368

20. OODMPUTER PROGRAMS

In this section we give a typical computer program which implements
one of the algorithms of Section 17 with the help of the discretization .
procedure stated in Section 18. The program is written in FORTRAN 77.
We also show how this program can be modified to cover other cases.

We begin by documenting the program.

PROGRAM ITEIG

% PURPOSE 3¢
COMPUTATION OF ITERATES FOR APPROXIMATING A SIMPLE EIGENVALUE AND A
CORRESPONDING EIGENVECTOR OF AN INTEGRAL OPERATOR BY THE

RAYLEIGH-SCHRODINGER SCHEME USING THE FREDHOLM METHOD(2)

% REFERENCES 3¢

ALGORITHM 17.8 AND TABLE 19.1 ALONG WITH THE DISCRETIZATION PROCEDURE OF
SECTION 18 IN THE MONOGRAPH ENTITLED SPECTRAL PERTURBATION AND
APPROXIMATION WITH NUMERICAL EXPERIMENTS BY B.V. LIMAYE. THE PROGRAM

WAS WRITTEN BY R.P. KULKARNI AND B.V. LIMAYE.

% PARAMETERS 3¢

L — THE DESIRED NUMBER OF ITERATIONS

M — THE ORDER OF THE MATRIX TM WHICH DISCRETIZES AN INTEGRAL
OPERATOR T

N — THE ORDER OF THE MATRIX A

N1 - THE SERIAL NUMBER OF THE SELECTED EIGENVALUE OF A

% MAJOR DATA STRUCTURES 3¢
™ — M BY M MATRIX WHICH DISCRETIZES THE INTEGRAL OPERATOR T
A - N BY N REAL SYMMETRIC MATRIX FOR WHICH WE INITIALLY SOLVE

AN EIGENVALUE PROBLEM



LAM

PH

AV

IV

KM,KN,

KH,KV

TAH

TAHPH

ZETA

BETA

SUM

369

N VECTOR CONTAINING EIGENVALUES OF A IN ASCENDING ORDER

N BY N MATRIX WHOSE I-TH COLUMN CONTAINS AN EIGENVECTOR OF A
CORRESPONDING TO D(I); AND HAS EUCLIDEAN NORM ONE

L+1 VECTOR CONTAINING THE SELECTED NONZERO SIMPLE EIGENVALUE
OF A IN LAM(O) AND THE SUCCESSIVE EIGENVALUE ITERATES

IN LAM(1) TO LAM(L)

AN EIGENVECTOR OF A CORRESPONDING TO LAM(O)

THE EIGENVECTOR OF THE CONJUGATE TRANSPOSE OF A, WHICH
EQUALS A, CORRESPONDING TO LAM(O) AND HAVING ITS INNER
PRODUCT WITH U EQUAL TO 1/LAM(0)

M BY L+1 MATRIX CONTAINING THE INITIAL EIGENVECTOR IN THE
FIRST COLUMN AND THE SUCCESSIVE EIGENVECTOR ITERATES IN THE
REMAINING OOLUMNS

M BY N MATRIX WHICH TRANSFORMS CERTAIN N VECTORS ASSOCIATED
WITH A INTO M VECTORS

M BY N MATRIX WHICH TRANSFORMS N VECTORS INTO M VECTORS BY
USING LINEAR INTERPOLATION OF FUNCTIONS

M BY M, N BY N, N BY M, M BY N MATRICES RESPECTIVELY, WHICH
STORE THE WEIGHTED VALUES OF THE KERNEL OF THE INTEGRAL
OPERATOR T AT VARIOUS NODES

