
PartC

Infinitary Languages

This part of the book is devoted to languages with infinitely long formulas and
their applications. Again the structures are of the sort studied in first-order model
theory. Languages with richer structures and infinitely long formulas are studied
in Part E. The study of infinitely long formulas is more developed than some of
the other parts of extended model theory. In particular, there are several books
treating various aspects of the subject, notably Keisler [1971a] and Dickmann
[1975]. This part of the present book was planned with the existence of these
references in mind, containing chapters that give an introduction to the subject
leading into these books as well as chapters that discuss more recent advances.

Chapter VIII presents a wealth of material on ifω i ω and some of its sublogics.
Starting with the original motivations for studying languages with infinitely long
formulas, the chapter provides both a basic introduction and an explanation of
many of the developments that have taken place since Keisler's [1971a] publica-
tion. In addition, it discusses extensions of S£ωχ ω by new propositional connectives.
The importance of these extensions is not for their intrinsic interest so much, as for
the fact that they seem to have all the nice properties of J ^ ω i ω , and so make it
difficult to find a characterization of J5fωiω by its model-theoretic properties.

Chapter IX presents an introduction to the stronger logics £?κλ, one that leads
into Dickmann's book [1975] on this topic but also goes beyond it with the presen-
tation of some more recent results. Special emphasis is given to partial isomor-
phisms and their applications, and to Hanf number computations.

One of the more recent developments in infinitary logic is that dealing with
game quantification which has grown out of the work of Svenonius [1965],
Moschovakis [1972] and Vaught [1973b]. The logic i f ω i ω a n d &„„ allow only
finite strings of quantifiers at any stage in the transfinite process of building
formulas. Jέfωi£ΰl and $£'aDωι permit infinitely long strings of the forms

Vxx Vx2 . . . φ(xl9x2, •••)

and

3x1 3x2 . . . φ(xί9x29'")'
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The logics if ooG and g^v studied in this chapter are stronger than <£'aoω but
are not comparable with S£^ωχ. They contain more powerful forms of infinite
quantification, by allowing infinite strings with alternations.

V x x 3 y x V x 2 3y2 ... φ ( x l 9 y l 9 x 2 , y 2 , . . •)•

However, they are more restrictive in terms of the form of the matrix φ that can
follow the quantifiers. As the name "game quantification" suggests, a basic
motivation comes from game theory. We imagine a two-person game of perfect
information played by "V" and " 3 " . They are allowed to play in turns. The formula
is true in some structure if " 3 " has a winning strategy. The restriction on the matrix
φ represents a restriction on the complexity of the games they are allowed to play.
Basically, the games should be "open" or "closed", so that one of the players has
a winning strategy. As a consequence, one has

logically equivalent to

3xx \fy1 3x2 Vy2 ~Ί</>

and equivalence which would fail without some such restriction. It is also exactly
these open and closed games that arise in the analysis of inductive definitions, as
Moschovakis showed. Vaught showed how these game formulas can be ap-
proximated by formulas of ifωiω, leading to interesting proofs of results about the
latter logic. Svenonius' theorem relates the logics to the study of second-order
logic on countable structures. All of these results are covered in Chapter X, as
well as some of the connections with generalized recursion theory and descriptive
set theory.

Chapter XI, the final one in Part C, presents several applications of infinitary
logics to algebra. The chapter is organized by algebraic subject matter. The first
two sections, on universal locally finite groups and on subdirectly irreducible
algebras, respectively, contain "pure" applications, applications of infinitary logic
to prove results that can be stated in standard algebraic terms without reference
to concepts from logic. The remaining sections, on Lefschetz's principle, abelian
groups, almost-free algebras, and concrete constructions, present the conceptually
more interesting kind of application where concepts from logic are brought in to
enrich some domain.



Chapter VIII

j£?ωiω and Admissible Fragments

by M. NADEL

Of the many strengthenings of first-order logic that the reader will encounter in
the course of this book, if aDω and its admissible fragments have attracted the most
attention by a wide margin. Unlike many of the others, these logics are often
studied by investigators who are not otherwise involved with questions of abstract
model theory. A large body of "hard" model theory has already been developed,
and it continues to grow. Such a wealth of material, when coupled with stringent
space limitations, creates obvious difficulties for any researcher aiming to present
an exposition of this fascinating and ever-growing theory. We have attempted to
contend with these difficulties in as reasonable a way as possible while all the
time fully recognizing that even the catalog of results that we do present here is
indeed far from complete. In fact, entire areas are omitted. We have tried to com-
pensate for this, at least to some extent, through an appendix. Moreover, of the
topics we do cover, we try to mention at least the most basic results and then
direct the reader to other sources for further information.

In keeping with the procedure sketched in the preceding paragraph, we have
tried to strike a reasonable balance between "hard" and "soft" material, but have
steered clear of results in the direction of stability theory. Sections 3 and 6 are
concerned mainly with "softer" considerations, while Sections 4 and 7 deal mainly
with those "harder" aspects that are particularly characteristic of infinitary logic.
The distinction here is not absolute, of course, nor is it strictly observed. Sections
1 and 5 provide the necessary background material while Section 2 is concerned
with elementary equivalence. Section 8 deals with propositional extensions, and
is, perhaps, the "icing on the cake"—a part which some may like best, but which
others may prefer to avoid. In any event, the methods used in that section make it
a worthwhile discussion even for the reader whose interest in abstract logic is
quite limited.

