20. COMPUTER PROGRAMS

In this section we give a typical computer program which implements one of the algorithms of Section 17 with the help of the discretization procedure stated in Section 18. The program is written in FORTRAN 77.

We also show how this program can be modified to cover other cases.

We begin by documenting the program.

PROGRAM ITEIG

* PURPOSE *

COMPUTATION OF ITERATES FOR APPROXIMATING A SIMPLE EIGENVALUE AND A CORRESPONDING EIGENVECTOR OF AN INTEGRAL OPERATOR BY THE RAYLEIGH-SCHRÖDINGER SCHEME USING THE FREDHOLM METHOD(2)

* REFERENCES *

ALGORITHM 17.8 AND TABLE 19.1 ALONG WITH THE DISCRETIZATION PROCEDURE OF SECTION 18 IN THE MONOGRAPH ENTITLED SPECTRAL PERTURBATION AND APPROXIMATION WITH NUMERICAL EXPERIMENTS BY B.V. LIMAYE. THE PROGRAM WAS WRITTEN BY R.P. KULKARNI AND B.V. LIMAYE.

* PARAMETERS *

- L THE DESIRED NUMBER OF ITERATIONS
- M THE ORDER OF THE MATRIX TM WHICH DISCRETIZES AN INTEGRAL OPERATOR T
- N THE ORDER OF THE MATRIX A
- N1 THE SERIAL NUMBER OF THE SELECTED EIGENVALUE OF A

* MAJOR DATA STRUCTURES *

- TM M BY M MATRIX WHICH DISCRETIZES THE INTEGRAL OPERATOR T
- A N BY N REAL SYMMETRIC MATRIX FOR WHICH WE INITIALLY SOLVE
 AN EIGENVALUE PROBLEM

- D N VECTOR CONTAINING EIGENVALUES OF A IN ASCENDING ORDER
- Z N BY N MATRIX WHOSE I-TH COLUMN CONTAINS AN EIGENVECTOR OF A CORRESPONDING TO D(I); AND HAS EUCLIDEAN NORM ONE
- LAM L+1 VECTOR CONTAINING THE SELECTED NONZERO SIMPLE EIGENVALUE

 OF A IN LAM(O) AND THE SUCCESSIVE EIGENVALUE ITERATES

 IN LAM(1) TO LAM(L)
- U AN EIGENVECTOR OF A CORRESPONDING TO LAM(O)
- V THE EIGENVECTOR OF THE CONJUGATE TRANSPOSE OF A, WHICH
 EQUALS A, CORRESPONDING TO LAM(O) AND HAVING ITS INNER
 PRODUCT WITH U EQUAL TO 1/LAM(O)
- PH M BY L+1 MATRIX CONTAINING THE INITIAL EIGENVECTOR IN THE
 FIRST COLUMN AND THE SUCCESSIVE EIGENVECTOR ITERATES IN THE
 REMAINING COLUMNS
- AV M BY N MATRIX WHICH TRANSFORMS CERTAIN N VECTORS ASSOCIATED
 WITH A INTO M VECTORS
- IV M BY N MATRIX WHICH TRANSFORMS N VECTORS INTO M VECTORS BY
 USING LINEAR INTERPOLATION OF FUNCTIONS
- KM,KN, M BY M, N BY N, N BY M, M BY N MATRICES RESPECTIVELY, WHICH

 KH,KV STORE THE WEIGHTED VALUES OF THE KERNEL OF THE INTEGRAL

 OPERATOR T AT VARIOUS NODES
- TAH N BY M MATRIX USED FOR CALCULATING EIGENVALUE ITERATES
- TAHPH N VECTOR DENOTING THE PRODUCT OF TAH AND A COLUMN OF PH
- C N+1 BY N MATRIX CONTAINING THE COEFFICIENTS OF A LINEAR SYSTEM USED FOR CALCULATING EIGENVECTOR ITERATES
- ZETA SCALING FACTOR FOR THE FIRST ROW OF C
- BETA N+1 VECTOR CONTAINING THE RIGHT HAND SIDE OF A LINEAR SYSTEM
 WHOSE COEFFICIENT MATRIX IS C
- SUM N VECTOR USED IN CALCULATING BETA

