
Chapter XIII

Decomposition Theorems and Weight

In this chapter we will show every type in a superstable theory can be
decomposed in terms of a finite number of regular types. In fact, under
a suitable operation we impose a structure on the stationary types which
reflects the multiplicative structure of the natural numbers. The weight
one types behave as primes in this representation. We first obtain a precise
structure theory for finitely generated extensions of an S-model. We con-
nect these structural results with the notion of weight. While we would like
to develop such a decomposition theorem for models in an arbitrary accept-
able class K, we can not do so uniformly. Rather, we first obtain the result
for S-models in Section 1 then define weight in Section 2. We conclude
Section 2 by invoking the notion of weight to prove Lachlan's theorem that
a countable superstable theory has either 1 or infinitely many countable
models. In Section 3 we show that in an ω-stable theory there are 'enough'
AT-strongly regular types. With this tool we obtain an extension of the
decomposition theorem to all models of an ω-stable theory in Section 4.

Except for a few results at the beginning of Section 2, we assume in this
chapter that T is superstable.

1. The Decomposition Theorem For S-Models

In this section we restrict ourselves to the class of S-models. We show
that each finitely generated S-model of a superstable theory has a well
defined dimension. We will use this information to decompose all types
in a superstable theory as a product of regular types. The results of this
section provide one characterization of weight. In Section 4, we consider
extending the results of this section to other classes K.

1.1 Definition. Let M be an S-model, A C M , and let R(M,A) be the
collection of points in M which realize stationary regular types over A.
Then dim(Λ(M, A)) is the cardinality of a maximal independent subset of
R(M,A).
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Since we are dealing with S models in this section we will just refer to
regular types (since any regular type over an S model is S-strongly regular).
Note that we do not assert that the dimension defined here determines M.
That will be true only in exceedingly special circumstances.

1.2 Exercise. Find S-models M, M' D TV which are not isomorphic al-
though dim(β(M,TV)) = dim(R(M', TV)).

1.3 Lemma. Forking is a weakly transitive relation on R(M,A). In par-
ticular, dim(JR(M, A)) is well defined.

Proof. By Theorem XII.3.13, we need only show the first statement. By
Lemma XII.3.11, it suffices to define an equivalence relation on R(M,A)
such that i) for all a, forking is fully transitive on [ά], the equivalence class
of α and ii) if a 1A I then a 1A IΠ [α]. We will show that nonorthogonality
of stationary types is such an equivalence relation. To see i), suppose c U
Z U b C [α], (6 / c U Z ] A ) and (c / Z A). By Lemma XII.3.5 it suffices
to show (b I Z\A). By regularity, we have t(c',A U Z) _L t(c-, A). Since
b U c C [a], t(b', A) / t(c\ A). Applying the contrapositive of the transitivity
of_nonorthogonality, we deduce t(b', A) _L ί(c; A U Z). If (b[A U Z\ A) then
ί(5; A U Z) || t(b-,A). Thus, t(b\ A U Z) _L ί(c; A U Z). But this contradicts
(6 / c U Z; A) and thus yields i).

Now suppose α /^ /. We must show α /A !•& where /α = / Π [α]. Let /α =
/ — la Assume for contradiction that ά|χ la Then certainly α |A Ja where
Ja is a maximal independent subset of /α. Now, t ( I a ] A ) _L ί(Jα ; A) and
t(Ia',A) ± ί(α Λ) so by the strong triviality of orthogonality (cf. Theorem
VI. 1.19) la I A la U α. By monotonicity and transitivity of independence,
we deduce a [A IΈ U ϊa From this contradiction we have condition ii) and
the lemma.

The following result is crucial for our development. This initial version
of the three model theorem is rather easy to prove for S-saturated models.
We prove a difficult extension of it to arbitrary models of an ω-stable
theory in Theorem 3.3. There are some further variants in the treatment
of superstable theories which are not ω-stable [Shelah 198?].

1.4 Theorem. Let TV C M C M' and suppose M and N are S-saturated.
For every a E M' — M such that ί(α M) is regular, either ί(α M) H TV
or there is some b E M' — M with t(b',M) regular, t(b',N) / ί(α M), and
b[NM.

Proof. (Fig. 1). Suppose there is a G M1 — M with £(α;M) •/ TV and p =
£(α;M) regular. Then, by Proposition VI.2.5, for some A C TV with \A\ <
/c(T), p -rf A. Possibly enlarging A inside TV, choose a finite set B C M — TV
such that p is strongly based on A U B and B [A N. Now by the strong
saturation of TV choose B' C TV, stp(B'\ A) = atp(B\ A) and B U B1. Let pB

denote p\B and pB> the image of PB under an automorphism fixing A and
mapping B to B'. Then PB> is regular and by Corollary VI.2.22 pB / PB'
Thus, by Theorem XII.4.5 the nonforking extension of PB' to M is realized
in M1 by some b which satisfies the theorem.
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N

Fig. 1. The three model lemma (Strongly saturated version)

The last result would be more satisfying if it asserted either t(M'\ M) H
N or there is a b G M' — M with b IN M and £(6; M) is regular. We obtain
this stronger result in Lemma 4.3.