Again, we would like to emphasize that within the limitations imposed by
strict space requirements and an already large (and rapidly growing) body of
theory, it is hardly possible to completely eliminate one's own prejudices and
preferences either with respect to the topics to be treated or to the treatment they
are to receive. Fully aware of this, we have nevertheless tried to present a reason-
ably orthodox treatment of the subject. We hope we have succeeded.
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PART I. COMPACTNESS LOST

1. Introduction to Infinitary Logics

1.1. Why We Need Infinitary Logic

In the practice of model theory, and in more general mathematics as well, it often
becomes necessary to consider structures satisfying certain collections of sentences
rather than just single sentences. This consideration leads to the familiar notion
of a theory in a logic. For example, in ordinary finitary logic, ££ωω, if φn is a sentence
which expresses that there are at least n elements, then the theory {φn: neω}
would express that there are infinitely many elements. Similarly, in the theory of
groups, if φn is the sentence Vx[x" Φ 1], then {ψn:ne ω} expresses that a group
is torsion free.

Suppose we want to express the idea that a set is finite, or that a group is
torsion. A simple compactness argument would immediately reveal that neither
of these notions can be expressed by a theory in JS?ωω. What we need to express in
each case is that a certain theory is not satisfied, that is, that at least one of the
sentences is false. While theories are able to simulate infinite conjunctions, there
is no apparent way to simulate infinite disjunctions—which is just what is needed
in this case.

A similar phenomenon occurs with respect to the description of the elements
in a structure. In order to specify that there is some element satisfying a certain
set of formulas—for instance, x Φ 0, x Φ 1, x φ 2, and so on—we might simply
introduce a new constant symbol, say c, and then consider the theory in the
language augmented by c, containing c φ 0. cΦl,c Φ2,.... Suppose, however,
that we want to consider structures, say models of set theory, in which the set of
natural numbers is standard. Here we must introduce the notion of a type; that
is, a consistent set of formulas in some fixed finite set of variables. We say that a
model 30Ϊ realizes the type Φ(x) = {φk(x): keω} if there is some mε M, such
that for each k e ω, ΪR |= φk[tή], or simply, 9K |= Φ(m). Otherwise, we say that 30Ϊ
omits Φ. In the example above, we want our structures to omit the type {x e ω,
x Φ 0, x / 1,...}. Of course, this is the same as requiring that each element
satisfy at least one of the formulas x φ ω, x = 0, x = 1 , . . . . The original results
on omitting types are due to Henkin [1954,1957], Orey [1956], and Morley [1965].

The logics we will consider allow us to replace some or all types in the logic
by formulas of the logic. Thus, the notion of omitting a type may be equivalent
to satisfying a certain sentence. In fact, these logics may be viewed as being formed
by closing under "omitting types" as well as the other standard logical operations.
Somewhat earlier, model theorists considered ω-logic (See Keisler [1966]) in
which there is a fixed unary relation symbol, say % whose realization in all ω-
models is taken to be the same, viz., the set of standard natural numbers. However,
as research developed, attention has moved from ω-logic to the more flexible
setting which we will discuss in the remainder of this chapter.
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1.2. Definition of the Infinitary Logics

We now formally define the formulas of the logic ^aoω as the smallest class closed
under the usual connectives and quantifiers of finitary logic and, in addition,
under the conjunction of arbitrary sets of formulas. Thus, if Φ is a set of formulas
of <£ ooω, so is /\ Φ. The semantics for /\ Φ is the obvious one, and the disjunction
\ / Φ may be defined using de Morgan's law as —\/\{—\φ\φe Φ}. We assume
that the reader can supply correct definitions for such standard concepts as sub-
formula, free variable, sentence, etc. In cases of doubt, the reader should consult
Keisler [1971a] or Barwise [1975].

Formulas, as we have so far defined them, may have infinitely many free
variables. However, from now on we will restrict our discussions to those formulas
with only finitely many free variables. It should be noted that a subformula of
such a formula—and specifically of a sentence—will again have only finitely
many free variables.

For any infinite regular cardinal K we define the sublogic <£κω of I£ ooω by
restricting the conjunctions to be of sets of cardinality less than K. For K singular,
the definition is a bit different. This is so in order to prevent the conjunction of
conjunctions from simulating a conjunction of cardinality K, and we omit it here.
Of special interest is i^ ω i ω , in which only countable conjunctions and disjunctions
occur. <£ωω is simply the familiar finitary logic. For the sake of later comparison,
we also introduce the stronger logic !£'aoao, which, in addition to arbitrary con-
junctions and disjunctions, allows either existential or universal quantification
over an arbitrary set of variables; that is, if φ is a formula of t£^^ and X is a set
of variables, then 3Xφ is a formula oϊ ^?

oooo. Again, we leave the standard defini-
tions to the reader, if ooA is the sublogic of if ^ in which the quantifiers are over
sets of variables of cardinality less than λ. By analogy to the situation for if'aoω,
one only considers those formulas of 3?^x having fewer than λ free variables.
The reader should consult Chapter IX for further details.

The structures for these logics are simply the structures of ordinary model
theory, and we assume that the notions of satisfaction are self-explanatory.
Structures will generally be denoted by SOΪ or 91 with their universes denoted by
M and N, respectively. We save the letters A and B for other purposes. As is the
custom in this book, when we wish to call attention to a particular vocabulary τ,
we write S£^ω{τ) instead of if ooω, etc.

1.3. Expressive Power

We next offer a few examples of the expressive power of the various logics that
have been introduced. Some of these are quite simple; others take considerable
ingenuity. It is easy to write a sentence of 5£ωχω in the language with just equality
that says that a structure is finite. Similarly, we can write a sentence of if ω i ω that
says a group is torsion or finitely generated, or that a structure with distinguished
unary predicate and constant symbols for the natural numbers is an ω-model. In
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fact, given any countable type in S£ωω or JS?ωiω, it is easy to write a sentence in
J£ωiω expressing that the type is omitted.

That an abelian group is X rfree, i.e. every countable subgroup is free, can be
expressed by a sentence of ifωiω (see Barwise [1973b]). On the other hand, whether
or not there is a sentence of i f ^ ^ defining the class of free abelian groups depends
upon the particular universe of set theory. See Chapter XI for more details. The
Ulm invariants for a countable abelian torsion group can be "written" in JSfωiω

(see Barwise [1973b]). One can do the same for uncountable groups, obtaining
sentences of 5£^ω which, rather than characterize the group up to isomorphism,
characterize its i f aoω elementary class.

