obtained by every-
where interchanging Λ and v , 3 and V, \/ and /\, and an atomic formula and its
negation.

A trivial induction on α shows that if A(OL, φ) is true, then A(β, φ) is true for all
β > α. On the other hand, one need not study very large α: the first α as above is
below |9W|+. The reader should see Chapter X for more on approximations.

2.2.6 Definition. An approximation function for a logic j£? is a mapping A: On x
<£ -> J^OOω such that for all φ e i f and 9M:

SDΪ 1=^ φ if and only if SCR t= A(oc, φ) for some α e On.
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2.2.7 Example. 5£AV has a Δx approximation function. This function was defined
above. It is easily proven by induction on α that A{μ, φ) e ^ooω ' f°Γ a " α e ® *

2.2.8 Approximation Theorem. Every absolute logic has a Δ1 approximation
function.

Idea of Proof. It will be shown how to define a Aί approximation function on
countable 2R. The general case is based on forcing and is omitted here see Burgess
[1977] for the details). As JS? is absolute, there is a Σ1 predicate S(x, y) such that for
x j c ω w e have

S(x, y) if and only if x codes a model 9JΪ, y codes a φ e i f and
2K \=<? φ.

But Σ^properties of reals are Σ\ over ω. By using the standard tree representation
of Π2 sets, we find a recursive F such that

S(x, y) if and only if F(x, y, z) wellorders ω in some type < ωί9

for some z cz ω.

Thus, we have a Σ} property ^(x, y, w) of reals such that

S(x, y) <-• 3α < ω

Recall that a Σ{ property of reals can be defined by a game formula. Let A\(χ, φ)
be a formula of & ^v which says that for some u a ω, (ω, w) = (α, e |α) and φ(x, y, n)
holds for the code y of φ and for the code x of the model we are considering. It
thus follows that

φ) *-* 3α < ω^'ία, φ).

To get an approximation 4(α, φ)eifOOω, we use the fact that S£^v permits
approximation (see Example 2.2.7). For more details, consult Burgess [1977]. D

Remark. A logic with a Δx approximation function is, in fact, absolute if its syn-
tactic operations are Δx. In particular, every logic with a Δx approximation
function has the downward Lόwenheim-Skolem property of Theorem 2.2.2. D

2.2.9 Corollary. Every absolute logic has the Karp property.

Proof This is such a basic property of absolute logics that we indicate two proofs
here, one using countable approximations and the other approximations in J^ooω.
Let if be an absolute logic.

First Proof Suppose that SOΪ ̂ p 91 but not 2R =# 91. The previous sentence is a
Σi -property of SOΪ and 31. By Lemma 2.2.1 there are countable approximations



2. Set-Theoretic Definability Criteria 615

SDf and 91s of 9W and 91 with the same property. But then 9Jls ̂  91s, which implies
that W ΞΞ# 91s.

Second Proof. If 9)1 = ooω9l, then 9DΪ and 91 satisfy the same approximations of
if-sentences. Hence, by the approximation theorem (see Theorem 2.2.8), SDΪ =#> 91.

D

2.2.10 Corollary. If ^ is an absolute logic, then Δ(JSfω2J $£ &.

Proof. Consider the structures SPΪ and 91 over the empty vocabulary such that
|9R| = Ko and |9t| = Klβ Now, 9K ^ p 9ϊ, and the model classes {9I|9I ^ 9H},
{«l|8l £ 91} are Δ(J^ω2J-definabie. If Δ(if ω 2 J < if, then 9K #^9t, which is
contrary to Karp property (see Theorem 2.2.8). D

The rather simple observation given in Corollary 2.2.10 has the following
immediate but important consequence: There is no way of extending J^?

OOω to a logic
which obeys the Craig interpolation theorem and which would still be absolute.

2.2.11 Corollary, (i) Let <£ be an absolute logic and φe^ such that φeHκ(κ > ω).
There are φa e ££κω (α < K) such that for any 9JI of cardinality < K:

9Jl\=φ^\/φΛ.
OL<K

(ii) // if is absolute and φe if such that φ e HC, then the number of non-
isomorphic countable models of φ is either < Kx or 2Xo.

Proof The proof of (i) follows from Theorem 2.2.8 and Levy's reflection principle.
We take φa = A(<x, φ). The proof of (ii) follows from (i) and the similar result for
Sf Π

Definability of Well-Order

2.2.12 Definition. A sentence φ(M, <,...) pins down an ordinal α if (M, <) is
well-ordered in every model of φ(M, <,...) and φ(M, <,...) has at least one
model with (M, <) of order type > α. A logic if pins down a if some φeϊ£ does.
A logic ^£ is strong if some φeS£ pins down every countable ordinal. A logic 5£
is bounded if no φ G if is able to pin down every ordinal, otherwise it is unbounded.

2.2.13 Examples, (i) &ωω(Qo) a n d if (HF)+ P'n down every α < ω?κ.
(ii) ^ωiω pins down every α < ω^

(iii) If cf(κ) > ω, then &κ + ω pins down κ+.
(iv) &ωιs is strong,
(v) S£ωχG is unbounded.

Remarks on Proofs. Recall that ω?κ (the Church-Kleene ω j is the smallest
ordinal which is not the order type of a recursive well-ordering of ω. We have used
(HF)+ for the set Lω™. If α < ωfS then πα (as defined in Section 1.1) is in <$f(HF) +
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and pins down α. It will be proven in Chapter VIII that J ^ H F ) + cannot pin down
ω^κ. Similarly, πα will pin down any α < ω x in £Pωiω. To pin down a n α < ω^κ in
^ωωiQoX w e simply write down the standard definition of (N, + , ,0,1, < ) in
^ωω(Qo) a i χ d Λen use the recursive definition of α to define α. Since M is standard,
this will really define α. For a proof of (iii) see Barwise-Kunen [1971]. The example
(iv) is based on the observation that a linear ordering < of ω is a well-ordering if
and only if

y y Λ f n + i< in .
io I'I n<ω

It is known that Sέ'ωiS does not pin down ω2 but pins down every α < ω 2 if MA +
2ω > ω1 + ω1 = ωf. D

In Chapter III it was proven (Theorem III.3.6) that every bounded logic with
the downward Lόwenheim-Skolem property as in Theorem 2.2.2, is a sublogic of

<^7

0Oω. The result is interesting enough to be rephrased here as

2.2.14 Theorem. Suppose that ϊ£ is a regular, absolute, and bounded logic. Then

2.3. Relative Absoluteness and Generalized Quantifiers

We have observed that <^ωω(Q\) is n o t absolute, the reason being that the predicate
"x is countable" is itself not absolute. However, even i?ω ω(β?) is absolute if Kx is
preserved. More generally, by suitably relativizing the notion of absoluteness, we
will be able to examine non-absolute logics.

In the following definition, R is an arbitrary predicate of set theory. Recall the
characterization of absoluteness as stated earlier in Definition 2.1.1. This char-
acterization is valid in extended languages as well.

2.3.1 Definition. Let i f be a logic, R a predicate of set theory, and T a set theory.
We say that JS? is absolute relative to R (and T) if it is absolute (relative to T) in
the extended language {e, R}.

2.3.2 Examples, (i) The logic &A{Q) is absolute relative to Q and KP(Q) ( = KP
in the language {e, Q}).

(ii) The logic 5£2

A is absolute relative to Pw and KP(Pvv) + axiom of power
set, where Pw(x, y) <-• y = 0>(x).

There is a difficulty in proceeding with relative absoluteness in the same way
as with absoluteness. The basic method in the theory of absolute logics is to appeal
to transitive models of set theory. In the case of relative absoluteness, however, the
analogue of transitivity of a model of set theory is the property of being of the form
(M, e, R n M"), where n is the arity of the predicate R. Very little is known of
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models of this form; and, accordingly, there are very few general results about
relatively absolute logics.

In special cases, more specific results obtain. Let Cbl(x) be the predicate of set
theory expressing that x is countable (that is, mappable one to one into ω). Clearly,
&ωω(Qi) i s absolute relative to Cbl. But so is £fωω(Qf), where Qf says that an
equivalence relation has Kx classes. Furthermore, combinations such as J^G(Qf)
are absolute relative to Cbl.

2.3.3 Proposition. Suppose that <£ is absolute relative to Cbl and φe& such that
φ e Hω2. If φ has a model, then φ has a model of power at most Kx.

Idea of Proof. Let S(x, y) be a predicate Σj relative to Cbl, which defines the truth
of S£. Then there is a Σx-predicate S'(x, y9 z) such that S(x, y) <-> Sf(x, y, Kx) holds
in ZFC~ ( = ZFC-power set axiom). If 3xS(x, φ), then by Levy's reflection principle
Hω2 \= 3xS'(x, φ, KJ . Whence,

S(m,φ) for some 9We/fω2. D

We can improve Proposition 2.3.3 in the direction of Theorem 2.2.2 by studying
Kueker's uncountable approximations (see Kueker [1977]).

Hutchinson [1976] showed that the axiomatizability and countable com-
pactness of J^ωc/βi) follow from properties of countable models of set theory.
Although we will not go into the details, these set-theoretical methods extend
naturally to logics that are absolute relative to Cbl.