The following proof makes essential use of the fact that S is a power-
ful isolation relation. In Section 4 we will obtain a weaker version of this
theorem for the class of AT-models.

1.5 Theorem (The Decomposition Theorem). Let M be an S-saturated
model of a superstable theory. For any finite sequence c, if X is a basis for
R(M[c],M) then M[c] « M[X}.

Proof. (Fig. 2). Let X be a basis for β(M[c],M). By Exercise X.1.21 c
depends over M on each x G X. So by Theorems VI.1.19 and Π.2.16, X is
finite. We show first that X \>M X^c. Let MQ = M[X]. We will construct
a sequence of models (Mi: i < β) for some β and elements (α^: i < β) such
that c E Mβ and if b G Mi for some i < β, then X D>M X^b. Suppose we
have constucted the sequence up to Mn and An. If c ̂  Mn, choose αn_|_ι €
Mn[c] — Mn to realize a regular type over Mn. Let Mn+ι = Mn[αn+ι].
Then £(c;Mn+ι) forks over Mn for each n, so for some finite β, c G Mβ.
The maximality of X implies that there is no b G M — Mn such that t (6; Mn)
is regular and b [M Mn. From Theorem 1.4, we deduce ί(αn+ι;Mn) H M.
Thus for each n, Mn >M Λfn+ι. By the transitivity of dominance (Lemma
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M[c]

MQ=M(X]

Fig. 2. The decomposition lemma

VI.3.10), MO OM Mn, for each n. But X >M MQ. So X >M Mn for each
n. In particular, X >M -3fc. From Theorem X.2.3, we deduce there is a
copy, M°, of Af [X] which includes c. From Theorem IX.4.1 and the fact
(Theorem X.3.1) that all prime models are strictly prime, we deduce M[X]
is S-prime over M U c as required.

To see that the assumption that c is finite (or at least countable) is
essential for Theorem 1.5, consider the theory of two refining equivalence
relations. Let M \= T and let C be an uncountable collection of points
which are all in the same new E\ class but are pairwise E<2 inequivalent.
Now a subset of M[C] which is maximal with respect to independence over
M contains only a single element d and M[d] contains only countably many
EZ classes. Thus M[C] is not prime over a basis.

1.6 Exercise. Show that if X and Y are finite bases for R(M,N] then
N[X\ w N[Y] « M.

1.7 Historical Notes. This section gives a more conceptual version of
the argument in Theorem V.3.8 of [Shelah 1978].

2. Weight

We begin this section by defining weight and proving the rudimentary prop-
erties of weight which hold in any stable theory. Then we show that if T
is superstable the weight of a type, p, can be thought of as the number of
'prime' factors of p under a suitable decomposition into regular types.

Intuitively, the weight of a type p is the maximal number of independent
points that can be found such that a given realization of p depends upon
each of them. A precise definition is somewhat more complicated. We have
to take a supremum over various possibilites twice. In i) of the following
definition we assign a 'preweight' to each type q by finding the maximal
cardinality of an independent set C such that each element of C depends
over dom q on some realization of q. In ii) we guarantee that the weight of a
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type p is a parallelism invariant by taking the supremum of the preweights
of the nonforking extensions of p. Note that each q has a preweight since no
C satisfying the conditions in ii) can have cardinality more than λ κ(T)
when q is a λ-type.

2.1 Definition. (Fig. 3).

i) Let q E S(B). The pre-weight of q (pwt(<?)) is the supremum of the
cardinalities of sets C such that C is an independent set of sequences
over B and for some a realizing #, a 1B c for each c E C.

c22

Fig. 3.

ii) Let p E S(A). The weight ofp (wt(p)) is the supremum over all B D A
and all nonforking extensions q of p to S(B) of pwt(g).

To shorten notation we often write wt(A S) for wt(ί(Λ;B)). There is
no assumption in this definition that p is the type of a finite sequence.
However, the proofs in this section are given for types of finite sequences.
To extend to λ- types one must replace κ(T) by κ(T) + λ.

It is clear from the definition that nonforking extensions can not increase
weight. The following result then follows from Corollary II.2.11.

2.2 Exercise. Let p' be a nonforking extension ofp; show wt(p) — wt(p').

The following exercise shows that forking extensions can increase weight.

2.3 Exercise. Let T be the theory of two refining equivalence relations
with infinite classes. Let p E 52(0) be generated by £7ι(x,y) Λ -ιE<ι(x,y).
Show that p has weight one and, in fact, is regular but that the extension
p' of p generated by E\ (x, α) has weight two.

2.4 Exercise. Show that if T is the theory of two crosscutting equiva-
lence relations with all classes (and all intersections of classes from the two
equivalence relations) infinite then the weight of the unique 1-type over the
empty set is two.
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2.5 Exercise. Let T be the theory of an infinite set, its three element
subsets and a binary relation which holds between a three element set and
each of its elements. Show the weight of a three element set is three.

