
Chapter IV

Finite Equivalence Relations, Definability,
and Strong Types

We study in this chapter the nonforking extensions of a type p G S(A). In
the first section we see that although two such types cannot be distinguished
by formulas over A, they can be distinguished by formulas that are 'almost
over' A. This leads to a straightforward proof of Lachlan's theorem that an
No-categorical superstable theory is ω-stable. In the second section we study
in more detail the multiplicity of p - the number of nonforking extensions
of p. We apply this analysis to reformulate the stability hierarchy in terms
of definability. We introduce the important notions of the 'base' and the
'strong base' of a type. We show each type over a strongly κ;(T)-saturated
model is strongly based on a subset of power less than κ(T). In Section
3 we summarise the fundamental properties of strong types. The strong
type of a over A allows one to analyze the relation of a and A in terms
of a stationary (i.e. multiplicity one) type. This is an essential tool for the
further development of the theory. Finally we study the relation between
the strong type (more generally, the multiplicity) of a pair and that of its
components.

1. Finite Equivalence Relations

Unfortunately, the study of types will not provide as smooth a theory of
independence as we would like. A simple example of the difficulty arises if
we consider the theory of an equivalence relation with two infinite classes.
Then the unique type, p, over the empty set has two extensions to a type
over a model which do not fork over the empty set; namely, the type of a
generic point in either equivalence class. Morley addressed this problem by
saying 'the type has degree two' and the work of Lachlan [Lachlan 1975],
[Lachlan 1978], successfully develops this approach. However, we find it
more convenient to follow Shelah in introducing the notion of strong type.
This approach describes the situation in the above example, by saying
'there are two strong types extending p\ one for each equivalence class.
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100 IV. Finite Equivalence Relations, Definability, and Strong Types

This approach also deals with another issue. Let A be a set and suppose 5
is not in A, but is algebraic over A. Consider a formula φ(χ-,b}. Although
0(x;6) is not in F(A), clearly it is 'close' to being so. We wilHormalize a
generalization of this property by defining the notion that φ(χ-, b) is 'almost
over' A.

Recall that for X C Λt we say X is definable over A (i.e. definable with
parameters from A), or X is just over A if there is a formula 0(x; y) and a
sequence a from A such that X = φ(M ά). Although all three expressions for
this concept are commonly used we will eschew here this usage of 'definable
over A1 so as to distinguish this notion from the notion of a type being
'definable over A considered in IΠ.l and below. We will say X C M is
definable if it is definable with some parameters from Λl (i.e. if X is over
Λt). We recall from Chapter I a useful criterion for determining whether X
is over A.

1.2.30 Lemma. If X is a definable subset of M and X is fixed by every
A-automorphism of M then X is over A.

Recall that p is definable over A if for each φ(χ-, y) the set {c:0(x; c) E p}
is over A. We distinguish the notions, 'p is over A and 'p is definable
over A' even though for stable T and p E S(A) they coincide. Generalizing
the notion, 'X is over A\ we replace the requirement that X be fixed by
A-automorphisms with the requirement that it have 'few' conjugates. Since
we are working in the monster model, a cardinal number is small or large
depending on whether it is less than the cardinality of the monster model.
In analogy with set theory, we say a collection (e.g. of formulas with pa-
rameters or of types) 'is a set' or 'has bounded cardinality' if its cardinality
is less than that of the monster model and a class if its cardinality is the
same as the cardinality of the monster model. Formally:

1.1 Definition, i) Let X be a definable subset of M. Then X is almost
over A if \{a(X) :_α E AutΛ(Λl)}| < ω.

ii) The formula φ(x\ b) is almost over A if the set 0(Λt, b) is almost over
A.

iii) The type p is almost over A if each formula in p is almost over A.

Note that_ if 6 is in the algebraic closure of A then for each formula
φ(x; ϊ/), </>(af; b) is almost over A. Further, if T is the theory of an equivalence
relation E with two classes, both infinite, then for any 6, E(x\ b) is almost
over the empty set. Virtually no complete type (not over A) is almost over
A since if b φ cl(A) the formula x / b is not almost over A. However, the
members of a very important class of incomplete types, the strong types
over A (cf. Definition 3.1), are almost over A.

The following characterization (Theorem 1.3) underlines the significance
of this notion.

1.2 Definition, i) A finite equivalence relation is a definable equivalence
relation on Mm for some m which has only finitely many classes. We
say E is over A if E is definable with parameters from A.
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ii) The formula 0(z;5) depends on the finite equivalence relation E if
the solution set of φ is a union of equivalence classes of E.

We denote by FEm(A) the collection of finite equivalence relations (on
m-tuples) which are over A. We write FE(A) to refer ambiguously to some
FErn(A).

1.3 Theorem. The following are equivalent.

i) 0(z;c) is almost over A.

ii) Φ(MΊC) has a bounded number of conjugates over A.

iii) There is an E E FE(A) and 60, , δfc-i such that:

iv) φ(M',c) is over M for every model M containing A.

Proof. It is easiest to first argue that ii) and iii) are separately equivalent
to i). Clearly i) — + ii) and the converse is an easy compactness argument. If
iii) holds, each conjugate of φ(x', c) is equivalent to a union of equivalence
classes of E so it is easy to bound the number of conjugates in terms of
the number of classes of E. Now we show i) — > iii). Define E(χ-,y) to hold
just if 0(x; Ci) <-» φ(y', Ci) for each of the formulas φ(χ-, Ci) representing the
finitely many conjugates of 0(z; c). Then E is a finite equivalence relation,
definable with parameters from At, and fixed under A- automorphisms. By
Lemma 1.2.30, E € FE(A). Now we show iii) implies iv) and iv) implies ii).
By iii), the solution set in Λl of φ(x',c) is the union of equivalence classes
of a finite equivalence relation over A. Thus for any M containing A there
are k sequences m^ from M such that: |= φ(x',~c) <->• \J i<kE(x',nii) and iv)
holds. On the other hand, if </>(x; c) is over every M containing A, so are all
the conjugates of 0(x; c). That is, all conjugates of φ(x',c) are over a single
model M so φ(χ-, c) has a bounded, hence finite, number of conjugates and
is almost over A.