SOL - LEAST SQUARES SOLUTION OF A LINEAR SYSTEM WHOSE COEFFICIENT MATRIX IS C

ALPHA - N BY L+1 MATRIX CONTAINING LAM(O)*U IN THE FIRST COLUMN AND

THE SUCCESSIVE SOLUTION VECTORS SOL IN THE REMAINING COLUMNS

AVAL - M VECTOR DENOTING THE PRODUCT OF AV AND A COLUMN OF ALPHA

PRIT - M VECTOR DENOTING A WEIGHTED SUM OF PREVIOUS EIGENVECTOR ITERATES

TMPH - M VECTOR DENOTING THE PRODUCT OF TM AND A COLUMN OF PH

RESID - MAXIMUM NORM OF THE RESIDUAL, USED IN STOPPING CRITERIA

RELIN - RELATIVE INCREMENT IN AN EIGENVECTOR ITERATE, USED IN STOPPING CRITERIA

* SUBROUTINES CALLED *

EIGRS - COMPUTES THE EIGENVALUES AND EIGENVECTORS OF A REAL

SYMMETRIC MATRIX (ROUTINE IN IMSL LIBRARY EDITION 9.2,

EQUIVALENT TO ROUTINE EVCSF IN IMSL MATH/LIBRARY EDITION 10.0)

- COMPUTES THE HIGH ACCURACY SOLUTION OF A LINEAR LEAST SQUARES PROBLEM (ROUTINE IN IMSL LIBRARY, EDITION 9.2, EQUIVALENT TO ROUTINE LSBRR IN IMSL MATH/LIBRARY, EDITION 10.0)