Turning now to the vocabulary of linear orderings, it is easy to characterize
the well-orderings (at least when the axiom of choice is assumed) by a sentence
of JS?ωiωi. However, it can be shown (see Lopez-Escobar [1966a]) that no sentence
of i f aoω characterizes the well-orderings. In fact, this class is not even PC. As an
exercise, the reader should show that for each ordinal α there is a sentence φ
°f & ooω characterizing it up to isomorphism. This can be accomplished by induc-
tion on α. While it is true (see Nadel [1974b]) that for any scattered linear o r d e r -
that is, any linear order without a dense subordering—there is a sentence of ^£ooω

characterizing it up to isomorphism, there is nevertheless no sentence in i£ooω

that characterizes the scattered linear orderings, though obviously there is one in

°̂  ωiωr

Finally, we mention that for each countable structure (and we will always
assume the underlying vocabulary is countable as well) there is a sentence of
^ωγω which characterizes it, up to isomorphism, among countable structures.
This very early and very fundamental result is due to Scott [1965] and will be
considered in Section 4. We point out here that more generally, in the context of
any logic !£, we may speak of a Scott sentence φ of a structure 501 as a sentence of
^£ which characterizes M up to elementary equivalence in !£. The reader should
consult Chapter IX for a more complete discussion of the examples.

1.4. Reduction to Omitting Types

In this section we will give a paraphrase of a result which once again emphasizes
the connection between J ^ ω i ω and omitting types in 5£ωω. See Chapter XI of this
volume for details.

Let 5£B(τ) be a countable fragment of ^ωιω(τ) (in a sense to be made precise
later). Then, by adding countably many new symbols, τ can be expanded to a
larger vocabulary τ' in which there is a set of types such that each τ-structure has
a unique expansion to a τ'-structure omitting these types and, on these τ'-structures,
each formula of <£B(τ) is equivalent to a formula of i f ω ω(τ'), and vice versa.

Remark. A similar result holds for arbitrary 5£κω and is discussed in Section 1.3
of Chapter IX.
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7.5. J£ωiω of an Abstract Logic

Let if* be some abstract logic. Beginning with if*, can be form an infinitary
version of i f*? For the sake of this discussion, let us consider a version which we
will call JSf*iω and which allows closure under countable conjunctions and dis-
junctions, rather than the full JS?^ analogue. A naive approach would be to close
if* under countable conjunctions and disjunctions, negation, and existential and
universal quantifiers as well. However, this is really not what is wanted here.
Suppose i^* is i f (βi) . Then in if* i ω we would like to be able to have sentences
of the form Qxxφ, where φ is already a formula of if*l£0. In this situation, it is
clear how to proceed. In addition to the above closure conditions, we also close
if* iω under the "closure operations" of if*. The problem arises in the general
context in which ^^ may not be given in terms of "closure operations".

While the method we will use here and later in Section 6.6 is based on Barwise
[1981], there are some difficulties involved in the treatment given there. First of
all, the definition for ̂ %ιω used in that work does not seem to be adequate for the
intended purposes; accordingly, we modify it slightly. Even more importantly, the
discussion given there purports to include the case of logics involving second-, as
well as, first-order variables, e.g. L(aa). As a matter of fact, however, the argument
there does not really include this case. We will limit our attention to the first-
order case, with the case of L(aa) being considered only briefly in Chapter IV.

In addition to requiring that J?*iω include J^* and be closed under countable
conjunction and disjunction in the obvious way, we impose a further condition
in order to simulate "closing under ^ itself". This condition is as follows:

(*) If ̂ >(9? l 5..., 5Rfc) is an ̂  sentence, and ψi(cii9 . . . , c i n), are ^*ιω sen-
tences, where 9ίj is an nΓary relation symbol which does not occur in
ψi, and c i l ? . . . , c ί n do not occur in φ, for i = 1, . . . , /c, then
φ(ψι/9lι,..., Ψkffik) i s a n ^ S l W " s e n t e n c e i n which neither Rt nor
ci9..., cin occur, for i = 1,. . . , k.

The corresponding semantical clause is given by

iff (sw,/?!,...,^)
where Rt = {(aiι9..., ain): (SK, aiι9..., ain) \= φt}9 for i = 1 , . . . , k.

Using the above definition we have now formally introduced £?Zγω. However,
yet another point remains to be considered. Suppose ^ itself were not closed
under the analogue of (*). Barwise [1981] refers to the closure condition as the
substitution axiom. Then, even without adding any infinite conjunctions or dis-
junctions, new sentences may be added because of (*) and this may ruin certain
properties of J^*, e.g. compactness. Thus, we will only consider J?*l(a for ^*
satisfying the substitution axiom.

It is now easy to see that ^*ίίo is closed, for example, under the conjunction
of two sentences (for future use it is important to distinguish finite from infinite
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conjunctions and disjunctions), viz. the correct semantics for θ & φ will
apply to 9^ & 9*2(0/9 ,̂ ^/SR2) Since in (*) φ is required to be an J2?*-sentence,
rather than an i^*iω-sentence, it is not clear, a priori, that J?* i ω will satisfy the
substitution axiom. However, a simple argument by induction on the formation
of φ shows that J^* i ω does.

Now, having obtained the definition of i?* i ω in working order, an entire new
aspect of abstract model theory presents itself. Suppose Px and P2 are properties
of logics. We can then hope to prove theorems of the following form:

"Suppose that j£f* satisfies Pί9 then j£?*iω satisfies P 2 . "

We will mention some impressive results of this type in Section 6.6. In the mean-
time, let us note that the result we mentioned in Section 1.4 holds in the general
context of JS?*iω. It would be a worthwhile exercise for the reader to fill in the
extra step in the proof for (*) and note where the substitution axiom is needed.