2.3.4 Example. Let us define

Cd(x) <-> "x is a cardinal.

Then &A(I) is absolute relative to Cd, where / is the equicardinality quantifier

To get a result analogous to Proposition 2.3.3 for &A(I) we would have to
start with an Hκ having the following rather strong reflection property: IfaeHK9

φ(x) is Σi relative to Cd and φ(a) holds, then Hκ \= φ(a). Such K exist, but how large
are they? From a standpoint of consistency K could be 2ω or K could be bigger
than a measurable cardinal (see Vaananen [1978]).

2.3.5 Proposition. IfV = L, then S£\ is absolute relative to Cd.

Proof If V = L, then Pxv is Σ1 relative to Cd:

Pw(x, y) ^3κ3ae κ(x e Lα Λ Cd(κ) A L K \= Pw(x, y)). D
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2.4. Absoluteness and Boolean Extensions

In this discussion we will assume that the reader is familiar with Boolean-valued
models of set theory and forcing.

2.4.1 Definition. Let B be a complete Boolean algebra. A logic <£ is absolute for

B,ifforall9W:

TO {=<? φ if and only if [901 \=<? φf = 1. D

Remarks. It may be that [φ e SΓ^ = 1 although φφ&, for instance, if J^7 = i ? ω i ω

and B collapses φ to a countable set. It may also happen that [9Jί \=& φ]n is
neither 0 nor 1. However, for homogenous B this never happens.

2.4.2 Example. If i f is absolute relative to T and VΆ \= T, then & is absolute for
B. In particular, 5£ A, <£AG, <£AB are all absolute for any B.

2.4.3 Example. S£ jfj) is absolute relative to all Boolean algebras with c.c.c.
This is because every c.c.c. algebra preserves the predicate Cd.

2.4.4 Example. J^CQi) and i?ωiC0lare absolute for countably closed forcing, since
such extensions preserve the predicate Cbl and do not add new countable subsets.

2.4.5 Example, if^(aa) is absolute for proper forcing (a notion of forcing is proper
if it does not destroy stationary subset of ωx this condition is, of course, weaker
than both countable closure and c.c.c).

2.4.6 Proposition. There is no extension of^ωω{Qx) which provably in ZFC satisfies
the Craig interpolation property and is provably absolute for c.c.c. forcing.

Idea of Proof We shall consider tree-like partially ordered structures as defined
in Baumgartner et al. [1970]. Let j f x be the class of tree-like structures with an
uncountable branch and Jf2 the class of tree-like structures homomorphic to
the ordering of the rationals. Then J ^ and JΓ2 are disjoint PC-classes of i? ω ω (βi).
Suppose that θ is a sentence in a logic absolute for c.c.c. forcing, such that Xγ c
Mod(θ) and Mod(θ) n JΓ2 = 0 . Let T be a Souslin tree (if there is none, we can
obtain one by c.c.c. forcing). Suppose that T 1= θ. Let B be a c.c.c. algebra which
embeds T homomorphically into the rationals (see ibid.). Then [T 1= 0 ] B = 1—a
contradiction. If T )φ θ9 let B be a c.c.c. algebra which produces a long branch
through T. Then [T e X{^ = 1—a contradiction again. D

Considering the great interest in extensions of ££ωω(Qι)—especially those
satisfying Craig—the above result is most useful. It shows that such an extension
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has to be based on something more complicated than cardinality, cofinality, or
stationary sets. In this sense, Proposition 2.4.6 is analogous to Corollary 2.2.9.

The following result shows another direction in the applications of forcing to
absolute logics. It is but one— and a simple one, at that—in the range of indepen-
dence results concerning strong abstract logics.

2.4.7 Proposition. // CON(ZF), then it is consistent that every logic &ωω(Q),
provably absolute for c.c.c. forcing, has Lδwenheim number <2ω.

Proof. We shall construct a c.c.c. algebra B such that [ifωω(/) has Lόwenheim
number < 2 ω ] B = 1. The more general result will then follow by compactness.

Let ifω ω(/)[τ] = {φn\n < ω}, where τ is a vocabulary general enough to give
the right Lδwenheim number. Let B o = {0, 1}. If En is defined, let B w + 1 2 Un

be a c.c.c. algebra such that if [φ has a model]B > 0 for some c.c.c. B 3 Bπ, then
\_φn has a model of power < 2 ω ] B w + 1 = 1. This is possible in view of the unlimited
size of 2ω in c.c.c. extensions. If B o c . . . c En is defined for n < ω, let B be the
direct limit of (En)n<ω. Then B has c.c.c. Suppose now that [φn has a model]B > 0.
Then also [φn has a model of power < 2 ω ] B " + 1 = 1, by construction. Hence,
\_φn has a model of power < 2 ω ] B = 1, by the absoluteness of Jδfωω(/) for B π + 1

and B. D

Historical and Bibliographical Remarks. The definition of an absolute logic goes
back to Barwise [1972a]. The Lowenheim-Skolem theorem for absolute logics was
first proven in the weaker form (see Corollary 2.2.3) in Barwise [1972a], and the full
result Theorem 2.2.2 appeared in Barwise [1974b] using ideas from Kueker [1972].
The results Lemma 2.2.4 and Corollary 2.2.5 are from Kueker [1977]. The notion
of approximation was developed for game and Vaught formulae by Vaught
[1973b] and has been since generalized for all absolute logics in Burgess [1977],
where Theorem 2.2.8 and its corollary is proved. Corollaries 2.2.9 and 2.2.10 were
already proven by Barwise [1972a]. The reader is referred to Ellentuck [1975] and
Burgess [1978] for results on Souslin logic !£AS. The characterization given in
Theorem 2.2.13 of J5fOOω is due to Barwise [1972a]. Proposition 2.4.6 is due to
S. Shelah, while Proposition 2.4.7 is from Vaananen [1980b], where other related
results are also proven.

3. Characterizations of Abstract Logics

In this section we shall relate the model-theoretic notion of adequacy to truth and
the set-theoretic notion of relative absoluteness. In rough terms, we show that if a
logic S£ is sufficiently strong and is sufficiently absolute, then i f is adequate to
truth in if. As applications, we get rather strong results on Δ-extensions of various
logics—the main results of this chapter.
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3.1. A General Framework

In order that a logic be adequate to truth in a given logic, it must have enough
expressive power to enable it to capture the truth definition of the logic. In our set-
theoretical approach, this leads to the following new notion:

3.1.1 Definition. Let if be a logic and R a predicate of set theory. We say that Jέf
captures R if there is an RPC^-class Jf of set-theoretical structures such that

(Cl) For any set a there is a transitive set M such that aeM, and (M, e |M) e jf.
(C2) If SR e Jf and 501 \= πai(mύ (/ = 1... n\ then R(au..., an) if and only if

Explanations. Intuitively, in the above Jf is a class of transitive models of set
theory. Condition (Cl) says only that Jf is non-trivial. (C2) is the critical condition
and asserts that models of Jf preserve R upwards and downwards.

3.1.2 Example. Let R(x) be a predicate which is Δx in KP-Inf. Then 5£ωω captures
R. To see this, let X be the EC^ωω-class of models of a large finite part of KP-Inf.
Condition (Cl) is then true, since HκeJf for all K. In order to verify (C2), we let
ΪR e JΓ and 901 \= πa(m). We may assume that the well-founded part 91 of 30Ϊ is a
standard e-structure and thus that m = a also. By the truncation lemma (see
Barwise [1975], p. 73), 9t e Jf holds. And, by the absoluteness of Δ1 -predicates we
have

R(a) if and only if 9l\=R(a)

if and only if 2R 1= R(a).

Before we examine more examples of capture, let us prove the main result of
this section. In this theorem, we will again assume that the elements of all models
considered are urelements. In fact, we do not need this convention before Theorem
3.4.15 except in the proof of

3.1.3 Theorem. Suppose that !£ and $£' are logics. Suppose also that <£ captures
the predicate S(x, y) such that

S(9W,φ) if and only if φe£" and m\=#.φ9

for all φ and all 9Ji. Then ^ is adequate to truth in !£'.

Proof Suppose that JΓ witnesses the capture of S(x, y). Let τ'set (disjoint form τset)
be the vocabulary of Jf". In order to demonstrate the adequacy of 5? to truth in if',
we shall begin with an arbitrary type τ. As a means of simplifying notation, we
will assume that τ contains only one binary predicate symbol R and one sort s. We
let τ + = [τ, τ s e t, T, τ'], where τ' contains τ'set and three constant symbols m, n,
and r of the sort of < e t. Let S'(x, y) be the predicate 5(x, y) in vocabulary Tget, and
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let j f be the class of τ+-structures W = [$R, 95, T, 31, m, n, r, / ] such that all the
following hold:

(a) 9leJf.

(b) 23c=end9t.
(c) 911= "m is a structure (n, r) of type <2> and n is a set of urelements."
(d) Vx(xeM<->3tt=/(x)e«)&"/is 1-1 onM."