* FUNCTIONS CALLED *

KERNEL - REAL FUNCTION WHICH YIELDS KERNEL OF THE INTEGRAL OPERATOR T

NODE - REAL FUNCTION WHICH YIELDS NODES FOR GENERATING THE MATRICES KM, KN, KH, KV AND IV

WEIGHT - REAL FUNCTION WHICH YIELDS WEIGHTS FOR GENERATING THE MATRICES KM, KN, KH AND KV

MAXNORM - REAL FUNCTION WHICH YIELDS THE MAXIMUM NORM OF A VECTOR

```
PROGRAM
               ITEIG(TAPE1, TAPE2)
     PARAMETER (L=30, M=100, N=10, N1=10)
     INTEGER
               L,M,N,N1,I,J,K,JOBN,IZ,IER,IA,NN,IB,NB,IND,IX
     REAL
               KM(M,M),KN(N,N),KH(N,M),KV(M,N),IV(M,N),
    1
               A(N,N),D(N),Z(N,N),WK((2*N+1)*(N+3)+N),
    1
               LAM(0:L),U(N),V(N),AV(M,N),PH(M,0:L),ALPHA(N,0:L),
    1
               C(N+1,N), TAH(N,M), TM(M,M),
    1
               TAHPH(N), SUM(N), BETA(N+1), CC(4), SOL(N), IWK(N),
    1
               AVAL(M), PRIT(M), TMPH(M), X(M), Y(M),
    1
               ZETA, RESID, RELIN,
    1
               KERNEL, NODE, WEIGHT, MAXNORM
     WRITE(2,10)
10
     FORMAT(1H ,5X, "RAYLEIGH-SCHRODINGER SCHEME",/)
     WRITE(2,20)
20
     FORMAT(1H ,5x, FREDHOLM METHOD(2) ,/)
     WRITE(2,30)
     FORMAT(1H ,5X, KERNEL: EXP(S*T),/)
30
     WRITE(2,40)
40
     FORMAT(1H ,5X, NODES: GAUSS TWO POINTS ,/)
     WRITE(2,50)
     FORMAT(1H ,5X, WEIGHTS: 1/N ,/)
50
     WRITE(2,60)N,N1,M
60
     FORMAT(1H ,5X, N=',12,3X, N1=',12,3X, M=',13,/)
     WRITE(2,70)
70
     FORMAT(1H ,5X, *PRECISION FOR STOPPING CRITERIA: 1.0E-12*,/)
     GENERATION OF KM, KN, KH AND KV
       DO 110 I=1,M
          DO 120 J=1,M
             KM(I,J) = WEIGHT(J,M)*KERNEL(NODE(I,M),NODE(J,M))
          CONTINUE
120
110
       CONTINUE
       DO 130 I=1,N
          DO 140 J=1,N
             KN(I,J) = WEIGHT(J,N)*KERNEL(NODE(I,N),NODE(J,N))
140
          CONTINUE
       CONTINUE
130
       DO 150 I=1.N
          DO 160 J=1,M
              KH(I,J) = WEIGHT(J,M)*KERNEL(NODE(I,N),NODE(J,M))
160
          ·CONTINUE
150
       CONTINUE
       DO 170 I=1,M
          DO 180 J=1,N
              KV(I,J) = WEIGHT(J,N)*KERNEL(NODE(I,M),NODE(J,N))
          CONTINUE
180
170
       CONTINUE
```

```
GENERATION OF IV
       J=1
       DO 190 I=1,M
          IF (NODE(I,M).LT.NODE(1,N)) THEN
             IV(I,J) = 1.0
          ELSEIF (NODE(I,M).LT.NODE(2,N)) THEN
             IV(I,J) = (NODE(2,N)-NODE(I,M))
    1
                        /(NODE(2,N)-NODE(1,N))
          ELSE
             IV(I,J) = 0.0
          ENDIF
190
       CONTINUE
       DO 200 J=2, N-1
          DO 210 I=1,M
             IF (NODE(I,M).LT.NODE(J-1,N)) THEN
                IV(I,J) = 0.0
             ELSEIF (NODE(I,M).LT.NODE(J,N)) THEN
                IV(I,J)=(NODE(J-1,N)-NODE(I,M))
    1
                         /(NODE(J-1,N)-NODE(J,N))
             ELSEIF (NODE(I,M).LT.NODE(J+1,N)) THEN
                IV(I,J)=(NODE(J+1,N)-NODE(I,M))
    1
                         /(NODE(J+1,N)-NODE(J,N))
             ELSE
                IV(I,J) = 0.0
             ENDIF
210
          CONTINUE
200
       CONTINUE
       J=N
       DO 220 I=1,M
          IF (NODE(I,M).LT.NODE(N-1,N)) THEN
             IV(I,J) = 0.0
          ELSEIF (NODE(I,M).LT.NODE(N,N)) THEN
             IV(I,J) = (NODE(N-1,N)-NODE(I,M))
    1
                        /(NODE(N-1,N)-NODE(N,N))
          ELSE
             IV(I,J) = 1.0
          ENDIF
220
       CONTINUE
     STEP 1(I): EIGENELEMENTS OF A
       DO 310 I=1, N
          DO 320 J=1, N
             A(I,J) = KN(I,J)
320
          CONTINUE
310
       CONTINUE
       JOBN = 12
       IZ = N
     CALL EIGRS (A, N, JOBN, D, Z, IZ, WK, IER)
       WRITE(2,330)
330
       FORMAT(1H ,5X, EIGENVALUES OF A ,/)
       WRITE(2,340)(D(I),I=1,N)
340
       FORMAT(1H ,3X,3E21.13)
```

```
LAM(0) = D(N1)
       DO 350 I=1,N
          U(I) = Z(I,N1)
350
       CONTINUE
     STEP 1(II): EIGENVECTOR OF CONJUGATE TRANSPOSE OF A
       DO 360 I=1,N
          V(I) = Z(I,NI)/LAM(0)
360
       CONTINUE
     STEP 2
     GENERATION OF AV
       DO 410 I=1,M
          DO 420 J=1,N
             AV(I,J) = 0.0
             DO 430 K=1,N
                 AV(I,J) = AV(I,J)+IV(I,K)*KN(K,J)
430
             CONTINUE
420
          CONTINUE
410
       CONTINUE
     COMPUTATION OF PH(0)
       DO 440 I=1,M
          PH(I,0) = 0.0
          DO 450 J=1,N
             PH(I,0) = PH(I,0)+AV(I,J)*U(J)
          CONTINUE
450
440
       CONTINUE
     COMPUTATION OF ALPHA(0)
