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2.2 FINITE DIMENSIONS 

In finite dimensions we can consider an oscillatory integral of the form 

{ exp(itj(x))dx" jM 
The idea is that for large t the integrand is oscillating so wildly that it cancels itself 

except where f has critical points. For simplicity assume that f has non-degenerate 

critical points p 1 , .. . , p1 then the m.ore precise statement is that there is an asymptotic 

expansion 
• q (dimM ) j, exp(itf(x))dx ""'2.:: 2.:: �a�~�t�'�"�'�l �2� 
M •=1 -oo 

where the sum is over the critical points" The leading term in this expansion involves 

the values off and the matrix of second derivatives off at the critical points. As we 

will consider only the leading term here it is enough to consider the case where f is a 

quadratic form. In the one variable case we have 

In the case of n variables where Q denotes the matrix of a non-degenerate quadratic 

form this becomes 

--=-- exp( zx1Qx) = I det Ql-1/ 2 exp( -s1gnQ) ! 00 dx1 ... dxn . , 1ri . 
-oo 11·n/2 4 

where signQ is the signature of Q. 

Finally we need to consider the case where a group G acts on the space. For example 

consider U(l) acting on R 2 - {0}. Then iff is invariant under G (so is a function of the 

radial variable in the case of the plane) the matrix Q has zero eigenvalues along the G-

orbit directions. Choose a transverse slice and write the integral in terms of a 'product' 

of the measure over the orbit times a measure over the transversal. This produces a 

Jacobian-like factor which when integrated gives the correct volume of the orbit. This 

contribution arises from a map B from LG to the tangent space to the orbit and gives 

the orbit volume as ( det R)112 = I det Bl where R = B'' B. Thus in general the leading 

term. in the expansion is 
( det R)ll2 1ri . 
I det Qo 11/2 exp( 4signQo) 
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where Q0 denotes the part of the quadratic form which is non-degenerate i.e. transverse 

to the orbit. 

2.3 FIELD THEORY 

Now we do the stationary phase approximation for a field theory. As a simple first 

case consider the functional integral 

j exp( i < b.cp, cp > )1Jcp 

where ..6. is a positive Laplace type operator on the compact manifold M. By the above we 

expect an answer of the form (det b..)-1 12 • There is a standard method of regularising 

such determinants due to Ray and Singer which defines them in terms of the zeta 

function: 

This function is clearly analytic for the real part of s large and possesses an analytic 

continuation to zero which is a regular point. Then we define 

det b.= exp( -(~(0)). 

Note that for a constant k 

det kb. = k(a(O) det ..6. 

gives the scaling behaviour. For odd-dimensional manifolds, (6..(0) = 0 so that det kb. = 

det b.. 

Next we need to consider the case where the operator in the exponent is self adjoint 

but is not positive definite, for example, if it is a Dirac operator D (which has both 

positive and negative eigenvalues). We can certainly define the absolute value as 

JdetDJ = (detD*D) 112 • 

The phase is defined by considering the 17-function introduced by Atiyah, Patodi and 

Singer 
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As with the zeta function the ry-function possesses an analytic continuation to the regular 

point s = 0 and we define 

signD = 77D(O). 

Now consider a gauge theory. We have to take account of the contribution of the 

gauge orbits. The Faddeev-Popov prescription is to define the volume of a gauge orbit 

as ( det R) 112 where R is determined as follows. 

The Lie algebra of the gauge group is the space S1° ( LG) of functions on the manifold 

with values in the Lie algebra of G. The tangent space to A at a connnection A is the 

space S11 (LG) of one forms with values on LG. vVe want the m.ap B which maps an 

element of the Lie algebra of the gauge group to the tangent space. By considering an 

infinitesimal gauge transformation it is easy to check that B is the covariant derivative 

Hence the volume of the 9 orbit through A is 

detR = detdAdA = dettJ.~. 

(We denote the Laplacian on r-forms by tJ.r). 

Now we have regularised all the terms and hence the leading term. in the asymptotic 

expansion. Next we turn to Witten's theory. 