2. Elementary Equivalence

One reason that ^?

ooω is such a fruitful logic is that its elementary equivalence
relation = aoω (we write this instead of =J^ooω) is very natural. Below we will give
two useful characterizations of Ξ ^ . Lest the inexperienced reader jump to un-
founded conclusions, we point out that there are logics other than ^?

ooω with the
same elementary equivalence relation (for example, see Keisler [1968a]).

2.7. The Back-and-Forth Property

A function/from a structure 9W to a structure 9t (for the same vocabulary) is said
to be a partial isomorphism from 9M to 9i if/extends to an isomorphism of the
substructure of SR generated by dom / onto the substructure of 9t generated by
range /.

Let K be a cardinal. A set F of partial isomorphisms from 9Jί to 9t is said to be
a κ-back and forth set if for any / e F:

(i) VXciM[|X| <κ^3geFlf c g & X c dom #]];
(ii) V7 c ΛΓ[| YI < K -+ 3h e F[f c h & Y c ra ft]].

If such a set F exists, then we say that 9Jί and 91 have the κ-back and forth property
or are κ-partially isomorphic, and write ^=p,κ 91.

It is easy to see that if we take K = ω, we get the same condition as by taking
K = n, for 2 < n < ω. In this case we will simply omit K from the notation. This
property was first studied by Karp [1965], and for that reason a logic is said to
have the Karp property if whenever 9W ^p 91,9JJ and 91 are elementarily equivalent
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in that logic. The uninitiated reader should become more familiar with these
notions by convincing himself that if 9)1 and 91 are dense linear orderings without
endpoints, then 9)1 ̂ p 91. But if 9)1 and 91 are algebraically closed fields of trans-
cendence rank distinct natural numbers, then SDΪ φp 91.

The first characterization of = ooω, given below in Karp's theorem, is proved
by a straightforward induction on the formation of formulas [see Chapter IX for
a detailed discussion]. It should be mentioned that an earlier characterization
of =ωω in a similar way has been given by Ehrenfeuct [1961] and Fraϊsse [1954b].
The reader should consult Section IX.4 for a more detailed historical survey.

2.1.1 Theorem (Karp's Theorem). 9W = „ „ 91 iff Wl ^p 91.

If 901 and 91 are countable, then, in the process of going back-and-forth between
them, we can use all the elements of each and obtain the following weak form of
Scott's theorem.

2.1.2 Corollary. If\M\ = \N\ = Ko and 9)1 ΞOOCO 91, then 9)1^91.

2.1.3 Remarks. (1) The analogue of Karp's theorem for arbitrary infinite K holds.
However, the analogue of the corollary given in Corollary 2.1.2 does not—except
for the case cf(/c) = ω, a result which is due to Chang [1968c]. Quite early in the
development of this area, Morley gave an example of two structures 9)1 and 91
of cardinality Kx such that 9)1 =aD(Oi 91, but 9)1 ^ 91. The reader may consult Nadel-
Stavi [1978] for a fuller description of such examples. However, we note that
contrary to the assertion there, the question of finding non-isomorphic structures
9R and 91 of power A, for A-singular, cf(A) > ω, λω = A, such that 9)1 Ξ ^ 91 has
only recently been solved by S. Shelah. Given a structure 9)1 of cardinality A, let
n(M) be the number of non-isomorphic models 91, such that | N \ = AandSR = ^ 9 1 .
Under the assumption that V = L, Shelah [1981b] has shown that if A is regular
and not weakly compact, than n(9R) = 1 or 2λ. However, if λ is weakly compact,
then n(9Jί) can be any cardinal μ < A, as shown in Shelah [1982b].

(2) There are results analogous to Theorem 2.2.1, as well as for certain other
results to follow, for the properties of a structure being embeddable in or a homo-
morphic image of another structure. These results can be found in Chang [1968c],
or Nadel [1974b], or Chapter IX, and we will not discuss them further here.

2.2. Potential Isomorphism

The notion of partial isomorphism is of an algebraic nature. The characterization
of =ooω we present in this section is metamathematical and involves the set-
theoretic notions of forcing or boolean-valued models (see Jech [1978]). It is due
independently to Barwise [1973b] and Nadel [1974b].

We say that structures SCR and 91 are potentially isomorphic iff they are iso-
morphic in some boolean extension of the universe, that is, iff for some complete
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boolean-algebra B, [9)1 = 9Γ\B = 1. It is quite easy to show the equivalence given
in

2.2.1 Theorem. 9W Ξ ^ 91 iff 9)1 and 91 are potentially ίsomorphίc.

To prove the equivalence one must first observe that =ooω is absolute. To see
that 9)1 =ooω 91 is preserved in a boolean extension, we use Karp's theorem (2.1.1).
To see that 9)1 ψooω9l is preserved in a boolean extension, we merely use the
absoluteness of satisfaction for sentences of ^£^ω. Now, if 9)1 =ooω 91, to make SOΪ
and 91 isomorphic, go to a boolean extension in which both 9)1 and 91 are countable
and then use Corollary 2.1.2.

We have found the notion of potential isomorphism to be a very useful con-
ceptual tool. As simple examples, note that it is now obvious that well-ordered
structures of distinct order types are not Ξ o o ω , while any two algebraically closed
fields of infinite transcendence rank are Ξ o o ω .

2.2.2 Remarks. It is natural to wonder if there are notions of potential isomorphism
corresponding to Ξ O O A for λ > ω. This question is investigated in some detail in
Nadel-Stavi [1978] where it is shown that, for λ a successor cardinal, there is no
such notion in quite a general sense. It is also suggested that one could begin with
some very natural notion of potential isomorphism and then use it to fashion a
logic with a corresponding notion of elementary equivalence. This idea was the
motivation behind the paper by Nadel [1980a]. The investigation begun there was
developed much further by D. Mundici and is described in Chapter V.