(e) Vx, y e M(Λ(x, y) <-* 3ί N ( / ( X ) , / G 0 ) e r. *

(f) Vx

Intuitively, the following idea is behind Jf'. 93 is the syntax set of if', and 9i is a
larger set-theoretical universe within which S(x, y) is captured by Jf. In view of
the choice of S(x, y), this essentially entails that \=#, be captured within 31. Inside
the universe 31 m is a structure (n, r) of the same type as the structure 90ί, the true
sentences of which we try to define. Conditions (d) and (e) assert that m looks
exactly like $R. Finally, condition (f) defines the truth-predicate T in the obvious
way.

Clearly, Jf' is an RPC^-class, so that it is RPC-defined by some θe&. Now, in
order to prove (ATI), we let SDΐ e Str[τ] be given. By (Cl), there is a transitive set
N such that A'93ReN and 31 = (JV, e \N) e Jf. Let us examine the structure

W = PW, 21, Th^OM), 31, n, m, r ,/] ,

where n, m, r, and/are defined so as to make conditions (a) through (e) true. Now,
also condition (f) holds, since by (C2) we have

31 N S'(an, φ) if and only if S(9K, ψ)

if and only if

Thus, W e C/f' and therefore expands to a model of θ. This ends the proof of
(ATI).

As to the proof of (AT2), we suppose that

[9Jί, 93, T, 31, m, n, rj,...] h= 0 Λ πφ(b\

where φ e Ar and fceΰ. Furthermore, let 31' be the well-founded part of 31 and i

a transitive collapse of 31, i: 31 -> (N9 e). As 93 1= πφ(fc), we have beNf and i(fe) = φ.

Since «is a set of urelements in 31, m e N' and ι(m) is a structure W isomorphic to

SDΪ. Now we may reason as follows:

beT if and only if SR |= S'(m, b\

if and only if S(W, φ\

if and only if φe<£' and 30Ϊ' N^' φ,

if and only if φ e <£' and 901 \=#. φ.

This ends the proof of (AT2). D
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3.1.4 Corollary. Suppose <£ captures the predicate xeJf, where X is a model class.
Then Jf is A(^)-definable.

3.1.5 Corollary (Characterization of &ωω). &ωω is the only logic which is represented

on HF and is absolute relative to KP-Inf.

Proof. 5£ωω certainly has the stated property by Example 2.1.2. On the other hand,
if <£ is represented on HF and absolute relative to KP-Inf, then by Example 3.1.2
and Theorem 3.1.3, we have that i? ω ω is adequate to truth in <£. Whence, by
Corollary 1.1.12, it follows that i f < Δ(^ ω ω ) = JS?ωω. D

Observe that the proof of Corollary 3.1.5 actually gives the stronger conclusion
that i? ω ω is adequate to truth in any logic that is absolute relative to KP-Inf.

3.1.6 Remarks, (i) The proof of Theorem 3.1.3 also gives a sufficient condition
for simple adequacy to truth. All we have to know in addition about
capture is that the transitive set M in (Cl) can be chosen to be of cardinality
at most I a | Ko

(ii) If JSf captures S in the weaker sense that "if" holds in (C2) rather than
"if and only if," then we still get <£ semi-adequate to the truth in <£' in the
sense of Remark 1.1.9, and we still obtain RPC^-definability of X in
Corollary 3.1.4.

(iii) Some logics may be defined with respect to a parameter (for example α is
the parameter for i?ωω(<2α)). There is no essential difficulty in having a
parameter p in Theorem 3.1.3 and Corollary 3.1.4, but in Definition
3.1.1(C2), we must assume, of course, that every 30Ϊ e JΓ contains a set q
such that SR N πp(q).

(iv) To prove Corollary 3.1.4 we do not need the full strength of "capture."
Thus, in (Cl), we can restrict to a = (SDΪ, p), where 30ΐ is an arbitrary model
of the type of C/f and p is a parameter in the definition of J f (if any).

(v) There is a certain uniformity in the way τ + is obtained from τ above.
More precisely, the conclusion of Theorem 3.1.3 can be improved to:
i f is effectively adequate to truth in 5£'.

3.2. Absolute Logics Revisited

The notion of capture is used to prove the following theorem concerning strict
absoluteness (Definition 2.1.1).

3.2.1 Theorem. J?ωω(Q0) *s adequate to truth in any strictly absolute logic.

Proof. Suppose that !£ is strictly absolute. Thus, there is a predicate S(x,y) A1 in
KP, such that

) if and only if φs^ and SRt=^φ,
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for all 3DΪ and ψ. An argument similar to the one used in Example 3.1.2 shows that
^ωω(δo) captures S(x, y). By Theorem 3.1.3, <&ωω(Q0) is adequate to truth in <£. D

Observe that Theorem 3.2.1 does not allow us to conclude that Jδf < A(J?ωω(Q0))
if $£ is strictly absolute, since <£ may not be represented on the same syntax set.
However, we do have the following important result:

3.2.2 Theorem. Δ(JSPωω(β0)) = ^ W

Proof. It suffices to prove that J2(HF)+ ^ Δ(J?ωω(Q0)\ as it is well known that
J2(HF)+ satisfies the Craig interpolation theorem. As ^ H F ) + is strictly absolute, there
is a predicate S(x9 y\ Δx in KP, such that

S(SR, φ) if and only if φe& and 9Jtl=^φ.

Let φ e J^(HF)+ As an element of i?ωcκ? the set φ is definable by a predicate which
is Δx in KP (see, for example, Barwise [1975], Section Π.5.14). Thus, the model
class Mod(φ) is definable by a predicate, A1 in KP. By Example 3.1.2, J?ωω(Q0)
captures this predicate; and, by Corollary 3.1.4, Mod(φ) is Δ(^fωω(β0))-definable,
as desired. D

The above theorem can be relativized to a parameter in the following way.
Recall what was said about logics defined with respect to a parameter in Remark

If X c ω, let Qx be the generalized quantifier associated with

{9I|9I^(ω, <9X)}

and HYP(X) the smallest admissible set containing X as an element.

3.2.3 Theorem. IfX <Ξ ω, then A(&ωω(Qx)) = ^uγp(xy Hence,

Proof. As ^HYP(Λ:) satisfies Craig, it is again enough to pick φ e ̂ γ^χ) and show
that ^ωω(Qx) captures the predicate x e Mod(φ), as we did in the proof of Theorem
3.2.2. Note that ^HYP(Λ:) is strictly absolute and Mod(φ) is therefore definable by a
predicate, Δx in KP, with φ as a parameter. As an element of HYP(X), φ is itself
definable by a predicate A1 in KP, with X as a parameter (see Barwise [1975],
Section IV. 1.6). Using &ωω(Qχ\ it is now easy to capture the predicate x e Mod(φ):
We simply proceed as in Example 3.1.2 and use Qx to capture the parameter X. D

We shall apply Theorem 3.2.1 now to prove the main result of Barwise [1972a]:

3.2.4 Theorem. Let A be an admissible set containing ω, and let !£ be a strictly
absolute logic the syntax of which is represented on A. Then <£ < S£A.
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Proof. Let 5£ be a strictly absolute logic represented on A, and let φ e J2?. Suppose,
for a reductίo ad absurdum, that Mod(φ) is not definable in 3?A. Then the following
holds:

KP Λ φ o e ^ Λ V^ e&Λo i(φ0

This can be written in Σ-form. Whence, by Levy's reflection lemma, it holds in HC.
Thus, we have a countable admissible set Ao such that some φ0 e S£ is in Ao but is
not definable in JS^O. Let JS?' be the strictly absolute sublogic of JS? containing those
sentences of <£ which are in Ao. By Theorem 3.2.1, ^ωω(Qo\ and hence also J2^o,
is adequate to truth in 5£'. By Corollary 1.1.12, S£' < Δ(j^ 0). As ^ 0

 i s a countable
admissible set, A(<?Ao) = J ^ o , and hence, jSf" < J ^ o also. But this contradicts the
assumption that Mod(φ0) is not definable in J£Ao . D

Application. The logics £?AG, ^Aγ, ^AB and other unbounded absolute logics are
not strictly absolute.

Theorem 3.2.4 is an important characterization of admissible languages S£A.
It uses essentially the Souslin-Kleene property of S£A for countable A. The lack of
this property is the main obstacle to proofs of a similar result for other logics. The
following is a local version:

3.2.5 Corollary. Let A be an admissible set containing ω. A model class is definable in
5£A if and only if it is definable by a predicate Aί in KP, with parameters in A. D

3.2.6 Corollary (Characterization of <£A\ IfωeA, then !£A is the strongest strictly
absolute logic represented on A. D

3.3. Unbounded Logics

Recall that a logic L is unbounded if L contains a sentence which pins down every
ordinal or, equivalently, if the notion of well-ordering is RPC in L.