Thus φ is almost over A iff φ depends on some E € FE(A).
The fourth characterization in the previous theorem reinforces a second

meaning for the word 'almost' which we have seen before. Recall from
Definition III. 3. 13 that φ(x',c] is said to be almost satisfiable (or almost
satisfied) in A if for every M extending A, φ(M c) Π M / 0. A property
P is almost true in A if it is true in every model containing A. We will
consider several other uses of the word almost in this sense.

1.4 Exercise. Show that the collection of formulas almost over A is closed
under the logical operations (Boolean and quantifiers), permutation of vari-
ables and substitution of dummy variables. (This is a routine application
of Theorem 1.3. Details are in IΠ.2.2 of [Shelah 1978].)

1.5 Corollary. If the consistent typep is almost over A then each formula
in p is almost satisfiable in A and so p does not fork over A.



102 IV. Finite Equivalence Relations, Definability, and Strong Types

Proof. By Theorem 1.3 each φ(x',c) in p defines the union of some equiv-
alence classes of a finite equivalence relation over A. But each class must
intersect every model containing A so p is almost satisfiable in A.

1.6 Exercise. If A C B, p G S(B) does not fork over A, and r is almost
over A, show that if r U p is consistent then r U p does not fork over A.

1.7 Exercise. Show that p G S(A) is stationary iff every φ(x',y) repre-
sented in p, the bound of p, is represented in p in the following weak
sense. If q G [p] and φ(x',V) G q there is a formula ψ(x;a) G p such that
|= φ(x,b) <-> ψ(x',a) (Baldwin-Prest).

1.8 Exercise. Suppose φ(x; b) is almost over A and </>(z; & ι ) , . . . , φ(x;bn)
is a list of representatives of all the A-conjugates of φ(x;b). Show that

Λi<n^(^'^i) ^d Vΐ<n^(^'^) are each equivalent to a formula over A.

1.9 Exercise. Show that if the finite equivalence relation E is almost over
A, then there is another finite equivalence relation E' which is over A such
that E depends on E1. (Hint: Consider the conjunction of the conjugates
oΐE.)

It is immediate from Theorem 1.3 that there are at most 2(ITI+IAI) dis-
tinct types almost over A. In Lemma 1.12 we will reduce this bound to
sup(2'τl, iS'(yl)l). Now we combine the concepts 'defining a type' and 'al-
most over' by saying that p is definable almost over A if p is definable in
the sense of III. 1.23 but the formulas dφ are almost over A.

1.10 Definition. The type p is definable almost over A if for each φ(x; y),
{c : φ(χ-, c) G p} is almost over A.

It is immediate from the definitions and the characterization of almost
over in Theorem 1.3 iv) that for any global type p, p does not fork over A
if and only if p is definable almost over A. We gave in Exercise III.3.28 an
example of an incomplete type which was definable (and so certainly almost
definable) over the empty set but still forked over the empty set. Thus this
remark does not extend from global types to arbitrary types. Exercise 1.15
notes that in one direction this extension is possible; Exercise 1.16 points
out a strengthening of the hypothesis which regains the converse.

1.11 Exercise. Show that p is definable almost over A if and only if for
each formula φ(χ-,y), dφ is almost over A.

The following lemma yields another characterization of the nonforking
extensions of a type p.

1.12 Lemma. Ifp does not fork over A then p has at most 2'τl conjugates
over A.

Proof. Since p does not fork over A, there is a model M and a map
d: F(L) i—> F(M) so that p is defined by d and each dφ is almost over
A. Then each conjugate of p is defined by conjugates of the dφ. But each
of the |T| formulas dφ has only finitely many conjugates over A, so p has
at most 2lτl conjugates over A.
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1.13 Exercise. Give a proof of Lemma 1.12 without appealing to defin-
ability. (Hint: First assume without loss of generality that \A\ < /c(T), then
choose a model of cardinality at most |T| containing A and note that the
nonforking types over A are determined by their restrictions to that model.)

We can show a strong form of the converse.

1.14 Lemma. Ifp has a bounded number of conjugates over A then p does
not fork over A.

Proof. If p has a bounded number of conjugates over A then for each 0, dφ
has a bounded number of conjugates over A. So p is definable almost over
A and so does not fork over A.

For any p we have shown the extensions of p to types in S'(.M) are parti-
tioned into conjugacy classes by the fundamental order (Corollary IΠ.2.38).
There are at most 2(IΓI+IAD classes. One of them, the class of nonforking
extensions has at most 2'τ' members. The others have a class (i.e. |Λί|) of
members.

1.15 Exercise. Let AC. B and suppose p is a type over B such that p\A is
complete and p does not fork over A. Show that if d is any defining scheme
for p then each formula dφ is almost over A.

1.16 Exercise. Show that if p G S(M) is definable almost over A then p
does not fork over A. Give an example to show the necessity of assuming
M is a model.

We have shown that if p doesn't fork over A then p is definable almost
over A. We can strengthen this result if p\A is stationary or even stationary
relative to domp in the following sense.

1.17 Definition, i) Let A C B and p G S(A). Then we say p is stationary
inside B if p has a unique extension in S(B) which does not fork over
A.

The remainder of this definition makes precise two ways in which a type
can be founded on a 'small' set. These notions will play an increasingly
important role later on. We discuss them more fully after Definition 2.4.

ii) Let A C B and p G S(B). Then

a) p is based on A if p does not fork over A.
b) p is strongly based on A if p does not fork over A and p\A is

stationary.

WARNING: Our terminology here differs with that of Shelah. He only
defines 'based' for a type which is the average type of a sequence of indis-
cernibles and does so in such a way that his 'based' is equivalent to our
'strongly based'.

Note that if the set B in Definition 1.17 i) is a model then the type p is,
in fact, stationary. (See Theorem IΠ.2.23.)
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1.18 Exercise. Give an example of A C B with p G S(A) which is sta-
tionary inside B but not stationary.