N BY M MATRIX USED FOR CALCULATING EIGENVALUE ITERATES

N VECTOR DENOTING THE PRODUCT OF TAH AND A COLUMN OF PH

N+1 BY N MATRIX CONTAINING THE COEFFICIENTS OF A LINEAR
SYSTEM USED FOR CALCULATING EIGENVECTOR ITERATES

SCALING FACTOR FOR THE FIRST ROW OF C

N+1 VECTOR CONTAINING THE RIGHT HAND SIDE OF A LINEAR SYSTEM
WHOSE COEFFICIENT MATRIX IS C

N VECTOR USED IN CALCULATING BETA



370

SOL — LEAST SQUARES SOLUTION OF A LINEAR SYSTEM WHOSE COEFFICIENT
MATRIX IS C

ALPHA - N BY L+1 MATRIX CONTAINING LAM(O)*U IN THE FIRST COLUMN AND
THE SUCCESSIVE SOLUTION VECTORS SOL IN THE REMAINING COLUMNS

AVAL — M VECTOR DENOTING THE PRODUCT OF AV AND A COLUMN OF ALPHA

PRIT - M VECTOR DENOTING A WEIGHTED SUM OF PREVIOUS EIGENVECTOR
ITERATES

TMPH — M VECTOR DENOTING THE PRODUCT OF TM AND A COLUMN OF PH

RESID ~ MAXIMUM NORM OF THE RESIDUAL, USED IN STOPPING CRITERIA

RELIN — RELATIVE INCREMENT IN AN EIGENVECTOR ITERATE, USED IN

STOPPING CRITERIA

% SUBROUTINES CALLED 3

EIGRS ~ COMPUTES THE EIGENVALUES AND EIGENVECTORS OF A REAL
SYMMETRIC MATRIX (ROUTINE IN IMSL LIBRARY EDITION 9.2,
EQUIVALENT TO ROUTINE EVCSF IN IMSL MATH/LIBRARY EDITION
10.0)

LLBQF - COMPUTES THE HIGH ACCURACY SOLUTION OF A LINEAR LEAST
SQUARES PROBLEM (ROUTINE IN IMSL LIBRARY, EDITION 9.2,
EQUIVALENT TO ROUTINE LSBRR IN IMSL MATH/LIBRARY,

EDITION 10.0)

% FUNCTIONS CALLED 3

KERNEL - REAL FUNCTION WHICH YIELDS KERNEL OF THE INTEGRAL
OPERATOR T
NODE - REAL FUNCTION WHICH YIELDS NODES FOR GENERATING THE

MATRICES KM, KN, KH, KV AND IV

WEIGHT -~ REAL FUNCTION WHICH YIELDS WEIGHTS FOR GENERATING THE
MATRICES KM, KN, KH AND KV
MAXNORM - REAL FUNCTION WHICH YIELDS THE MAXIMUM NORM OF ‘A VECTOR



10

20

30

40

50

60

70

120
110

140
130

160
150

180
170

ot pd bt et et et

371

PROGRAM  ITEIG(TAPEL ,TAPE2)
PARAMETER (L=30, M=100, N=10, N1=10)

INTEGER  L,M,N,N1,I,J,K,JOBN,IZ,IER,IA,NN,IB,NB,IND,IX
REAL KM(M,M) ,KN(N,N),KH(N,M),RV(M,N),IV(M,N),
A(N,N),D(N),Z(N,N) ,WK((2*N+1)*(N+3 )+N),
LAM(0:L),U(N),V(N),AV(M,N),PR(M,0:L),ALPHA(N,0:L),
C(N+1,N),TAH(N,M), TM(M,M),
TAHPH(N),SUM(N), BETA(N+1),CC(4),SOL(N), IWK(N),
AVAL(M),PRIT (M), TMPH(M) ,X(M),¥Y(M),
ZETA,RESID,RELIN,
KERNEL ,NODE ,WEIGHT ,MAXNORM

WRITE(2,10)

FORMAT(1H ,5X, “RAYLEIGH~SCHRODINGER SCHEME~,/)
WRITE(2,20) :
FORMAT(1H ,5X, FREDHOLM METHOD(2)",/)
WRITE(2,30)

FORMAT(1H ,5X, KERNEL:EXP (S*T)",/)

WRITE(2,40)

FORMAT(1H ,5X, "NODES:GAUSS TWO POINTS”,/)
WRITE(2,50)