2.4 APPLICATION TO THE CHERN-SIMONS LAGRANGIAN 

To do the stationary phase approximation to £k(A) we need first to find the critical 

points. But it is easy to see that these are precisely the flat connections A i.e. those 

for which FA = 0. Any flat connection determines a representation of the fundamental 

group in G and because of the 9 action we need consider only equivalence classes of 

such representations. Suppose that Aa; ,j = 0, ... , m are the flat connections and 

denote by a 0 , •.• , O'm the corresponding representations. Assume that a 0 is the trivial 

representation and that the other critical points for j =f. 0 are all non-degenerate in a 

sense that we shall define later. The stationary phase approximation then gives us a 
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sum of terms 
m 

exp(i£k(A))DA ""'ba 0 + L 
i=l 

where we isolate the trivial connection as it poses some problems that we shall not deal 

with here. 

To leading order in the stationary phase approximation only quadratic terms are 

important and we get 

J TrA A daA =< A, *daA > 

where is d twisted by the fiat connection o~o Hence the self adjoint operator is 

(LG) -)> (LG) so that Q = *da, Using the formula of Section 2.3 a little 

calculation enables us to identify the terms for a general, non-trivial representation 

(connection) a as 
(det.6.~)3 14 _ 1ri 
( det .6.~)1/4 exp( 477£(0)) 

where L is the operator *d + d* on odd forms and therefore L 2 is .6.1 + .6. 3. To see this it 

is best to decompose fl 1(LG) as the sum of d~(fl(LG)) and Kerda (the non-degeneracy 

of a means that there is no cohomology for dcx ). 

2.5 TOPOLOGICAL INVARIANCE 

The Lagrangian £k has been chosen to be independent of the metric, However 

to perform the calculations above we have used a metric in many places. As in other 

problems in physics where special choices are made to perform a calculation it is not 

clear that the end result is metric invariant. 

If we square the first piece of the expression we obtain 

(det6.~) 3 1 2 
( det .6.~)1/2 = Ta 

which has been proved by Ray and Singer to be independent of the metric. The proof 

consists of calculating the variation of Tcx under an infinitesimal change in the metric 

and showing that this is zero. They conjectured that this was the same as the Rei-

demeister torsion which is constructed from a ratio of determinants of combinatorial 

Laplacians obtained from a triangulation. This was proved by Cheeger and Muller. 

The Reidemeister torsion is intimately related to the Alexander polynomial. 
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More correctly this was shown for a non-degenerate connection a , that is, one for 

which the complex 

has no cohomology. Note that this is a sensible thing to ask because, for a flat connection 

a, d~ = 0. This explains what we meant above by a non-degenerate critical point of 

It follows that T~/2 is a topological invariant. 

For the term exp( ~i rn(O)) we have to use the Atiyah-Patodi-Singer index theorem. 

This says that 7Ja; - 7Jao is a topological invariant (mod Z) independent of the metric, 

in fact (for G = SU(N)) 
N 

7Ja· - 7Ja0 = -Ia· 
1 w 1 

where .Ck(a) = 4:Ia. 

So we have 

Z(M) - exp( ~ ""•) ( ~ exp i( k+ N)Ia; T~{') . 
This leaves the term exp(iw17o/4). We deal with this by adding a counterterm to 

the original Lagrangian (this is a standard trick in field theory). This term is chosen to 

be of the same general form as the other terms in the Lagrangian and almost cancels 

the term above after applying the stationary phase approximation. However at the end 

there is still a finite discrete dependence on the metric. This is removed by choosing a 

homotopy class of framing F for the manifold lvf. We will not go into the details of this 

but it is an important subtlety in the Witten theory. 

To define the counterterm consider an oriented 4-manifold X. Then the intersection 

form on two dimensional homology has a signature which is referred to as the signature 

of X and is a topological invariant equal to one third of the Pontrjagin class of X. If 

X is a manifold with boundary lvf and we choose a framing F for the boundary there 

is a relative Pontrjagin class p1 (X, F), and 

a(M,F) = signX- ~PI(X,F) 
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is easily seen to be independent of X (given two choices glue a.long lll.f) and is an invariant 

of(M, The corrected topologically invariant formula for the large k limit of Z(M, F) 

is then 

Z(M)- exp(~ a(M,P)) ( ~exp 
Finally let us make two remarks. Firstly if the orientation of M is reversed Z ( 1•/I, F) 

is complex conjugated. Thus it is essential that Z(M, F) is not real in order that changes 

in chirality are detected. Note that the Reidemeister torsion piece of Z(A1, F) is not 

sensitive to orientation but the ry invariant changes sign because the positive and negative 

eigenvalues of a Dirac type operator are interchanged if the orientation is reversed. 