1.19 Exercise. Show that if p G S(A) is stationary then for every B I) A,
p is stationary inside B.

1.20 Lemma, i) // A C B, p G S(B) does not fork over A, and p\A is
stationary inside B then p is definable over A.

We will be most interested in the following special case.

ii) (Stationary types are definable). Suppose p G S (A) is stationary.
There is a definition d of p over A such that for every B containing
A, if p C q G S(B) and q does not fork over A then q = d(p, B).

Proof. Let p be an extension of p to a global type which does not fork over
B (and hence does not fork over A). Then p is definable almost over A by

some map d taking φ to dφ(y-, c). Let d*φ(y) be VαeAutΛ(λi)^(^' α^) Then
d*φ(y) is invariant under automorphisms which fix A and so is equivalent
by Theorem 1.2.30 to a formula over A (thus justifying our omission of
parameters). But since d*φ(M) Π B is {b : 0(z; b) G p} we have defined p
over A as required.

Note that the d*φ found in the proof of Lemma 1.20 is a positive Boolean
combination of instances of dφ. We replace dφ by φ in Lemma V.2.6.

1.21 Exercise (Berline). Show d*φ(c) holds if and only if φ(x\c} is in
every nonforking extension of p to a global type.

1.22 Exercise. Prove 1.20 ii) directly rather than deducing it from 1.20 i).

The following table summarises the relations among the notions con-
sidered in this section. In each column there are a number of statements
equivalent to the assertion that a global type has the number of conjugates
over A given at the head of the column. Each row represents a particular
kind of description.

1 < 2 τ oo
definable over A definable almost over A

over A does not fork over A forks over A
strongly based on A based on A

A type may be almost over T — in that each formula in the type has only
finitely many conjugates over A — but the type still has 2'τ' conjugates.

Suppose A C #, p G S(B), and p has no proper conjugates over A. Then
by Theorem 1.2.30 (The basic definability lemma) p is definable over A.
We have just seen that if p has few conjugates then p does not fork over A
and is definable almost over A. We now show that two distinct nonforking
extensions of a type over A can be separated by a formula which is almost
over A.

1.23 Theorem. Let A C M, p, q G S(M). Suppose p and q do not fork
over A and p\A = q\A. If p / q then there is formula ψ(x) almost over A
with ψ(x) G p and -cφ(x) G q.
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Proof. By Exercise II.2.6 we can choose c and d realizing p and q respectively
with c^d I A M. Choose </>(m; x) G F(M) so that φ(rn\ c] and -^(m; ~d}. Let
f G S(Λt) be an nonforking extension of r = £(m; yl U c U d) to a global type.
By symmetry and monotonicity, r does not fork over A. Thus there is a
formula dφ(x) which is over M, almost over A, and defines ΐφ. But then
we have |= dφ(c) Λ ->dφ(d). So this formula is in p but not in q as required.

We now establish one of the principal tools of stability theory.

1.24 Theorem (The Finite Equivalence Relation Theorem). Let A C B
and p, q G S(B). Suppose p\A = q\A and neither p nor q forks over A. If
p / q then there is an E G F£(A) such that: p(x] U <?(£) |- -^E(x',y).

Proof. We know by Theorem 1.23 that there is a formula 0(x;6) in p but
not q which is almost over A. Choose an E G FE(A) so that φ(χ-, b) depends
on E. Now clearly p(x) U q(y) \- ->E(x,y).

For the following exercise consult the definition of Morley rank in Chap-
ter VII. 1.

1.25 Exercise (Relations With Morley Rank). Show that if p G S(M)
then p has degree 1. Show that if the rank of M is a there is a finite
equivalence relation definable over the empty set with deg(M) classes each
with rank a.

One of the most important corollaries of the Finite Equivalence Rela-
tion Theorem is the following proof of Lachlan's theorem that a count-
able No-categorical superstable theory is ω-stable. Recall from IΠ.3.3 that
7V(M, A) denotes the complete types over M which do not fork over A.

1.26 Theorem. IfT is a countable ^-categorical superstable theory then
T is ω-stable.

Proof. If not, there is a model M of T with \S(M)\ > |M|. Without loss of
generality we may fix an integer m such that the number of m-types over
M is greater than \M\. Since T is superstable, for each p in S(M) there is a
finite subset of M over which p does not fork. Since there are only \M\ finite
subsets of M, the theorem follows if we can show that for any finite A con-
tained in M, N(M, A) is also finite. By Ryll-Nardzewski's Theorem, S(A) is
finite so it suffices to show that any fixed member r of S(A) has only finitely
many extensions in N(M,A). Thus, suppose p(x] and q(x) are distinct
members of N(M,A) extending r G S(A). Then by Theorem 1.24 there is
an E(x,y] G FErn(A) such that p(x] \Jq(y) implies -^E(χ-,y}. (Fig. 1). Thus
|7V(M, ,4)| is bounded by the product of {n(E}: E G FEm(A)} where n(E)
denotes the number of equivalence classes of E. But the No-categoricity
of T implies by Ryll-Nardzewski's theorem that the number of formulas
with \A\ + 2m free variables is finite and this number certainly bounds
\FEm(A)\. Thus N(M,A) is finite and the theorem follows.

Lachlan [Lachlan 1974] conjectured that the hypotheses of this theorem
could be weakened by assuming only that T is stable. This conjecture



106 IV. Finite Equivalence Relations, Definability, and Strong Types

Fig. 1. Theorem 1.26. The vertical columns are the ^-equivalence classes.

remains one of the critical unsolved problems in the area. This problem
is the first of several which show that the investigation of stable but not
superstable theories will require significant new tools. In his work on this
problem Lachlan proved the normalization lemma which we discuss in detail
in Chapter VIII. Moreover, he introduced the concept of pseudoplane which
is also discussed in Chapter VIII. This notion has proved to be at the
combinatorial core of the subject.