FORMAT (1H ,5X, "WEIGHTS:1/N",/)
WRITE(2,60)N,N1,M

FORMAT(1H ,5X,"N=",12,3X,"N1=",12,3X,"M=",13,/)
WRITE(2,70)

FORMAT(1H ,5%X,“PRECISION FOR STOPPING CRITERIA:1.0E-127,/)

GENERATION OF KM, KN, KH AND KV
DO 110 I=1,M
DO 120 J=1,M
KM(I,J) = WEIGHT(J,M)*KERNEL(NODE(I,M),NODE(J,M))
CONTINUE
CONTINUE

DO 130 I=1,N
DO 140 J=1,N
KN(I,J) = WEIGHT(J,N)*KERNEL(NODE(I,N),NODE(J,N))
CONTINUE
CONTINUE

DO 150 I=1,N
DO 160 J=1,M
KH(I,J) =
‘CONTINUE
CONTINUE

WEIGHT (J,M)*KERNEL(NODE(I,N),NODE(J,M))

DO 170 I=1,M
DO 180 J=1,N
KV(I,J) = WEIGHT(J,N)*KERNEL(NODE(I,M),NODE(J,N))
CONTINUE :
CONTINUE



372

* GENERATION OF IV
J=1
DO 190 I=1,M
IF (NODE(I,M).LT.NODE(1,N)) THEN
IV(I,J) = 1.0
ELSEIF (NODE(I,M).LT.NODE(2,N)) THEN
IV(I,J) = (NODE(2,N)-NODE(I,M))

1 . /(NODE(2,N)-NODE(1,N))
ELSE
IV(I,J) = 0.0
ENDIF

190  CONTINUE
DO 200 J=2,N-1
DO 210 I=1,M
IF (NODE(I,M).LT.NODE(J-1,N)) THEN
1V(I,J) = 0.0
ELSEIF (NODE(I,M).LT.NODE(J,N)) THEN
IV(I,J)=(NODE(J-1,N)-NODE(I,M))
1 /(NODE (J~1,N)-NODE (J,N))
ELSEIF (NODE(I,M).LT,NODE(J+1,N)) THEN
IV(I,J)=(NODE (J+1,N)-NODE(I,M))

1 /(NODE (J+1,N)-NODE (J,N))
ELSE
IV(I,J) = 0.0
ENDIF
210 CONTINUE
200  CONTINUE
J=N
DO 220 I=1,M

IF (NODE(I,M),LT .NODE(N=1,N)) THEN
IV(I,J) = 0.0

ELSEIF (NODE(I,M).LT.NODE(N,N)) THEN
IV(I,J) = (NODE(N-1,N)-NODE(I,M))

1 / (NODE (N-1,N)-NODE (N,N))
ELSE
IV(I,J) = 1.0
ENDIF

220 CONTINUE

* STEP 1(1): EIGENELEMENTS OF A

DO 310 I=1,N
DO 320 J=1,N
A(I,J) = KN(I,J)
320 CONTINUE
310 CONTINUE

JOBN = 12
IZ = N
CALL EIGRS(A,N,JOBN,D,Z,IZ,WK,IER)

WRITE(2,330)

330 FORMAT(1H ,5X, “EIGENVALUES OF A~-,/)
WRITE(2,340)(D(I),I=1,N)

340  FORMAT(IH ,3X,3E21.13)



373

LAM(0) = D(NI)
DO 350 I=l,N
U(L) = Z(I,N1)
350  CONTINUE

* STEP 1(II): EIGENVECTOR OF CONJUGATE TRANSPOSE OF A

DO 360 I=l,N
V(I) = Z(I,N1)/LAM(O)
360  CONTINUE

x STEP 2

* GENERATION OF AV
DO 410 I=1,M
DO 420 J=1,N
AV(1,J) = 0.0
DO 430 K=l,N
AV(I,J) = AV(I,J)+IV(I,K)*KN(K,J)