3.3.1 Lemma. An unbounded logic captures every Δx predicate.

Proof. The capturing RPC-class X asserts that SDΐ is a well-founded model of the
sentence expressing the Aί -definability of the predicate in question. Condition (C2)
then follows from the absoluteness of A1 predicates in transitive domains. D

3.3.2 Theorem. Any unbounded logic is adequate to truth in any absolute logic.

Proof The claim follows from the definition of absolute logics (see Lemma 3.3.1
and Theorem 3.1.3). D

It would now be in order to search for the simplest possible unbounded logic.
Unfortunately, there is no natural choice. The simplest logic in which the notion of
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well-ordering is EC-definable (rather than RPC-definable) is the logic &ωJW)9

where

WxyA(x, y)<r+A(-9 •) well -orders its field.

But, for example, the unbounded logic ^ωω(I) does not contain ^ωω(W) (see
Lindstrόm [1966]).

3.3.3 Corollary, (i) If' <£ is absolute, then JS? < A(&A(WJ).
(ii) The logics £?A(W\ 5£AG, <£AV, <£AB and all unbounded absolute logics

represented on A are A-equivalent.
(iii) A model class is definable in A(£fA(W)) if and only if it is definable by a A1

predicate with parameters in A. D

Remark. We can replace " unbounded " by " strong " in Theorem 3.3.2 and Corollary
3.3.3(ii) if the syntax set A is assumed to be contained in HC. Respectively, if
A c HC, S£AS can be added to the list of logics in Corollary 3.3.3(ii).

It is interesting to observe that there is no strongest absolute logic (this follows
from Theorem 3.4.7 below). The family of absolute logics divides into two cate-
gories: The first consists of sublogics of S£ OOω, and the second of Δ-equivalent logics
(up to difference of syntax set).

There is an important relation between descriptive set theory and infinitary
logic. In order to see this, let us restrict ourselves to countable structures and logics
represented on HC for a moment. A class J f of countable models can be viewed as
a set of reals, and it thus is meaningful to ask, for example, whether J f is Borel or
not. If JΓ is invariant (that is, closed under isomorphisms), then Diagram 1 shows
the equivalence of JΓ being definable on a level in topology and Jf* being definable
in an infinitary logic. The reader is referred to Vaught [1973] for details on these
equivalences. Observe, however, that on the last row, we can replace HfωiV by any
unbounded absolute logic (by Corollary 3.3.3(ii)). Thus, every J f definable in an
absolute logic is A\. Burgess [1977] showed that the question (posed by Vaught)
of whether the converse holds, that is, of whether every Δ2 C/f is definable in an
absolute logic, is independent of ZFC.

Topology Infinitary Logic

Borel ί ? ω i ω

Analytic PC in ifωiω

C-set jSPωiF

Σ^ P C in J ^ ω i F

Diagram 1
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3.4. Relatively Absolute Logics Revisited

As we remarked earlier, the role that transitive models of set theory play in the
theory of absolute logics is taken up by models of the form (M, e n M2, R n M")
in the theory of relatively absolute logics (see Section 2.3). Getting a hold on
RnMn is no easier than making sure that e is the true e. While unboundedness is a
good means for E, we need the following relativized version of pinning down for
RnM":

3.4.1 Definition. Let if be a logic and R(xu ..., xn) a predicate. We say that JS?
pins down R(xu ..., xn) if there is an RPC^-class X such that

9t e Jf if and only if 9l^(N,εn JV2, R n N"), for some transitive
set N.

3.4.2 Examples, (i) &ωω(I) pins down Cd.
(ii) X2

 ω pins down Pw.
(iii) J£ωω(H) pins down Pw.
(iv) If V = L, then JS?ωω(J) pins down Pw.
(v) <^ωω(Q) p i n s down Q, if unbounded.

3.4.3 Lemma. // a logic 1£ pins down a predicate R, then !£ is unbounded and
captures R. Moreover, <£ captures every Δx predicate in the extended language
{e,K} D

Proof. The claim concerning unboundedness and capture is trivial. For the second
claim, let S(x) be Δx in the language {e, R}. Let Jf witness the pinning down of R
and let jf' be C/f intersected with a statement witnessing the Δx nature of S(x). By
reflection, Jf' satisfies (Cl). Condition (C2) follows from the absoluteness of Δx

predicates in end extensions. D

3.4.4 Theorem. //jSf pms down .R and if' is absolute relative to R, then !£ is adequate
to truth in <£'.

Proof. Let 5(x, y) be a predicate, Δ t in the extended language {e, R}, such that

S(ΪR, φ) if and only if φe£" and 9K N ^ φ,

for all 9M and φ. Now, if captures S(x, y) by Lemma 3.4.3. Thus, Theorem 3.1.3
gives the desired result. D

3.4.5 Corollary, (i) // !£ pins down R, <£' is absolute relative to R and A' c A,
then £' < Δ(JSf).

(ii) //J5f is absolute relative to R and pins down R, then a model class is definable
in Δ(J£?) (RPQp) if and only if it is A1 (Σx) definable in the extended language
{e, R}, with parameters in A. D
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3.4.6 Examples, (i) The logic JSζi(/) is absolute relative to Cd and pins down Cd.
Therefore:
If if pins down Cd, then SeA{J) < Δ(JSP).
If if is absolute relative to Cd, then if < Δ(i^(I)).

(ii) The logic S£2

A is absolute relative to Pw and pins down Pw. Then, using the
fact that Δ2 = A^Pw), we get: A model class is definable in Δ(if A) if and
only if it is Δ2 with parameters in A.

The above results lead naturally to the following question: When is Δ(if)
absolute? We can answer this for many unbounded if, but the problem remains
unsettled for most bounded if.

3.4.7 Theorem. If !£ pins down R and <£' is absolute relative to R, then A(<£) φ <£\

Proof. Let 5(x, y) be a Δx predicate in the extended language {e, R} such that

if and only if φe&f and 3R\=j?>φ,

for all 3DΪ and φ. Let Jf be the class of models 93 such that

93 ^ (B, e n B2\ where B = TC({α}) for some a such that ~ιS(93, a).

Jf is clearly, Ax in the language {e, R}. By Corollary 3.4.5(ii), X is definable in
A(^). Suppose that Jf were definable by some φεJSe' and let 9l = (N,en N2\
where N = ΎC({φ}). Then

S(%φ) if and only if 9leJf

if and only if ~iS(% φ).

This contradiction shows that X is not EC^, and the proof is thus completed. D

3.4.8 Examples, (i)
(ii) Δ(ifωω(/)) ^ Jf^I).

(iii) Δ(ifωω(H)) ^ J?iω.
(iv) Δ(ifω ω(0) ^ Jf^iQ), if ifωω(Q) is unbounded.

Theorem 3.4.7 shows that if 5£ pins down R9 then A(J^) cannot be extended to a
logic absolute relative to R even less is A(J^) itself absolute relative to R.

3.4.9 Examples. The logic Δ(&ωJW)) is not absolute, and neither is
nor Δ(ifωiF). Moreover, the logic Δ(ifωω(/)) is not absolute relative to Cd, nor is
the logic A(3?2

ωϋ) absolute relative to Pw.

We observed in Corollary 1.2.4 that Δ(ifωω(Q0)) is not selfadequate but is
equivalent to one on a larger syntax set. The results we have here are stronger.
For example A(£?ωω(W)) is not absolute even if represented on a larger syntax
set.
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Application. If i f is unbounded, then there are no generalized quantifiers Qu . . . , Qn

and no p.r. closed set A such that

For otherwise 3PA(QU . . . , Qn) would be a Δ-logic which pins down and is absolute
relative to β l 9 . . . , β M .

Iterated Δ-extensions

3.4.10 Definition. Let i f be a logic and let Σ 0 ( i f) and Π 0 ( i f ) mean the same as
EQp. Moreover, Σ π + 1 ( i f ) means RPCΠπ(^) and ΠM + 1(if) means RPCΣn(J^).
Finally,

Δ π + £&) means Σ π + x(iP) n Un+

Explanation. Here we have a hierarchy of RPC-definability defined very much like
the hierarchy of Σn predicates of set theory or the hierarchy of Σ*-sets in recursion
theory. We treat ΣM(if), Ππ(if), and Δn(i?) as if they were logics, which, in fact, they
actually are, as one can easily see. Of course, ΣΠ(JS?) and Ππ(if) are not closed under
negation. However, ΔW(JS?) is closed, if i f is. Moreover, it is easy to see that each

is Δ-closed.

3.4.11 Theorem. Let n > 1. A model class is definable in An(J£A) if and only if it is
An-definable in set theory, with parameters in A. D

Remark. If i£A is replaced by if4G> the result also holds for n = 1.

Proof of Theorem 3.4.11. We use induction on n. For n = 2, the claim is true since
&A < Σ2(JSζι) implies that A(^) < A2(^A) holds, and Σγ(^A) < A{g2

A) implies
that Δ 2 ( i ^ ) < A(^2

A) holds. Assume, then, that the claim holds for n. Let X be a
Σπ+!-definable model class, and let R be a Yln predicate such that JΓ is Σ x in the
extended language {e, R}. Moreover, let ^ be the logic ^A(Q\ where Q is the
quantifier associated with the model class

{91191 £ (JV, e n iV2, R n ΛΓ) for some transitive set AT}.