The following more algebraic version of the finite equivalence relation
theorem is to due to John Vaughn [Vaughn 1985]. The terminology from
Boolean algebras used in the next few paragraphs can be found in [Sikorski
1964]. To simplify the following proof we make the following definitions.

1.27 Definition. Let B C M. Recall that F(M) is the Lindenbaum algebra
of formulas over M. We fix the following notation. (Fig. 2).

i) FB is the set of formulas in F(M) which fork over B.

ii) AB is the set of formulas in F(M) which are almost over B.

iii) NB is the set of formulas in F(M) which do not fork over B.

iv) -*FB is the set of formulas in F(M) whose negations fork over B.

Recall that an ideal, /, in a Boolean algebra is a subset which is closed
under joins and such that if 6 G / then for any α, α Λ b £ /.

1.28 Exercise. Show that FB is an ideal in F(M).

We denote by φ Δ ψ the symmetric difference of the formulas φ and φ.
Recall that an ideal, /, in a Boolean algebra determines a congruence on
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Fig. 2. Definition 1.27

!-'

the algebra where φ ~ ψ if and only if φ Δ ψ G /. Now we can reformu-
late the finite equivalence relation theorem as providing a normal form for
F(M)/FB.

1.29 Theorem. F(M)/FB « AB.

Proof. We show that for each φ(χ-,m) G F(M) there is a ^(x;6) which
is almost over B such that </>(z;ra) ~ ^(z δ). As any formula in FB is
equivalent modίβ to x ^ x and and any formula in -iFβ is equivalent

to x = z, we can assume 0(x;m) G 7VB - ->ίβ. Thus, both y =
Π N(M,B) and X = f/-,0(>ι,m) Π ΛΓ(Λt,B) are nonempty closed,

and thus compact sets. Now for each q G y and p G X, the finite equivalence
relation theoremJmplies there is a clopen Cp,q C S(M) which is defined
by some ΨPtq(x',bp,q) with Q G Cp,q and p £ <7P,9. By compactness, for
each p the union, Z}p, of some finite subset of the Cp,q contains Y and
is almost over B. By compactness again, some finite intersection of the
Dp is defined by a formula τ/>(x; 6) which is almost over B and such that
uψ(χ-b) n N(M>B) = γ- τhus

? Ψ&b) Δ φ(x]m) G FB and we finish.

1.30 Historical Notes. Most of these notions appeared first in [Shelah
1978]. The importance of calculating the number of conjugates was em-
phasized by Lascar and Poizat. The treatment here was greatly influenced
by conversations with Ziegler. The finite equivalence relation theorem is
due to Shelah [Shelah 1978]. The improvement of it in Theorem 1.23 was
conjectured by Harnik and proved by Ziegler. Theorem 1.26 was proved
by Lachlan [Lachlan 1974] using rank. The argument used here is due to
Shelah. Definition 1.27 and Theorem 1.29 are due to John Vaughn.

2. Definability and the Stability Hierarchy

In this section we use the notions of definability of types developed in
section 1 to provide another characterization of the stability hierarchy. To
begin with we need more 'local' information about the possible extensions
of a single type. Then we can proceed to the 'global' discussion of the
relation between the number of types over each model and the extent to
which these types are definable. We assume T is stable throughout this
section.
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In Definition IΠ.4.28 we defined the ^-multiplicity of a type p to be the
maximal number of nonforking mutually contradictory φ-types which are
consistent with p. We now use the fact (Exercise IΠ.3.16) that the collection
of nonforking extensions of p to complete types over M is closed to show
this number must always be finite. Then we will use that result to refine
the assertion that N(M,A) is closed.

2.1 Theorem. For any A, any p G S(A), and any formula φ, μφ(p) (the
φ-multiplicity of p) is finite.

Proof. If not, there is an infinite family of φ-types pi such that p U Pi does
not fork over A but for each i and j there is an άij such that 0(z; α^) G Pi
and -ι0(x;δt,j ) G PJ. Without loss of generality for some M containing A
we may extend each p U Pi to a type qi G S(M) which does not fork over A.
Now for any /c construct K distinct nonforking extensions of p to a model
as follows. Add to L a new unary predicate symbol P, constants {ci: i < K,}
and {άij : i,j < K,}. Now let Γ contain φ(ϊϊi,άij) if and only if i = j and
assert that P is the universe of an elementary submodel of the universe,
A C P, all "άij are in P, and t(ci\ P) does not fork over A. The last clause is
obtained by including in Γ, (V^)[P(y) —> -*φ(ci\y)} if φ(x,y) φ β(p). These
/c types contradict Lemma IΠ.4.32 which showed every type has at most
λ(T) nonforking extensions.

2.2 Exercise. Conclude from Theorem 2.1 that for any A and p G S(A)
there are only finitely many types qi G Sφ(c\(A)) with p U qi consistent.

2.3 Exercise. Show that in Theorem 2.1 it is essential to assume p is
complete.

Recall that Corollary IΠ.3.15 asserted that if p is a type over B and p
forks over AC B then there is a formula φ(xm,y) and a type q G S (A) such
that if b realizes (/, then any type, r, containing </>(x; b) forks over A. We will
modify the result by removing the requirement that b realize a complete
type but replacing the requirement r contains φ(χ-, b) with the requirement
that p\A be complete and r contains p\A U φ(x]'S).

2.4 Corollary. For every p G S(A) and every formula φ(x',y) there is a
formula θ(y;ά) G F(A) such that for any 6, p U φ(x',b) does not fork over
A if and only if |= 0(6; a).

Proof. Invoking Theorem 2.1, let (<jι,... ,</n} C Sφ(M) with n = μφ(p) be
the nonforking complete φ-types over Λt such that p U qi does not fork over
A. Let θι (y\ mj) define q\ for / < n and let θ be the disjunction of the 0/. Now
p U φ(x] b) does not fork over A if and only if for some / < n, p U 0(x; 6) C ̂
if and only if \= θ(b). It remains only to show that the formula θ is over
A. But this follows from the fundamental definability lemma (Theorem
1.2.30), since clearly it is fixed by every A-automorphism of M.