430 CONTINUE
420 CONTINUE
410 CONTINUE

* COMPUTATION OF PH(O0)
DO 440 I=1,M
PH(I,0) = 0.0
DO 450 J=1,N
PH(I,0) = PH(I,0)+AV(I,J)*U(J)
450 CONTINUE
440 CONTINUE

* COMPUTATION OF ALPHA(O)
DO 460 I=1,N
ALPHA(I,0) = LAM(0)*U(I)
460 CONTINUE

* GENERATION OF C
ZETA = 0.0
DO 470 I=1,N
IF (ZETA .LT. ABS(D(I)-D(N1))) THEN
ZETA = ABS(D(I)-D(N1))
ENDIF ‘
470 CONTINUE
ZETA = ZETA*LAM(0)

DO 480 J=1,N
C(1,J) = ZETA*V(J)
480 CONTINUE
DO 490 I=2,N+1
DO 500 J=1,N
C(1,J) = A(I-1,J)
500 CONTINUE
490 CONTINUE
DO 510 I=1,N
C(I+1,1I) = A(I,I)-LAM(0)
510 CONTINUE



374

*  GENERATION OF TAH
DO 520 I=1,N
DO 530 J=1,M
TAH(I,J) = KH(I,J)
530 CONTINUE
520  CONTINUE

* GENERATION OF TM
DO 540 I=1,M
DO 550 J=1,M
TM(I,J) = KM(I,J)
550 CONTINUE
540  CONTINUE

WRITE (2,690)

690  FORMAT (/,1H ,6X,”J”,9X, LAM(J)",10X, RESID",5X, RELIN")
J=0
WRITE (2,700) J,LAM(J)

700  FORMAT (/,lH ,5X,12,2X,E19.13,2E10.2)

* THE ITERATION STARTS
DO 710 J=1,L
* STEP 2(I1):COMPUTATION OF J-TH EIGENVALUE ITERATE

DO 720 I=1,N
TAHPH(I) = 0.0
DO 730 K=1,M
TAHPH(I) = TAHPH(I)+TAH(I,K)*PH(K,J-1)
730 CONTINUE
720 CONTINUE

LAM(J) = 0.0
DO 740 I=1,N
LAM(J) = LAM(J)+TAHPH(I)*V(I)

740 CONTINUE
* STEP 2(II):SOLUTION OF (N+1)*N LINEAR SYSTEM
* CALCULATION OF RIGHT HAND SIDE

DO 810 I=],N

SUM(I) = 0.0
DO 820 K=0,J-1 .
SUM(I) = SUM(I)+LAM(J-K)*ALPHA(I,K)
820 CONTINUE
810 CONTINUE

BETA(1l) = 0.0
DO 830 I=1,N
BETA(I+]1) = =TAHPH(I)+SUM(I)
830 CONTINUE



375

* LEAST SQUARES SOLUTION
IA = N+l
NN = N+1
IB = N+l
" NB =1
IND = 0
IX = N .
CALL LLBQF(C,IA,NN,N,BETA,IB,NB,IND,CC,SOL,IX,IWK,WK,IER)
DO 840 I=1,N
. ALPHA(I,J) = SOL(I)
840 CONTINUE
* STEP 2(IIL): COMPUTATION OF THE J-TH EIGENVECTOR ITERATE
DO 910 I=1,M
AVAL(I) = 0.0
DO 920 K=1,N
AVAL(L) = AVAL(I)+ AV(I,K)*ALPHA(K,J)
920 CONTINUE
910 CONTINUE
DO 930 I=1,M
PRIT(I) = 0.0
DO 940 K=1,J

PRIT(I) = PRIT(I)+(LAM(K~]1)-LAM(K))*PH(I,J=K)
940 . CONTINUE
930 CONTINUE

DO 950 I=1,M
TMPH(I) = 0.0

DO 960 K=1,M
_ CTMPH(I) = TMPH(I)+TM(I,K)*PH(K,J~1)
960 CONTINUE
950 CONTINUE
DO 970 I=1,M :