2.6 Exercise. Show that it is necessary to pass through the notion of
preweight by exhibiting a type with differing preweights depending on the
choice of B. (Hint: Consider the theory of three crosscut ting equivalence
relations.)

2.7 Proposition. Let p G S(A) and let M be a strongly κr (T) -saturated
model containing A. There is a nonforking extension p1 of p to S(M) with
wt(p) = pwt(p')

Proof. Consider any B D A, b realizing p, and C = (ci : i < a) with a <
/c(T) such that b I A B, for each i, b 1B ct, and the Ci are independent
over B. Using the local character of forking, there is a set D C B with
\D\ <_κr(T} which satisfies the same conditions. Now choose AQ C A such
that b U D U C IAO A. By the strong κr (T)-saturation of M, we can choose

D' C M, so that t(D'\ A0 U b U C) = t(D; AQ U 5 U C). Now choose C' U ί

so that t(C' U &'; AQ U D'} = t(C U 6; A) U D'),1> realizes stp(b; AQ), and

C' U b' U0 M. By Corollary Π.2.10, we see that the required p1 is £(&';M).

Remember that if κ(T) is regular and in particular if T is superstable
then strong κr (T)-saturation is just S-saturation.

2.8 Definition. Let W(M,A) denote the set of m G M such that ί(m Λ)
has weight one.

Note that if p E S(A), the assertion that p has weight one implies that
for any α realizing p and any sequences 6 and c, if (a / 6; A) and (a / c; A)
then (5 / c; A). That is, we can pivot on a. The weight one types play a
very important role in the theory. They are a slight generalization of the
regular types.

2.9 Theorem. Supppose ACM and Z C W(M, A). Suppose Y CM - A
is independent over A and f mapping Y into Z satisfies y 1A f ( y ) . Then,

i) f isl- 1.
ii) f ( Y ) is independent over A.

Proof. Ί) is obvious from the definition of a weight one type. For ii) we
can assume by the finite character of forking that Y is finite. We show by
induction on \B\ for B C Y, that f ( B ) U (Y - B) is independent over A.
When B = Y we have the theorem. If B = 0 there is nothing to show.
Suppose Y = YQ U B U y where we have by induction that YQ U y U f ( B ) is
independent. Then by hypothesis y 1A f ( y ) . So, if f ( y ) 1A (YQ U /(£)), since
f ( y ) has weight one, y 1A (Yo U f ( B ) ) contrary to the induction hypothesis.

The argument for Theorem 2.9 can be rephrased as follows. Suppose p
and q are complete weight one types over A which are weakly orthogonal.
Let Λ(α, b) hold if α realizes p, 6 realizes q and a 1A b. Now for every a
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realizing p there is an a' realizing q with R(a,a') and vice versa. Moreover,
if αi, . . . , an realize p, α'1? . . . , a'n realize g, and for each i < n, R(di, a(}
holds then exactly the same dependence relations hold among the a\ , . . . , an

and the a\ , . . . , a'n . This shows that weak non-orthogonality preserves any
property of a type defined solely in terms of the properties of forking on
realizations of the type. (Compare Chapter XVI.2 and [Baldwin 1984].)

For the next few results we assume T is superstable and tie together
the definition of weight with the decomposition of S-saturated models in
Section 1.

2.10 Theorem. For any ACM, R(M,A) C W(M,A). That is, every
regular type has weight one.

Proof. Suppose £(m; A) is regular, b 1A m and c 1A m. By the definition of
regularity, t(ni',A U c) J_ £(m; A). From Exercise XII.4.7 we can conclude
t(b', A) >e ί(m; A). Choose an S-model TV with m^b^c [A N. Then b>N m.
Now if c I A b, we deduce in turn c IN 6, c I N ra, and, c I A m by the definition
of domination and Corollary II. 2. 10. Thus, c 1A b as required.

Suppose that a realizing p G S(M) and Y with \Y\ = μ witness that
pwt(p) = μ. Then, just rewording the definition, t(Y M) >M P and no
subset of Y dominates p. With this observation we can link the weight of
a type with the regular decomposition of a model prime over a realization
of the type.

2.11 Theorem. LetT be superstable.

i) Suppose M is S-saturated and p G S(M); then wt(p) = pwt(p, M) =

ii) Thus, for any p, wt(p) = n if and only if there is an S-saturated M
containing domp and a nonforking extension p' of p to S(M) such
that dim(Λ(M[p'],M)) = n.

iii) dim(W(M,A)) = dim(R(M,A)). Thus, dim(W(M,A)) is well de-
fined.

Proof, i) The first equality holds by Propostion 2.7. For the second, let Y be
an independent set which witnesses the preweight of p7. Since t(Y M) >M P,
applying Theorem X.2.5 p is realized by some a G M[F]. But, M [α] must
be M[y]. Otherwise a proper subset of Y would dominate a. Map Y into
Λ(M[p], Af) choosing f ( y ) G M[y] — M to realize a regular type over M.
By FIi for each y, y 1M f ( y ) . By Theorem 2.9, we deduce / is 1-1 and f ( Y )
is independent. Thus \Y\ < dim(β(M[p], M)). But the other inequality is
obvious by Theorem 2.10 so we have i).