We will now prove that in a countable theory the multiplicity of each
complete type is either finite or 2**°. This yields as an immediate corollary
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that if T is ω-stable u(p) is finite for each p. There are several ways to
establish these results. Probably the most efficient is via φ-ω rank which
we discuss briefly in Chapter VII (cf. II of [Shelah 1978]). We choose here
to use techniques from Chapter III. The following lemma is the key step.

2.5 Lemma. Let T be a stable theory andpζ S(A) a complete type. Sup-
pose that there are extensions pi, p( ofp for each i <ω such that pi C p^+i,
I dompi+i — dompil < ω, dompi+i = domp(+1, p +i andp'i+l are distinct
nonforking extensions ofpi. Then,

ii) It is impossible that all the pi (p'J have the formp(Jqi (p\Jq() where
qi (q() is a φ-type.

P' p

V

Fig. 3. Spreading a chain into a tree

Proof. (Fig. 3). i) Let pz, ft be nonforking extensions of Pi,p£ to global
types. Then for each i there is an automorphism & of M which fixes dompi
and maps fa+i to pj+1. Now for s € 2n define gs by induction: < / ( ) is the
identity, gt~0 = gt and gt~ι = gt ° Qi Now let ps = gβ(pi) For σ e 2ω let
pσ = \Jn<ωpσ\n The pσ are 2**° distinct nonforking extensions of p.

ii) If the pi (p^) all have the form p U <& (p U q(} for φ-types <& (qβ we
have 2**° 0-types over a countable set and contradict stability.

2.6 Theorem. // T is a countable stable theory and p is a complete type
μ(p) is finite or 2*°.

Proof. Suppose p E S(A) and A C M. Since types over models are stationary
it suffices to count the nonforking extensions of p to S(M). Let Δ» for i < ω
be an increasing union of finite sets which exhaust F(L). Now we define a
finite branching tree of extensions ofp. Let (q^ :j < &o) list the complete Δ»

types over M which are consistent with p. Write p<^> for p U q®. If ps with
lg(s) = n has been defined let ps~j = ps U q" if this type is consistent and
do not define ps~j otherwise. If μ(p) is infinite, this tree contains infinitely
many t such that for some i ̂  j both pt~i and pt-j are defined. By Kόnig's
Lemma we have a chain satisfying Lemma 2.5 i) so μ(p) = 2**°.
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Since Theorem ΠI.4.34 showed μ(p) is countable in an ω-stable theory
we have

2.7 Corollary. IfT is a countable ω-stable theory then for every p, μ(p)
is finite.

There are two parts to the proof of Theorem 2.6. One is to describe
a finite branching tree and prove it has an infinite path; the second is to
convert the infinite path to a complete binary tree. Pillay [Pillay 1983a]
(p. 61) uses the finite equivalence relation theorem to construct the finite
branching tree and constructs the binary tree somewhat more concretely
than we have.

Corollary 2.7 can be proved more directly with the machinery of Morley
rank and degree; we will see in Chapter VII that μ(p) is the Morley degree
of p.

2.8 Exercise. Give examples of types with each possible multiplicity.

Corollary 2.4 allows us to define for each p G S(A) and each formula
φ(x',y) a formula dpφ(y) with parameters from A such that for each non-
forking extension p of p to a global type, </>(x; 6) G p if and only if dpφ(b).
We use this notation in the following exercise.

2.9 Exercise (Berline). Suppose AQ C A and each dpφ is a formula over
AQ. Show p is the unique nonforking extension of p\Aβ in S(A).

The virtue of having every type over a set A definable over a finite subset
of A may not be immediately clear. We will see many applications of this
fact in Part D; even more appear in [Shelah 198?]. For the moment, we
content ourselves with singling out sets with this property.

2.10 Definition. The set A is good if for every p G S(A) there is a subset
AQ of A with |Ao| < ft(T) such that p does not fork over AQ and p\A^ is
stationary inside A.

Note that if A is the universe of model, M, we can shorten the definition
of good by saying that every p G S(M) is strongly based on some AQ C M
with I A) I < κ(T).

Intuitively, if a type p is based on a set A then A 'controls' the properties
of p. Thus, we would like to be able to base each type on a small subset of
its domain. This is not always possible however.

2.11 Exercise. Find a model M of the theory REIω and a type p G S(M)
which is not based on any finite subset of M.

2.12 Exercise. Find a model M of the theory REFω and a type p G S(M)
which is based on some finite subset of M but not strongly based on any
finite subset of M.

2.13 Exercise. Show the prototypical model of REFω is not good.

2.14 Lemma. If M \= T and for every p G S(M) there is anACM with
\A\ < κ(T) such that p is based on A and μ(p\A) < ω then M is good.



2. Definability and the Stability Hierarchy 111

Proof. The finitely many nonforking extensions of p\A to complete types
over M can be distinguished by finitely many finite equivalence relations
over A. Since each class of each of these relations is realized in M it is easy
to extend A to A' such that p\A' is stationary inside M .

Good sets play an extremely important role in the structure theory.
Much of the work needed in the extensions of the material in this book
to completely solve the spectrum problem involves finding large classes of
substructures of models of T which are good. We show now that every
model of an ω-stable theory is good. We show the same for every strongly
/c(T)-saturated model of a stable theory in Theorem 3.22.

2.15 Corollary. IfT is a countable ω-stable theory then every model ofT
is good.

Proof. This is immediate from Theorem 2.7 and Lemma 2.14.

With this result in hand, we recast the stability hierarchy in terms of
definability. We require one more technical remark.

2.16 Lemma. If p,q E S(M) are definable over ACM and p ^ q, then

Proof. By Definition IΠ.3.1 p and q do not fork over A; whence by the
finite equivalence relation theorem (Theorem 1.24) if p ̂  q there is a finite
equivalence relation E over A such that: p(x) U q(y) — > -ιE(χ-,y). Now
suppose that p is defined by d. Write dE(v, w)(w) as dE(w). Let r(w) denote
p(w)\A = q(w)\A. Then -^dE(w] is in q\A. But, dE(w) is in p\A. For, if not,
choosing a sequence bi for i E ω such that bi realizes d(p; {A U Bj : j < ΐ}),
we have ->J£(6Z , fy) if i ^ j contradicting the assumption that E has only a
finite number of classes. Thus, p\A φ q\A.

