
Chapter VIII

Normalization and Teq

In this chapter we give a brief introduction to some important topics in
stability theory which do not play a major role in the part of stability
theory emphasized in this book. These notions are extremely significant in
the study of ω-stable, ω-categorical theories and their importance for the
fine structure of the spectrum of models is becoming evident.

The first of these is the introduction of 'imaginary elements' to represent
classes of equivalence relations which are definable in a theory T. This
notion could have been used far more systematically in this book. Instead,
we have placed a greater reliance on strong types. The second section is
concerned with normalization, a topic which is closely related to the first
and which leads to the introduction of geometric notions into the theory.
We briefly discuss the role of these notions in the study of totally categorical
theories in Section 3.

The discussion of finite equivalence relations in Chapter IV suggests the
desirability of giving special attention to the classes of definable equiva-
lence relations. This idea is also suggested by the usual practice of forming
quotient structures in algebra. Accordingly, we introduce an expanded lan-
guage in which the equivalence classes of a definable equivalence relation
can be considered as points. Some authors [Cherlin, Harrington, & Lachlan
1985] have proposed adding such equivalence relations piecemeal as they
are needed. We follow Shelah in describing one large expansion, Leq, which
will encompass all the constructions we need to make. However, following
a suggestion of Makkai we treat the expanded structure as a many-sorted
model.

The properties of theories in this expanded language are 'conservative'
for the non-technical results in stability theory. That is, Teq provides a
shortcut to prove theorems which would be much more difficult to con-
ceptualize or prove without this notion. Shelah called the elements in the
expanded models imaginary elements in analogy with the same conservative

170



1. Γe« 171

role the imaginary numbers play with respect to the reals. This analogy is
fairly precise; just as there is an interpretation of the theory of the complex
numbers into that of the reals, the theory Teq can be interpreted into T.

We work below with many-sorted languages. In a many-sorted language
each constant symbol and variable has a fixed sort. The relations (functions)
are required to relate (respectively, map between) objects of specified sorts.
The quantifiers are restricted to specific sorts. Each model is a disjoint
union of sets of objects of the various sorts. The usual theorems of model
theory, especially compactness and completeness, can be easily translated
into the many-sorted situation (cf. [Enderton 1972]).

1.1 Definition, i) Let T be a theory in a first order language L. Then
Leq denotes the many sorted language which has a sort SE for each
equivalence relation (of arbitrarily many variables) which is defin-
able without parameters in Γ. The symbols of L are considered as
relations and functions on objects of sort S=. For each n-ary equiva-
lence relation E there is a function symbol FE which maps n-tuples
of sort S— to elements of sort SE

ii) Each L-structure M is expanded to an Leq-structure denoted Meq

by taking the elements of M as the elements of sort S= and re-
taining the interpretations of the relations in L. The objects of sort
SE are the equivalence classes of the equivalence relation E. The
interpretation of FE maps a sequence α € M to a/E.

iii) Teq denotes the theory of Meq.

1.2 Exercise. Show the last part of Definition 1.1 is permissible; that is,
if M = N then Meq = Neq (and conversely).

1.3 Exercise. Prove the map eq (from M to Meq) is a functor from the
category of models of T and elementary embeddings to the category of
models of Teq and elementary embeddings.

Although Leq is a proper expansion of L, the formulas of Leq which in-
volve the new sorts can be easily translated into the original language. The
following lemma, which is proved by induction on formulas, accomplishes
this translation.

1.4 Lemma. Let Φ(XQ, . . . , xn) be an Lecι-formula where each Xi has sort
SEΪ> There is an L-formula Φ*(XQ, . . ,xn) where each xι has length m if
E{ is an equivalence relation on m-tuples such that:

. . . ,On/BΛ) <-> </>*(ΰθ, - , On)-

Note that if φ is an L-formula then φ* is φ. The formulas 0* are invariant
in the sense that

Λt |=0*(αo,...,άn)^0*(6o,...,6n)

if Ei(ai,bi) for each 1 < i < n. With this result in hand, it is easy to see
that most of the properties discussed in this book transfer from T to Teq.
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1.5 Exercise. Show that T is superstable, stable, ω-stable, etc. if and only
if Γeq is.

The preservation of categoricity from T to Teq is a more subtle matter.
Because Teq has infinitely many sorts, when one makes the natural trans-
lation of the many sorted language into a single-sorted one there will be
elements in some models which realize 'non-standard' sorts. Naturally, such
elements wreak havoc with categoricity. In the many-sorted version, these
elements may be ignored. Formally, one can consider the reducts of models
of Teq to the standard sorts. This approach to many sorted structures is
worked out in a different context in [Baldwin & Berman 1981]. Such fine
notions as forking are also preserved. To see this we must consider the
relation between types in T and types in Teq.