Secondly we are of course interested in Z(IVI, K) where J( is a knot. We have been 

looking at one extreme case Z(M,0). If we consider the other extreme case Z(S3 ,K), 

for example for G = U(l) then we get the classical Gauss formula for the linking number 

of two curves expressed as a double integral of a Green's function over the product of the 

curves. To regularize the self-linking number of a knot a normal framing is needed, so as 

to push the knot away from itself (a process referred to by physicists as point-splitting). 

3. HAMILTONIAN APPROACH 

3.1 RELATION BETWEEN THE LAGRANGIAN AND HAMILTONIAN 

FORMULATIONS 

As before we start with a Lagrangian C( cp). Now we think of our manifold M 

as a product of a manifold X representing the space directions and the interval [0, T] 

representing the time variable. In the context of the Witten theory this situation arises 

from cutting M along a Riemann surface X. Then X x [0, T] is an approximation to 

111 near the cut. In the functional integral approach the Hamiltonian enters when we 

consider the transition amplitude between initial and final states cpo and cpr: 

1'PT . 

exp( -1
2 £(cp))Dcp. 

'Po 1 

If we introduce the Hilbert space of states 7-i and the Hamiltonian operator H on 7-i 

which is the generator of time translations this functional integral is given by 

< exp( iT H)cpo, lfJT > . 
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If one now imposes periodic boundary conditions in the time variable and sums 

over all states one obtains the relation: 

exp( *£(if') )VVJ = Trace( exp( iT H)) 

where the integral is over all fields VJ on the manifold X x S 1 where S 1 is [0, T] with 

the endpoints identified. This expression can be made more plausible by the procedure 

of going to imaginary time (i.e. replacing a Minkowskian field theory by a Euclidean 

one) in which case the right hand side becomes the partition function (of statistical 

mechanics) Trace exp(-T H). 

On ground states if' the Hamiltonian H is zero and T is therefore irrelevant. A 

topologically invariant theory is independent of the size of the circle and therefore also 

time independent. In TQFT's then we expect that the Hamiltonian is zero, that is, there 

is no dynamics. However there is still something interesting in the theory. Associated 

to the manifold X is a Hilbert space of the theory 1-f.x and as H is trivial the trace 

gives us 

This indicates that 11. x should be finite dimensional. If we take a diffeomorphism f of X 

then it should act also on the Hilbert space Hx and we are considering the case where 

we take X X [0, 1] and identify the X's at the endpoint using f (denote this space by 

X f). This means we have periodic boundary conditions twisted by f and the partition 

function is 

This depends only on the isotopy class of f. If for instance we consider S 1 x S 1 and let 

f be given by an element of SL(2, Z) then the partition function Z defines a character 

of SL(2, Z). This gives rise to character formulae. 

So there are interesting things happening even when the dynamics are trivial. 

3.2 THE HILBERT SPACE OF WITTEN'S THEORY 

Let us fix a G and for convenience take it to be SU(N) and also fix k. Given a 
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closed surface X we want to get a finite dimensional Hilbert space 'Hx and in particular 

to determine its dimension. 

Consider connections on X. We will use the same notation as in section 2 but now 

everything is defined over a two dimensional X rather than a three dimensional M. The 

space A of all connections has a natural symplectic form. If a and f3 are two tangent 

vectors at A then they are one forms on X with values on LG and we define 

k f 
(a, f3)k = 47r 2 J x Tr( a A /3). 

This is the natural object in two dimensions, just as in three dimensions there was 

the one form given by the curvature. Note that the group Dijj+(X) of orientation 

preserving diffeomorphisms preserves this symplectic form. (This holds for G = U(l) 

directly, but for non-abelian G the relevant group is a semidirect product of g and 

Diff+(x).) 

