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1 Introduction
In [Jon83] Jones initiated the study of modern subfactor theory by de�ning the index of a subfactor. A
stronger combinatorial invariant, called the standard invariant, was later developed and aximoitized by
Ocneanu’s paragroups [Ocn88], Popa’s λ-lattices [Pop95], and Jones’ planar algebras [Jon].

Given λ-lattice, Popa constructed a II1-subfactor whose standard invariant is exactly the given λ-lattice
[Pop95]. Later, in in work with Shlyakhtenko, it was shown that the factors in Popa’s construction can be
made to be isomorphic to the free group factor on in�nitely many generators, L(F∞) [PS03]. Guionnet,
Jones, and Shlyakhtenko gave a diagrammatic (planar algebraic) proof of Popa’s result [GJS10]. In the
�nite depth case, they showed that the factors involved in the construction are interpolated free group
factors [GJS11]. The author later showed that in the in�nite depth case, the factors involved in the
construction are all isomorphic to L(F∞) [Har13].

This article initially appeared as the �nal chapter of the author’s graduate thesis, and is based on a
problem posed by Vaughan Jones. The problem is as follows: Given a subfactor planar algebra, Q, one
can consider the algebras Gr±k (Q) as de�ned in [GJS10], and place the following “toy potential" on Q:

tr(x) =

x

∑
V

where V is a rotationally invariant set of elements in Q. If one is fortunate, tr is positive de�nite on Q
and left multiplication is bounded on L2(Gr(Q)). To this end, it is an interesting problem to study the
von Neumann algebras, N±k (= Gr±k (Q)′′) associated to Q and V .

The case that will be considered here is the case where Q is the standard invariant for a subfactor
N ⊂M that contains an intermediate subfactor, P . As such, it follows that Q contains the Fuss Catalan
planar algebra as a sub planar algebra [BJ97]. Therefore, we can consider the following potential on
Gr+

0 (Q):

tr(x) =

x

∑
FC
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where
∑
FC represents the sum of all Fuss Catalan diagrams. Recall that Fuss Catalan diagrams are

planar two-colored string diagrams satisfying the following condition: If the colors of the strings are a
and b, then the colors of strings intersecting the boundary form the pattern, aabbaabbaabb...

To attack this problem, it is natural to introduce a new planar algebra, P which will be called an
N − P −M planar algebra. A pleasing feature of this planar algebra is that the boundary conditions
of the input disks can be taken to be any word in aa and bb. The planar algebra Q will be realized as a
subalgebra of P by replacing each strand with an a strand next to a b strand so that the pattern formed by
the input disks in the Q−tangles is of the form aabbaabbaabb.... Whenever Q is itself the Fuss Catalan
planar algebra, we can take P to be generated the set of all string diagrams having boundary conditions
any word in aa and bb.

The purpose of the N − P −M planar algebra is that it gives one a natural way to decouple the
strings a and b and treat them as free generators in an appropriate sense (see Section 5 for how this is
done). We form algebras Mα for α a suitable word in a and b which are the N − P −M analogues of the
algebras M±

k from [GJS10], and will use a semi�nite algebra as in [GJS11] to �nd the isomorphism class
of the algebras Mα. More precisely, we will prove the following theorem:

Theorem A. Let α be a word in a and b where a appears n times, and b apearsm times. De�ne δα = δna · δmb .
Mα is a II1 factor and is isomorphic to L(F(1 + 2Iδ−2

α (δa + δb − 2))) for P �nite depth. Here, and
I =

∑
v∈ΓNN

µ(v)2 with µ the Perron Frobenius weighting on the principal graphs on P .

This formula has some interest, because it contains information about the inclusions N ⊂ P and
P ⊂M (δa and δb respectively) as well as the larger inclusion N ⊂M (the global index I). Just as in the
case for the GJS algebras, we will also prove the following theorem:

Theorem B. Mα
∼= L(F∞) when P is in�nite depth.

By taking a tensor product of planar algebras, one obtains the following diagrammatic corollary

Corollary ([PS03]). Given any standard invariant, Q, there exist II1-factors N ⊂ M having standard
invariant Q and both isomorphic to L(F∞).

In addition to understanding the algebraic structure of the Nk, we will make use of the semi�nite
algebra to show that the law of ∪ ∈ N+

0 has a nice expression in terms of known laws. Unfortunately,
the author has not yet been able to identify the isomorphism classes of the algebras N±k , however the
semi�nite algebra will show that there is evidence that the algebras N±k are free group factors:

Theorem C. The von Neumann algebras, N±k , are each contained in a free group factor and contain a free
group factor.

Acknowledgements. The author would like to thank Arnaud Brothier, Steve Curran, Dave Penneys,
Dima Shlyakhtenko, and Noah Snyder for conversations about planar algebras with intermediate structure
and free probability. The author would especially like to thank his adviser, Vaughan Jones, for his
generosity, encouragement, and support during the writing of this manuscript. The author was supported
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2 N − P −M planar algebras
The object that is at the heart of all of these computations is an N − P −M planar algebra which can be
thought of an augmentation of such a Q as above. Given parameters a and b, we denoteW as the set of
�nite words on aa and bb. We de�ne what it means for a planar tangle to be an N − P −M tangle:

De�nition 2.1. A planar tangle is said to be an N − P −M tangle if its regions are shaded by three
colors, N , P , and M such that the following conditions are met:

• A region colored N only borders regions colored P

• A region colored M only borders regions colored P

• A region colored P can border regions colored N or M but not P .

We will denote the set of N − P −M tangles as the N − P −M planar operad. All tangles will be
drawn so that the internal and external disks are rectangles. In order for smooth isotopy to make sense,
the rectangles have their corners smoothed out.

Any string serving as the boundary string of a region colored N will be called an a string and any
string bordering a region colored M will be called a b string. We note that the conditions on the regions
show that if α is a word in a and b, then α serves as a word of strings intersecting a disk if and only if
α ∈ ∆ where ∆ is the set

∆ = {awa : w ∈ W} ∪ {bwb : w ∈ W} ∪W

The following notation will be useful:

Notation 2.2. We denote ∆Q to be the set of all words in ∆ where the shading before the �rst letter
is Q (for Q = N, P, or M ). If α ∈ ∆, we de�ne s(α) to be the �rst letter of the word α. Whenever a
word is mentioned, part of the data is its initial region (hence the choice of region between every pair
of letters), not just its letters. If a tangle, T , has boundary condition α on its outer disk, we will call T a
planar α tangle. Any internal rectangle with boundary condition α will be called an α rectangle.

We remark that just as for shaded planar algebras, there is a natural gluing operation. Namely, if we
have two planar tangles S, T satisfying the following boundary condition:

• Some internal rectangle DS of S has boundary data which agrees with T , i.e. the shadings along
the boundaries of T and DS agree when counting clockwise from the marked point.

then we may compose S and T to get the planar tangle S ◦DS T by taking S union the interior of T ,
removing the boundary of DS , smoothing the strings, and removing any closed loops.