Then i f is absolute relative to R and pins down R. By Corollary 3.4.5(ii), J f is
RPC^-definable. As a Ππ-definable model class, β is Σπ(if )-definable. The con-
verse is similar. D

3.4.12 Corollary. Δ π + 1 ( i ^ ) EE An{g2

A\for n > 0.

The logics An{<£A) are extremely powerful and gradually exhaust all logics
definable in set theory. In fact, Δ3(if4) already contains most familiar logics.
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Second-Order Logic

We can construe second-order logic <g\ as the result of iteratively closing S£A

under the PC-operation. Therefore, let us examine the extent to which the above
results hold for PC in place of RPC. To this purpose, we now consider

3.4.13 Definition. Let φ(x0,..., xn) be a formula of set theory. The expressions

3xo(HC(xo) < HC(Xi u u xn) Λ φ(x0,..., *„))

and

Vxo(HC(xo) < HC(Xi u - u x j ^ φ(x0,. , *„)),

where HC(i) = max(K0, | TC(x) |), are called flat quantifiers. The class of flat
formulae of set theory is the smallest class of formulae which contains Σ0-formulae
and which is closed under Λ , v , —i and flat quantification.

The following characterization of second-order logic can be proven by slightly
modifying the proof of Theorems 3.3.2 and 3.4.11.

3.4.14 Theorem, (i) Second-order logic is simply adequate to truth in any logic
definable by aflat formula of set theory.

(ii) A model class is definable in second order logic J£A if and only if it is definable
by a flat formula of set theory with parameters in A. D

Likewise, we may characterize PC ̂ -definability for a variety of jSf by modifying
Corollary 3.4.5(ii).

The Logic i f ω ω ( 0

Let Q be any quantifier. For reasons which will become apparent in the sequel, no

characterization of ^ωω(Q) can be proven along the above lines. However, we can

say something about Δ(j£?ωω(g)). In particular, we can assert

3.4.15 Theorem. ^ωω(Q) is adequate to truth in any logic that is absolute relative to
Q and KP(β)-Inf.

Proof Suppose that Jδf is absolute relative to Q and KP(Q)-Inf. Then the predicate
"<pej£? Λ ΪR \=&φn is Δx in Q and KP(β)-Inf. It is easy to show that JS?ωω(β)
captures such predicates. Thus, the claim follows from Theorem 3.1.3. D

3.4.16 Corollary. IfK is a model class, then (a) -> (b) -• (c) as below holds:

(a) K is definable in &A{Q).
(b) K is Δx in KP-Inf in the extended language {e, Q} with parameters in A.
(c) K is definable in A(JS£(Q)). ϋ

The main obstacle to improving Corollary 3.4.16 to (b)<->(c) lies in the fact
that certain X are Δ(Jέfωω(β))-definable in some models of set theory but not in
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others. For example, if X is the class of tree-like structures with an uncountable
branch, then MA + ~i CH implies that Jf is Δ(i?ωω(Q ̂ -definable, but ZFC alone
is not enough for this, let alone ZFC-Inf. On the other hand, if the axiom of infinity
is added to the picture, much more than Δ(ifωω(Q1)) will be Δ l 9 for instance,
&ωω(W). These situations manifest the difficulties inherent in trying to prove general
set-theoretical characterizations for logics of the form i?ω ω(β)

Historical and Bibliographical Remarks. The first result proven in the direction
of this section is the characterization Theorem 3.2.4 of strictly absolute logics, due
to Barwise [1972a]. The observation that absolute logics and &A(W) are related as
in Corollary 3.3.3(i) was made by Swett [1974]. Corollary 3.3.3 was rediscovered
independently by Oikkonen [1978]. The relativization to an arbitrary predicate
R (see Corollary 3.4.5) was carried out in Oikkonen [1978] and Vaananen [1978].
Finally, the iteration in Theorem 3.4.11 is due to Oikkonen [1978]. The computa-
tion of Δ(JS?ωω(Q0)) in Theorem 3.2.2 and its generalization Theorem 3.2.3 are
due independently to Barwise [1974a] and Makowsky [1975b]. Burgess [1977] is a
good reference to absolute logics. Essentially, it contains Theorem 3.4.7, among
other things. Theorem 3.4.14 on second-order logic is from Vaananen [1979a].
The results on first-order logic are due to Manders [1980] and G. Wilmers. In
Vaananen [1979a], a logic 5£ was called symbiotic with a predicate R if Δ(J£f)-
definability coincides with A1 -definability in {e, R}. The present terminology,
centered around absoluteness, capture, and pinning down seems more useful and
emphasizes the relation to adequacy to truth. Theorem 3.1.3 is formally new but
in fact is really only the codification of the underlying ideas of the above character-
ization results. The general approach was chosen in an attempt to shed light on
these ideas.

4. Other Topics

4.1. The Weak Beth Property Revisited

Recall the definition of weak Beth property: if a formula φ(R) defines the predicate
R implicitly (that is, φ(R) A φ(R') N V x Γ xn(R(xl9 . . . , xn) <-> R'(xu..., xn))
and if every model can be expanded to a model of φ(R\ then some formula
η(xί9..., xn) defines R explicitly (that is, φ(R) \= Vxx xn(R(xu . . . , xn) <-•
η(xχ,..., xn)). With every logic <£ can be associated the smallest extension of <£
to a logic WB(i?) with the weak Beth property.

We have already mentioned the following result in discussing some refinements
at the end of Section 1.

4.1.1 Theorem, If <£ is uniquely adequate to truth in JSP', 5£ is closed under negation
and J(A') is definable in WB(J^), then WB(if) £ JSP'. D
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Applications. The logics ^ωω(QoX ^I'J, &L» ^ Λ and &ωiωι do not have
the weak Beth property.

For unbounded logics (see Corollary 2.2.11) we have the following result of
Burgess. The proof uses methods from descriptive set theory, notably the Π}-
uniformization property, combined with Theorem 3.4.7.

4.1.2 Theorem. Suppose that ££ is a strong absolute logic closed under countable
disjunctions and negations, and A c HC. Then <£ fails to have the weak Beth
property.

Applications. If JSf is any of^ωω(W), j£?ω i G, j ? ω i S , JέfωiF, or j ^ ω i B , then JS? does
not have the weak Beth property and WB(JS?) is not absolute.

Particularly strong results on weak Beth closure come from the following
theorem of Gostanian-Hrbacek [1976].

4.1.3 Theorem. WB(j5fωω(^)) £ &„„.

Proof. Let J f be the class of models (A, E, R) such that either (A, E) is non-well-
founded and R = 0 or (A, E) is well-founded and R is the set of pairs (φ,/) where
(v4, E) satisfies \jp e JS?^ and / is a function such that the inductive clauses for
satisfaction of SP^^-formulae hold]; an example of the inductive clauses here is:

(3(x α ) α < κ φ,f)eR if and only if 3g e A such that g(x) = f(x) for
variables x Φ xa (α < K) and (φ, g) e R.

lϊ{A, E, R) and (A, E, R') are in JΓ, then we can use induction to prove that R = R'.
Thus, J f defines R implicitly. Moreover, for all (A, E\ there is an R such that
(A, E, R) G JΓ. Suppose that there were a formula η(x, y) in JS?^ which defines R
explicitly in models of X. Let K be a regular cardinal such that η e ££κκ. We shall
consider the model SOΪ = (Hκ, e n H2). The point to notice here is that if 3(x α ) α < β φ
is in Hκ, then β < K and every sequence (xα)α < / 5 of elements of Hκ that one might
need to satisfy φ already exists as an element of Hκ. Thus, if R is chosen such that
(HK9enH2,R)eJf, then

# = {(φ9f)\φe &κκ and/satisfies φ in SOΪ}.

Combining this with the choice of η(x, y) yields

SDt t= η(φ,f) if and only if /satisfies ψ> in SCR.

The standard diagonal argument ends the proof. Hence, let ξ (= ξ(x)) be the
formula -\η(x,f), where/is a term denoting the function which maps the variable
x to x (/ = {(x, x)}). We now have ξeHκ and
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The contradiction shows that X does not define R explicitly in J S ^ ; and this
implies the claim, as X itself is j2?ωω(W0-definable. D

The above theorem permits several improvements. An immediate observation
is that X need not assert that all its models (with R Φ 0) are well-founded. In
fact, it is enough that X pins down the K such that η e JS?KIC. Thus we have

4.1.4 Theorem. // <£ pins down the regular κ9 then WB(if) ^ j£?KK. D

4.1.5 Corollary, (i) Ifcϊ(κ) > ω , then WB(J^ + ω) £ &κ + κ +.
(ii) W B ^ ^ J ^ . D

Our second improvement concerns generalized quantifiers. We can make the JR
in the above proof work for formulae of ^ ^ C G ) , where Q is an arbitrary general-
ized quantifier. However, X is then definable in £fωω(W, Q) and not in i ?

4.1.6 Theorem. If^ωω{Q) pins down the regular κ9 then WB(J2?ωω(β)) £ JS?κκ(β). D

4.1.7 Corollary, (i) WB(J2>ωω(J)) £ ^ J J ) .

(ii) WB(Jί?ωiG) £ ^ ^ ( G ) .