We distinguish one further class of theories which play an important role
in the study of countable models of countable theories. Recall that Sn(T]
denotes the collection of all n- types over the empty set.

2.17 Definition. We say T is a small theory if for each n, \Sn(T)\ < \T\.

This class of theories is important because any theory with fewer than
2**° countable models is small. Thus, attempts to solve Vaught's conjecture
for stable theories or to show there is no stable theory with finitely many
(but more than one) countable models easily reduce to investigations of
small stable theories.

2.18 Exercise. Show REFω is small but CEFω is not.

2.19 Theorem. The countable small theory T is ω-stable if and only if
for every model M of T and every p in 5(M), there is a finite subset B of
M such that p is definable over B.

Proof. Suppose first that T is ω-stable. Let M be a model of T and p be
in S(M}. Then by Corollary 2.15 there is a finite subset B of M such that
p is strongly based on B. By Theorem 1.20U) p is definable over B. Thus
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for any M and any p in S(M), there is a finite subset B of M such that
p is definable over B. Conversely, since there are only |M| finite subsets
of M and since T is small, there are only countably many types in each
S(B). Mapping each element of S(M) to its restriction to a finite set over
which it is definable shows (by Lemma 2.16) that there are only \M\ types
in S(M).

This theorem requires the assumption that T is small. Consider the the-
ory CEFω of crosscutting equivalence relations. Now CEFω is superstable
but not ω-stable yet every 1-type over any model is definable over a single-
ton.

The next exercise is an easy step towards the following improvement of
Theorem 2.19. If for every pair of countable models M C N of a small
stable theory, T, there is an element α G N — M with £(α; M) definable
over a finite subset of M then T is ω-stable. The general result appears in
[Pillay & Steinhora 1985]

2.20 Exercise (Pillay-Steinhorn). Show that if T is a countable small su-
perstable theory and every type over a finite set has finite multiplicity then
T is α -stable.

2.21 Theorem. The countable theory T is superstable if and only if for
every A contained in a model ofT and every p E S(A), there is a finite B
contained in A such that p is defined almost over B.

Proof. Suppose first that T is superstable. Let M be a model of T and p
be in S(M). Then, since κ(T) — ω, there is a finite B contained in M such
that p does not fork over B. Thus p is definable almost over B. Now let M
be a model of T and suppose that for each p there is a finite subset B of
M such that p is definable almost over B. But then p does not fork over B
so 7c(T) = ω. Since T is countable 7c(Γ) = κ(T) and we finish.

2.22 Historical Notes. The definability characterization of the stability
hierarchy is implicit in III.4 of [Shelah 1978]. The proof of Theorem 2.1
is adapted from [Pillay 1983a]. The argument given here for Corollary 2.4
is taken from [Shelah 198?]. The other arguments at the beginning of this
section are adapted from [Baldwin 1981].

3. Strong Types and Multiplicity

In Section 1 of this chapter we proved the finite equivalence relation theo-
rem and immediately applied it to show the enormous significance of finite
equivalence relations in investigating the nonforking extensions of a type.
In this section we introduce the notion of the strong type of an element,
which encodes all the information about it which is provided by finite equiv-
alence relations. We investigate closely the relations among types over A,
strong types over A, and types which are almost over A. In particular, we
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consider what it means for a type to be implied by a type which is almost
over A. Then we analyze the relation between the strong type of a pair and
the strong type of its projections. We conclude by discussing the relation
between the multiplicity of a pair and that of its projections.

We begin with the fundamental definition for a rigorous discussion of
the types which are almost over a set.

3.1 Definition. For any c and A, the strong type of c over A, denoted by
stp(c]A), is {£(z;c) : E G FE(A)}.

Note that dom(sίp(c; A)) is not A but A U c. However, if M is any model
containing A then £(c; M) implies stp(c; A) and even equals stp(c-, M). The
meaning of stp(a-, A) = stp (6; A) is slightly mysterious, since the two types
have different domains. This equality does not assert the equality of two
sets of formulas (which do not have the same parameters). Rather it as-
serts that for any c £ Λt, c realizes stp(ά',A) iff c realizes stp(b',A). The
situation is reminiscent of Cantor's definition of addition for cardinal num-
bers without specifying a representative for each equivalence class under
equinumerousity.

Strangely, stp(c-,A) is not preserved by A- automorphisms of Λl but
equality of strong types is. For example, consider the theory of an equiva-
lence relation with two infinite classes. Then any two elements of any model
are conjugate over the empty set but inequivalent elements realize distinct
strong types.

3.2 Exercise. Show that if stp(a-,A) = stp(b',A) and a is an automor-
phism which fixes A then stp(aά', A) = stp(ab] A). The last example shows
stp(oίa;A) need not equal stp(a; A).

3.3 Exercise. Show stp(cί',A) = stp(b',A) iff for_each finite equivalence
relation, E, over A (of appropriate arity) [= JE7(ά,6).

3.4 Exercise. Suppose stp(a; B] = stp(c\ E). Show ί(α; cl(5)) = f (c; cl(fl))
and even that stp(a;o\(B}} = stp(c',cl(B)).

3.5 Exercise. Show that t(a-,B) does not imply ί(α;cl(S)).

3.6 Exercise. Show that if M \= T and φ(x\ά) is almost over M then
φ(x] a) is equivalent to a formula which is over M.

3.7 Exercise. Show that for any c and A, stp(c,A) is stationary.

3.8 Exercise. With the aid of strong types, give a direct (rather than
axiomatic) proof that the strong extension property (Exercise II.2.8) holds
for nonforking.