1.6 Definition. Let p G S(A) and suppose that b E Λl realizes p. Then
pβq _ jeq^j. ̂  denotes the Leq-type over A realized by b.

Similarly we can define stpeq. When we write ίeq(6; cl(A)), the algebraic
closure is taken in Γeq. The following lemma justifies this definition, by
showing peq does not depend on the choice of 6, and yields an important
corollary.

1.7 Lemma. For any A C M and p E S(A), p \- peq.

Proof. If 0(6; ά) E peq then the L-formula </>*(6;α) E p. Apply Lemma 1.4.

1.8 Corollary. Let AC B C M and p E S(B). Then p forks over A if and
only z/peq forks over A.

Proof. Since p C peq one direction is trivial; but from p \- peq we easily
deduce the other.

The following exercise is immediate.

1.9 Exercise. For any type p, p is stationary if and only if peq is stationary.

All the results we have discussed so far are direct translations between
T and Teq. If this state of affairs held for all properties there would be
no reason to introduce the notion. We now discuss several of the ways in
which the theories differ.

To shorten notation, if we have a sequence a containing elements of
various sorts, we write FQ(W) = a rather than the conjunction over specific
equivalence relations Gf, specific subsequences w* of w and specific a' E ά
of the formulas FG>(W') — a'.

1.10 Theorem, i) Let A be an algebraically closed subset of Meq. // the
formula φ is almost over A then φ is over A.

ii) stp(c;B) \- t(c;A) if and only if stpeq(c; B) \- £eq(c;cl(A)).

Proof, i) Let E(x,y-,~a) be a finite equivalence relation over A. We will show
that each equivalence class of E corresponds to an element of Λteq. (This is
nontrivial because E is defined with parameters.) Then we will show each of
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these classes is over A and the theorem follows immediately by considering
the finite equivalence relation on which φ depends.

Let E*(U,V',W) be the L-formula Lemma 1.4 associates with jE?(x,|7;z).
Now let E be the equivalence relation on tuples with length \g(ΰ) + Ig(ϋJ)
whose classes are as_ follows. If E*(u,v-,a) is an equivalence relation then
for each 5, {c : E* (c, 6, α)} x a is a class. A final class is the class of all tuples
{c^a} for those α such that E*(ΰ,v',a} is not an equivalence relation. This
equivalence relation is defined by the formula E(x^wι',y^w ι):

(^£ι(ΰJι)Λ-£ι(ΰJ2)) V (wl =w2/\E*(x,y,wl)/\El(w1))

where E\ (a) holds if E* (x, |/; a) is an equivalence relation. Let d\ , . . . , dn

in Λleq be the equivalence classes of E which are associated with the equiv-
alence classes of E(x,y-,c). If we find an Leq formula over A with these as
its solution we finish. For some c', c = FQ(C'}, so such a formula is

Λ Sf.(zi) Λ (3x)(3w)[Fό(w) = cΛFέ(x~w) = z}.

ii) This is immediate from the definitions of strong type and algebraic
closure.

1.11 Corollary. If A is an algebraically closed subset of Meq then every
type over A is stationary.

Proof. Let p and q be complete types over B D A which are distinct, do
not fork over A, and have a common restriction to A. Then by the finite
equivalence relation theorem (Theorem IV. 2. 2) there is a formula φ which
is almost over A and is in p but not in q. But by Theorem 1.10, φ is over A
which contradicts the assumption that p and q have a common restriction
to A.

Next we examine some notions which are primarily useful in Λ(eq.

1.12 Definition. For any set A, the definable closure of A, written dcl(A),
is the collection of points definable over A, i.e. the solutions of formulas
with parameters from A which have unique solutions. If dcl(A) = A we say
A is definably closed.

If the global type p is strongly based on the set A, then every auto-
morphism of M which fixes A also fixes p. In general there are many such
A.

1.13 Definition, i) Let Gp denote the stabilizer of p, the subgroup of all
automorphisms of M which fix p.

ii) Let Fp denote the fixed set of Gp, that is, the set of elements of M
which are fixed by every automorphism of Λl which fixes p.

iii) A canonical base of p, written cb(p), is the (necessarily unique) set
A such that A is definably closed and the automorphism / is in Gp
if and only if / fixes A pointwise.