(iii) WB(^ωω(//)) £ JSf^Jfl)-
(iv) WB(J^ + ω(β)) ^ JSPκ + κ(β), ifcf(κr) > ω.

What about logics which pin down ordinals but no interesting regular cardinals ?
Here, we may notice that the only role of regularity of K in the proof of Theorem
4.1.3 (or of Theorem 4.1.4) is that it gives the correct interpretation for R as the
satisfaction relation of JSfKΪC. However, if we replace S£κκ by S£Kϋn any admissible A
with o(A) = K can replace Hκ, and we have

4.1.8 Theorem. If A is an admissible set and <£' pins down o(A\ then WB(JSf') ^ ϊ£A.

U

Again, we can add an arbitrary generalized quantifier Q to this result. In fact,
we have

4.1.9 Theorem. // S£ωω{Q) pins down o(A\ where A is an admissible set, then
). D

4.2. Σγ-Compactness

Recall that a logic JSζ represented on A, is called Σrcompact if every T c JS?, Σ x over
i4, which has no models, has an ,4-finite subset with no models. The following result
is thus straightforward.

4.2.1 Proposition. If <£ is effectively adequate to truth in <£'(as explained in the
refinement at the end of Section 1), and if A' = A are admissible sets and ££ is Σ x -
compact, then S£' is Σ^compact. D



4. Other Topics 633

This result, when combined with Theorem 3.3.2, this gives

4.2.2 Corollary. // <£A{W), where A admissible, is Σ^compact, then so is every
absolute logic represented on A. D

Similarly, for stronger logics we have

4.2.3 Corollary. If £? is Σ ̂ compact and pins down R, then every logic, absolute
relative to R and represented on A, is Σ ̂ compact. Ώ

A third kind of consequence of Proposition 4.2.1 is given in

4.2.4 Corollary. If' $£ is adequate to truth in itself and Σx-compact and Q is ^in-
definable, then ^A{Q) is Σ ̂ compact. D

It is well-known that <£A is Σί -compact if A is a countable admissible set. More
generally,

(*) 5£A is Σx-compact if and only if A satisfies s-Πj-reflection.

The reader is referred to Chapter VIII for more on this and other results on <£A.
The result given in (*) above has been generalized to all absolute logics by Cutland-
Kaufmann [1980]. In this development, use is made of the notion of a s-Π}-
Souslin formula. These formulae are (in their normal form) of the form

W1...WnQ,x1...Q8xnly1...3y2ψ,

where φ is Σ o and Qs is the Souslin quantifier

Qsxφ(x) <-> 3x0 3xi ..

4.2.5 Theorem. An admissible set A satisfies s-Π\-Souslin reflection if and only if

every absolute logic represented on A is Σ ̂ compact. D

4.2.6 Corollary. If !£κω is Σ^compact and d(κ) > ω, then &κω(W) is Σ^compact.
D

Recall that an admissible set A is resolvable if A = u α < 0 ( ^ 4 ) F(α) for some A-
recursive function F.

4.2.7 Theorem. // A is a countable resolvable admissible set, then A satisfies Σ\-
reflectίon if and only if every absolute logic represented on A is Σ ̂ compact. D

4.2.8 Theorem. If A is a resolvable admissible set, then &Λ(Q) is Σ ̂ compact if and
only ifS(A) is not RFC-defined by a Σrtheory of &A{Q).

Proof The argument is similar to Barwise [1975, VΠI.4.8]. D
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Remark. Let A be a resolvable admissible set and assume that δ(A) is RPC in
^A(Q) By Proposition 1.2.2, the conjunction of a Σx -theory of ££A{Q) is RPC in
&A(Q) τ h u s > i f &A(Q) i s n o t Σ i -compact, then J(Λ) is RPC in &A(Q\ which means
that SeA{A) pins down o(A). By Theorem 4.1.9, JS^(Q) fails to satisfy the weak
Beth property. We have, in effect, a proof of

4.2.9 Theorem. Suppose A is a resolvable admissible set. If^A(Q) satisfies the weak
Beth property, then ^A(Q) *5 Σ ̂ compact. D

Σx-compactness is somewhat related to weak compactness. A logic !£ is
weakly compact if it is Σi-compact with any R ^ A as a parameter. For A = Hκ,
this assumes the more familiar form: If a theory T cz i f (and T c Hκ) has no
models, then some subtheory of power < K has no models. It is well-known that

\is weakly compact if and only if <£κκ is weakly compact if and only if K -> (κ)

4.2.10 Theorem. Let <£ be any logic and K a measurable cardinal There is a station-
ary set of cardinals λ < K such that i f restricted to Hλ is weakly compact.

Proof. Let U be a normal ultrafilter on K and i: V -> M the associated embedding
(see, for example, Jech [1978, p. 305]). The fundamental property of i is that if
φ(x, y) is any formula of set theory, then

(*) M f= φ(κ, i(x)) if and only if {λ < κ\ φ(λ, x)} e U.

We let φ(A, x) be the formula "If T a if, T ^ Hλ n x and T has no models, then
some subset To eH λ of T has no models". In view of (*) it suffices to prove that
M N φ(κ, i(x)) holds, for x = {φe£?\φeHκ}. Suppose we have T = i{T'\ for
some V. By (*) the set

A = {A < κ| r cz ^ T c //Λ n x and every subset To € H λ of 7 '
has a model}

is in U. Let A, μ e A such that A < μ. Then T" e fίμ, as A € 4 and, hence, T has a
model, as μ e A. Therefore, M \= T has a model, using (*) again. D

4.3. The Problem of Validity

Recall that if i f is a logic represented on A, we say that validity in 5£ΊsΣ1 if the set

is Σ1 over A.

4.3.1 Proposition. lf^£ is effectively adequate to truth in <£', A' = A is an admissible
set and validity in <£ is Σ 1 ? then the same holds for <£'. D
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4.3.2 Corollary. If validity in &A(W\ where A admissible, isΣu then the same holds
for every absolute logic represented on A. D

Similarly, for stronger logics, we have

4.3.3 Corollary. If the validity in <$? isΣ1 and !£ pins down R, then validity in any
logic absolute relative to R and represented on A ίsΣί. D

A third kind of consequence of Proposition 4.3.1 is given in

4.3.4 Corollary. //if is effectively adequate to truth in itself and validity in i f isΣ1

and Q is A(^)-definable, then validity in S£A(Q) isΣγ.

Application. ifω ω((?f) is axiomatizable, because Qf is Δ ^ ^ g ^ - d e f i n a b l e .

As it actually turns out, validity in an unbounded logic is hardly ever Σ x . In
order to see this let us first make two simple remarks. In the following, a subset
X of A is said to be U1 if it has the form {x e A | φ(x)}, where φ(x) is nx. Observe
that Γ^ over A refers to sets of the form {xeA\A\= φ(x)}9 φ(x)eTl1. A set
I g i i s complete for U1onA if for every Π ί subset Y of A there is a Σx-function
/of A such that for a e A

4.3.5 Lemma, (i) If 3? is absolute relative to R, then Val_^ is Γ^ in the extended
language {e, R}.

(ii) // $£ pins down R, then Val^ is complete for Tl1 on A in the extended
language {e, R}.

Proof In order to prove (i), we use absoluteness of i f to write the definition

a e Val^ <-+ a e <£ A V9I(9I \=<? a)

in Πi-form. In order to prove (ii), we suppose that 7 is a subset of A defined by the
ϊlί -formula φ(x). For aeA, let g(a) be an if-sentence equivalent to

Vx(πΛ(x) - φ(x)\

If J f is the class of models (M, e n M 2 , R n M"), M transitive, then for all a e A

aeY^JΓ c Mod(g(a)).

Using the fact that Jf is R P C ^ , we find a Σi-function/on A such that for all

aeA, we have

aεY~f(a)eVal<?. D
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In order to be able to apply Lemma 4.3.5 we would like to know that Γ^
coincides with Tlί over A for subsets of A. In general, this is not true. An equivalent
condition is that A<XV and this is known to hold for A = Hκ, K > ω, (Levy
reflection principle) and for A = Lα, where α < ω\ is stable, at least (Schoenfield
absoluteness lemma). In such a case, U1 plus complete for Γ^ coincide with the
ordinary notion of complete Π l 9 which is never Σ x over A (if A is admissible).
Thus, we have the proof of

4.3.6 Theorem. // 5£ is an unbounded absolute logic represented on A *ζt V, then
Val^ is complete Π ί over A and validity in 5£ is notΣx. D

4.3.7 Corollary. Validity in an unbounded absolute logic represented on Hκ,κ >ω,
is not Σ x . D

Cutland-Kaufman [1980] obtained the following improvement of Theorem
4.3.6 in the case of A = Lα.