Now ii) and iii) follow easily from Theorem 2.9 and i).

Now, we calculate the relation between the weight of a sequence and the
weight of its components.

2.12 Theorem, i) For any a, b, and A:

wt(α^6; A) < wt(α; A) + wt(6; A U a).



2. Weight 269

ii) Ifa[Ab,
wt(α^6; A) = wt(ά; A) + wt(6; A).

Proof. Without loss of generality, we replace A by an S-saturated model,
M. For i), we show:

wt(α^6; M) < wt(α; M) + wt(6; M U ά).

For this, suppose / is an independent set which witnesses the weight of
t(a^b\ M). Let /o be a maximal subset of / such that IQ U α is independent.
It is now_straightforward to_ check a) for each ~i E /0, ~i /Muα & and so
|/o| < wt(6; M U a) and b) if ? E / - 70 then ? /M α so |/ - J0| < wt(α; M).
This establishes the first claim.

For_ii), suppose C is a basis for Λ(M[α],M) and D is a basis for
β(M[6|,M). Now C IM £> and for each e E C U D, ά^δ /^ e. Thus
wt(α^6;M) > wt(α M) + wt(ft Af). Since wt(6;MUα) = wt(ft M), we
finish.

We can now read off a number of the characteristics of weight. First we
make precise the decomposition of each type into regular types.

2.13 Definition. Let (r^ : i < a) be a sequence of stationary types over a
set A. Then the product of the r^, denoted ®r», is the unique type of an
independent sequence of tuples realizing the r^. The T{ need not be distinct.

Note that if lg(ri) = πii then lg(<8>n) = X^ rm.

2.14 Exercise. Show ®r^ _L ®r if and only if r^ _L r for each i and j.

2.15 Theorem. Let T be superstable and q a stationary type. There exist
regular types r^, i < wt(g), such that q [^s ®π. That is, q πe (8) .̂

Proo/. Choose an S-saturated M, </ £ S(M) with g' || q, and let the r^
be a list with appropriate repetitions of the types realized in a basis for
R(M[q'}, M). We get the second statement because \-+s is the same as πe.

This theorem shows that the quotient of the \-+s order on the class
of stationary types in a countable superstable theory by the congruence
relation \-+s yields a structure similar to the natural numbers under the
partial order of divisibility. The equivalence classes of the regular types
correspond to the prime numbers.

The following exercises record some of the essential properties of weight.
Exercise 2.18 is especially important. All of these exercises follow easily
from the definitions.

2.16 Exercise. Show that if A = {άi :i < μ} then for any B,

wt(Λ; B) < £ wt(α<; Ai U B).

2.17 Exercise. Show that A C C implies wt(A; B) < wt(C; B).

2.18 Exercise. Show that if ά >M b then wt(α; M) > wt(5; M).
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2.19 Exercise. Conclude from the previous exercise that if a >M b and
wt(α; Af) = 1 then wt(6; M) = 1.

2.20 Exercise. Show that if p is ίί-strongly regular then wt(M[p]; Af) is
one.

2.21 Exercise. For any M and α, wt(ά M) = wt(M[ά];M).

The weight one types play a central role in the classification theory.
Modulo πe they are equivalent to regular types and thus share most of
the important properties of regular types. The following results summarize
some of their most important properties.

2.22 Theorem. Suppose T is superstate. Let p E S(A). The following are
equivalent.

i) p has weight 1.
ii) Suppose a realizes p, a [A B, b IB & an(^ ^ IB ^ Then b 1B c.

iii) Let M be S-saturated and pf E 5(Af) a nonforking extension of p.
Then p' is S-minimal.

iv) There is a regular type q with p πe q.

Proof, ii) is just a restatement of the definition of weight one. If ii) holds
and a realizes p1 then for any b such that a /M 5, b > a. Thus p is realized
in M [a] and p is S-minimal. (Indeed, we have shown that p1 has weight one
implies that if p' JL q then q \-+s p'.)

Finally, suppose p' is S-minimal. Let α realize pr. We want to show
wt(p) = wt(p') = 1. If not, there exist wt(p') = n > 1 independent elements
in Af [ά] — M. Choose any two, say b and c. Since p' is S-minimal there is an
imbedding of Af [p'] into Af [6] and thus there are n independent elements
contained in Af [p7]. But they are independent from c and all depend on α,
contradicting that wt(p') = n. The equivalence of i) and iv) is immediate
from Theorems 2.10 and 2.15.

2.23 Exercise. Show that if p has weight 1 then forking is mildly transitive
on p(Λt).

The S in part iii) of Theorem 2.10 cannot be replaced by an arbitrary
acceptable K. Note that we have characterized wt(p) = 1 in terms of depen-
dence on two sets which need not realize p. Thus weight one is somewhat
stronger than the assertion that forking is mildly transitive on p(Λl) but,
in view of Example XΠ.3.10, not as strong as asserting that forking is fully
transitive on p(M).

The following remarks are obvious from the assertion that each weight
one type is πe equivalent to a regular type.