3.9 Definition. Let A C M. Then Saut^(Λt) denotes the set of automor-
phisms of Λl which fix the strong types over A. We refer to an automorphism
which fixes all strong types over A as a strong A- automorphism. Naturally,
strong automorphisms which fix A preserve formulas which are almost over
A. We write Saut(Λί) if A is empty.
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3.10 Exercise. Show Saut(Λl) is a normal subgroup of Aut(X).

Let G = Zs Θ Z*° and let b be one of the two elements of order three
and 26 the other. Now hi the language of Abelian groups the formula which
asserts the order of x is six generates a complete type over the empty set.
But this type has two nonforking extensions to types over G, both asserting
x φ g for each g G G but one saying 2x = b and the other 2x = 2b. Each of
the latter two types is almost over the empty set. The formula (2x = 2y)
defines a finite equivalence relation, E(x, y). If c is an element with 2c = b
but c is not in G, stp(c; 0) is implied by the formula E(x, c).

3.11 Exercise. Investigate the rather different situation when the roles of
Z<2 and J?s are reversed in the definition of the group G. Note however that
if Z$ is replaced by Zp for any prime other than 2 the situation remains
exactly the same as in the example.

We saw after Definition 3.1 that the notion of equality of strong types is
somewhat slippery. The notion of implication can be understood somewhat
better by passing from strong types over A to types which are almost over
A.

3.12 Lemma. Let B C. A and p = £(c; A). The following are equivalent.

i) For some q C p, q |— p and q is almost over B.
ii) For some q which is almost over B, q |— p.

iii) stp(c-,B) \- p.
iv) stp(c-,B] |— stp(c;A).

Proof. Clearly i) implies ii). To see that ii) implies iii), let c' realize stp(c; B).
Then c' realizes q and so by ii) c' realizes p. Suppose iii) holds; choose c'
with stp(c'-,B} = stp(c-,B). Then, c1 realizes p so £(c';A) does not fork
over B as stp(c\ B) does not fork over B. Since stp(c', B) is stationary this
implies c' realizes stp(c\ A) so iii) implies iv).

Obviously, iv) implies iii) so we complete the proof by showing iii) implies
i). For this, let q = {φ(x,b) G p : φ(x,b) almost over B}. We will show
q \- p. Since FErn(B) is closed under conjunction, for each ψ(x,b] € p
there is an E(x,y) € FEm(B) such that E(x,c) -> ^(x,6). Let χ ( x ) be
(Vy)[£7(x, y) — * ψ(y, b)]. Now, the solutions of χ are a union of equivalence
classes of E so x € q. But E(x, x) holds so χ(x) — >• ^(x, 6). Thus, q \- p as
required.

3.13 Exercise. Show that the (standing) hypothesis that T is stable is
required only for iii) implies iv) of Lemma 3.12.

Note that just because c [A B it does not follow that stp(c-, B} \- stp(c-, A).
However the following weakening of this idea holds.

3.14 Exercise. Suppose T is superstable. Let c realize t(a\ B) with c [B A.
Show that for some finite B' with B C B' C A, stp(c; B1} \- ί(c; A).

3.15 Exercise. Suppose stp(d',B) |- t(d;A). Show stp(d;B]
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The next result provides a dual to the last exercise; it considers taking
the algebraic closure of the elements realizing a type. In addition, it will
will play an important role in the proof of the transitivity axiom for the
notion of S-isolation in chapter VIII.

3.16 Lemma. Ifstp(C',B] |- t(C;A) then

stp(d(B U <7); B) \- t(d(B U C); A).

Proof. If e G d(B U C) then there is a c G C such that t (e\ B U c) is algebraic.
We will prove stp(e^c-,B) \- ί(e^c A); from this the theorem is clear. It
suffices to show all realizations of t(c"e; B) are independent from A over
B. Using only properties of their type over B we will show c^e [B A which
will then establish the result. Let / = fa : i < m) be a complete list of
the realizations of t(e;B U c). By the strong extension property (Exercise

Π.2.8) we can choose an /' with t(c^j'\ B) = t(c^J', B} but Γ~γ' |B A.
Now / is just a permutation of the sequence /. Thus, since c7""/ [B A,
c^f IB A so c^e [B A as required.

The precise result we have proved is: If stp(c;B) \- t(c;A) and e €
d(B U c) then stp(c^e\ B) \- t(c^e; A).

3.17 Example. A type p may be implied by a type q which is almost
over B without p itself being almost over B. Let T be the theory of an
equivalence relation, Λ, with two classes, one infinite and one with a single
element α. Let B = 0 and let A be an infinite set of equivalent elements.
Now if p = £(α; A), p is implied by the formula (3ly)R(x, y) which is almost
over (indeed over 0) but p is not almost over 0. For, p contains the formulas
x ^ c for each c £ A.

The description of implications from strong types in terms of automor-
phisms is sometimes helpful. It is easy to verify the following lemma.

3.18 Lemma. Let B C A. The following are equivalent.

i) stp(d;B)\-t(d;A).

ii) // there exists an a E Sautβ(Λl) with a(d) = a then there exists an

automorphism a G Saut>ι(Λl) with ά(d) = a .

This trivially yields that if stp(d; B} \- stp(d\ A) and a G Aut#(.M) then

The next topic is the relation between the multiplicity (or more specif-
ically) the strong type of a pair and that of each of its projections. It is
clear that t(a^b;A) = t(a'^Ί>;A) if and only if £(ά; A) = t(ά'; A) and for
some automorphism a fixing A with α(α') = ά, £(6; α U A) = t(a(b ); a U A).

(We may write t(b;a U A) = £(δ';ά' U A).) The analogous result obtained
by replacing t by sip fails. The next three lemmas establish exactly which
parts of it are correct and which fail.

3.19 Lemma, i) stp(a^b;A) implies stp(ά\ A).
ii) stp(a^b',A) need not imply stp(b; A Uα).
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Proof, i) Suppose stp(a^b] A) = stp(a'^b A). Then stp(a; A) = stp(a'-, A).
For, suppose for contradiction that φ(x;y) defines a finite equivalence re-
lation over A which separates a and α'. Regard φ(x\;y\) as a formula
φ'ζxi^x^y^yz). Then φ'(x\^x^\y\^y^) defines a finite equivalence re-
lation on pairs which separates a^b from af^b .