4.3.8 Theorem. Validity is not Σ t in any unbounded absolute logic represented on an
admissible set of the form Lα. D

Corollary. IfV = L, then validity in an unbounded absolute logic represented on an
admissible set is never Σv D

Considering these negative results, one might raise the question of whether some
more general completeness property would be more tractable. In this direction
Cutland and Kaufman proved

4.3.9 Theorem. If S£ is an absolute logic represented on an admissible set A, then
is s-Tl\-Souslin over A.

Feferman [1975] proves a more general completeness theorem. Recall the
notion of Φ-sndx from Remark 1.1.9. In the following theorem i f has to satisfy a
property called "join property," a property which most logics do indeed satisfy
and which essentially says that i ? permits the construction of disjoint unions of
structures.

4.3.10 Theorem. Let $£ be adequate to truth in itself Then for each τ, the set
{φ e J?[τ] | \=# φ} is # -siidx in & Moreover, ifS c i f [τ] is siidx in if, then the same
holds for {φ e JS? [τ] \S\=<?φ}. D

This theorem shows that validity and even consequence is "r.e." in any self-
adequate logic once we use an appropriate notion of "r.e.". The notion #-siidx

does indeed have many of the characteristics of r.e. on ω and Σ ^ n a n admissible
set (see Feferman [1975] and Kunen [1968]).
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4.4. Lόwenheίm Numbers and Spectra

The Lόwenheim number of a logic is related to the more general problem of
spectra. The spectrum of a sentence φ of a logic i f is the class of cardinals of models
of φ. That is, in symbols the spectrum of φ is

The problem of spectra of such strong logics as J5?£ω or ̂ ωω(I) is a difficult subject
and remains mostly unsettled. However, even the spectra of 5£ωω present open
problems. Well-known is the Finite Spectrum Problem'. Is the complement of a
spectrum of J£ωω also a spectrum of J£ωω, if only finite models are considered! On
the other hand, the infinite part of a spectrum of J?ωω is trivial: It is either empty or
contains every infinite cardinal. The spectra of i^> i ω are more complex: Every set
of natural numbers is one, as are also {κ\κ < 2ωα}, for α < ω1. Even more complex,
however, are spectra of i ^ ω . The strength of S£2

ωω makes it possible to represent
every spectrum as the spectrum of an identity sentence. Thus, the spectra of S£\ω

form a boolean algebra with respect to complementation, union and intersection.
In fact, the spectra of 5£2

ωω permit the following general characterization, a con-
sequence of Theorem 3.4.14(ii).

4.4.1 Theorem. A class C of cardinals is a spectrum of' S£\ if and only ifC is defined
by aflat formula of set theory with parameters in A. Π

For logics such as ifωiω, if ω ω (βi), and &ωω(W) the complexity of spectra is
limited by a strong downward Lδwenheim-Skolem theorem. Another limiting
factor is the upward Lόwenheim-Skolem theorem.

Recall that the Lowenheim number of i f is the cardinal

i(L) = sup{min C\C is a spectrum of if}.

Despite our occasional reference to logics such as ifOOω and S£^*» every logic is
represented on a set and therefore has a Lowenheim number. The explicit computa-
tions *?(ifκ+ω) = K and /(ifω ω(βα)) = ωα are immediate. Following are two easy
preservation results.

4.4.2 Proposition, (i) If & < R P C if', then ί(g) < t\<£'\
(ii) If^£ is absolute relative to R, A c A' and £" pins down R, then {{&} <

In the following theorem we shall estimate Lowenheim numbers in purely set-
theoretical terms

4.4.3 Theorem. Let ̂  be a logic, R a predicate and

δ = sup{κ\κ in ^-definable in the extended language {e, R} with

parameters in A}.

(i) If^ is absolute relative to JR, then ί(&) < δ.
(ii) If^£ pins down R, then δ < f(Se\
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Proof. For (i) we suppose that λ = min C, where C = Sp(φ) is spectrum of !£. The
cardinal λ has the following definition:

Using absoluteness of iζ we can write this in Π rform with φ as a parameter.
(ii) We suppose K that is Π^definable with parameters in A. Let JΓ be the

class of well-ordered structures of type >κ. Jf is clearly Σί -definable with param-
eters in A. By Theorem 3.4.4 (letting if' = i?ωω(Q) such that Jf is E C ^ and if'
is absolute relative to R), X is RPC^. Let

λ = min{|Sl| |3IeJf}.

Now /c < λ < ί{<£\ D

Remark. If /(if) is a limit cardinal, we can replace K by α in Theorem 4.4.3.

4.4.4 Corollary. Suppose that $£ is absolute relative to R and pins down R. Then

= sup{κ|fc is Ilγ-definable in the extended language {e, R) with
parameters in A). D

4.4.5 Examples, (i) ί{^A{l)) = sup{α | α is Πi-definable in {e, Cd} with parameters
in A}.

(ii) ^(^A) = sup{α|α is Π2-definable with parameters in A}.

An inductive argument based on Theorem 4.4.3 can be used to prove:

4.4.6 Theorem. /(An(^A)) = sup{α|α is Hn-definable with parameters in A}
(n > 1). D

We can actually replace Π by Δ in the above results. When this is done, we then
have

4.4.7 Theorem, (i) ̂ {^2

A) = sup{α|α is A2-definable with parameters in A}.
(ii) *f(Δπ(ifA)) = sup{α|α is An-definable with parameters in A}, (n > 1). D

Following is a third characterization of *f(Δ^if^)) in set-theoretical terms.

4.4.8 Theorem. Ifn > 1, then /(Δπ(ifκω)) = K if and only ίfRκ <n V. D

Combined with the facts that Rκ <2 V for K supercompact and JRK -<3 V for K
extendible, this yields

4.4.9 Corollary, (i) Ifκ supercompact, then ̂ (^lω) = K.
(ii) Ifκ is extendible, then /(Δ3(ifκω)) = K. D
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Remark. Magidor [1971] proves a downward Lόwenheim-Skolem theorem for
S£2

ωω on a supercompact cardinal, a result which is stronger than that given
by Corollary 4.4.9(i).

No upper bound to / ( i ^ ω ) or even to /( iς ω (/)) is known in terms of large
cardinals below supercompact cardinals. However, observe the following

4.4.10 Theorem, (i) If a spectrum C of Ί£2

ωω contains a measurable cardinal K, then
C n K is stationary on K.

(ii) // a spectrum C of S£ωJJ) contains a weakly inaccessible cardinal /c, then
C r\κis cub on K. D

4.5. Hanf Numbers

Recall that the Hanf number of a logic $£ is the cardinal

= sup{sup C\C is a bounded spectrum o

There are a few explicit Hanf number computations, such as d(^A) = 3 α for
countable admissible A of ordinal α and ^(ifω ω(βi)) = 3 ω . But for many if, for
more than with /(if), A{5£) is simply unknown. The following estimates are the
best known ones.

4.5.1 Examples, (i) A{5£ωω{W)) exceeds the first K such that K -• ( ω ) < ω .
(ii) If K -> ( ω x ) < ω , then rf(JS?ωω(»O) < ^

(iii)

Remark. As to (iii), Burgess [1978] shows that /f(ifωiS) = 3 ω 2 under MA + -iCH
-f ω\ = ω x .

When we proceed to set-theoretical characterization or estimation of Hanf
numbers, the first point to notice is the failure of Hanf numbers to be preserved—in
general—under Δ-operation. Thus, our general results will mostly concern
/i(RPC^) rather than A{je\ (Note that /(RPC^) = /(if)). In particular examples,
on the other hand, ^f(RPC^) = /f(if) usually holds, as we shall see.

A typical RPC^-definition has the form

(*) SR G Jf <-• 39i([SR, 31] \=<? φ).

Problems with A(J£) arise because there is no upper bound on the size of 31. But
suppose that the following holds in addition to (*) above:

VSR 3κ V3i([SR, 31] μ=* φ - |3l | < k).

In this case, we say that J f is bounded R P C ^ . This notion clear, we have
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4.5.2 Lemma, ^(bounded RPC^) = A{<£\

Proof. The argument for this result is easy. D

4.5.3 Examples. R P C ^ = bounded RPC^if J^ is one of i f κ + ω , ^ ω j ρ j , ^ ω ω ( Q α

< ω ) ,
3?κG or if Bounded R P C ^ contains i?ωω I n t r i e first four cases this follows from
the strong Lόwenheim-Skolem theorems of these logics. In the fifth case, we may
use the strength of S£2

ωω to make sure that the set-theoretical rank of 9t in (*) is
minimal.