3. General Model-Theoretic Properties

In this section we will consider the most fundamental results in the model theory
°f ôoω> OΓ> more accurately, in J£?ωiω, since as we shall see, countability will
make a very big difference. In fact, we will need to consider countable pieces of
^ ω i ω . To this end, we now define our first—and quite weak—version of a "nice"
piece of ^?

ooω. Later in Section 5, we will give a much stronger version.

3.1. The Model Existence Theorem

3.1.1 Definition. A fragment of S£^J^z) is a set LB(τ) of formulas and variables of
i? Λ ω (τ) such that:

(i) ^ ω ω ( τ ) c LB(τ);
(ii) if φ e LB(τ\ then every subformula and variable of φ is in LB(τ);

(iii) if φ(v) e LB(τ) and σ is a term of τ all of whose variables lie in Lβ(τ), then
φ(σ/v) e LB(τ); and
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(iv) if φ, φ and v G LB(τ), so are ~iφ, 3vφ, \fvφ, φ & φ, φ v φ and ~φ, where
~ φ is defined inductively as follows: ~θ is —iθ if 0 is atomic, ~(~i0) is
0, - ( Λ Θ ) is \J{~θ:θeΘ}, ~(\/Θ) is / \ { ~ 0 : 0 G Θ } , ~(3ι;<p) is

is 3

Closure under ~ is merely to guarantee that LB(τ) is closed under taking equivalent
formulas of a certain simple type. (A convention on terminology will be helpful
here: We will use LB rather than LB(τ) to represent a fragment when the vocabulary
τ does not come into play. In particular, we will speak of L ω i ω and Lωω as frag-
ments, where the former corresponds to an arbitrary Lω i ω(τ), etc. Moreover, we
may speak of LB rather than τ, having certain symbols).

The following definition and the subsequent theorem due to Makkai [1969b]
is the principal tool for building models. The precise formulation given here is from
Barwise [1975].

3.1.2 Definition. Suppose that the fragment LB contains a set of constant symbols
C = {cn: n e ω}. A consistency property for LB is a set S such that each 5 e S is a
set of sentences of LB and such that the following hold for each SGS:

(CO) 0 G S; if 5 c s' e S, then s u {φ} e 5, for each φe s';
(Cl) If φ e 5, then ~\φ φ s;
(C2) If ~i φ G s, then s u { ~ φ} G S;
(C3) If/\ Φ e s, then for all φ e Φ, s u {φ} e S;
(C4) If (yvφ(v)) G 5, then for every c G C, S U {φ(c)} e C;
(C5) If V Φ G s, then for some φ e Φ, 5 u {φ} e S;
(C6) If (3vφ(v)) G s, then for some c e C , s u {<p(c)} E S;
(C7) Let ί be any term of the form F ( c f l , . . . , cίn),

F an H-any function symbol of LB, and c i l 5 . . . 5 c i π 5 c , ί ί , 6 C

(i) If (c = d)es, then 5 u { ί ί = c } e S ;
(ii) If {φ(t\ (c = t)}es then s u {φ(c)} e S;

(iii) For some ^ G C, S U {β = t} G 5.

Condition (CO) is not essential at this stage, although it does come into play later
when we are trying to obtain more refined results. The remaining conditions are
just what is needed to build a canonical model in ω stages using the Henkin
construction, where a canonical model is simply one in which each element
interprets a constant. The point here is that unlike the case of Lωω where com-
pactness holds, one must actually have constructed the entire model after ω
stages. It is usually not possible to iterate a construction beyond a limit stage.

3.1.3 Model Existence Theorem, (i) Let LB be a countable fragment, and let S be
a consistency property for LB. For each s e S, there is a canonical model
m\= /\s.

(ii) (Extended Version). // in addition, T is a set of sentences of LB such that,
for each se S and φe T,s u {φ} e S, then, for each ssS, there is a canonical
model ofT\j {s}. D
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We mention at this point, that the model existence theorem does not hold in
the absence of the assumption of countability (allowing, of course, an uncountable
set of constants in C). We will point out an example of this later.

3.2. Provabilίty and Completeness

The first completeness result for Lωιω was given by Karp [1964]. To the usual
Hubert style proof system for Lωω one adds for each sentence /\ Φ and φ e Φ, the
axiom

( Λ Φ) "> Ψ

and the rule of inference

From φ -• φ, for all φ eΦ, infer φ -> /\ Φ.

Since an application of this rule involves infinitely many premises, proofs may be
infinite in length. We now consider an extended form of completeness that is
appropriate for countable fragments, and in Section 6 we will consider a more
subtle version. We fix a fragment LB and require that all formulas involved in
proofs be in LB as well as that the proofs be of countable length. We use the standard
provability symbol I— LB in the usual way to refer to this system.

3.2.1 Completeness Theorem. Let LB be a countable fragment of J£ωιω. Then for
any sentence φ ofLB and set of sentences T of LB, T \= φ iff T \- Lβ φ. D

Karp's original proof was boolean-algebraic. Alternatively, we can add to the
vocabulary a countable set C of new constant symbols and show that the set
S = {s: s is a finite set of sentences of LB each containing only finitely many con-
stants from C and not Γ h L B π /\s} is a consistency property, and then appeal
to the extended version of the model existence theorem.

3.2.2 Remarks. As a result of the completeness theorem, we see that the validity
of a sentence of J5fωiω is absolute (for models of ZFC). On the other hand, it is
easy to give examples showing that validity for sentences in ^?

ooω is not generally
absolute and thus no similar absolute notion of provability could give a complete-
ness theorem. For uncountable fragments, being provable in the obvious gen-
eralization of the above sense is equivalent to validity in boolean-valued extensions
of the universe rather than validity in V itself. That is, φ is provable iff " \=φ" has
value 1 in every boolean-valued extension of V. It is easy to see that provable
sentences are boolean valid. To see the other direction, one needs the absoluteness
of provability which shall be obtained in Section 6.