1.14 Exercise. Show that each p has at most one canonical base.
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In general canonical bases need not exist. For example, consider the
theory of an equivalence relation with two infinite classes. The type which
is realized by a 'new' member of one of the classes has no canonical base.
It is defined over any element of that class, but any such element can be
moved by automorphisms which fix the type. Passing to Teq we see that
the canonical base is the class itself. This phenomenon generally holds; in
Λleq every global type has a canonical base. One further notion is necessary
to establish this result.

The definition of Λteq assigns an element to each equivalence class of an
equivalence relation which is definable without parameters. In fact, each
definable subset of Λt becomes a point of Λteq and if b is the element
assigned to φ(x;c[) then b £ Λleq is in the definable closure of "a. More
formally, we have

1.15 Theorem. For every formula φ(x',y) and every a G M there is a
point bφ = &0(χ;α) € Λleq and a function Fφ, which is definable without
parameters, such that

Proof. Define without parameters the equivalence relation Rφ by:

Rφ(y,z) <-> [(Vx)(0(x;y) ~ φ ( x ; z ) ) \ .

Now 6 = a/Rφ and F^ can be taken as FRΦ .

Note that if two formulas, say φ(x\ a) and ψ(x\ 6), define the same set in
Λt then they give rise to distinct points in Λleq; but all such points are in
the definable closure of ά.

The following exercise provides another perspective for the last result.

1.16 Exercise. Show that for every definable (with parameters) subset X
of M there is an element X* E Meq such that an automorphism of Meq

leaves X invariant if and only if it fixes X* .

We apply this exercise to prove each global type has a canonical base.

1.17 Theorem (Canonical Base). Ifp is a type over Λleq then cb(p) exists.

Proof. Let d define p. That is, </>(z;α) E p iff \= dφ(a-,Cφ). Let A denote
{cφ/Rdφ :φ^L}. Clearly, Fp = del (A) and every automorphism in Gp fixes
A pointwise.

The definition of canonical base easily extends to any stationary type.

1.18 Definition. For any stationary type p, the canonical base of p, de-
noted cb(p), is the canonical base of the unique nonforking extension of p
to a global type.

1.19 Exercise. If p \\ q then cb(p) = cb(<?) (in Meq).

1.20 Exercise. There is a B C cb(p) with \B\ < κ(T) such that if q \\ p
then q does not fork over B.
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A slightly more involved argument shows that if p does not fork over A
then cb(p) C cl(A). Thus p is based on A in the sense of Definition IV.1.17 ii)
if and only if cb(p) C A. In this manner of speaking, p is strongly based on
A if cb(p) C A. A glance at the proof of Theorem 1.17 shows the following.

1.21 Lemma. For any p, |cb(p)| < \T\.

1.22 Exercise. If T is superstable then for every global type p there is a
finite A C cb(p) such that cb(p) C d(A). (Γeq)

The following extension of the notion of canonical base is due to Anand
Pillay. It provides a useful tool for the proof of the normalization lemma
in Section 2. Note that the proof makes essential use of Teq.

1.23 Definition. Let P be a set of (possibly incomplete) types over X.

i) GP denotes the group of automorphisms of M which permute P.
ii) A canonical base for P is a set A such that A is definably closed and

an automorphism a of Λl is in GP if and only if it fixes A pointwise.

The following theorem is stated for a sufficiently closed subset Δ of
formulas. On first reading, Δ can be taken to be all L-formulas.

1.24 Theorem. Let T be a stable theory and let Δ(x) be a set of formulas
closed under Boolean combination and substitution for parameter variables.
Let P be a closed subset of S&(M) with \P\ < \M\. The following are equiv-
alent:

i) P has a canonical base.
ii) For each p E SA(.M) and each φ(x\~y) E Δ the orbit of pφ under Gp

is finite.

Proof. Suppose P has a canonical base, A, but for some φ E Δ and some
p E P, the orbit of pφ under Gp is infinite. We will show |P| is unbounded.

Let β(ϊj',c) define pφ. Fix K > \P\ and let Ci for i < K, be new constant
symbols. Let Σ assert that the Ci are distinct realizations of t(c\A) and
that if i 7^ j then β(y',Ci) jA β(y-,Cj). Since the orbit of pφ under Gp is
infinite, Σ is consistent. But the formulas β(y',Ci) thus define more than K
distinct conjugates of pφ. Since all can be extended to members of P, this
contradicts the choice of /c.