4.5.4 Theorem. //Con(ZF), then Con[ZFC + *(J2?ωω(J)) < /?(RPC^ω ω ( / ))].

Proof. Let A(μ) be the statement "there is a sequence (coy+p+1)p<a of cardinals K
such that 2K > κ+ + " and let B((x) be the statement A(a) Λ Vβ(A(β) -> β < α).
It can be seen without too much trouble that B((x) implies that α < ^(RPC^ ω ω ( / ) ) .
Thus, it remains to construct a boolean extension in which A{^ωω(l)) < α Λ B(OL).
The idea here is the following. Construct notions of forcing (proper classes) Faβ such
that Faβ Ih- β(α), Fα/? is ω^-closed, Faβ 2 F α y if β < y, and Faβ preserves cardinals.
Call Faβ a failure if it fails to force Λ{^ωω{I)) < α. Construct a sequence ( φ α ) α < ω i

of sentences of &ωω(I) a n d sequences (Aα)α < ω i and (κjoc<ωι of cardinals such that
for λ = Λ(J£ωω(I)\ λa = sup(κ^) i3<α, Fλλoι is a failure, because it forces φα to have a
model of power >A but none >κΛ (>λ α ). Take α < jS < ω x such that φa = φβ.
Then F A A α forces φα to have a model SOΪ of power >λ such that |9K| < /cα. As
F λ λ ^ c Fλλgc,Fλλβ forces the same thing. But since Fλλβ is λ^-closed and κa < λβ, we
may assume that 2R e F, whence φα already has a model of power > κa in V. This
is a contradiction of the definition of φΛ. D

We can establish a similar relation between bounded RPC and "bounded Σx"
as holds between RPC and Σ x (Corollary 3.4.5(ii)). A Σi-formula 3xφ(x, y) is
called "bounded" if for all y9 the class {x\φ(x, y)} is a set. Using such "bounded"
formulae, we could actually characterize A(&) set-theoretically for a variety of if.
As A(J£) = /f(RPC^) in so many practical cases, we confine ourselves to char-
acterizing f(RPC^). However, we will first make the simple observation given in

4.5.5 Proposition. If <£ is absolute relative to R, A c A' and 5£' pins down R, then

Proof. See Corollary 3.4.5(i). D

4.5.6 Corollary. If $£ is absolute, then A{<£) < A(&Λ(W)). D

4.5.7 Theorem. Let $£ be a logic, R a predicate and

δ = sup{α|α is Σ^definable in the extended language {e, R} with
parameters in A}.

(i) If& is absolute relative to R, then i (RPC^) < δ.
(ii) lf<£ pins down R, then δ <
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Proof. As to (i) suppose that λ == sup(C), for a bounded spectrum C of RPC^. The
cardinal λ has the following definition:

ocελ<-+ 3β(ot < β A βeC).

Using absoluteness of if, we can write this in Σi-form with a parameter in A. As to
(ii), suppose that α is Σ^definable with parameters in A. Let X be the class of well-
ordered structures of type <α. X is clearly Σ1 -definable, with parameters in A.
By Theorem 3.4.4, J f is RPC^-definable. Moreover, Sp(Jf) is bounded by
I α I+. Let λ = sup Sp(JΓ). Well-known properties of all Hanf numbers imply
that α + < A(S£). Thus, we have that λ < A(&\ D

4.5.8 Corollary. If Jg is absolute relative to R and pins down R, then

= sup{α|α is Σ^definable in {ε, R} with parameters in A}, ϋ

4.5.9 Examples, (i) A{SPA(W)) = sup{α|α is Σi-definable with parameters in A}.
(ii) ^(^A) = sup{α|α is Σ2-definable with parameters in A}.

Theorem 4.5.7 permits an iteration similar to that of Theorem 4.4.3.

4.5.10 Theorem. ά(An(JίfA)) — sup{α|α is Σn-definable with parameters in A}
(n > 1).

Up until now, we have characterized the suprema of ΣM-, ΠM-, and Δπ-definable
ordinals in terms of Hanf and Lowenheim numbers. The logics in question—
An(^A)—are so strong that there is little hope of deciding any questions concerning
them in ZFC alone. However, one rather curious relation between the different
Hanf and Lowenheim numbers is not hard to prove.

4.5.11 Theorem. / ( Δ n ( ^ ) ) < /f(Δn(J^)) = / ( Δ M + 1 ( ^ ) ) (n > 1).

4.5.12 Corollary. If the required large cardinals exist, then

1st measurable <
1st supercompact <
1st extendible < A(A

Remark. If we consider Theorem 4.5.10 for n = 1, we have to add the quantifier
W to 5£A to make the situation non-trivial (for n > 1, this would make no dif-
ference). The inequality-part remains true then. The equality-part fails, for if K
is the last K such that K -> ( ω 1 ) < ω , then i{^ωω(W)) <κ< /(Δ2(J^ω ω)). But, of
course, there need not exist such a large K. Indeed, the theorem does hold also for
n = 1 in L. And we have

4.5.13 Theorem, (i) A(&Λ(W)) <

(ii) IfV = L, then A(#Λ(W)) =
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Remarks. A number "about the size" of ά{&ωω{W)) and /(J^L) is ^(J^ ω i ω i ) . If
V = U then S(<e2

ωω) < A(&ωιωι), because the former equals A(^JW)) <
A^ωιωιy Observe that cM(JSfωiωi)) > ω, so that *(JS?ωiωi) can never really equal
either /C(j£?ωω(W)) or <?(JSθ Kunen [1970] showed that if 7 = Lμ, then 4(JS?ωiωi)
exceeds the 1st measurable cardinal. On the other hand, there is a model in which
4(^,0,,) is below the first weakly compact (Vaananen [1980c]) and, hence, also
below ί\Seiω). Another curiosity in this field is that although /(if) < A(S£) is
true of almost all logics, it is not a rule: The statement /(J^ωω(/)) < ^{^ωJJ)) is
independent of ZFC. Also, all non-trivial claims of relation between /(J^ωω(/)),
ά(£?ωω{I)) and large cardinals turn out to be independent (Vaananen [1982a]). The
numbers can be as small or as large as conceivably possible, if measured by large
cardinals. The interrelations of the Hanf and Lόwenheim numbers discussed can
be visualized in the form of Diagram 2, where an arrow means "less or equal to".

Diagram 2

It is not known whether ^ ( i f ω i ω i ) < A(J?ωω(I)) holds absolutely or not, but no
arrows are otherwise missing. If V = L, the picture collapses (Diagram 3).

Diagram 3

Historical and Bibliographical Remarks. The main results on the failure of the
weak Beth property, Theorems 4.1.2 and 4.1.3 are respectively due to Burgess
[1977] and Gostanian-Hrbacek [1976]. They have many precedents in the
literature, Mostowski [1968] being perhaps the most notable. Also Theorem
4.1.4, 5, 7(ii) and 8 are from Gostanian-Hrbacek [1976].
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The results given in Sections 4.2.5-7 are from Cutland-Kaufman [1980].
Theorem 4.2.10 is from Stavi [1978] which also contains refinements of Theorem
4.2.10. The incompleteness results, Corollary 4.3.7 and Theorem 4.3.8, are re-
spectively due to Barwise [1972a] and Cutland-Kaufman [1980]. The latter is also
the best reference to Theorem 4.3.9 and many other results on Σ1 -compactness
and validity questions for unbounded absolute logics. The motivation behind
Theorem 4.3.10 as well as its proof are given in all details in Feferman [1975].

Theorems 4.4.3-9 are from Vaananen [1979a], while Example 4.4.5(ii) is in-
dependently due to Krawczyk-Marek [1977]. The relation between super-
compactness, extendibility and Rκ <n V are from Solovay et al. [1978]. Magidor
[1971] establishes important relations between supercompactness, extendibility,
and second-order logic. Theorem 4.4.10(i) is proven in a way similar to Theorem
4.2.10. Part (ii) of this result is due to Pinus [1978].

Examples 4.5.l(i) and (ii) are due to Silver [1971] while (iii) is due to Burgess
[1978]. The results given in sections 4.5.2-4 are from Vaananen [1983] where
Theorem 4.5.4 is also proven in the stronger form, namely

Corollary 4.5.6 is due to Barwise [1972a], and the results in Sections 4.5.7-13 are
from Vaananen [1979a]. Example 4.5.9(ii) is independently due to Krawczyk and
Marek [1977]. Theorem 4.5.13 is proven in Vaananen [1979b].

Suggestions for Further Work in the Area. It seems likely that further progress can
be made in the following parts of this chapter:

1. The Program Presented in Feferman [1974b, 1975]. The analysis of ade-
quacy to truth presented here, as well as Theorem 4.3.10 are parts of the
program. However, the entire program is much more ambitious.

2. Relative Absoluteness. The set-theoretical method is at its best in the con-
text of absolute logics and there are but few results on relatively absolute
logics. In view of Hutchinson [1976], it seems possible to develop set-
theoretical proofs for compactness theorems. Although, in general we have
tended to ignore compact logics in this chapter, it would nevertheless be
interesting to extend the scope in their direction.

3. Canonical Failure of Interpolation. We have undefinability of truth style
proofs for the failure of different forms of interpolation in various logics.
These proofs do not apply directly to &ωω(Qi) or to JSfωω(aa), for example.
Is there a canonical anti-interpolation theorem which applies to these
countably compact logics?

4. Can Validity in an Unbounded Absolute Logic be Σj? The validity problem
seems to provide a fruitful framework for further work in abstract model
theory.

5. Lόwenheim-Skolem and Hanf Prospects. One may formulate downward or
upward Lδwenheim-Skolem theorems which are stronger than those related
to Lowenheim and Hanf numbers. Magidor [1971] is an example. The
proofs of such theorems tend to depend on large cardinal or combinatorial
axioms of set theory.