2.24 Corollary. Suppose T is superstable.

i) Nonorthogonality is transitive on weight one types.
ii) If q has weight one, p / q, and r / q then p / r.

iii) Ifp-flA, q / p and p has weight one then q / A.
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2.25 Exercise. Show using Example XII.1.11 ii) that a type may have
weight 1 without being AT-minimal.

2.26 Theorem. If A C M and p G S(A) has weight 1 then dim(p, Af) tθ
well defined.

Proof. Suppose E and F are maximal independent subsets of p(M) with
\E\ = μ< \F\ = μ'. By Theorem 2.12, wt(£; A) = μ. But F is an independent
set and each element of F depends on E. This contradicts the definition of
weight one and yields the theorem.

We conclude this section by using weight to give a quick proof of an
important result of Lachlan.

2.27 Theorem. IfT is a countable superstable theory then T has either 1
or infinitely many countable models.

Proof. If T has fewer than 2**° countable models then T is small and so
admits prime models over finite sets. If T is not No-categorical there is
a finite set A with a nonprincipal type p G S(A). Let E = fa : i < ω)
be an infinite set of indiscernibles based on p. Define models (Mi :i < ω)
so that Mi is prime over A U Ei. Suppose that k is the weight of p. By
Theorem 2.12 and induction wt(E^; A) = ik. Note that for any / G p(M;),
£(/; A U Ei) is isolated while £(/; A) = p is not, so / 1A Ei. But then by
the definition of weight, any independent (over A) set of realizations of p in
M has cardinality at most ik. Thus, the models (M^ :i < ω) are pairwise
nonisomorphic and we finish.

2.28 Exercise. Show that if any of RM(P), U(p), RC(P) equals 1 then p is
regular and thus has weight one.

The following exercises are taken from [Lascar 1984]. They follow easily
from the [/-rank inequalities discussed in Chapter VII.2.

2.29 Exercise. Suppose p,q G 5(A), U(p) > ωa and U(q) < ωa. Show
p±q.

2.30 Exercise. If U(p) — ωa then p is regular.

From Theorem 2.22 iv) and Exercise 2.30 it is immediate that if p π q
and U(q) = ωa then p has weight one. Lascar [Lascar 1984] establishes the
converse, provided we work in Teq. This proviso is essential; it is easy to
find T and regular p with U(p) = 2 if we ignore Teq.

2.31 Historical Notes. Shelah introduced the concept of weight in Sec-
tion V.3 of [Shelah 1978]. We follow the somewhat simpler definition of
[Makkai 1984]. The description of the relation of weight to regular types
returns to Shelah's exposition. The product of types notation was intro-
duced by Lascar in [Lascar 1976].

Theorem 2.27 has a long history. The first step in this direction is the
proof by Baldwin and Lachlan [Baldwin & Lachlan 1971] that the conclu-
sion holds for countable theories which are NI categorical. This proof used



272 XIII. Decomposition Theorems and Weight

many special properties of NI -categorical theories and yielded the addi-
tional infomation that all countable models of such a theory are homoge-
neous. Then Lachlan [Lachlan 1973] proved Theorem 2.27 by a complicated
argument using rank. Lascar [Lascar 1976] simplified the proof by the use
of U rank. The proof here is just a translation of his. Finally, Pillay [Pillay
1983] has given an even simpler proof and extended the result to what he
calls the class of normal theories.

3. Ubiquity of Regular Types

This section is devoted to showing there are enough /f-strongly regular
types so that if a type p / M for M G K then p / q for some K-strongly
regular q G S(M). In the next section we will use this result to prove a
decomposition theorem for finitely generated members of K. Throughout
this section, we assume that T is superstable.

It is easy to deduce the following result from Theorems 2.15 and VI.1.19.

3.1 Proposition. If p -fl M and M is S-saturated then for some regular
reS(M),pJLr.

Proof. For some q G S(M), p / q. Decompose q as 0r« with each r^ regular.
We must have p / Ti for some ί.

It is much more difficult to show for an arbitrary acceptable class K, e.g
AT in an ω-stable theory, that p -fl M implies p / r for some X-strongly
regular r. We require one easy lemma before the main assault.

3.2 Lemma. If N is a model and M is S-saturated, r G S(M) is regular
and r -fl N then for every p G S(M), if p is realized in M[r] then p yί TV.

Proof. There is a q G S(N) with r / q. Since p is realized in Af [r], p / r.
Thus, by Corollary XII.4.9 p JL q, a fortiori, p J N.

This next proof requires both the use of strong I-saturation as in Sec-
tion 1 of this chapter and the consideration of indiscernibles to study or-
thogonality as in the last part of Section VI. 1. The main thrust of this
result is a three model theorem. Let N C M C MI. Unless ί(Mι Λf) H TV,
we want to find a p G S(M) which is realized in MI, does not fork over TV,
and is K-strongly regular for an appropriate K. There are several variants
on theorems with this general form. In the case at hand we make minimal
assumptions on TV and allow M to carry the burden. This is appropriate
as the interesting application of this result is to arbitrary models TV of an
ω-stable theory.