Now suppose ii) holds. Let P = \JieIPi where each Pi is an orbit of
some p E P under Gp. Fix φ E Δ and i E /. Let /?ι, . . . , βk define the
finitely many φ-types in Pi. For each j < fc, let bj = bβj be the point in
Meq attached to βj using Theorem 1.15. Now Bi = {61,... , 6^} is a finite
and thus definable subset of Meq. Let aφj be the point of Meq attached
to (some definition of) Bi by Theorem 1.15. An automorphism, /, of Meq

fixes aφj if and only if / permutes Bi if and only if / permutes the 0-types
in Pi.

We now show that A = dcl({aφj : φ E Δ,i E /}) is the canonical base
for P. If / E Gp, / permutes the φ-types in Pi for each i, so / fixes A
pointwise. Conversely, if / fixes A pointwise and p E Pi then for each 0,
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= QΦ f°r some q G Pi. For, pφ is defined by some βj and f(βj) defines
Qφ for some q E Pi. This shows f(p)φ has an extension in P for each φ G Δ.
Since P is a closed subset of S&(M), this implies /(p) £ P as required.

Pillay [Pillay 198?] proves Theorem 1.24 with the hypothesis that P is
closed replaced by a weaker but more complicated hypothesis.

1.25 Historical Notes. The advantage of considering equivalence classes
as elements in models was seen at least as early as the Rabin-Scott-Ershov
decision procedure [Erδov 1974]. Shelah initiated the systematic use of Teq

in stability theory in Chapter III.6 of [Shelah 1978] where all the results
here (except Theorem 1.24) and more are obtained. The idea of viewing
Leq as a multisorted language was expounded by Makkai [Makkai 1984]. It
has the advantage that Λίeq is saturated and that categoricity as well as the
stability hierarchy is preserved. The disadvantage, which we have chosen
to suppress, is that stability theory has not been developed in many-sorted
languages and so our use of it in the study of Teq is not formally jus-
tified. Shelah's development goes directly to the step one takes in inter-
preting many-sorted logics into single sorted logic. He just expands L by
adding a new unary predicate PE whose intended interpretation is the
set of ^-equivalence classes. In this approach the formulas are somewhat
more difficult to write since the range of the variables must be explicitly
delimited, rather than thought of as built into the name of the variable.
Definition 1.23 and Theorem 1.24 are from [Pillay 198?]. Poizat [Poizat
1985], [Poizat 1983a] provides an important view of the role (nonrole?) of
Teq in the theory of algebraically closed fields. In addition to the pub-
lished expositions our treatment benefitted from discussions with Gisela
Ahlbrandt and Anand Pillay.

2. Normalization

In this section we consider the normalization of a formula. This notion,
which was introduced by Lachlan, is closely connected both with the fi-
nite equivalence relation theorem and with the concept of a canonical base
discussed in Section 1.

One reason to consider normalization is the following situation. We want
to investigate the relation between a uniformly definable family of sets
(φ(x',a): a e M) and the set defined by the formula (3y)φ(χ-,y). Often the
quantification may be restricted to a definable set. If, for example, T is
ω-stable and </>(M;α) has Morley degree_l there is a natural equivalence
relation on the parameters given by α ~ 6 if

ά) Λ0(x;5)) =
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We would like to find natural representatives for the equivalence classes un-
der this equivalence relation. The application of the Normalization Lemma
in this situation is discussed in Theorem 3.4 (cf. [Lachlan 1980]).

The situation is more easily understood from a slightly more abstract
viewpoint.

We write Δ for the symmetric difference of two elements in a Boolean
algebra.

2.1 Notation. Fix a stable theory T. Let A C M be invariant under auto-
morphisms of M. Let 7 = FΓ(A), the set of A-substitution instances of a set
Γ of parameter free formulas which is closed under Boolean combinations.
Then 7 is a subalgebra of the Boolean algebra F(M) which is invariant un-
der automorphisms of Λl. Let I be an ideal in 7 which is invariant under
automorphisms of Λl.

i) Two formulas, 0, ψ £ 7 are equivalent relative to I if they are in the
same congruence class modulo I. That is, if φ Δ ψ G I. We write
φ ~ j ?/;, omitting the subscript if it is clear from context.

ii) Let ^(x α) be in Γ. The set of distinguished I -extensions of ψ(χ-, α),
denoted by Pψ(χjs), is the set of complete Γ types over Λl which
contain ^(αf ά) and which contain no formula from J. When ψ is
clear we write P^ for Pψ(χ ,a} We will not write I when I is fixed in
context.

2.2 Examples, i) Let T be a stable theory, let 7 - F(M), and let I be
the ideal of formulas which fork over 0.

Of course, this example can be generalized by replacing the empty set
by a fixed subset A of Λl.

ii) Let T be an ω-stable theory. Let 7 — (0(x;α) : RM(Φ(X',~O)} < n}.
Let I be the ideal of formulas with Morley rank < n.