Given α ∈ ∆, we let α be α read in the opposite order. When a string appears with a label α, then the
string is meant to be a band of strings having colors ordered by the word α. The strings are read in the
order of top to bottom and left to right. Also, unless otherwise marked, all marked regions of rectangles
will be assumed to be on the top-left corner of the box. In addition, whenever there is a box written
without a tangle, it is assumed that the box is placed in a larger tangle whose boundary data agrees with
the boundary data for the box and whose marked region is the same as the marked region of the box.

We now de�ne an N − P −M planar algebra:
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De�nition 2.3. An N − P −M planar algebra consists of the following data:

• Given parameters a and b as above, there is a �nite dimensional complex vector space Pα for every
nonempty word, α ∈ ∆. There are three vector spaces PN∅ , PP∅ , and PM∅ in the case when α is
empty. These are one dimensional complex vector spaces.

• An action of planar tangles by multilinear maps, i.e., for each planar α tangle T , whose rectangles
Di(T ) are αi rectangles, there is a multilinear map

ZT :
∏
i∈I

Pαi → Pα

satisfying the following axioms:

Isotopy: If θ is an orientation preserving di�eomorphism of R2, then Zθ(T ) = ZT . That is, let T 0 be the
interior of T , and let f ∈

∏
D⊂T 0 PαD . Then

Zθ(T )(fθ) = ZT (f)

where fθ(θ(D)) = f(D).
Naturality: For S, T composable tangles, Z(S ◦D T ) = Z(S) ◦D Z(T ), where the composition on the

right hand side is the composition of multilinear maps.

• P is unital [Jon11]: Let S be an N − P −M tangle with no input disks and boundary condition
α ∈ ∆. Then, there is an element Z(S) ∈ Pα so that the following holds:
Let S be a tangle a nonempty set of internal disks such that S can be glued into the internal disk
DS of T . Then

Z(T ◦ S) = Z(T ) ◦ ZS.
Here (Z(T ) ◦ ZS)(f) = f̃ where

f̃(D) =

{
f(D) if D 6= DS

Z(S) if D = DS

This condition allows isotopy classes of such an S to be elements of Pα. This action allows us to
identify the empty diagrams (shadedN , P , andM ) with the scalar 1 ∈ C. We make this assumption
in the rest of this chapter. The naturality axiom, combined with this identi�cation, forces closed
strings with parameters a and b to be replaced by scalars δa and δb respectively.

• There is a conjugate linear involution, ∗ : Pα → Pα. It is compatible with re�ection of tangles i.e.,
if T is a tangle which is produced by an orientation reversing di�eomorphism, ϕ, of T , then we
have

(ZT (f))∗ = ZT (f)

where f(ϕ(D)) = f(D)∗.

• Each Pα comes equipped with the positive de�nite sesquilinear form:

〈x, y〉 = x y∗
α
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• P is spherical, i.e. for all α ∈ ∆ and all x ∈ Pαα, we have

tr(x) = α

α

x

α

= α

α

x

α

.

This says that we can think of our planar tangles as living in a sphere instead of a plane.

Remark 2.4. In viewing the action of a tangle, the letter Z will often be omitted.

A-priori, it is not clear that an N − P −M planar algebra should exist. The following example shows
that this is the case. For the rest of this paper, an a string will be colored blue and a b string will be colored
red.

Example 2.5. Let δa, δb ∈ {2 cos(π/n) : n = 3, 4, 5, ...} ∪ [2,∞) and de�ne Pα by

Pα = span{planar string diagrams with with boundary condition α}

i.e., Pα is the C−linear span of isotopy classes of α tangles with no input disks and no loops. For example,

Pabba = span

{
, ,

}
.

The action of N − P −M tangles is as follows: All string diagrams are inserted into the necessary input
disks. The result of this operation is a new string diagram with except with some loops. These loops
are replaced with a parameter δa or δb, depending on the color of a loop. The adjoint operation is the
conjugate linear extension of re�ection of diagrams.

It is straightforward to check that P satis�es all of the axioms of an N −P −M planar algebra except
positive de�niteness. Given α ∈ ∆, we form the word α′ which is a word of colors that can appear in a
Fuss Catalan diagram, and is obtained from α by inserting the minimal numbers of aa’s or bb’s between
letters in α. For example, if α = aaabbaabbbba, then α′ = a(bb)aabbaabb(aa)bba. We then de�ne a map
φ : Pα → Pα′ which is given by inserting a cup of the appropriate color whenever that color has been
inserted into α, and then dividing by δma · δnb . Here, aa was inserted m times and bb was inserted n times.
For example,

φ

(
x

)
=

1

δ2
aδb
· x .

This map is easily seen to be preserve the desired sesquilinear form, and we know that this form is
positive semide�nite on the Fuss Catalan algebras, with positive de�niteness in the case δa, δb ≥ 2, from
[BJ97]. Therefore, after taking a quotient in the case that δa or δb is less than 2, this example produces an
N − P −M planar algebra.

By unitality, this planar algebra is represented in every N − P −M planar algebra.
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2.1 Principal graphs of N − P −M planar algebras
We �rst remark that if αα ∈ ∆, then the axioms of an N − P −M planar algebra show that Pαα is a
�nite dimensional C∗ algebra with multiplication given by

x · y = x y
? ?

α α α
.

Let p ∈ Pαα and q ∈ Pγγ be projections. Then we say p is equivalent to q if there is a u ∈ Pαγ so that

α

u

γ

u∗

α

= p and

γ

u∗

α

u

γ

= q.

To an N − P −M planar algebra P , there are three principal graphs associated to P , ΓN , ΓP , and
ΓM . We will call ΓQ the Q−principal graph of P . Each ΓQ has three sets of vertices, ΓNQ , ΓPQ and ΓMQ .
They are described by the following procedure:

The vertices v ∈ ΓQ2

Q1
correspond to equivalence classes of minimal projections pv in the �nite-

dimensional C∗ algebra Pαα for some α depending on v where αα ∈ ∆Q1 and αα ∈ ∆Q2 . There are
a−colored edges connecting the vertices ΓNQ to the vertices ΓPQ as well as b−colored edges connecting
the the vertices ΓPQ to ΓMQ . The a−colored edges are de�ned as follows:

Suppose v ∈ ΓNQ and w ∈ ΓPQ, let p ∈ Pββ be equivalent to pv. It follows that the element

ia(p) = p
ββ

?

is a projection in Pβaaβ . We draw n a−colored edges between v and w if n is the maximal number such
that there exist orthogonal projections q1, ..., qn ∈ Pβaaβ which are each equivalent to pw and satisfy∑n

i=1 qi ≤ ia(p). We can also get edges from w to v in a similar manner. In principle, the construction of
the a−edges leads to oriented edges, however, the presence of the Jones basic construction shows that
the edges can be unoriented. More precisely, consider the projection

e =
1

δa

? β ∈ Pβaaaaβ,

and z be its central support. We note that Pββ unitally includes into Pβaaaaβ by applying the map ia twice.
It is also a straightforward check to see that the mapping Pββ → Pβaaaaβ given by x 7→ ia(ia(x))e is an
isometry, and eia(y)e = ia(EPββ(y))e for y ∈ Pβaaβ. Therefore, from [JS97] it follows zPβaaaaβz is iso-
morphic to the basic construction of Pββ in Pβaaβ . If A, B, and C are �nite dimensional C∗ algebras with
C the basic construction of A in B, then the Bratteli diagram of B ⊂ C is the re�ection of that of A ⊂ B
[JS97]. Therefore, if there are n a−colored edges from v tow, then there are n a−colored edges fromw to v.