Alternatively, (see Mansfield [1972]), there is a completeness theorem for
<£^ω where the models themselves (rather than the set-theoretical universe) are
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taken to be boolean-valued. Thus, provability as above is equivalent to boolean-
validity in this second sense also.

3.3. Interpolation

The interpolation theorem for JSfωiω was first proved by Lopez-Escobar [1965b].
Since the idea involved in his proof can be used in other settings, we shall say a
few words about it. The first step—which is the more difficult one—is to find a
cut-free Gentzen system which is complete for JSf ω i ω . This can be done either purely
semantically as in Lopez-Escobar [1965b], where completeness is simply proven
directly for the cut-free system or, more proof-theoretically, as in Feferman
[1968a] where completeness is shown for the system with cut (another name for
modus ponens), and then "cut elimination" is proven by examining proofs. This
second method provides certain ordinal bounds as well.

The idea of the proof is to find the interpolant by induction on the derivation
of the implication. For example, suppose the final step in a derivation uses the
so-called (=> /\-rule):

φ=3ψι- for alii 6 ω.
φ

Suppose, by induction, that for each i ε ω there is some interpolant 0f such that
φ ID θi and θt 3 ψ. are each derivable. Then, using the (:=>/\-rule) we may obtain
φ z) /\ {#•: i e ω). By using the matching (/\ :=>-rule), we may obtain, for each
ieω, f\ {θi'. is ω) => φt. Using the (=> /\-rule) again we obtain f\ {0t : ieω} 3
/\ {φi'. i e ω}. It is now easy to check that f\ {0£: i e ω} is an interpolant. The
problem with the cut-rule is that this sort of induction step simply does not work,
and that is why cut must be eliminated.

An alternate proof for a countable fragment LB using the model existence
theorem is given in Keisler [1971a]. We describe it very briefly. Suppose 1= φ -> φ.
First, we add an infinite set of new constant symbols C = {cl9 c2,...} to the
alphabet. We define Sφ to be the set of all sentences φ' ofLB such that every symbol
of the original alphabet that occurs in φ' also occurs in φ; and, in addition, finitely
many of the cπ's may occur. Sφ is defined analogously. We let S be the set of all
finite sets of sentences which can be written as sι u s2, where s1 ^ Sφ, s2 £ SΦ;
and, if θl9 θ2ε Sφn Sψ and |= /\ sx -> θl91= /\ s2 -> θ2, then 6X & θ2 is consistent.
We then show that S is a consistency property and apply the model existence
theorem. Since \=φ -> φ, we have that {φ, ~iφ} φ S. But this means there must be
θl9 θ2eSφn Sφ such that \=φ -• θl9 \= ~ιφ -> θ2 and θt & θ2 is inconsistent.
Thus, \=θx-+ ^θ2. Now, since \= ~Ίθ2^>φ,we have \=θί-+φ. Now, by quan-
tifying out the new constants in θ1 we get the desired interpolant.

There are other more refined interpolation results of Lopez-Escobar [1965b]
and Malitz [1969]. A good reference is Keisler [1971a].

The automatic consequences of interpolation, such as the Beth property,
naturally hold. Robinson joint consistency fails, but a weaker version of it, a
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version in which the joint theory T is complete for Lωιω rather than just for LB,
does hold.

3.3.1 Remarks. The reader should consult Chapter IX for a full discussion of
interpolation and definability results for infinitary logics. In particular, it is worth
emphasizing in this context that interpolation fails for ί f ^ .

3.3.2 Remarks. One of the main uses for interpolation results is in obtaining
preservation theorems. As in the case of JS?ωω, the more refined interpolation
theorems alluded to above give rise to preservation theorems. For example,
Malitz's interpolation theorem shows that a sentence φ of L ω i ω is preserved
under submodels relative to some other sentence φ of L ω i ω (that is, if $R, 91 N φ,
Wl c yi and 91 \= φ, then 9R |= φ) iff there is some universal sentence θ such that
φ \= φ<r+θ. By a universal sentence we mean a sentence which is formed from
atomic and negated atomic formulas using only /\, \/ and V. For a fuller dis-
cussion of preservation results the reader should consult Chapters 6 and 7 of
Keisler [1971a].

3A. Kuekefs Filter

The reader will have noticed by now that many fundamental facts about JS?ωiω

fail to extend to S£ ̂ ω. Some outstanding examples of this are the corollary to
Karp's theorem; completeness, and interpolation. D. Kueker [1972, 1977, 1978]
(see also Barwise [1974b]) found a way of reformulating these and other results
so that they do extend to ^Oΰω. Kueker's reformulation involves countable
approximations to structures and formulas as well as a notion of "almost every-
where" corresponding to the closed unbounded filter on 0>

<(ύί(X). A description
of this very interesting approach can be found in Chapter XVII.

3.5. Omitting Types

Given a fragment LB, we speak of types over LB just as we do for L ω ω , that is,
sets of formulas in LB in some fixed finite set of free variables. Then, using the
model existence theorem (see Keisler [1971a] for details), we see that an omitting
types theorem can be proved in much the same way as the original Henkin-Orey
result for L ω ω . Since the infinite disjunction is now officially available, it is cus-
tomary to use it in the statement.

3.5.1 Theorem (Omitting Types Theorem). Let LB be a countable fragment of
Lωιω

 and let T be a set of sentences of LB which has a model For each nε ω, let
Φn be a set of formulas of LB in the free variables vί9..., vkn. Assume that for each
ne ω and formula φ(vl9..., vkn) of LB, if T u {3i;x . . . vknφ} has a model, so does
T u {3tΊ . . . vkn(φ & φ)},/or some φ e Φ n . Then there is a model of

Tv\/\Vv1...vkn \/φ\ D
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The omitting types theorem is, of course, closely related to the ω-completeness
theorem. The latter—especially the ω-rule, viz., from φ(n\ for each n e ω, infer
Vx(iV(x) -> φ(x))—is an important precursor of the study of infinitary logic in
its present form.