       DO 460 I=1,N
          ALPHA(I,0) = LAM(0)*U(I)
460
       CONTINUE
     GENERATION OF C
       ZETA = 0.0
       DO 470 I=1,N
          IF (ZETA .LT. ABS(D(I)-D(N1))) THEN
              ZETA = ABS(D(I)-D(N1))
          ENDIF
470
       CONTINUE
       ZETA = ZETA*LAM(0)
       DO 480 J=1,N
          C(1,J) = ZETA*V(J)
480
       CONTINUE
       DO 490 I=2, N+1
          DO 500 J=1, N
             C(I,J) = A(I-I,J)
500
          CONTINUE
       CONTINUE
490
       DO 510 I=1,N
          C(I+1,I) = A(I,I)-LAM(0)
510
       CONTINUE
```

```
GENERATION OF TAH
       DO 520 I=1.N
          DO 530 J=1,M
             TAH(I,J) = KH(I,J)
530
          CONTINUE
520
       CONTINUE
     GENERATION OF TM
       DO 540 I=1.M
          DO 550 J=1,M
             TM(I,J) = KM(I,J)
550
          CONTINUE
540
       CONTINUE
       WRITE (2,690)
690
       FORMAT (/,1H ,6X, J, 9X, LAM(J), 10X, RESID, 5X, RELIN)
       J = 0
       WRITE (2,700) J,LAM(J)
700
       FORMAT (/,1H ,5X,12,2X,E19.13,2E10.2)
     THE ITERATION STARTS
       DO 710 J=1,L
     STEP 2(1):COMPUTATION OF J-TH EIGENVALUE ITERATE
          DO 720 I=1,N
             TAHPH(I) = 0.0
             DO 730 K=1,M
                TAHPH(I) = TAHPH(I)+TAH(I,K)*PH(K,J-I)
.730
             CONTINUE
720
          CONTINUE
          LAM(J) = 0.0
          DO 740 I=1,N
             LAM(J) = LAM(J)+TAHPH(I)*V(I)
740
          CONTINUE
     STEP 2(II):SOLUTION OF (N+1)*N LINEAR SYSTEM
     CALCULATION OF RIGHT HAND SIDE
          DO 810 I=1.N
             SUM(I) = 0.0
             DO 820 K=0.J-1
                SUM(I) = SUM(I) + LAM(J-K) * ALPHA(I,K)
820
             CONTINUE
810
          CONTINUE
          BETA(1) = 0.0
          DO 830 I=1.N
             BETA(I+1) = -TAHPH(I)+SUM(I)
830
          CONTINUE
```

```
ж
      LEAST SQUARES SOLUTION
           IA = N+1
           NN = N+1
           IB = N+1
           NB = 1
           IND = 0
           IX = N
      CALL LLBQF(C, IA, NN, N, BETA, IB, NB, IND, CC, SOL, IX, IWK, WK, IER)
           DO 840 I=1.N
              ALPHA(I,J) = SOL(I)
 840
           CONTINUE
      STEP 2(III): COMPUTATION OF THE J-TH EIGENVECTOR ITERATE
           DO 910 I=1,M
              AVAL(I) = 0.0
               DO 920 K=1,N
                  AVAL(I) = AVAL(I) + AV(I,K) * ALPHA(K,J)
 920
              CONTINUE
 910
           CONTINUE
           DO 930 I=1,M
              PRIT(I) = 0.0
              DO 940 K=1,J
                 PRIT(I) = PRIT(I) + (LAM(K-I) - LAM(K)) * PH(I, J-K)
 940
              CONTINUE
 930
           CONTINUE
           DO 950 I=1,M
              TMPH(I) = 0.0
              DO 960 K=1,M
                  TMPH(I) = TMPH(I)+TM(I,K)*PH(K,J-I)
 960
              CONTINUE
 950
           CONTINUE
           DO 970 I=1.M
              PH(I,J) = (AVAL(I)+PRIT(I)+TMPH(I))/LAM(0)
970
           CONTINUE
      CALCULATION OF RESIDUAL AND RELATIVE INCREMENT
           DO 980 I=1,M
              X(I) = TMPH(I)-LAM(J)*PH(I,J-I)
980
           CONTINUE
           RESID = MAXNORM(X, M)
           DO 990 I=1.M
              X(I) = PH(I,J)-PH(I,J-I)
              Y(I) = PH(I,J)
990
           CONTINUE
           RELIN = MAXNORM(X,M)/MAXNORM(Y,M)
           WRITE(2,700) J, LAM(J), RESID, RELIN
```

```
STOPPING CRITERIA
          IF (RESID.LT.1.0E-12) THEN
              WRITE(2,1000)
1000
              FORMAT(/,1H ,5X, 'RESID.LT.1.0E-12')
          ENDIF
          IF (RELIN.LT.1.0E-12) THEN
              WRITE(2,1010)
              FORMAT(/,1H ,5X, 'RELIN.LT.1.0E-12')
1010
          ENDIF
          IF (RESID.LT.1.OE-12.AND.RELIN.LT.1.OE-12) THEN
              GO TO 1100
          ENDIF
       CONTINUE
710
       CONTINUE
1100
       STOP
       END
     REAL FUNCTION KERNEL(S,T)
     REAL S,T
     KERNEL = EXP(S*T)
     RETURN
     END
     REAL FUNCTION NODE(I,N)
     INTEGER I, 11, 12, N
     I1 = I/2
     I2 = I - I1 * 2
     IF (12.NE.O) THEN
        NODE = (FLOAT(I)-1.0/SQRT(3.0))/N
     ELSE
        NODE = (FLOAT(I)-1.0+1.0/SQRT(3.0))/N
     ENDIF
     RETURN
     END
     REAL FUNCTION WEIGHT(I,N)
     INTEGER I, N
     WEIGHT = 1.0/FLOAT(N)
     RETURN
     END
     REAL FUNCTION MAXNORM(X,M)
     INTEGER M
     REAL X(M)
     MAXNORM = 0.0
     DO 1110 I=1,M
        IF (MAXNORM.LT.ABS(X(I))) THEN
           MAXNORM = ABS(X(I))
        ENDIF
1110 CONTINUE
     RETURN
     END
```