There is an analogous way to determine the b−colored edges that go between ΓPQ and ΓMQ . We also note
that if p ∈ Pαα is a minimal projection corresponding to a vertex v ∈ ΓQ2

Q1
, then the mapping in Example
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2.5 shows that p is equivalent to a minimal projection in Pw where w = abbaabbaa..., aabbaabb...,
bbaabbaa... or baabbaa.... In particular, if Q is as in the introduction, then we have established the
following proposition once it is shown that we can consider Q inside an augmentation P .

Lemma 2.6. Let Γ and Γ′ be the principal and dual principal graphs of Q respectively. Then there are
one-to-one correspondences between the following sets of vertices:

Γ+ ↔ ΓNN , Γ− ↔ ΓMN , Γ′+ ↔ ΓMM , and Γ′− ↔ ΓNM

Also observe that rotation by 180◦ is an anti-isomorphism of each Pγ . This induces a one-to-one
correspondence ΓQ2

Q1
↔ ΓQ1

Q2
. Finally, if the vertices of the principal graphs ΓQ are weighted according to

the traces of their corresponding projections, then it follows by the de�nition of principal graph that the
graph with vertices ΓNQ and ΓPQ is bipartite with Perron Frobenius eigenvalue δa. Also, the graph with
vertices ΓPQ and ΓMQ is bipartite with Perron Frobenius eigenvalue δb.

3 N − P −M planar algebras from intermediate subfactors
The goal of this section is to see that such a Q as above can be faithfully realized inside an N − P −M
planar algebra P . Much of this section was in�uenced from discussions with David Penneys and Noah
Snyder, and many of the proofs of the following theorems are taken from them. We will �rst describe how
such an algebra arises from an inclusion N ⊂ P ⊂M of �nite index II1 factors. To start, we consider
the following bi�nite bimodules:

NL
2(P )P and PL

2(M)M

and their duals (contragredients)
PL

2(P )N and ML
2(M)P .

Let α ∈ ∆. Since part of the prescribed data for α is a choice of initial shading, we note that the shading
of α, i.e. the shading between any two letters on α is uniquely determined. Assume that the shading of α
is the sequence Q1 · · ·Qk for Qi = N, P or M . We de�ne Zα to be the following:

Zα = Q1L
2(Q1)Q1∩Q2 ⊗

Q1∩Q2

Q1∩Q2L
2(Q2)Q2∩Q3 · · · ⊗

Qk−1∩Qk
Qk−1∩QkL

2(Qk)Qk∩Q1 ⊗
Qk∩Q1

L2(Q1)Qk∩Q1 .

and we set Pα = HomQ1−Q1(L
2(Q1), Zα) (Notice that Qi ∩ Qi+1 is necessarily N , P , or M ). We note

from [Bis97, Con80] that this can be identi�ed with the Q1 −Q1 central vectors of Zα.
To help understand the planar structure, we let

N(= M0) ⊂M(= M1) ⊂M2 ⊂ · · · ⊂Mn ⊂ · · ·

be the Jones tower for N ⊂M , where Mn is generated by Mn−1 and en−1. Here, en−1 is the orthogonal
projection from L2(Mn−1) onto L2(Mn−2). We will de�ne eP to be the orthogonal projection from L2(M)
onto L2(P ). We will also let B = {bi}ni=1 be an orthonormal Pimsner Popa basis for M over N where
n − 1 is the largest integer which is bounded above by the index [M : N ]. The bi are elements in M
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satisfying the following equivalent conditions:

x =
n∑
i=1

EN(xbi)b
∗
i ∀x ∈M

x =
n∑
i=1

biEN(b∗ix) ∀x ∈M

1 =
n∑
i=1

bie1b
∗
i ,

as well as EN(bib
∗
j) = δi,j if i ≤ n−1 and EN(bnb

∗
n) is a projection of trace [M : N ]− (n−1) inM . If we

let eP be the orthogonal projection from L2(M) onto L2(P ) and {ci}mi=1 be an orthonormal Pimsner-Popa
basis of P over N . Then we have the following lemma.

Lemma 3.1. eP =
∑m

i=1 cie1c
∗
i .

Proof. We compute the 2-norm of eP −
∑m

i=1 cie1c
∗
i . Doing so gives:

‖ep −
m∑
i=1

cie1c
∗
i ‖2

2 = tr(eP )− 2
m∑
i=1

tr(cie1c
∗
i eP ) +

m∑
i,j=1

tr(cie1c
∗
i cje1c

∗
j).

Since eP commutes with the elements ci, the term in the middle becomes 2
∑m

i=1 tr(cie1c
∗
i ). Using

e1c
∗
i cje1 = EN(c∗i cje1), and orthonormality of the basis, the last term becomes

∑m
i=1 tr(cie1c

∗
i ). Therefore,

we get:

‖ep −
m∑
i=1

cie1c
∗
i ‖2

2 = tr(eP )−
m∑
i=1

tr(cie1c
∗
i )

= tr(eP )− [M : N ]−1

m∑
i=1

tr(cic
∗
i )

= [M : P ]−1 − [M : N ]−1[P : N ] = 0

as desired.

We will now show the bimodules Zα can be isometrically embedded in L2(Mn) for some n. As
some notation, we will let δQ = [M : Q]1/2 for Q = N, P, or M . We also set EQ

1 = δQeQ, and
vQn = EnEn−1 · · ·E2E

Q
1 .

Theorem 3.2. The map φ : Zα →Mk given by

φ(x1 ⊗
Q1∩Q2

x2 ⊗
Q2∩Q3

· · · ⊗
Qk−1∩Qk

xk) = x1v
Q1∩Q2

1 x2v
Q2∩Q3

2 · · · vQk−1∩Qk
k−1 xk

is an isometry.
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Proof. Note that the map is well de�ned as vQr commutes with Q. We proceed by induction on k. The
result is clearly true for k = 1, so assume that it holds for k − 1. Using the previous lemma as well as the
relation EiEj = EjEi for |i− j| ≥ 2, we have:〈