3.5.2 Remarks. Shelah [1978a] has shown that a stronger version of omitting
types is true. In that version there are fewer than continuum many Φ's over the
fixed countable fragment LB. The proof of this may be gleaned from the proof
of Lemma 8.2.2 and, hence, we will omit it here.

It should be mentioned that because of the omitting types theorem, we are
able to obtain the equivalence of prime models with countable atomic models,
just as can be done for ££ωω. We shall have more to say about omitting types in
Section 6.6.

3.6. Lδwenheim-Skolem Results

Since the model existence theorem produces a countable model, we have, in
effect, already shown that JSfωiω has Lδwenheim number Ko. That is to say, if a
sentence of JS?ωiω has a model, it has a countable model. The upward Lόwenheim-
Skolem result is more complicated. Unlike JS?ωω, the Hanf number of Sέ'ωiω is
not Ko. Examples showing this are easy to find. The proof for <£ωω is simple
enough using compactness, but that is not available. It is not surprising that
the results for <£ωιω resemble rather the Hanf number results for omitting types
over jS?ωω, results which were proven slightly earlier by Morley [1965b]. The next
result first appeared in Lopez-Escobar [1966a] who credits it to Helling.

3.6.1 Theorem (Upward Lόwenheim-Skolem Theorem). The Hanf number of

^ω,ω is 3 ω i . This means,

(i) if φ is a sentence of JS?ωiω with models of all cardinalities 3 α , α < ω l 5 then
φ has models of all infinite cardinalities;

(ii) for each K < 1ωι, there is a sentence φ with a model of cardinality at least
K with no model of cardinality Hω i . D

3.6.2 Remarks. There is also an upward Lowenheim-Skolem theorem for arbi-
trary J^κ ω given in Lopez-Escobar [1966a]. This result is discussed in Chapter IX.

Part (i) of Theorem 3.6.1, the difficult part of the result, is proven by using the
hypothesis, together with a combinatorial property known as the Erdόs-Rado
theorem (Erdos and Rado [1956]), to produce a model generated by indiscernibles.
The reader should consult Kunen [1977] for a nice treatment of the Erdόs-Rado
result.

To obtain (ii) for each α < ω l 5 Morley gave a sentence φa that had models in
all cardinalities up to 1a. In essence, φa says that the model is a subset of Va, the
set of all sets of rank < α. Morley also shows how to get φa for Kα instead of 1a.
To do this, one "says" of a linear ordering that it is Kα-like.
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3.6.3 Remarks. We can ask a similar question about sentences that are complete
for Jδfωiω. Trivially, the Hanf number is at most 3 ω i . Malitz [1968] using GCH
showed that it is 3 ω i and found a sentence φa for each 3 α as above. Later,
Baumgartner [1974] was able to accomplish this without the GCH. Shelah [1974a],
in a related result, showed that the Hanf number for omitting complete types
over S£ωω is 1ωι and obtained a complete type for each Hα. Can a complete sentence
of J ? ω i ω be obtained for Kα? At this time the only result in this direction is due to
Knight [1977] who has found a complete sentence for Kx.

3.6.4 Remarks. There is an attractive result of Landraitis [1980] on linear
orderings that is worth mentioning at this point, and this we do in

3.6.5 Theorem. Let 9)1 be a denumerable linear ordering and let φbea Scott sentence
of 9)1 in S£ωγu The spectrum of φ, S(φ) = {κ:κ = \9l\for some 91 \= φ} is either

(i) Ko iff each (isomorphism) orbit of9Λ is scattered;
(ii) all infinite cardinals iff 9R has a self-additive interval or

(iii) {K: K O < K < 2Xo}, otherwise;

and each case occurs. D

4. "Harder" Model Theory

4.1. Scott Sentences

Certainly the most striking of the early results in infinitary logic was Scott's
theorem which is stated without proof in Scott [1965].

4.1.1 Theorem (Scott's Theorem). For each countable structure 9)1 for a countable
vocabulary τ there is a sentence φ of^ωιω(τ) such that for any countable τ-structure
% 2R £ 91 iff 91 \= φ.

We will now proceed to sketch a proof of Scott's theorem. We will assume that
the reader can supply the obvious inductive definition of the quantifier rank of a
formula of J ^ ^ . We write 30Ϊ = α 91 to mean that 5ft and 9ί agree on all sentences
°f ^ooω of quantifier rank at most α. Karp [1965] gave an algebraic characteriza-
tion of = α .

4.1.2 Lemma. For any structures SOΪ and 91 for the same vocabulary, and any ordinal
α the following are equivalent:

(i)9W=α9l.
(ii) There is a sequence Io Ώ. Iγ Ώ. 2 /α of partial isomorphisms from 9W to

91 such that if β + 1 < α andf elβ + u then for each me M (resp. n e N),
there is some g 6 Iβ,g Ώ. f with m e dom g (resp. n e r a g).
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The proof of Lemma 4.1.2 is by induction on α and is very similar to that of
Karp's theorem (2.1.1).

Now, for each structure 3DΪ, ml9..., mk e M, and ordinal α, we define a formula
σ$Rtm1,...tmk(xi> > xk) of ^aoω by induction on α.

4.1.3 Definition, (i) For α = 0, σ ^ , . . . , ^ , . . . , χk) = /\ {θ(xl9..., xk): θ is
atomic or the negation of an atomic formula and 9JΪ |= θ{mu . . . , mk)}.

(ii) For α = β + 1,

m e M

m ε M

(iii) For α a limit,

It is obvious from inspection that σ§^ m i m k has quantifier rank α, and that
90ί 1= σaR,mi,...,mk(

mi> > m/c) More importantly, this formula is complete for
formulas of quantifier rank of at most α.