By defining our notion in terms of symmetric difference, we do not need
in Example 2.2ii) the restriction, which is usually made in discussions of
the normalization lemma, that φ(χ-, a) have Morley degree one.

2.3 Exercise. Show in Example 2.2H) that if RM(Φ(X\O>)} — n, a' is a
conjugate of ά, and φ(x',a) has Morley degree one, then φ(x',ά) ^ φ(χ-,af)
if and only if RM(Φ(x', α) Λ φ(x] ά')) = n.

2.4 Exercise. Show that φ(x',a) ~ φ(x;άf) if and only if Pa = /V

2.5 Exercise. Show that the equivalence classes under ~ are closed under
positive Boolean combinations.

2.6 Definition. A formula φ(x^a) G 7 is said to be normal with respect
to J if for any conjugate φ(x',a'} of φ(x',ά), if φ(x\ά) ^j φ(x',af) then

With some further conditions on the pair (7, J), we will show that every
formula in 7 can be normalized. That is, to each formula φ, there corre-
sponds a formula φ* such that φ c±j φ* and φ* is normal. We prove this
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result here for the context we described in Paragraph 2.1. We distinguish
now some conditions which play an important role in our proof. In fact,
as we discuss below, varying the context slightly these conditions suffice to
prove the normalization Lemma.

2.7 Conditions. Consider the following conditions on φ(x\a] E 7 and Pa

Nl. For each q E PO", φ(x;a) E q.
N2. Pa is closed under automorphisms of M which fix a.
N3. \PΈ\ < \M\.
N4. If £(α; 0) = £(&; 0), Pπ = Pτ if and only if for each q E P<f, Φ(x', fy<Ξq

and for each r E P^, φ(x\a) E r.

2.8 Exercise. Prove that in the situation of Paragraph 2.1, each of Nl,
N2, and N4 holds.

Now we can state the major result of this section.

2.9 Theorem (The Normalization Lemma). Let (7,1} satisfy the condi-
tions of Paragraph 2.1. Suppose in addition that each \Pa\ < \M\ (N8). For
each formula φ(x',a) E 7 — I , there exists a formula φ*(x,a) such that

i) 0*(x,ά) ~φ(x,a).
ii) φ* is equivalent to a positive Boolean combination of conjugates of

iii) 0*(x;ά) is normal with respect to I .

Note that statement ii) of the theorem is made only cup to equivalence'.
There is no claim that the same formula both contains only the parameter a
and is a Boolean combination of conjugates of φ(x; a). When reading papers
in this area the reader should beware of an identification of properties of
the set defined by a formula with properties of the formula.

Before proving the theorem we note that our examples satisfy the con-
ditions of 2.7. Of course, in light of the exercise following their statement
we need only check N3. We then derive some general properties of (7, 1)
which satisfy N3.

2.10 Examples. We continue the examples begun in 2.2.

i) Fix a set A C M. Then Pa = {p E S(M) : φ(x;a) E p and p does not
fork over A}.

ii) Let Pa = {p E S(M) : φ(x',a) E p and RM(p) = n}.

2.11 Exercise. Show that the two examples satisfy N3.

We now collect some properties which hold whenever Conditions 2.7 do.
It is obvious from N2 and N3 that:

2.12 Lemma. // q E Pa then q does not fork over a.

Thus, if ςΈ PQ:, q is definable almost over α. Let βi(y) list the formulas
over cl(α) which define the types pφ (the restriction of p to φ) for p E Pa
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2.13 Lemma. There is a type s(ΰ,v) over 0 so that Pa = Pζ if and only

Proof. Since Pa is closed under automorphisms which fix α, for each ί and
for each of the finitely many α-conjugates β( of β, f= /2 (ά). Since the
conjunction of the β\ is invariant under ά-automorphisms we may take
it as a formula 7t (x;α). Now for each ΐ, we have (= 7»(a;a) so s(ϊ?,ϋ) =
{7t(w; v) Λ Ύi(ϊJ ϊZ) : i < ω} is a consistent type over the empty set. Now,
(= s(ά, 6) if and only if for each_pi e Pα, |= 7t (ά, 5) iff and only if <£(x; α) € pt .
Switching the roles of ά and b and applying N4 twice, we see [= s(a,b) if
and only if Pa = P^. Thus, we have the Lemma.

The following proposition is the key to the proof of the normalization
lemma. We defined the canonical base of a set of types in Definition 1.23.