x1v
Q1∩Q2

1 x2v
Q2∩Q3

2 · · · vQk−1∩Qk
k−1 xk, y1v

Q1∩Q2

1 y2v
Q2∩Q3

2 · · · vQk−1∩Qk
k−1 yk

〉
Mk

= trMk

(
y∗k(v

Qk−1∩Qk
k−1 )∗ · · · (vQ2∩Q3

2 )∗y∗2(vQ1∩Q2

1 )∗y∗1x1v
Q1∩Q2

1 x2v
Q2∩Q3

2 · · · vQk−1∩Qk
k−1 xk

)
= δ2

Q trMk

(
y∗k(v

Qk−1∩Qk
k−1 )∗ · · · y∗2EQ1∩Q2(y

∗
1x1)eQ1∩Q2x2 · · · vQk−1∩Qk

k−1 xk

)
= δ2

Q trMk

(
y∗k(v

Qk−1∩Qk
k−2 )∗Ek−1 · · · y∗2EQ1∩Q2(y

∗
1x1)eQ1∩Q2x2 · · ·Ek−1v

Qk−1∩Qk
k−2 xk

)
=

δ2
Q

[M : N ]1/2
·

trMk

(
y∗k(v

Qk−1∩Qk
k−2 )∗ · · · y∗2EQ1∩Q2(y

∗
1x1)Ek−1 · · ·E2

m∑
i=1

(biE1b
∗
1)E2 · · ·Ek−1x2 · · · vQk−1∩Qk

k−2 xk

)

=
δ2
Q[Q1 ∩Q2 : N ]

[M : N ]1/2
· trMk

(
y∗k(v

Qk−1∩Qk
k−2 )∗ · · · y∗2EQ1∩Q2(y

∗
1x1)Ek−1x2 · · · vQk−1∩Qk

k−2 xk

)
= trMn−1

(
y∗k(v

Qk−1∩Qk
k−2 )∗ · · · y∗2EQ1∩Q2(y

∗
1x1)x2 · · · vQk−1∩Qk

k−2 xk

)
=

〈
EQ1∩Q2(y

∗
1x1)x2 ⊗

Q2∩Q3

· · · ⊗
Qk−1∩Qk

xk, y2 ⊗
Q2∩Q3

· · · ⊗
Qk−1∩Qk

yk

〉
=

〈
x1 ⊗

Q1∩Q2

x2 ⊗
Q2∩Q3

· · · ⊗
Qk−1∩Qk

xk, y1 ⊗
Q1∩Q2

y2 ⊗
Q2∩Q3

· · · ⊗
Qk−1∩Qk

yk

〉

as desired.

The map φ above is clearly a bimodule map, so central vectors get mapped into N ′ ∩ L2(Mk). Since
N ′ ∩ L2(Mk) = N ′ ∩Mk is �nite dimensional, it follows that each Pα is �nite dimensional.

3.1 Action of N − P −M tangles on Pα
We now describe how the N −P −M planar operad acts on the various Pα. Given an N −P −M tangle
T , we isotope it so that it is in standard form. This means:

1. All of the input and output disks are rectangles and all strings emanate from the top of the rectangles.

2. All the input disks are in di�erent horizontal bands and all maxima and minima of strings are at
di�erent vertical levels, and not in the horizontal bands de�ned by the input disks.

3. The starred intervals of the input disks are all at the bottom-left corner. When we have a diagram
of this form, the ? is omitted.

One then positions an imaginary horizontal line at the bottom of the tangle, T , and then slides it to
the top. One starts with the central vector 1Q ∈ L2(Q) whenever the bottom of the box is shaded Q. The
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central vector gets altered as the line crosses either an input box, a maximum on a string, or a minimum
on a string. When the line reaches the top, you get the central vector produced by the action of the tangle.

Suppose the horizontal line passes through the ith rectangle (with respect to the isotopy) in the mth
i

region which is shaded Qmi (reading left to right along the line), and suppose that the vector vi has been
assigned to the box. We simply insert vi into the mth

i slot, i.e.∑
j

xj1 ⊗ · · · ⊗ xjmi ⊗ · · · ⊗ xn 7→
∑
j

xj1 ⊗ · · · ⊗ xjmivi ⊗ · · · ⊗ xn

=
∑
j

xj1 ⊗ · · · ⊗ vixjmi ⊗ · · · ⊗ xn

Now suppose the horizontal line passes through a minimum, and suppose Y ⊂ X withX, Y ∈ {N,P,M}
and X and Y resemble the regions on either side of the minimum. Let BX,Y be a Pimsner-Popa basis for
X over Y . Then we have the diagrammatic rules:

Y

X

→ Y

X

x 7→ 1

[X : Y ]1/2

∑
b∈BX,Y

xb⊗
Y

1Y ⊗
Y
b∗ =

∑
b∈BX,Y

b⊗
Y

1⊗
Y
b∗x

X

Y

→ X

Y

x 7→ x⊗
Y

1X ⊗
Y

1Y = 1Y ⊗
Y

1X ⊗
Y
x

Whenever a dotted line passes over a maximum, the following rules apply:

X

Y →
X

Y
y1 ⊗

Y
x⊗
Y
y2 7→ [X : Y ]1/2y1EY (x)y2

Y

X →
Y

X
x1 ⊗

Y
y ⊗
Y
x2 7→ x1yx2

Here is an example of a tangle acting on y1 ⊗
Y
x⊗
Y
y2:

Y

X

(y1 ⊗
Y
x⊗
Y
y2) =

1

[X : Y ]1/2
·
∑

b∈BX,Y

by1x⊗
Y
y2 ⊗

Y
b∗

Note also that our rules dictate that a loop with an X on one side and Y on the other counts for a
factor [X : Y ]1/2. As [M : P ] and [P : N ] are the only two such indices that will appear, we will let
δa = [P : N ]1/2 and δb = [M : P ]1/2.

It is a straightforward check to see that each of these maps preserves central vectors. Each map is
also locally a bimodule map, hence the action of T will also preserve invariant elements.

Checking that T is well de�ned up to isotopy involves checking the same (�nite number of) relations
as in [Jon]. For example, checking

X

Y = Y X

boils down to checking the relation x =
∑

b∈BX,Y EY (xb)b∗, which always holds. The key to checking
that the action of T is de�ned up to isotopy is to show that rotation by 2π is the identity.
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Let x =
∑

j x
j
1 ⊗
Q1∩Q2

xj2 · · · ⊗
Qn∩Q1

xjn+1 ∈ Pα, and let T be the tangle which is rotation by one-click
clockwise, namely

T = .

where there are n− 1 strings that are not bent. By de�nition, we have:

Z(T )(x) =


1

[Qn:Q1]1/2

∑
b∈B(Qn,Q1)

∑
j b ⊗

Q1

x1 ⊗
Q1∩Q2

x2 · · · ⊗
Qn−1∩Qn

xnxn+1b
∗ if Q1 ⊂ Qn

[Q1 : Qn]1/2
∑

j 1 ⊗
Qn
x1 ⊗

Q1∩Q2

x2 · · · ⊗
Qn−1∩Qn

xnEQn(xn+1) if Qn ⊂ Q1

To help our computations, we de�ne the following left and right creation operators, Lx and Rx for x ∈ Q.
These are given by:

Lx : Zα → L2(Q) ⊗
Q∩Q1

Zα such that Lx(x1 ⊗ · · · ⊗ xn+1) = x⊗ x1 ⊗ · · · ⊗ xn+1

Rx : Zα → Zα ⊗
Q∩Q1

L2(Q) such that Rx(x1 ⊗ · · · ⊗ xn+1) = x1 ⊗ · · · ⊗ xn+1 ⊗ x

It follows from the de�nition of the bimodule tensor product that

L∗x(x0 ⊗ x1 ⊗ · · · ⊗ xn+1) = EQ∩Q1(x
∗x0)x1 ⊗ · · · ⊗ xn+1 and

R∗x(⊗x1 ⊗ · · · ⊗ xn+1 ⊗ y) = x1 ⊗ · · · ⊗ xn ⊗ xn+1EQ1∩Q0(yx
∗)

Therefore, we have the following formulae the rotation tangle, T :

Z(T )(x) =

{
1

[Qn:Q1]1/2

∑
b∈B LbR

∗
b(x) if Q1 ⊂ Qn

[Q1 : Qn]1/2L1R
∗
1(x) if Qn ⊂ Q1

From Burns’ rotation trick [Bur03] we have the following lemma which is similar to lemmas that
appear in [JP11]:

Lemma 3.3. Let ρ(α) be the word formed when the words in α are cyclically permuted clockwise by one,
and let y = y1 ⊗ · · · ⊗ yn ⊗ yn+1 ∈ Zρ(α). Then

• 〈T (x), y〉 =
1

[Qn : Q1]1/2
〈x, y2 ⊗ · · · ⊗ yn+1 ⊗ y1〉 if Q1 ⊂ Qn

• 〈T (x), y〉 = [Q1 : Qn]1/2〈x, y2 ⊗ · · · ⊗ yn+1 ⊗ y1〉 if Qn ⊂ Q1
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Proof. For the �rst case, using that x is central, we have

〈T (x), y〉 =
1

[Qn : Q1]1/2
〈
∑
b∈B

LbR
∗
b(x), y〉 =

∑
b∈B

1

[Qn : Q1]1/2
〈x,RbL

∗
b(y)〉

=
1

[Qn : Q1]1/2

∑
b∈B

〈x,EQ1(b
∗y1)y2 ⊗ y3 ⊗ · · · ⊗ yn+1 ⊗ b〉

=
1

[Qn : Q1]1/2

∑
b∈B

〈(EQ1(b
∗y1))∗x, y2 ⊗ y3 ⊗ · · · ⊗ yn+1 ⊗ b〉

=
1

[Qn : Q1]1/2

∑
b∈B

〈x(EQ1(b
∗y1))∗, y2 ⊗ y3 ⊗ · · · ⊗ yn+1 ⊗ b〉

=
1

[Qn : Q1]1/2

∑
b∈B

〈x, y2 ⊗ y3 ⊗ · · · ⊗ yn+1 ⊗ bEQ1(b
∗y1)〉

=
1

[Qn : Q1]1/2
〈x, y2 ⊗ · · · ⊗ yn+1 ⊗ y1〉.

For the second case, we have

〈T (x), y〉 = [Q1 : Qn]1/2〈L1R
∗
1(x), y〉 = [Q1 : Qn]1/2〈x,R1L

∗
1(y)〉

= [Q1 : Qn]1/2〈x,EQ1(y1)y2 ⊗ · · · ⊗ yn+1 ⊗ 1〉
= [Q1 : Qn]1/2〈x, y1y2 ⊗ · · · ⊗ yn+1 ⊗ 1〉
= [Q1 : Qn]1/2〈y∗1x, y2 ⊗ · · · ⊗ yn+1 ⊗ 1〉
= [Q1 : Qn]1/2〈xy∗1, y2 ⊗ · · · ⊗ yn+1 ⊗ 1〉
= [Q1 : Qn]1/2〈x, y2 ⊗ · · · ⊗ yn+1 ⊗ y1〉

as desired.

Corollary 3.4. Rotation by 2π is the identity.

Proof. The nature of the shading dictates that all index factors cancel when applying the 2π rotation. The
rest follows from the previous lemma.

One can now continue as in [Jon].

3.2 Realizing Q inside P
Suppose Q is a planar algebra containing the Fuss-Catalan algebra, so that Q is the planar algebra for a
�nite index inclusion N ⊂M with intermediate subfactor P . We note that Q2n,+ is the space of N −N
central vectors of

(NL
2(M)N)

⊗
N

n

= (NL
2(M)M ⊗

M
ML

2(M)N)
⊗
N

n

.

and Q2n,− is the space of M −M central vectors of (ML
2(M)N ⊗

N
NL

2(M)M)
⊗
M

n

. Since

NL
2(M)M =N L2(P )P ⊗

P
PL

2(M)M ,
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it follows that
Q2n,+ = P(abba)n/2 and Q2n,− = P(baab)n/2 .

Furthermore, a tangle S that acts onQ can be made into anN −P −M tangle S ′ by replacing each string
with an a string cabled to a b string. This is done so that the shaded regions in S become the M−regions
in S ′ and the unshaded regions in S become the N−regions in S ′. Notice that this implies that the strings
along any disk in S ′ read (clockwise from the marked region) as abbaabbaa... or baabbaabb.... It directly
follows from the de�nitions that if x1, ..., xn are inQ and S is as above, then Z(S)(f) = Z(S ′)(f) where
the left hand side denotes the action of a shaded tangle and the right hand side denotes the action of an
N − P −M tangle.

De�nition 3.5. If Q is the planar algebra of an inclusion N ⊂ M of �nite index II1 factors with an
intermediate subfactor, P , then we de�ne the P constructed as above as the P−augmentation of Q.

4 The GJS construction for the
∑
FC potential

Suppose Q is a subfactor planar algebra containing a copy of the Fuss Catalan planar algebra. For each
k ≥ 0, we study the graded algebra Gr±k (Q) =

⊕
n≥kQ±n as above, and place the following trace on

Gr±k (Q):

tr(x) =
1

(δaδb)k
x

∑
FC

k

.

where the shading on the upper left corner is ±.
As in Section 3, we realize Q inside an augmentation, P , and we consider the algebras Grα(P) where

αα ∈ ∆. If α 6= ∅ then the shading after the last letter of α is uniquely determined and hence we can
write,

Grα(P) = ⊕(β:αβα∈∆)Pαβα.
Grα(P) is endowed with a multiplication ∧ given by

x ∧ y = x yα α α

β γ

adjoint structure

 x

β

αα

∗ = x∗
?

?

β

αα

and normalized trace

x

∑
CTL

k
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where
∑
CTL is the sum of all colored Temperley-Lieb diagrams. In the case where α = ∅, then we have

three such algebras, one for each shading N , P , and M . We therefore form graded algebras GrN0 , GrP0
and GrM0 where

GrQ0 =
⊕

(β:β∈∆Q)

Pβ.

Using the graded algebras associated to P , we see that we have the following trace preserving inclusions:

Gr+
2k(Q) ⊂ Grabba···abba(P)

Gr+
2k+1(Q) ⊂ Grabba···baab(P)

Gr−2k(Q) ⊂ Grbaab···baab(P)

Gr−2k+1(Q) ⊂ Grbaab···abba(P).