Recall that in finite dimensional classical mechanics we have a phase space R 2n 

with co-ordinates q1, ... , qn and p1 , ••• , Pn, the positions and conjugate momenta and 

the quantization of this is the Hilbert space L2 (Rn). On this the observables qi are 

represented by multiplication and the p; by differentiation. The special thing about the 

p, q co-ordinates is that the symplectic form is 

In principal we can apply this procedure to A with the symplectic form we have defined 

and get a big Hilbert space Hk. The gauge group g is meant to preserve all the physically 

interesting things so that it acts projectively on the Hilbert space Hk. The physical 

"part" of this Hilbert space is the subspace of vectors left invariant under the action of 

g, This defines a finite dimensional Hilbert space 'Hx,k· 

There is a more direct way to determine 1-lx,k· There is a smaller phase space, 

the reduced phace space, which when quantized gives rise to 'Hx,k· If we consider the 

moment map 

J-L : A ---+ L(g)* 
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the reduced phase space is defined to be the quotient 

In finite dimensional examples this reduces the dimension by twice the dimension of the 

group. In the infinite dimensional case we are considering the reduced phase space is 

a finite dimensional, compact, symplectic lTJ.anifold (possibly with singularities that we 

will ignore.) For example if G = U(l) tb.en A= fl 1 and LQ = fl0 " The dual of LQ is 

naturally Q2 and the moment map is the exterior derivative. The reduced phase space 

is the first de Rham. cohomology space of X. In the Witten case the moment map is 

(up to a constant) 

ft(A)(~) = 

The reduced phase space M is therefore the set of isomorphism classes of flat connections 

on the surface X. In the usual way these correspond to the space of representations of the 

fundamental group of X. Recall that for a Riemann surface such as X the fundamental 

group has a nice finite presentation and therefore the space of representations is finite 

dimensional and compact. The singular points of .A-1 are the reducible connections. 

The Hilbert space 1-tx,k is therefore the quantization of M using the symplectic 

form induced by the symplectic form (, )k on A. 

3.3 QUANTIZING M VIA ALGEBRAIC GEOMETRY 

One way of quantizing M is to choose a complex structure on X. This induces 

a complex structure on M. For example if G = U(l) then M is the space of all 

topologically trivial holomorphic line bundles or the Jacobian of X. In the general case 

(for G = U(N)) M is the moduli space of rank N vector bundles on X. 

The symplectic form 'Nhen properly normalised is an integral class and therefore 

represents the first chern class of a line bundle C. This line bundle is holomorphic and 

the quantization of M is the space of all holomorphic sections, that is 

As we vvant topologically invariant objects we have to examine how these construe-

tions depend on the choice of complex structure. The space of all complex structures 
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on X is the Teichmuller space and the spaces of holomorphic sections define a bundle of 

Hilbert spaces over this. These are all expected to be projectively isomorphic that is the 

corresponding projective bundle is trivial. This Hilbert bundle has a naturally defined 

connection whose curvature is a scalar multiple of the Kahler form on Teichmuller space 

and therefore gives a natural trivialization of the projective bundle. 

This completes our discussion of the general methods. 

3o4 FURTHER DEVELOPMENTS 

a) If we want to insert a knot into the theory then it intersects the surface X in 

some points p 1 , ... , Pr and associated to these we have representations )q, ... , and the 

Hilbert space should depend on these. By evaluating an element of g at each of these 

points and applying the appropriate representation and taking a tensor product this 

extra data defines a representation of 9. The Hilbert space of interest then should be the 

subspace of the big Hilbert space H which transforms to this representation. 

From the viewpoint of algebraic geometry we obtain generalised moduli spaces that 

have only recently been described. There we look at representations of the fundamental 

group of X with these points deleted which applied to loops around the points give 

particular conjugacy classes of order k defined by the .A;. 

To take the extreme case let X = S 2 and .A.; the standard representation of G = 

SU(N). The group of orientation preserving diffeomorphisms that fix the set of points 

acts on the big Hilbert space and this is related to the braid group. 

b) To define the bundle of Hilbert spaces over the moduli space of Riemann surfaces 

we need to look at the boundary which is made up of degenerate curves of lower genus. 

Much of the detail of this has been worked out, 

c) If the marked points are expanded into holes ands we take the boundary values 

of functions defined on X then we get representations of the Virasoro algebra. This 

path leads back to conformal field theory. 

d) Some work of N. Hitchin seems to be closely related to all these things. He 

considers the moduli space M as a fiber in a fibering over a vector space in which the 

generic fibres are abelian varieties. }VI. is then a sort of limit of abelian varieties. This 
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should lead to a relationship with abelian theory except that we have to deal with the 

monodromy around the point of the base corresponding to M. The conjecture is that 

1ix,k is the subset of the Hilbert space of an abelian theory stable under the monodromy 

action. This is analogous to considering representations of a compact group as those of 

the abelian maximal torus invariant under the Weyl group. 

(Notes taken by A. L. Carey and M. K. Murray.) 
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