2.14 Proposition. With the above notation Pa has a canonical base.

Proof. Clearly, Pa is a closed set and its cardinality is properly less than
that of |M|. So, it suffices by Theorem 1.24 to show that for each p € Pa and
each φ G Γ, the orbit of pφ under Gp- is finite. Let /?(y; c) be a definition
of q<j> for some nonforking extension, q, of p to S(M). Add new constants
άi,Ci to the language for i < /c = |PαΊ+. Let Σ be the set of sentences which
assert:

i) ^ β(y;cj) if i < j < K .

Since / G Gp- if and only if |= s(ά, /(α)), Σ is consistent. But the interpre-
tations of Σ yield AC distinct conjugates of p\φ in Pa contrary to the choice
of K. Thus, by Theorem 1.24, we have the proposition.

With this in hand we can quickly prove the normalization lemma.

Proof of 2. 9. We want to normalize φ(χ α). Choose a canonical base, A, for
Pa by Proposition 2.14. Let q G S(M) be a nonforking extension of t(a\ A).
By the saturation of Λt we can find a set of indiscernibles, E, realizing
ί(ά Λ) so that q = Av(E, M). By Lemma V.2.6, there is a formula χ(e y)
which is a positive Boolean combination of A-conjugates of φ(x;a) such
that for any c G Λt, χ(e c) if and only if 0(x;c) G q. Since q does not fork
over A, x is almost over A. Let x* be a formula over A which is equivalent
to the disjunction of the (finitely many) A-conjugates of χ. Since x* is
equivalent to a positive Boolean combination of A-conjugates of φ(x\ a)
and ~ classes are closed under such combinations, x* ~ φ(x;a). It remains
to show that x* is normal. Let x' be a conjugate of x by an automorphism
/. Now x1 ~ x* if and only if Px» = Px* . But, Px* = ffc. Thus / permutes
Pa. But then / fixes A pointwise and so χf is an A-conjugate of x*. Since
X* is over A, this implies x* is normal.
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Since A is a canonical base for P^, each α-automorphism fixes A point-
wise and thus leaves x* invariant. Thus, x* is equivalent to a formula
0*(x;α) as required.

Steve Buechler gave another account of this result which is more ad
hoc but gives some additional information. One can use the conditions
of Proposition 2.7 as the hypotheses without assuming the exact context
described in Paragraphs 2.1 through 2.6. In outline his argument proceeds
as follows.

He proves that there is a family (Ei :i <ω) of 0-definable (i.e. definable
without parameters) equivalence relations satisfying the following condi-

tion. If 5, b are conjugate to α then |= /\i<ωEi(b, b ) if and only if P^ = Py.
Now, let A = {a/Ei : i < ω} C Meq. Moreover A C dd(a). Note that if

6, b are conjugates of α, then t(b\ A) = t(b A) if and only if b/Ei = b /Ei
for each i < ω. One of these implications is obvious. For the other, note

that if b/Ei — b /Ei for each i, any automorphism which maps b to b fixes
A pointwise. With this observation we have the following reformulation of

Lemma 2.13. P^ = Py if and only if t(b', A) = t(b A). Now an argument very
similar to that for Theorem 2.9 derives a normalizing formula for φ(χ-,a).

2.15 Historical Notes. The normalization theorem was originally proved
by Lachlan [Lachlan 1974] using a complicated rank argument. The more
abstract versions were initiated by [Harnik & Harrington 1984]. The partic-
ular version chosen here is due to Anand Pillay [Pillay 1983]. Other proofs
have been given by [Buechler 1984c], [Saffe 198?a], and, for the forking case,
[Vaughn 1985].

3. 'Geometric; Stability Theory

In this section we summarize recent developments in 'geometric' stability
theory. By this we mean the investigation of the fine structure of models
through the combination of techniques from combinatorial geometry and
group theory with those of stability theory.

There are two major sources for this development. Our discussion is pri-
marily organized around the first, Morley's question, "Can a theory which
is categorical in all infinite powers and has no finite models (a totally cate-
gorical theory) be finitely axiomatizable?" A major step in the investigation
of this problem was Zilber's isolation of the class of strictly minimal sets.
A set is strictly minimal in the theory T if it is not only strongly minimal
but admits no nontrivial definable equivalence relation. A geometry can
be associated with any strictly minimal set as follows. The elements of the
strictly minimal set are the points of the geometry; the algebraic closure of
two points is called a line; the algebraic closure of three noncollinear points
is called a plane, etc. The following theorem states the basic fact.
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3.1 Theorem. Each ^-categorical strictly minimal set is associated with
one of the following geometries.

i) An infinite set with no structure (disintegrated).
ii) An infinite dimensional protective space over a finite field.

iii) An infinite dimensional affine space over a finite field.