3.3 Theorem (The three model theorem). Let K admit regular types.
Suppose TV C M C MI and M is S-saturated. If for each a G MI - M,
t(a] M) -fl TV then there is a b G MI - M such that b IN M and £(6; M) is
K-strongly regular.
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Proof. (Fig. 4). Since K admits regular types (Definition XII.2.1 ) we can
choose p G S(M) and an I-formula p0 over TV such that po weakly iso-
lates p\N in (M, MI). By hypothesis, p -fl N. To complete the proof of the
theorem, we establish the following claim.

N

Fig. 4. The three model lemma (ω-stable version)

CLAIM, p does not fork over TV.
Let b G MI — M realize p and choose A C TV and C C M such that

|Λ| < κ(Γ), \C\ < /c(Γ), po is over A and

6 J, M and pc — t(b\ A U C) is stationary (1)

C j T V
A

(2)

(3)

We would be done if b \,A A U C, so we can assume for contradiction that
b 1A C U A. We now invoke the test in Corollary VI.2.22 for pc J A.

Choose C' C M such that:

C' 1C
A

) = stp(C';A).

(4)

(5)
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Let pc> denote the image of pc under an automorphism which fixes
A and maps C to C". By Corollary VI.2.22, pc / Pc1 so by Corollary
VI.2.18 there is an n such that p£ JLW p£, and in particular p£ /α p%,. Let
_ ~ ~ — -/
d = d~d e Mn with lg(d) = n — 1 realize pg and let a G M realize p£,.
We can demand: _

3 I AUCUC" (6)

3' I A U C U C ' (7)
AUC

d X 3 (8)

and _
CUdjC'. (9)

JV

We will apply Axiom X.I. 31 as in the proof of Theorem X.I. 38. Since
(b I C U A] A) there is a formula t/>(z, y) G ̂ (^4) and a sequence cCC such
that:

|= ψ(b,c) and if |= ^(6*, c*) then 6* /Λ c* for
any c* and any 6* realizing t(b',A).

Without loss of generality we can take c as an enumeration of C. Similarly,
(8) implies there is a formula θ(x,y',x',yf) G F(A) and c7, (which without
loss of generality we again take as an enumeration of C') such that:

Let
r(d,c;x,c/)= U Pθ(«<) U{ff(d,c,x,^)}U U

Then r(cί,c;x,c/) is consistent since it is satisfied by a . Note that in the
important AT case, r is a single formula. Applying (9) and the argument
for Corollary X.I. 13, we can choose a c" G N such that r(d,c;x,c / /) is
consistent. By (1) and the definition of p£,

t(b\ dΓ-cΓc1 U A) = t(d; d^c^c1 U A).

Thus, r(d, 6,c; x,c") is consistent. Let e G MI realize this last type. In

particular, |= θ(d, 6,c,e,c'7). We now show e Π (Mi — M) ^ 0. Suppose

to the contrary, that e C M. From (**) we have (d^b IA\JC e^c"). By
monotonicity, this implies b IA\JC^^^' which contradicts (1). This yields
e Π (Mi — M) ̂  0 as required.

Choose e from e with e G MI — M. Then e realizes po so £(e; A) = t(b', A).
But then since |= ψ(e, c"), (*) yields (e 1A c" , contrary to the weak isolation
and we deduce the claim.

3.4 Corollary. Let K admit regular types. If N G K and q~fiN then there
is a K -strongly regular type r G S(N) such that q J L r .
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Proof. Without loss of generality, q £ S(M) for a model M 2 N which is
S-saturated, I-saturated, and |N|+-saturated, since we can take the non-
forking extension of q to such a model. We can decompose q as a product
of regular types rz. Then one of the r^ / TV and so by Lemma 3.2 any type
pf £ S(M) which is realized in M[r^] is not orthogonal to N. By Theorem
3.3, there is a /f-strongly regular r £ S(N) whose nonforking extension to
M is realized in M[r»]. So r / q and we finish.

3.5 Exercise (Saffe). Show that the assumption that TV is a model is es-
sential for Theorem 3.3 by considering the theory of two crosscutting equiv-
alence relations.

Now we can obtain a factorization of any type into a product of K-
strongly regular types whenever K admits regular types.

3.6 Theorem. I f T is superstable and K admits regular types then for any
N £ K and for any type p £ S(N) there exists a family of K-strongly regular
types Ti £ S(N) for i < n such that p Qe <8>r^.

Proof. By Theorem 2.15 p ne ®rj for a sequence of r( each of which is
regular. Now if p £ S(TV), each rj is not orthogonal to TV. Thus, for each
r( there is a strongly regular r» £ S (TV) with r( / r». Then ®r» n€ ®r( so
p Qe ®ri.

Steinhorn has pointed out that Example XII. 1.11 ii) shows that even for
cj-stable theories we cannot strengthen Theorem 3.6 by replacing αe by
fcAT ̂  Proved in Chapter VI that if M is S-saturated then for com-
plete types over M weak orthogonality implies orthogonality. In Theorem
XII.4.10 we removed the restriction on M but required both types to be
AT-strongly regular and stationary. Now we remove the restriction that
the types be strongly regular.