OUTPUT OF PROGRAM ITEIG

RAYLEIGH-SCHRODINGER SCHEME

FREDHOLM METHOD(2)

KERNEL: EXP(S*T)

NODES: GAUSS TWO POINTS

WEIGHTS: 1/N

N=10 N1=10 M=100

-.1133820135241E-14

.4796177191072E-10

PRECISION FOR STOPPING CRITERIA: 1.0E-12

.1047006402339E-14

.9238598296043E-08

.69E-12

.84E-12

.2699346339808E-12

.1050078986292E-05

EIGENVALUES OF A

.7441265877077E-04 .1353028494291E+01		.3552405730829E-02		.1059756286955E+00
J	LAM(J)	RESID	RELIN	
0	.1353028494291E+0	1		
1	.1352614455737E+0	1 .18E-01	.23E-0	l
2	.1353030065281E+0	1 .16E-03	.23E-03	3
3	.1353030261682E+0	1 •39E-05	.50E-05	5
4	.1353030164665E+0	1 • 92E-07	.13E-0	6
5	.1353030164536E+0	1 .15E-08	.20E-0	8
6	.1353030164578E+0	1 .60E-10	.86E-10)

RESID.LT.1.0E-12

.1353030164578E+01

RELIN.LT.1.OE-12

Computation of actual accuracy

As we have seen in Section 18, the computed eigenvalue iterates $\lambda_j = LAM(J) \quad \text{will converge, under suitable conditions, to the simple eigenvalue } \lambda^{(M)} \quad \text{of the matrix [TM] which is nearest to } \lambda_0 = LAM(0) \; ,$ and the computed eigenvector iterates c_j will converge to the corresponding eigenvector $c_j^{(M)}$ of [TM] which satisfies

$$\langle [TAH]_{c}^{(M)}, V \rangle = \lambda^{(M)}$$
.

We consider some additions to the program ITEIG which allow us to find the actual accuracy reached at each iterate by computing $\lambda^{(M)}$, $\underline{c}^{(M)}$, $\lambda^{(M)} - \lambda_j$ and the maximum norm of $\underline{c}^{(M)} - \underline{c}_j$, $j = 0,1,\ldots,L$. This is done only for illustrative purposes. The whole point of PROGRAM ITEIG is to avoid calculating $\lambda^{(M)}$ and $\underline{c}^{(M)}$.

* MAJOR DATA STRUCTURES *

M1 - THE SERIAL NUMBER OF THE EIGENVALUE OF TM NEAREST TO LAM(O)

DD - M VECTOR CONTAINING EIGENVALUES OF TM

ZZ. - M BY M MATRIX WHOSE I-TH COLUMN CONTAINS AN EIGENVECTOR OF
TM CORRESPONDING TO DD(I)

TAHZZ - N VECTOR DENOTING THE PRODUCT OF TAH AND THE M1-TH COLUMN
OF ZZ AND HAS EUCLIDEAN NORM ONE

SCP - THE SCALAR PRODUCT OF TAHZZ AND V

PHI - THE EIGENVECTOR OF TM CORRESPONDING TO DD(M1) WHOSE INNER PRODUCT WITH V EQUALS DD(M1)

We declare in the beginning of $\ensuremath{\mathsf{PROGRAM}}$ ITEIG

INTEGER M1

REAL DD(M), ZZ(M,M), WWK(M+M*(M+1)/2), TAHZZ(N), SCP, PHI(M) and add the following lines at places indicated by the statement numbers; the WRITE statements and their formats 690 and 700 are also changed.

```
÷
      ADDENDUM TO PROGRAM ITEIG
      EIGENELEMENTS OF TM FOR COMPARISON
k
        JOBN = 12
        IZ = M
      CALL EIGRS (TM, M, JOBN, DD, ZZ, IZ, WWK, IER)
*
      EIGENVALUE OF TM NEAREST TO LAM(0)
        DO 615 I=M,1,-1
           IF (DD(I).LE.LAM(O)) THEN
              M1 = I
               IF ( M1.EQ.M) THEN
                  GO TO 635
              ELSE
                  GO TO 625
              ENDIF
           ENDIF
 615
        CONTINUE
        M1 = 1
 625
        IF (ABS(LAM(0)-DD(M1)).GT. ABS(LAM(0)-DD(M1+1))) THEN
           M1 = M1+1
        ENDIF
 635
        CONTINUE
        WRITE (2,645) M1,DD(M1)
 645
        FORMAT (/,1H,5X,Ml=^,13,5X,^LAM=^,E19.13,/,/)
        DO 655 I=1,N
           TAHZZ(I) = 0.0
           DO 665 J=1,M
               TAHZZ(I) = TAHZZ(I)+TAH(I,J)*ZZ(J,M1)
 665
           CONTINUE
 655
        CONTINUE
        SCP = 0.0
        DO 675 I=1,N
           SCP = SCP + TAHZZ(I) * V(I)
 675
        CONTINUE
        DO 685 I=1,M
           PHI(I) = ZZ(I,M1)/SCP*DD(M1)
           X(I) = PHI(I) - PH(I, 0)
 685
        CONTINUE
        WRITE (2,690)
        FORMAT (1H ,6X, J , 9X, LAM(J) ,8X, LAM-LAM(J) ,1X,
 690
                'PH-PH(J)',3X, 'RESID',5X, 'RELIN')
        J = 0
        WRITE (2,700)J, LAM(J), DD(M1)-LAM(J), MAXNORM(X,M)
 700
        FORMAT (/,1H ,5X,I2,2X,E19.13,4E10.2)
           DO 995 I=1,M
               X(I) = PHI(I) - PH(I,J)
 995
           CONTINUE
           WRITE(2,700) J, LAM(J), DD(M1)-LAM(J), MAXNORM(X,M),
                         RESID, RELIN
     1
```