Cherlin [Cherlin, Harrington, &; Lachlan 1985] and Mills (unpublished)
independently proved this result by an analysis of the automorphism groups
of the finite approximations to the strictly minimal set. This analysis de-
pends upon the classification of the finite simple groups. Zilber [Zilber 1981]
proved this result directly with no reliance on a high powered technique
imported into the field.

Reflecting the modularity of the associated lattice of closed subsets, a
strictly minimal set which is either disintegrated or projective is called
modular. Otherwise, it is called affine.

By a variant on the usual construction of projective space, any affine
space can be converted into a modular one in a language obtained by nam-
ing a point. The effect of such an extension by constants in this situation
is so critical that it has spawned some further terminology. A set H is
A-definable in M if it is defined by a formula with parameters from A. If
A = 0, H is said to be 0-definable.

If T is No-categorical we naturally extend the notion of orthogonality
to sets by saying the strongly minimal sets HI and H^ are orthogonal if
the unique non-algebraic types of elements in HI and H<2 are orthogonal.
The crucial step in moving from the 'local' behavior of a particular strictly
minimal set to the 'global' analysis of a model is

3.2 Theorem. If T is ω-stable and N0-categorical, HQ and HI are non-
orthogonal modular strictly minimal sets then there is a unique 0-definable
bijection between HI and H^.

This result leads to the two basic structural properties of an ω-stable,
No-categorical theory, the coordinatization theorem and the fundamental
rank inequality. To state these we require some more terminology.

Recall that a group G acts n-transitively on a set X if for each pair of
distinct n-tuples, α, b from X there is an element of G which takes ά to b.
If an No-categorical countable structure, M, realizes only one 1-type, the
automorphism group of M acts 1-transitively on M since M is homogenous.
When the automorphism group of a structure acts 1-transitively on it, M
is called transitive.

Let P and A be 0-definable subsets of an No-categorical structure M.
We say A coordίnatizes P, if A generates a complete type over 0 and for
each x G P, cl(x) Π Aφ§. Thus, each element of P is coordinatized by the
finite set of elements in A which are in the algebraic closure of X. Here is
the fundamental result.

3.3 Theorem (Coordinatization Theorem). Let M be transitive, ω-stable
and ^-categorical. There is a finite extension by definitions, M* of M
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which is 0-interpretable into M in which there is a rank one set A which
coordinatizes M.

M* is just an appropriate approximation to Meq by adding only finitely
many sorts. This result leads to an important result whose statement is
somewhat confusing. In the following theorem (and throughout this sub-
ject) we are able to discuss families of definable sets as though the sets
are elements of the model and the family is a subset. Of course, this is
accomplished by passing to (a suitable finite reduct of) Teq. In particular,
the rank of a family of definable sets is the rank of the associated set in
Λleq.

3.4 Theorem (The Fundamental Rank Inequality). Let F be a definable
collection of definable subsets of the ^-categorical, ω-stable structure N
with RM(N) = n. Suppose each element of F has the same Morley rank r
and the intersection of any two has rank less than r. Then r + RM(F) < n.

The almost disjoint family F needed to apply Theorem 3.4 is obtained
from the Normalization Theorem. The Coordinatization Theorem is first
proved under the hypothesis that the rank of T is finite. It then leads to
the fundamental rank inequality. Then a clever argument of Cherlin turns
the situation on its head to prove

3.5 Theorem. IfT is ω-stable and ̂ -categorical then T has finite Morley
rank.

A second impetus for 'geometric' stability theory came from Lachlan's
analyses of finite homogeneous structures [Lachlan 1984], [Lachlan 1986].
This approach coalesces with the results described so far in this section in

3.6 Theorem. // T is ^Q-categorical and ω-stable then every sentence
which is consistent with T has a finite homogeneous model. Thus, T is
not finitely axiomatizable.