3.7 Corollary. IfT is superstable and K admits stationary regular types
then for each M £ K, ifp,q£ S(M) and p ±.w q then p _L q.

Proof. By Theorem 3.6 we can let q ue ®r» where each n is X-strongly
regular. It suffices to show p J_ r» for each i. But if p / r» then p Jίw Ti by
Theorem XΠ.4.10.

The hypotheses of Corollary 3.7 express the properties required to prove
the result. Nevertheless, they are unnatural. If if is S then the result is
easy (Theorem VI. 1.40). If K is AT then the only class of theories known
to obey the hypotheses are the α -stable theories. Thus, we have only a
weak generalization of the following theorem of Lascar.

3.8 Corollary. I f T is ω-stable, M |= T, p,q £ S(M) and p -Lw q then

p-Lq.

3.9 Exercise. Show the Example VI.1.33.i) is a small superstable theory
so the assertion, Tor types over models, JL™ implies _L' can not be extended
from α -stable to small superstable theories.
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Two elements of a partial order are called disjoint if they have no com-
mon lower bound. We can now give a syntactic characterization of two
types, p and #, being disjoint in the |->κ-order. Namely, p _L q. This ob-
servation follows quickly from the next theorem. It is unlikely to be an
accident that Birkhoff 's classic lattice theory text [Birkhoff 1949] uses _L
to denote disjointness.

3.10 Theorem. If the acceptable class K admits stationary regular types,
M G K, and p G S(M) is K-strongly regular then for any q G S(M) i f q j ί p
then q \-*κ p.

Proof. By Corollary 3.4 q ne ®r» where each Ti G S(M) is ίf-strongly
regular. Thus q / p implies ®r; / p implies for some i, T{ / p. By Theorem
XII.4.10 TI \-*κ p and so q \-+κ p.

This theorem again improves Theorem XΠ.4.10 by removing the hypoth-
esis that both of the types are ίf-strongly regular.

Now to see the equivalence of disjointness and orthogonality, let M G K
and p,q G S(M). If p and q have a common lower bound, they have one
which is regular. But then, by Corollary XII.4.9, p / q. Conversely, ΊfpJLq
then by Theorem 2.15 there exist regular factors r\ of p and Γ2 of q such
that p / ri, ri / Γ2, and q / r^. By Theorem 3.10, p and q are not disjoint.
Of course, for K = S, we could prove this result already in Section XII.4.

There were actually three stages in the proof of Theorems 3.6, 3.10
and their assorted corollaries. We first have the result if M is an S-model
and the types are arbitrary. Then we allow the model to be arbitrary but
demand regularity of the types. Finally, we remove the regularity demand.
This progression is obscured, if Theorem 3.10 itself is looked at, by the fact
that the type p in Theorem 3.10 must be regular in all incarnations of that
theorem.

Using Proposition 3.1 we can show that a weight one type which is not
orthogonal to a set B shares many of the properties of a type actually over
B. For example, we have the following generalization of Theorem VI.2.21.

3.11 Theorem. Suppose wt(p) = 1, p -\ A, and p -fl B. Then if B [A C,
p-\C.

Proof. Without loss of generality, replace B by an S-model M. By Propo-
sition 3.1, there is a regular r G S(M) with p / r. By Corollary 2.24, p H A
implies r H A. By Theorem VI.2.21, r -\C whence by Corollary 2.24 again,
now using that wt(p) = 1, p H C.

3.12 Exercise. Suppose T is stationary and K admits stationary regular
types. Show that for any M G K each of the following properties implies
its successor on the list: p \->κ q, p> q, p Jίa q, p Jί q.

Consider the three implications in the preceding exercise. Corollary 3.7
shows the last can be reversed. We should not expect the second to be
reversed for arbitrary p and q. For, we might factor have p as r\ ® 7*2 and q
as Γ2 (8) rs where ri, Γ2, and r% are pairwise orthogonal regular types. The
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first implication is an equivalence for K = S (Corollary X.2.5); it cannot
be reversed for K = AT ((Exercise X.2.6). Theorem 3.1 shows that all four
conditions are equivalent if both p and q are jFΓ-strongly regular.

3.13 Historical Notes. The main result of this section, Theorem 3.3,
first occurs in [Shelah 1982a]. Our proof is derived from comments of Buech-
ler. Corollary 3.7 is due to Lascar.

4. Linear Decomposition of Finitely Generated AT-
Models

In Section 1 we showed that in the category of S-models of a superstable
theory any finitely generated S-model N = M[c] could be represented as
M[X] where X is a set of independent realizations of regular types over
M. The cardinality of X is an invariant of the pair (TV, M). In fact, it is
the weight of £(c;M). We would like to provide a similar decomposition
for finitely generated models (in the class AT) when T is ω-stable. The
following examples show that an exact analog is impossible.