OUTPUT OF PROGRAM ITEIG WITH THE ADDENDUM

RAYLEIGH-SCHRODINGER SCHEME

FREDHOLM METHOD(2)

KERNEL: EXP(S*T)

NODES: GAUSS TWO POINTS

WEIGHTS: 1/N

N=10 N1=10 M=100

PRECISION FOR STOPPING CRITERIA: 1.0**-12

EIGENVALUES OF A

-.1133820135241E-14 .1047006402339E-14 .2699346339808E-12 .4796177191072E-10 .9238598296043E-08 .1050078986292E-05 .7441265877077E-04 .3552405730829E-02 .1059756286955E+00 .1353028494291E+01

M1=100 LAM = .1353030164578E+01

J	LAM(J)	LAM-LAM(J)	PH-PH(J)	RESID	RELIN
0	.1353028494291E+01	.17E-05	.13E-01		
1	.1352614455737E+01	.42E-03	.13E-03	.18E-01	.23E-01
2	.1353030065281E+01	.99E-07	.29E-05	.16E-03	.23E-03
3	.1353030261682E+01	97E <i>-</i> 07	.73E-07	•3 9E - 05	.50E-05
4	:1353030164665E+01	86E-10	.11E-08	.92E-07	.13E-06
5	.1353030164536E+01	.42E-10	.48E-10	.15E-08	.20E-08
6	.1353030164578E+01	.50E-13	.52E-12	.60E-10	.86E-10
7	.1353030164578E+01	28E-13	.75E-13	.69E-12	.84E-12

RESID.LT.1.0E-12

RELIN.LT.1.OE-12

Modifications of the program ITEIG

We discuss how PROGRAM ITEIG can be easily adapted to deal with a large number of different situations.

(i) Parameter values

By simply assigning different values to the parameters in the second line of the program, one can alter the maximum number L of the iterations, the size M of the grid which discretizes the integral operator T, the order N of the matrix A in the initial eigenvalue problem, and the serial number N1 of the selected eigenvalue of A with which we start the iteration process.

(ii) Various iteration schemes

Instead of the Rayleigh-Schrödinger scheme (11.18) used in PROCRAM ITEIG, we can use the fixed point scheme (11.19), the modified fixed point scheme (11.31), or the Ahués scheme (11.35). The algorithms 17.9, 17.10 and 17.11 indicate the required changes in the program ITEIG for implementing these schemes. There is no need for the vector PRIT in these schemes. Hence the DO loops 930 and 940 can be dropped altogether. In fact, there is no need for the double arrays ALPHA(N,0:L) and PH(M,0:L); instead, single arrays ALPHA(N), PH(M) and PRPH(M) (representing the current solution of the linear system, the current eigenvector iterate and the previous eigenvector iterate, respectively) will suffice.