One advantage to working in theN −P −M planar algebra P is that the map Φ : Grα(P)→ Grα(P)
given by

Φ(x) =
∑

E∈Epi(CTL)
x

E

as in [JSW10, BHP12] is a well de�ned trace preserving isomorphism between Grα(P) with the
∑
CTL

trace and Grα(P) with the orthogonalized trace. Therefore, we have proven the following lemma:

Lemma 4.1. The potential
∑
CTL gives a positive de�nite trace on Grα(P).

Furthermore, by considering either the a or b ∪ element, the same analysis as in [JSW10, BHP12]
proves the following theorem:

Theorem 4.2. Left (and right) multiplication of elements of Grα(P) on L2(Grα(P)) is bounded and the
associated von Neumann algebra,Mα = Grα(P)′′ is a II1 factor.

We note that if γ and β are words in a and b such that ββ ∈ ∆ and βγβγ ∈ ∆ then we have a unital
inclusion of Mγ into Mβγ given the extension of

x 7→
γ

β β
x .

We therefore have the following theorem, whose proof is exactly the same as the arguments in Section 4
of [JSW10].

Theorem 4.3. The following is a Jones’ tower of II1 factors:

MQ
0 ⊂Mα ⊂Mαα ⊂ · · · ⊂M(αα)n ⊂Mα(αα)n .

Furthermore, [Mα : MQ
0 ] = δα, and the Jones projection forMQ

0 ⊂Mα is

e0 =
1

δα
α α
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5 A semi�nite algebra associated to P
As in [GJS11], we will realize the isomorphism class of all of the Mα by examining realizing them as
“corners" of a semi�nite algebra. To begin, we consider the set semi�nite algebra GrQ∞ for Q = N, P, M .
As a vector space,

GrQ∞ =
⊕
α,γ,β

αγβ∈∆, α∈∆Q

Pαγβ.

Assumption 5.1. Throughout the rest of this article, the marked regions will now be on the bottom of
the boxes.

Pictorially, we realize elements in GrQ∞ as linear combinations of boxes of the form

w
α

β

γ

where the bottom (starred) region is shaded Q (thus the top left corner varies in shading). GrQ∞ comes
endowed with the following multiplication:

x
κ

γ

θ ∧ x
ω

γ′

χ
= δω,θ x y∗

κ

γ

θ

γ′

χ

and semi�nite trace, Tr, which is given by:

Tr(x) =
x

ΣCTL

αα

α

if x ∈ Gr(Pα) and is zero otherwise. Just as in the analysis of [GJS11, BHP12], we see that GrQ∞ completes
to a II∞ factor,MQ

∞ when being represented on L2(GrQ∞).
Also of importance will be the von Neumann subalgebra AQ∞ ⊂MQ

∞ which is generated by all boxes
in GQ∞ with no strings on top. Notice that there is a normal, faithful, Tr-preserving conditional expectation
E :MQ

∞ → AQ∞ given by

E(x) =
x

ΣCTL

.

Furthermore, we have the following lemma, whose proof is identical to that of Lemma 3 of [GJS11]:

Lemma 5.2. AQ∞ =
⊕

v∈ΓQ
Av where ΓQ is the Q−principal graph of P and each Av is a type I∞ factor.

We now aim to �gure out the isomorphism class of the algebrasMα. For the remainder of the section,
we will assume for simplicity that Q = N and hence we will be �nding the isomorphism class of Mα
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such that s(α) = N . The other two cases will follow a similar analysis. We �rst de�ne elements Xa and
Xb as follows:

Xa =
∑
α

α,α∈∆N

a
α +

a
α and Xb =

∑
β

β∈∆P β∈∆N

s(β)=a

b
β +

b
β .

Note that Xa and Xb are sums of orthogonally supported operators, and each summand has uniformly
bounded operator norm. Therefore, Xa, Xb ∈MN

∞. Furthermore, we have the following lemma:

Lemma 5.3. MN
∞ is generated as a von Neumann algebra by (AN∞, Xa, Xb).

Proof. As in the proof of Lemma 7 of [GJS11], all that needs to be shown is that the following diagrams
lie in the von Neumann algebra generated by (AN∞, Xa, Xb):

α
N and β

P

If s(α) = a, then the exact same method as in the proof of Lemma 4.9 in [BHP12] shows that this element
is in the algebra. if s(α) = b, the following multiplication produces the diagram:

1

δa
· α · · α .

A similar argument works for the element
β

P .

As in [BHP12], we also have the following lemma:

Lemma 5.4. Xa and Xb are free with amalgamation over AN∞ with respect to the conditional expectation,
E.

We now de�ne maps ηa and ηb on AN∞ as follows:

ηc(y) = E(XcyXc)

for c = a or b. Notice that by de�nition ofE, ηc is a completely positive map ofANI into itself. Furthermore
it is a straightforward inductive check to note that the formula

E(y0Xcy1Xc · · · yn−1Xcyn)

=
n∑
k=2

y0 · ηc(E(y1Xc · · ·Xcyk−1)) · E(ykXc...Xcyn),

as in [GJS11] holds. Pictorially, there are nice expressions for ηc(w) for various choices of w. To begin, for
i = 1, 2, let αi be a word with αi ∈ ∆N , βi be a word with s(βi) = a and βi ∈ ∆P , and γi be a word such
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that γi ∈ ∆M . Furthermore, suppose x ∈ Pα1α2 , y ∈ Pβ1β2 and z ∈ Pγ1γ2 . We then have the following
easily veri�able formulae:

ηa(x) = x
α1 α2 ηa(y) = yβ1 β2 ηa(z) = 0

ηb(x) = 0 ηb(y) = yβ1 β2 ηb(z) = z
γ1 γ2

With the pictures above, the following useful lemma is easily veri�ed:

Lemma 5.5. Let αi be a word with s(αi) = N and βi be a word with s(βi) = P for i = 1 or 2. In addition,
suppose x ∈ Pα1α2 and y ∈ Pβ1β2 . We have the following formulae:

x ·Xa = Xa · ηa(x) and y ·Xb = Xb · ηb(y).

This lemma will be used to help describe certain compressions ofMN
∞.

5.1 A suitable compression ofMN
∞

To begin, it will be useful to de�ne three projections in AN∞

1ANN =
∑
α∈∆N

α 1ANPa
=
∑
α∈∆N

a
α 1ANMa

=
∑
α∈∆N

α .

Note that 1ANN + 1ANPa
+ 1ANMa

is the smallest projection dominating the support projections of Xa and Xb.
Our goal is to better understand what happens whenMN

∞ is compressed by certain projections. To
begin our study, we consider ΓN , the N−principal graph of P . For each vertex, v, at the N −N level
of the graph, we choose a minimal projection pv ∈ A∞, and for the vertex, ∗, we choose the empty
N−shaded diagram. Notice that for each v we can choose pv ∈ Pαα for α ∈ ∆N .