4.1 Example, i) Consider again Example XΠ.1.11. If we let M be a model
of T and as before choose a^b £ M, not on the same Z-component but in
the same equivalence class which does not intersect M, then it is impossible
to choose an independent set X realizing AT-strongly regular types over
M with M[0,6] w M[X}. Thus the best description of a 'basis' for M[α,6]
over M is to take the pair (α, b) as the basis and note that £(&; M[α]) H M.

The next example shows the sensitivity of these notions to the proper
choice of M[α].

ii) Let T be the theory of a single unary function / satisfying axioms
which assert /3(x) = f 2 ( x ) but there are infinitely many elements with
neither f ( x ) = x nor /2(x) = /(#)• Thus any countable model of T can
be broken up into components where each component is a collection of
sequences of integers of length at most two with f ( s ) = s~ if lg(s) > 0 and
f (s) = s if lg(s) = 0. Now let M be a countable model of T and choose a £ Λl
such that f(ά) & M but /2(α) G M. Choose b G M such that /(α) = /(&).
Consider the model M[α,6]. Now a >M M[α, b] so it is impossible to find
a pair of elements in M[α, 6] which are independent over M. But there are
copies of M[a] with b £ M[a\.

The first of these examples is fairly representative of the situation. The
notion of a canonical resolution for N over M induces an invariant which
characterizes the pair (M, N) up to isomorphism over M.

4.2 Definition, i) A K-regular resolution of N = M[c] is a sequence of
models MO = M, MI, ... M& such that each M»+ι is ίί-prime over a
basis Xi for R(N, Af<) and Mk w M[c].
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ii) A canonical K-regular resolution of M [c] over M is a ίΓ-resolution
of M[c] over M with minimal length.

We will apply the following lemma which is the promised strengthening
of Lemma 1.4. Note that this result relies on the complicated Lemma 3.3.

4.3 Lemma. Let TV C M C M' be models of the countable ω-stable theory
T. Either t(M'\ M) H N or for some a G M' - M, a [N M, and t(a\ N) is
strongly regular.

Proof. Suppose £(M';M) / TV, by monotonicity for some a G M' — M,
p = t(a\ M) / N. By Theorem 3.4 there is a X-strongly regular p' G S(N)
with p JL p'. By Theorem XII.4.5, the nonforking extension of p' to S(M)
is realized in M[α] C M' which yields the result.

4.4 Lemma. Let N C M C M' be models of the countable ω-stable theory
T. If N is finitely generated over M there is a finite canonical AΎ-regular
resolution of N over M.

Proof. We need only show there is a resolution as any shortest such will be
canonical. Construct a sequence of submodels of N = M\c] according to
the definition of a resolution. We can find such a sequence by Theorem 4.3.
We need only show that the construction stops after finitely many steps. It
suffices to show that for each i, (c I X^ Mi), since such an infinite sequence
would contradict the definition of κ(T). So suppose for contradiction that
c I Mi Xϊ In particular, c ^ M^+I. Choose a strongly regular type q in
S(Λ/t+ι) realized by b G M^+ifc] — Mi+\. By the maximality of Xi, we see
b 1M MΪ+I. But c 1M. Mi+ι so c |Mt+1 b by the strong regularity of q. This
contradicts the choice of b G Λ/t+ι[c].

Note that in forming a canonical resolution the choice of points or even of
strongly regular types over Mi realized in Xi is not completely determined.
But both the cardinality of Xi and the isomorphism type of M^+i over M»
is fixed. Thus we justify the term 'canonical resolution'.

This uniqueness claim depends essentially upon the restriction in the
definition of canonical resolution that k be minimal with M^ « M[α]. For
example, let T be the theory of an equivalence relation with infinitely many
classes which are all infinite. If M \= T and the equivalence class of a does
not intersect M, then for any b which is equivalent to α, it is possible to
choose M[b] C M[a] which is isomorphic to but not equal to M [α]. In fact,
we can choose arbitrarily long AT-resolutions of M [α] over M.

4.5 Theorem. Let N C M C M' be models of a countable ω-stable theory
T. If N is a finitely generated over M, there is finite sequence of models
MO = M, MI, . . ., Mfc = N such that each Mi is determined up to isomor-
phism over MI_I.

Proof. Choose (Mi : i < k) inductively to satisfy the definition of an AT-
resolution. Stop when some Mi ~ TV. The uniqueness follows by induction
from the following exercise.
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4.6 Exercise. If X and Y are bases for R(N,M) then M[X\ w M[Y].
(Hint: Note that forking defines a 1 — 1 correspondence between X and Y.
Apply Corollary XΠ.1.15.)

4.7 Definition. Let MQ = M , MI , . . . , M^ = N be the canonical resolution
of N over M. The length of this resolution is the sum of the dimensions of

ι,Mi) foτi< k.

Of course, both the integer k and the length of the resolution are invari-
ants of the pair (M, TV).

The following important reformulation of Lemma 4.3 provides a useful
weakening of Theorem 1.5 for the class of AT-models of an α -stable theory.

4.8 Exercise. If T is α -stable, M C N, and M, N (= T then R(N, M) >M

N.

4.9 Historical Notes. The results here refine the decompositions of mod-
els of α -stable theories in [Lascar 1984] and [Makkai 1984].