Fixed point scheme: Change the DO loops 820 and 970 as follows:

DO 820 K =
$$0, J-1$$

$$SUM(I) = SUM(I) + LAM(J) \times ALPHA(I,K)$$

and

DO 970 I = 1, M

PH(I,J) = (AVAL(I)+(LAM(O)-LAM(J))*PH(I,J-1)+TMPH(I))/LAM(O)

970 CONTINUE

Modified fixed point scheme: Declare

REAL T2AH(N,M), T2M(M,M), T2AHPH(N), MU(L), T2MPH(M)

Add the following comments and statements after the nested $$\operatorname{DO}$$ loops 540 and 550 :

* GENERATION OF T2AH

DO 555 I = 1,N

DO 565 J = 1,M

T2AH(I,J) = 0.0

DO 575 K = 1, M

T2AH(I,J) = T2AH(I,J)+TAH(I,K)*TM(K,J)

575

CONTINUE

565

CONTINUE

555 CONTINUE

* GENERATION OF T2M

DO 585 I = 1,M

DO 595 J = 1,M

T2M(I,J) = 0.0

DO 605 K = 1, M

T2M(I,J) = T2M(I,J)+TM(I,K)*TM(K,J)

605

CONTINUE

595

CONTINUE

585

```
Add the following lines after statement 740:
           DO 745 I = 1,N
              T2AHPH(I) = 0.0
              DO 755 K = 1, M
                 T2AHPH(I) = T2AHPH(I)+T2AH(I,K)*PH(K,J-1)
 755
              CONTINUE
 745
           CONTINUE
           MU(J) = 0.0
           DO 765 I = 1, N
              MU(J) = MU(J)+T2AHPH(I)*V(I)
 765
           CONTINUE
           DO 775 I = 1.M
              T2MPH(I) = 0.0
              DO 785 K = 1, M
                 T2MPH(I) = T2MPH(I)+T2M(I,K)*PH(K,J-1)
 785
              CONTINUE
 775
           CONTINUE
     Delete the DO loops 810 and 820.
     Change the DO loops 830 and 970 as follows:
           DO 830 I = 1, N
              BETA(I+1) = (-T2AHPH(I)+MU(J)/LAM(J)*TAHPH(I))/LAM(J)
 830
           CONTINUE
and
           DO 970 I = 1,M
              PH(I,J) = (LAM(J)*AVAL(I)+(LAM(O)-MU(J)/LAM(J))*TMPH(I)
     1
                         + T2MPH(I))/(LAM(O)%LAM(J))
```

970

Ahués scheme: Same additions and deletions as in the case of the modified fixed point scheme. Also, change the DO loops 830 and 970 as follows:

(iii) Various methods

By altering, if necessary, the matrices A, AV and TAH appearing in the nested DO loops 310-320,410-430 and 520-530, respectively, one can employ any of the following methods: Projection, Sloan, Galerkin(1) and (2), Nyström, Fredholm(1). The required alterations can be quickly found from Table 19.1. For example, to employ the Nyström method we need only alter the matrix AV; for this purpose we replace the nested DO loops 410-430 by

DO 410 I = 1,M

DO 420 J = 1,N

$$AV(I,J) = KV(I,J)$$

420 CONTINUE

410 CONTINUE

With these changes, the program will work provided the matrix A is real and symmetric. If it is not, further changes are necessary. They are outlined later.

(iv) Kernel, nodes and weights

By changing the definitions of KERNEL, NODE and WEIGHT in the function subprograms given at the end of PROGRAM ITEIG, we can vary the kernel of the integral operator T as well as the nodes and the weights used in the quadrature formula which discretizes T. With these changes, the program will work if the matrix A remains real and symmetric.

Otherwise further changes are required, as detailed below.

(v) General complex matrix A

The matrix A appearing in the DO loops 310-320 is real and symmetric, and it remains so for the Fredholm and the Nyström methods as long as the kernel is real and symmetric and the weights are all real and equal. When A is not real and symmetric, make the following changes

- COMPLEX (instead of REAL) declarations of appropriate arguments; use of the FORTRAN 77 intrinsic function CONJG which yields the conjugate of a complex number.
- 2. Instead of the routine EIGRS of the IMSL LIBRARY, Edition 9.2 (or its equivalent EVCSF of the IMSL MATH/LIBRARY, Edition 10.0), the following IMSL routines need to be called in appropriate cases.

A	Edition 9.2	Edition 10.0
Complex Hermitian	EIGCH	EVCHF
Real general	EIGRF	EVCRG
Complex general	EIGCC	EVCCG

A set of Library interface routines is available to link the routines in the old and the new editions. The routines in Edition 9.2 treat a complex matrix of order N as a real vector of length $2N^2$; an appropriate equivalence statement may be required when an array is of one type in the calling program but of another type in the subroutine.

For the routines in Edition 10.0, the eigenvalues appear in a complex N vector EVAL in increasing lexicographic order and the I-th column of a complex N by N matrix EVEC gives an eigenvector corresponding to EVAL(I); each eigenvector U is normalized such that

$$\max\{|\text{Re }U(1)|+|\text{Im }U(1)|,\ldots,|\text{Re }U(N)|+|\text{Im }U(N)|\}=1$$
.

We then pick a simple nonzero eigenvalue LAM(0) of A and a corresponding eigenvector U according to our choice.