By the de�nition of the principal graph, we know that there exists a countable index set, I and partial
isometries (Vi)i∈I ⊂ AN∞ such that

ViV
∗
i =

∑
v∈ΓNN

pv ∀i and
∑
i∈I

V ∗i Vi = 1ANN .

This necessarily implies that∑
i∈I

ηa(Vi)
∗ηa(Vi) = 1ANPa

and
∑
i∈I

ηb(ηa(Vi))
∗ηb(ηa(Vi)) = 1ANMa

We de�ne R1 by the following formula:

R1 =
∑
v∈ΓNN

(pv + ηa(pv) + ηb(ηa(pv))).

If we set Zi = Vi + ηa(Vi) + ηb(ηa(Vi)) then

ZiZ
∗
i = R1 and

∑
i∈I

Z∗i Zi = 1ANN + 1ANPa
+ 1ANMa

.

We have the following lemma regarding compression ofMN
∞ by R1.
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Lemma 5.6. As a von Neumann algebra, R1MN
∞R

1 is generated by R1AN∞R1, R1XaR
1, and R1XbR

1.

Proof. Note that
∑

i,j∈I Z
∗
iXcZj = Xc for c = a or b by repeated applications of Lemma 5.5. Therefore,

every word involving Xa or Xb and elements x ∈ A∞ (whose ending letters are supported under R1) can
be replaced by sums of words involving terms of the form R1XcR

1 and R1xR1 by inserting the relation∑
i∈I

Z∗i Zi = 1ANN + 1ANPa
+ 1ANMa

.

between every letter of the word.

We now investigate the action of compressing R1MN
∞R

1 by subprojections of R1. To begin, for
each vertex w ∈ ΓPN , let pw be a minimal projection in AN∞ corresponding to the vertex w such that
pw ≤

∑
v∈V ηa(pv). For each edge e connecting a vertex in ΓNN to a vertex in ΓPN , we let s(e) and t(e) be

the vertices in ΓNN and ΓPN respectively which e connects. We de�ne partial isometries ωe ∈ R1AN∞R1

such that
ω∗eωe′ = δe,e′pt(e) and

∑
s(e)=v

ωeω
∗
e = ηa(pv).

Once the pw have been chosen, for each vertex u ∈ ΓMN , choose a minimal projection pu corresponding to
u such that pu ≤

∑
w∈ΓPN

ηb(pw).
For each edge, f , connecting the N − P vertices to the N −M vertices, s(f) and t(f) be the vertices

in ΓPN and ΓMN respectively which f connects. We de�ne partial isometries νf satisfying:

ν∗fνf ′ = δf,f ′pt(f) and
∑
s(f)=w

νfν
∗
f = ηa(pw)

We now de�ne operators Xe
a X

f
b by the formulae

Xe
a = ps(e)Xaωe + ω∗eXaps(e) and Xf

b = ps(f)Xbνf + ν∗eXb.

We have the following lemma, whose proof is the same as the arguments of Section 4.2 of [BHP12], except
easier as there are no loops on the principal graph and only one minimal projection for each vertex.

Lemma 5.7. Set R =
∑

v∈Γ pv. Then RMN
∞R is generated by RAN∞R and the elements Xe

a X
f
b for all e

and f , and each of the elements are free with amalgamation over RAN∞R with respect to E.

Note that the algebra RAN∞R is simply the bounded functions on the vertices of Γ, and the element
ps(e)Xaωe has left support under ps(e) and right support under pt(e). Furthermore, if Tr(ps(e)) ≥ Tr(pt(e))
then the analysis in [GJS11] shows that (ps(e)Xaωe)

∗ps(e)Xaωe is a free poisson element with absolutely
continuous spectrum in pt(e)MN

∞pt(e). If Tr(ps(e)) ≤ Tr(pt(e)), then ps(e)Xaωe(ps(e)Xaωe)
∗ is a free

poisson element with absolutely continuous spectrum in ps(e)M∞
N ps(e). Analogous statements hold for

the elements ps(f)Xbνf .
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5.2 An amalgamated free product representation for RM∞
NR

The work of the previous section shows that

RMN
∞R =M(ΓN , µ)

withM(Γ, µ) the free graph algebra as in [Har13]. We use this to obtain a formula for M0 when ΓN is
�nite. Let e be an edge in ΓN connecting v and w with Tr(pv) ≥ Tr(pw). The basic rules for computing
free dimension [Dyk93, DR11] show that

fdim(RMeR) = 1−
(Tr(pv)− Tr(pw))2 −

∑
u6=v,w Tr(pu)

2

Tr(R)2
= 1−

∑
u∈Γ Tr(pv)

2 − 2 Tr(pv) Tr(pw)

Tr(R)2
.

Using the additivity of free dimension, as well as

fdim(`∞(Γ)) = 1−
∑

u∈Γ Tr(pv)
2

Tr(R)2
,

we obtain

fdim(RMN
∞R) = 1 +

−
∑

u∈Γ Tr(pv)
2 + 2

∑
g∈E(ΓN ) Tr(ps(g)) Tr(pt(g))

Tr(R)2

= 1 +

∑
u∈γ Tr(pu)

∑
v∼u(Tr(pv)− Tr(pu))

Tr(R)2
.

Using the Perron-Frobenius condition, this becomes

fdim(RMN
∞R) = 1 +

2I((δa − 1) + (δb − 1))

Tr(R)2

Where I =
∑

v∈ΓNN
tr(pv)

2(=
∑

w∈ΓPN
tr(pw)2 =

∑
u∈ΓMN

tr(pu)
2). Therefore, RMN

∞R is an interpolated
free group factor with the above parameter. The compression formula for free group factors proves the
following lemma

Lemma 5.8. MN
0
∼= L(Ft) where t = 1 + 2I(δa + δb − 2).

This gives us the following corollary:

Corollary 5.9. The factorsMα have the formula

Mα
∼= L(F(1 + 2Iδ−2

α (δa + δb − 2)))

Proof. If s(α) = N , then it follows from the semi�nte algebraMN
∞ that Mα is a δα ampli�cation of MN

0 .
If the shading is di�erent, apply similar analysis to the semi�nite algebrasMP

∞ andMM
∞ .

We now handle the case where P is in�nite depth:

Lemma 5.10. If P is in�nite-depth, thenMN
0
∼= L(F∞), and henceMα

∼= L(F∞) for all α
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Proof. Let Γk be the graph of ΓN truncated up to depth k as in the proof of Theorem 4.2 in [Har13]. As in
that proof, we let

B(Γk) = {v ∈ Γk; Tr(pv) >
∑

w∼v∈Γk

nv,w Tr(pw)}

where nv,w is the number of edges that connect v and w. We note that by the Perron Frobenius condition,
no vertices in Γk−1 are in B(Γk). Following the proof of Theorem 4.2 in [Har13] step-by-step, we arrive
at the formula

fdim(MN
0 ) ≥ 1 + (δa − 1)

∑
v∈Γk−2 and
v∈ΓNN∪ΓPN

Tr(pv)
2 + (δb − 1)

∑ ∑
v∈Γk−2 and
v∈ΓPN∪ΓMN

Tr(pv)
2

which gets arbitrarily large as k does. The standard embedding arguments of [Har13] show that MN
0
∼=

L(F∞). We arrive at the result for the other Mα’s either by ampli�cation or by examiningM(ΓP ) or
M(ΓM).