For ii), consider the theory of the following structure. Let L contain
a single binary relation, Λ, and let the universe of M be the set of two
elements subsets of ω. Interpret R to hold of {α,6},{c,d} if and only if
{α,6}Π{c,d}/0.

Let a = {1,2}, α' = {3,4} and 6 = {1,3}. We will show sίp(α~6;0) =
stp(a'^b',$) but stp(a;b] φ stp(a';b).

For the first assertion we show that any pair {c, d) with c φ d and such
that c Π d φ 0 satisfies the same strong type over the empty set as (α, 6).
To see this choose such a pair (e, /) but with eU f disjoint from both α U 6
and c U d. Now consider any definable equivalence relation on pairs (from
M), F. If F separates (α, b) and (c,d) then we must have τF(α, 6, e, /) or
-τF(c, d, e, /). Since F is definable from β, its truth on a quadruple depends
only on the intersections between elements of the quadruple. But then we
have ->F(e, /, ef ', /') for any other pair with e' Π /' φ 0 but (e' U /') Π (e U /) =
0. But then F has infinitely many classes; so βίp(α~δ;0) = s£p(c""cί;0).

Finally, we see sίp(α δ) / stp(a!\b) since they differ on the following
finite equivalence relation: E(x,y) if (Vz)[Λ(6,2) — > (jR(z,x) <-+ #(2, ?/))].

There exist α, 6, α', ί/, such that a^b and α'^6' have the same strong
type over 0 but stp(a-,b) φ stp(a/'^b/) (i.e. take b = b' in Lemma 3.19Π)
and there is no ambiguity in the notation). Note this cannot happen (with
6 = b1} for types.

Suppose we follow the procedure from the paragraph before Lemma 3.19
and write stp(a\b] = stp(a';V) if there is an a € Saut^(Λt) which takes
b1 to b and satisfies stp(a\ b) = stp(a(a')',b). Then a simple composition
of automorphisms argument shows that sίp(α δ) = stp(a(a')]V) implies
stp(a^b', 0) = stp(a'^V\ 0). But, suppose we follow a more syntactic course
and say stp(a; b) = stp(a'-, b'} if stp(a\ b) is the set of formulas {E(x, α(α'), 6) :
E(x,a',b') G stp(b'^a')}. The next two lemmas show we can still conclude

3.20 Lemma. I£φ(x^y;c) is almost over A, then for anyb, φ(χ-,b^c) is
almost over A U b.

Proof. Suppose_{0(x; 6, oti(c)) : i € /} is an infinite family of distinct conju-
gates over A U 6 of φ(χ b^c). Then for some fixed j and an infinite subset
of the z, 0(x,y, αz(c)) <->• φ(x,y',θίj(c}}. But this contradicts the choice of
distinct {0(x; 6, α»(c)) : i E /}.

The following lemma gives a more algebraic formulation of the previous
one and thus simplifies its application.
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3.21 Lemma. Let stp(a\ A) = sίp(6; A) and let a E Saut^(M) map a to b.
For any strong type q over A\Jά let a(q) be {E(x,a(c);b) : £?(a;,c;α) G q}.
If d realizes a(q) then stp(a^c\ A) = stp(b^d',A).

Proof. We have stp(a^c\ A) = stp(b^a(c)', A) so it suffices to show

stp(b~d; A) = stp(b^a(c);A).

If not, for some E G FE(A), \= ^E(b^d,b~a(c)). Thus, by Lemma 3.20,
E(b, z, 6, y) E FE(A U b) and so E(ά, z, α, y) € FE(A U α) . But, E(a, z, α, c)
is in q = stp(c', A U ά) so d does not realize a(q) contrary to hypothesis.

The following result illustrates another way to apply strong types.

3.22 Theorem. Any strongly κ(T) -saturated model M of a stable theory
is good.

Proof. Let a realize p € S(M) and choose ACM with |A| < /c(Γ) and
such that p does not fork over A. Since stp(a\A) does not fork over A, it
is finitely satisfied in M and hence realized in M by some b. Then p is
strongly based on A U b.

The preceding material concerned the relation between the strong types
of pairs and their projections. We now generalize that concern slightly and
consider the relation between the multiplicity of a pair and that of its
projections.

Let T be the theory REFω of infinitely many refining equivalence rela-
tions, each with finitely many classes. Now, if α, b realize the same strong
type over the empty set and p = £(α;0), the multiplicity of p is 2**° but
μ(£(α;6)) is one.

The following lemma of Saffe shows that this phenomenon (of the mul-
tiplicity decreasing from infinite to finite) could only occur because £(&;0)
also had infinite multiplicity.

3.23 Lemma. Let T be stable. Ift (6; A) has infinite multiplicity and t (c; A)
has finite multiplicity then t(b\A U c) has infinite multiplicity.

Proof. Choose (6^ : i < ω) all realizing ί(6; A) but realizing distinct strong
types over A. For each i < ω, choose Ci with t(bi^c^ A) = ί(δ^c; A). Since
t(c',A) has finite multiplicity, we may assume that all the c^ realize the
same strong type over A. Thus for each i < ω there is an automorphism
of M which fixes strong types over A and maps Ci to c. Denote /t(&t) by

5 .̂ Then, the 6^ realize distinct strong types over A and, a fortiori, over
A\Jc. But for each i, t^A U c) = t(b] A\Jc). Thus ί(5; A U c) has infinite
multiplicity as required.

3.24 Historical Notes. This section primarily clarifies some notions that
are not spelled out in the literature. Lemma 3.12 is a variant on Lemma
IV.2.1 of [Shelah 1978]. The example for Lemma 3.18 is primarily due
to Steve Buechler. Matt Kaufmann supplied the proof that the example
actually worked. Lemma 3.23 is due to Jurgen Saffe [Saffe 1981]. The proof
here is taken from [Pillay & Steinhorn 1985].