3. Let ACT denote the conjugate transpose of the matrix A. If A is normal (i.e., ACT commutes with A), then U itself is an eigenvector of ACT corresponding to CONJG(LAM(0)). Hence in this case we simply need to replace LAM(0) by CONJG(LAM(0)) in the DO loop 360. If A is Hermitian, then ACT = A and CONJG(LAM(0)) = LAM(0), and there is no change in the DO loop 360.

For a general (real or complex) matrix \mathbf{A} , we generate ACT as follows:

★ GENERATION OF ACT

DO 360 I = 1,N

DO 370 J = 1,N

ACT(I,J) = CONJG(A(J,I))

370 CONTINUE

360 CONTINUE

We can then solve the eigenvalue problem for ACT just as we do for A . Let CONJG(LAM(0)) be the N2-th entry of the vector D or EVAL, so that an eigenvector of ACT corresponding to CONJG(LAM(0)) appears in the N2-th column of the matrix Z or EVEC. To obtain an eigenvector V of ACT whose inner product with U is 1/LAM(0), we proceed as follows. The complex argument SP denotes 'scalar product'.

```
COMPLEX SP

SP = 0.0

DO 380 I = 1,N

SP = SP+U(I)*CONJG(Z(I,N2))

380 CONTINUE

DO 390 I = 1,N

V(I) = Z(I,N2)/CONJG(SP*LAM(0))

390 CONTINUE
```

Alternatively, we can find V as the least squares solution of a linear system with its coefficient matrix CBAR and right hand side BETABAR, defined as follows:

```
COMPLEX CBAR(N+1,N), BETABAR(N+1)
     GENERATION OF CBAR
*
       DO 360 J = 1, N
          CBAR(1,J) = CONJG(U(J))
360
       CONTINUE
       DO 370 I = 2, N+1
          DO 380 J = 1, N
             CBAR(I,J) = ACT(I-1,J)
380
          CONTINUE
370
       CONTINUE
       DO 390 I = 1,N
          CBAR(I+1,I) = ACT(I,I)-CONJG(LAM(O))
390
       CONTINUE
       BETABAR(1) = 1/CONJG(LAM(0))
       DO 400 I = 1, N
          BETABAR(I+1) = 0.0
```

400

If ACT is a real matrix, the IMSL subroutine LLBQF of Edition 9.2 or LSBRR of Edition 10.0 can be used for the solution of the above least squares problem. The LINPACK routines SQRDC and SQRSL also give the solution of a least squares problem with a real coefficient matrix.

Their complex analogues CQRDC and CQRSL are available.

Since V is, in general, a complex array, and since the inner product is conjugate linear in the second variable, we change V(I) to CONJG(V(I)) in the DO loop 740 of PROGRAM ITEIG which gives LAM(J) and in the DO loop 765 of its modification which gives MU(J).

4. If the functions KERNEL and WEIGHT are real-valued, LAM(0) is real and the entries of U and V are real, then the coefficient matrix C and the right hand side vector BETA are real. We can then continue to use the IMSL routine LLBQF or LSBRR for obtaining the least squares solution ALPHA in the DO loop 840. Otherwise, LINPACK routines CQRDC and CQRSL can be employed to handle the complex case.

Unless A is normal and U has Euclidean norm 1, the scaling factor ZETA for the first row of C may be inappropriate (Cf. (18.15) and (18.17)). Hence the DO loop 470 may be dropped and the DO loop 480 be changed as follows:

DO 480
$$J = 1,N$$

 $C(1,J) = CONJG(V(J))$

480 CONTINUE

We describe an alternative method for obtaining the solution SOL in the DO loop 840. It is based on our discussion of (18.18) and (18.20).

Instead of generating the matrix $\, C \,$ in the DO loops 470 to 510, we generate an $\, N \,$ by $\, N \,$ matrix $\, B \,$ as follows.

* GENERATION OF B

DO
$$470 I = 1,N$$

DO
$$480 J = 1,N$$

$$B(I,J) = A(I,J)-LAM(O)*LAM(O)*U(I)*CONJG(V(J))$$

480 CONTINUE

CONTINUE

DO 490 I = 1,N

$$B(I,I) = B(I,I)-LAM(O)$$

490 CONTINUE

Then SOL can be obtained as the solution of the linear system with coefficient matrix $\,B\,$ and right hand side BETA(I+1), I=1,...,N . The following IMSL routines can be used to compute this solution.

В	Edition 9.2	Edition 10.0
Real symmetric	LEQ2S	LSASF
Complex Hermitian	.—	LSAHF
Real general	LEQT2F	LSARG
Complex general	LEQ2C	LSACG