Noting that all known ω-stable, N0-categorical stuctures are constructed
from finite structures in fairly simple ways, e.g. a direct sum of finite abelian
groups, leads to the conjecture that this is always true. Given the difficulty
of describing a 'simple' construction without having it in hand, the following
test question is formulated. Is every totally categorical theory quasi-finitely
axiomatizable, that is, finitely axiomatizable relative to an axiom schema of
infinity? To indicate the progress made on this question we need two more
notions. A theory T is almost strongly minimal [Baldwin 1972] if every
model of some finite inessential extension of T is contained in the algebraic
closure of a strongly minimal set. In the early 1970's these theories were
thought of as the 'simple' NI-categorical theories. For example, [Makowsky
1984] had proved that no such theory was finitely axiomatizable. Ahlbrandt
connected this notion with the local study of strictly minimal sets via the
following definition and theorem. The totally categorical theory T is almost
of modular type if for some finite principal extension T* of T, every strictly
minimal set in T*eq is modular.
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3.7 Theorem. The totally categorical theory T is almost strongly minimal
if and only if it is almost of modular type.

Finally Ahlbrandt and Ziegler proved

3.8 Theorem. // the totally categorical theory T is almost of modular type
then T is quasi-finitely axiomatizable.

Another entry of geometry into stability theory came from Lachlan's
proof [Lachlan 1974] that the question of the existence of a countable
No-categorical theory which is stable but not ω-stable could be given the
following form. A pseudoplane is a two sorted structure of points and lines
such that i) each line contains infinitely many points (and dually each point
is on infinitely many lines) but ii) a pair of lines intersect in only finitely
many points (and dually only finitely many lines pass through any fixed
pair of points).

3.9 Theorem. [Lachlan 1974] If there is a countable, ^-categorical and
stable but not ω-stable theory then there is such a pseudoplane.

Pseudoplanes have since showed up in a number of contexts in the theory.
For example, Zilber's extension of the classification of strictly minimal sets
to the NI but not No-categorical case provides the following theorem.

3.10 Theorem (The Trichotomy Theorem). // M is an ^-categorical
structure then exactly one of the following three conditions holds.

i) There is a pseudoplane definable in every strongly minimal structure
definable in M

ii) Every strongly minimal structure definable in M is locally projective.
iii) Every strongly minimal structure definable in M is disintegrated.

Zilber calls a strongly minimal set, D, locally projective if the geome-
try associated with D over a non-algebraic point is a projective geometry
over a division ring. Intuitively, this divides NI-categorical theories into
those which are field-like, module-like, or disintegrated. In particular, Zil-
ber conjectures every NI-categorical pseudoplane is biinterpretable with an
algebraically closed field.

Buechler [Buechler 1985b] made a significant application of the 'geo-
metric' theory by using it to not only compute the spectrum of an ω-stable
No-categorical theory but to assign invariants to models in a more exact
way than the general assignment for models of an arbitrary ω-stable theory.
There is more detail on this in Chapter XVIII.

When dealing with theories which are not N0-categorical, certain proper-
ties of formulas in No-categorical theories must be replaced by consideration
of types. Thus, the notion of a type-interpretable pseudoplane, a pseudo-
plane whose incidence relation and sets of points and lines are defined by
types, arises. Buechler [Buechler 1984] has shown that a trichotomy simi-
lar to Zilber's trichotomy holds for 'simple' types in arbitrary superstable
theories. That is, if a stationary type contains a formula with continuous
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rank one then it defines either a strongly minimal, a locally projective, or a
disintegrated set. Using this result he generalizes the coordinatization the-
orem and the fundamental rank inequality to superstable locally modular
theories [Buechler 1986] with finite [/-rank.

Pillay has defined a class of weakly normal theories. He shows that the
stable theory T is weakly normal if and only if T does not type-interpret a
pseudoplane. Moreover, in [Pillay 1986], he generalizes the Baur-Cherlin-
Macintyre theorem that every stable No-categorical group is Abelian by
finite by showing that an ω-stable group which does not type-interpret
a pseudoplane is Abelian by finite. In [Hrushovski & Pillay 1986] every
weakly normal group is shown to be Abelian by finite.

3.11 Historical Notes. Since this section was a history there is little
to say. Key papers include [Cherlin, Harrington, &; Lachlan 1985], [Zilber
1981], [Zilber 1980b], [Zilber 1980a],[Zilber 1984],[Zilber 1984a], [Buechler
1985b], and [Ahlbrandt & Ziegler 1986]. Another interesting line is pur-
sued by Srour and Pillay [Pillay 1983], [Pillay & Srour 1984], and [Pillay
198?a]. Another important tack is the investigation of finite homogeneous
structures. Lachlan has written a series of papers which are listed in the
bibliography. See also [Cherlin & Lachlan 1986] and [Lachlan &; Shelah
1984]. In still another direction a detailed analysis of categorical varieties
and quasivarieties has been given ([Givant 1973], [Givant 1976], [Palyutin
1973], [Palyutin 1976]). The representation theorems proved there are re-
markably similar to Theorem 3.1.