4.1.4 Lemma. For any structures 9Jί, 91, for the same vocabulary, elements m 1 ? . . . ,
mk e M, n l 5 . . . , nke N and ordinal α, the following are equivalent:

(i) (501, m 1 ? . . . , mk) = α (91, n 1 ? . . . , n k ) ;
(ii) 9 ί N σm,mί,...,mk(nl9...,nk);

( iϋ) ^8Wfini,...fmk = 4,/n, ...,»fc

The only non-trivial step in the proof is that of showing that (ii) implies (i).
This fact follows from Lemma 4.1.2 if we define for each β < α,

Iβ = {/: dom / = {ml9..., m j , / ^ ) = nj9 for < ί and

Two observations are now needed to find the sentence which will characterize
a structure up to =aDω. First, if it happens that Jα = / α + 1 for some α, then /α is
easily seen to be a back-and-forth set. Second, for any 9ϊί, there is an ordinal α,
such that for any /c G ω, m 1 ? . . . , mΛ, m' l 5 . . . , m^ G M,

(9W, m l 9 . . . , mfc) Ξ α (9W, m i , . . . , mk)

implies

(9W, m 1 ? . . . , mk) ΞΞ ̂  (9M, m i , . . . , m'k).
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The least ordinal for which this happens is called the Scott height of SCR and is
denoted SH(ΪR). Using the first observation, we see that the Scott height of 9JΪ is
the first ordinal α such that, for all k e ω, ml9..., mk9 m\,..., mk e M,

($R, mί9..., mk) Ξ α (5DΪ, m Ί , . . . , mk)

implies

(ΪR, m 1 ? . . . , mk) Ξ α + x (9Jt, m' l 9 . . . , m'k).

Thus, it is easy to see that the Scott height of 901 is below |9M| + . In Section 7 we will
obtain a better bound.

4.1.5 Definition. We now define the sentence σ(ΪR) to be

σ ^ & /\ Vxx . . .
fceω

mi,..., mkeM

where α = SH(9K).

This sentence appears first in Chang [1968c] and is called the canonical Scott

sentence of SCR in view of the next theorem.

4.1.6 Theorem. For any structures SCR and 91 for the same vocabulary, the following
are equivalent:

(0 sκ=oo ω 9ί ;
(ii) 9i \= σ(2R);

(iii) σ(2R) = σ(9l). D

The non-trivial implication from (ii) to (i) is established much as in Lemma
4.1.4.

We see from Theorem 4.1.6 that σ(W) characterizes ΪR up to = o o ω and depends
only on the ,£? ̂ -theory of $R. If ΪR is countable, then, by Corollary 2.1.2, σ(SR)
is the sentence required in Scott's theorem (4.1.1). The quantifier rank of σ(ϊR)
is SH($R) + ω and there are often Scott sentences for ΪR of lower quantifier rank.
However, it will be observed in Section 7 that at least for countable SCR, σ(ΪR) cannot
have quantifier rank too much above any other Scott sentence for SCR.

4.2. Automorphisms and Local Definability in
Countable Models

It was observed by Scott [1965] and follows quite readily from the preceding
discussion that a countable model SCR is rigid (that is to say, has no non-trivial
automorphisms) iff each element of $R is definable in ΪR by a formula of J ^ ω i ω .
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A similar result holds for countable models having fewer than continuum many
automorphisms. This result has been shown by Kueker [1968].

4.2.1 Theorem. Let Wlbe a countable structure. The following are equivalent:

(i) SOΐ has countably many automorphisms.
(ii) 50Ϊ has fewer than continuum many automorphisms.

(iii) There is some tuple of elements n 1 , . . . , n J e M such that (50?, nu ..., n}) is
rigid.

(iv) There is some tuple of elements nu ... ,n}e M such that for each me M
there is a formula φ{xγ, ...9xj9y) of $£ ωχω such that

M |= 3 ! yφ(nί9 . . . , nj9 y) & φ(nί9 . . . , nj9 m),

that is, m is definable from nί9..., nj in 9W by a formula o

The main step in the proof comes in showing that (ii) implies (iii). This can be
accomplished by using the negation of (iii) to construct a full binary tree all of whose
branches give rise to distinct automorphisms of 5DΪ. It should be observed that the
equivalence of (i) and (ii) can be obtained via general descriptive set-theoretic
considerations, since the set of automorphisms of 9Dt forms a Σ} set. In Section 7
we will also get a better bound on the defining formulas in (iv).

It follows easily from Theorem 4.2.1 that if 3DΪ is countable, 9t uncountable
and 9K = aoω % then 9K will have 2K o automorphisms.

Another result that was already noted in Scott [1965] is that if S0Ϊ is countable
and R is a relation on 9Ji, then R is definable by a formula of J ^ ω i ω iff every auto-
morphism of SOΪ is an automorphism of (9M, R). This is a local version of Beth
definability and follows from Beth definability for JS?ωiω together with Scott's
theorem, if one assumes the vocabulary is countable. However, there is an even
more elementary proof. For the non-trivial direction, if each automorphism of 3PΪ
is an automorphism of (SOΪ, R\ then for each m = (ml9..., mk) e R and m' =
(mi, ...,m'k)φR there is some φ^M in jS?ωiω such that 9W \= φm^, (ml9..., mk) but
9W N ~Ί<P»ι,m' (rn\9..., m'k). Now R is definable by \JmeR f\WeR φmtW.

By analogy to the case for rigid models that was considered above, Kueker
[1968] and Reyes [1967] have shown the result given in

4.2.2 Theorem. Let 9Jί be a countable structure. Let Rbe a k-ary relation on M and
define S = {Q: (9K, R) £ (9K, Q)}. The following are equivalent:

(i) | S | = N 0

(ii) \S\< 2«°.
(iii) There is some formula φ ( x u . . . , x j 9 yγ . . . y k ) in J ^ ω i ω and nl9. ..,n }eM

such that

R = {(ml9..., m k ) : W 1= φ ( n l 9 ...9nj9ml9...9 mk)}. D

In Section 7 we will give a better bound for this result also.