We can use this result to give a complete diagrammatic reproof of the universality result of Popa and
Shlyakhtenko regarding the universality of L(F∞) in subfactor theory.

Corollary 5.11 ([PS03]). Every subfactor planar algebra P ′ is the standard invariant for a �nite-index
inclusion N ⊂M with N ∼= L(F∞) ∼=M.

Proof. A diagrammatic proof of this fact for P ′ in�nite depth was done in [Har13]. If P ′ is �nite depth,
let P ′ be the planar algebra for a �nite index inclusion N ′ ⊂ P ′ of II1 factors. Let B ⊂ C be a �nite
index inclusion of II1 factors with principal graph A∞. We consider the inclusions

N ′ ⊗B ⊂ P ′ ⊗B ⊂ P ′ ⊗ C.

LetQ be the planar algebra for N ⊂M , and P the augmentation ofQ for N ⊂ P ⊂M . We note that P ′
is also the planar algebra for N ⊂ P , and the planar subalgebra of P generated by words whose only
color is a is P ′. From Theorem 4.3, it follows that the standard invariant of MN

∅ ⊂Ma is P ′ and from the
above calculation, MN

∅
∼= L(F∞) ∼= Ma

Note that Rădulescu was the �rst to provide a construction of N ⊂ M both isomorphic to L(F∞)
having standard invariant P ′ for P ′ �nite depth [Răd94].

5.3 The law of ∪ ∈ N+
0

One pleasing feature of the semi�nite algebra constructed above is that it gives one a transparent way to
�nd equations of the spectrum of the element ∪ ∈ N0. This corresponds to the double-cup element

∈MN
∅

Picturing ∪ as living inMN
I , we note that Tr(∪n) = Tr(xn) where x is the element

x = = ·
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which is supported by
1a =

Note that x is expressed as a product of free elements 1aMN
∞1a. Let y be the element

y =

and r be the element
r = .

We know that ∪a is distributed as a free-poisson element, and its moment generating function is

M∪a(z) =
−((δa − 1)z − 1) +

√
((δa − 1)z − 1)2 − 4z

2z
.

In the algebra 1aMN
∞1a with normalized trace, τ , we must have τ(yn) = Tr(∪n)/δa for n ≥ 1 and

τ(y0) = 1. Therefore, the moment generating function of y is

My(z) = M∪a(z)δa +
δa − 1

δa
.

The tool we will use to calculate the moments of x is Voiculescu’s S−transform [VDN92]. From [VDN92],
it is known that is Ss and St are the S− transforms for free elements s and t in a tracial von Neumann
algebra, then

Sst(z) = Ss1/2ts1/2(z) = Ss(z)St(z).

Furthermore, to compute the S−transform of an element s, one �nds formal power series ψs, χs and Ss
satisfying:

ψs(z) = Ms(z)− 1 χs(ψs(z)) = z = ψs(χs(z)) and Ss(z) =
(z + 1)χs(z)

z

These formulas produce the following expression for the S−transform of x:

Sx(z) =
(z + 1)2(z − 1)(δaz − 1)

((δb − 1)z + δb)((δa − 1)z + 1)
,

which can be inverted to give the Cauchy transform of x. We know that the law of a single-colored ∪
(as in [GJS10]) is absolutely continuous with respect to Lebesgue measure and is supported away from
the origin. Therefore, the law of y contains an atom of at the origin of measure δa−1

δa
at the origin and is

absolutely continuous away from the origin. It follows that the law of y1/2ry1/2 has an atom of measure
δa−1
δa

at the origin and is absolutely continuous away from the origin. Furthermore, the spectral projection
corresponding to {0} for y1/2ry1/2 must be the same as the spectral projection corresponding to {0} for
y. From this, we use the polar part of

to conclude that ∪ ∈ N+
0 has law absolutely continuous to Lebesgue measure and supported away from

the origin.
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5.4 Nk contains a free group factor
Recall that N±k = Gr±k (Q)′′. We will use the moment calculation of ∪ above as well as similar elements
arising in the semi�nite algebra to �nd a free group factor contained in N±k . To simplify matters, we note
that we need only consider the case where Q is Fuss Catalan, as any such planar algebra will contain the
Fuss Catalan planar algebra.

By the usual ampli�cation tricks, we need need only show that N+
0 contains a free group factor. We

embedQ into its augmentation P as in Example 2.5, which produces an embedding Gr+
∞(Q) ↪→ GrN∞(P)

where Gr+
∞(Q) is realized as the subalgebra of GrN∞(P) generated by the Fuss Catalan diagrams. Let

N∞ = Gr+
∞(Q). We have the following lemma:

Lemma 5.12. Let pab be the following diagram

pab =

and set

x = and y = f (2) .

with f (2) the second Jones-Wenzl idempotent in Temperely Lieb. Then x and y are free in pabMN
∞pab.

Proof. From [BJ97], the projections

p0 = p1 = p2 = p3 = f (2) and p4 = f (2) .

are inequivalent minimal projections in P , and there exists exactly one edge ei which goes between the
vertices representing pi−1 and pi. Therefore, by choosing p0, p2, and p4, to line up with our choices of
minimal projections lying under Q, It follows that

x = p2X
e2
b X

e1
a X

e1
a X

e2
b p2 and y = p2X

e3
b X

e4
a X

e4
a X

e3
b p2

so x and y are free with amalgamation over AN∞. Since pab = p2 is minimal in AN∞, the result follows.

Proof of Theorem C. Clearly, N+
0 ⊂ MN

∅ so N0 is contained in an interpolated free group factor. Con-
versely, we know that pabNN

∞pab contains a copy of W ∗(x) ∗W ∗(y). Since the law of ∪ ∈ Nk has no
atoms, it follows that

W ∗(x) =
q

L(Z)
1

⊕ C
δaδb−1

where q is equivalent to p0 via the polar part of

.

It follows from [Dyk93] that

q(W ∗(x) ∗W ∗(y))q = L(Z) ∗ q
((

q

C
1
⊕ C

δaδb−1

)
∗W ∗(y)

)
q

which is an interpolated free group factor. By the equivalence of q and p0 in NN
∞ , and the identity

N+
0 = p0NN

∞p0, it follows that N+
0 contains an interpolated free group factor.
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Unfortunately, at this point, the author is unable to determine the isomorphism class of theN±k . While
it is straightforward to show that a suitable compression of the algebra NN

∞ is generated by products of
the form Xe

aX
f
b , terms of the form

Xe1
a X

f
b and Xe2

a X
f
b

appear with e1 6= e2. The very nature of NN
∞ makes it di�cult to “decouple" this into a free family which

still lies in NN
∞ .
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