PH(1,J) = (AVAL(I)+PRIT(I)+TMPH(I))/LAM(O)
970 CONTINUE

* CALCULATION OF RESIDUAL AND RELATIVE INCREMENT
DO 980 I=1,M
X(I) = TMPH(I)-LAM(J)*PH(I,J-1)
980 CONTINUE

RESID = MAXNORM(X,M)
DO 990 I=1,M
X(1) = PH(I,J)-PH(I,J-1)
Y(1) = PH(I,J)
990 CONTINUE
RELIN = MAXNORM(X,M)/MAXNORM(Y,M)

WRITE(2,700) J,LAM(J),RESID,RELIN



376

* STOPPING CRITERIA
IF (RESID,.LT.1.0E-]12) THEN
WRITE(2,1000)
1000 FORMAT(/,1H ,5X, “RESID.LT.1.0E-127)
ENDIF
IF (RELIN.LT.1.0E-12) THEN
. WRITE(2,1010)
1010 FORMAT(/,1H ,5X, “RELIN,LT.1.0E=127)
ENDIF
IF (RESID.LT.1.0E-12.AND.RELIN.LT.1.0E-12) THEN
GO TO 1100
ENDIF

710 CONTINUE

1100  CONTINUE
STOP
END

REAL FUNCTION KERNEL(S,T)
REAL S,T

KERNEL = EXP(S*T)

RETURN

END

REAL FUNCTION NODE(I,N)
INTEGER I,11,I2,N
11 = 1/2
12 = I-11%2
IF (I2.NE.0Q) THEN
NODE = (FLOAT(I)-1.0/SQRT(3.0))/N
ELSE
NODE = (FLOAT(I)-1.0+1.0/SQRT(3.0))/N
ENDIF
RETURN
END

REAL FUNCTION WEIGHT(I,N)
INTEGER 1I,N

WEIGHT = 1.0/FLOAT(N)
RETURN

END

REAL FUNCTION MAXNORM(X,M)
INTEGER M
REAL X(M)
MAXNORM = 0.0
DO 1110 I=1,M
IF (MAXNORM.LT.ABS(X(I))) THEN
MAXNORM = ABS(X(I))
ENDIF
1110 CONTINUE
RETURN
END



OUTPUT OF PROGRAM ITEIG

RAYLEIGH-SCHRODINGER SCHEME

FREDHOLM METHOD(2)
KERNEL : EXP (S*T)
NODES : GAUSS TWO POINTS
WEIGHTS:1/N

N=10 Ni=10 M=100

377

PRECISION FOR STOPPING CRITERIA:1.0E-12

EIGENVALUES OF A

-.1133820135241E~-14 2104700640233 9E-14
24796177191072E~-10 292385982 96043E-08
«7441265877077E-04 +355240573082 9E-02

.13530284 942 91E+01

J ©LAM(J)

0  .1353028494291E+01
1 .1352614455737E+01
2 .1353030065281E+01
3 .1353030261682E+01
4 .1353030164665E+401
5 .1353030164536E+01
6  .1353030164578E+01

7 .1353030164578E+01

RESID.LT.1,0E~12

RELIN.LT.1.0E~12

RESID

.18E-01
.16E-03
.39E-05
<RE-07
.15E-08
<60E-10

.69E-12

RELIN

«23E-01
«23E-03
«50E-05
.13E-06
.20E-08
«86E~-10

< 84E~12

2269934633 9808E~-12
.10500789862 92E-05
21059756286 955E+00



378

Computation of actual accuracy

As we have seen in Section 18, the computed eigenvalue iterates
)\J. = LAM(J) will converge, under suitable conditions, to the simple
eigenvalue )\(M) of the matrix [TM] which is nearest to ?\O = LAM(O) ,
and the computed eigenvector iterafes gj will converge to the

corresponding eigenvector g(M) of [TM] which satisfies
qrame®, vy =AM

We consider some additions to the program ITEIG which allow us to find

the actual accuracy reached at each iterate by computing )\(M), g(M),

?\(M) - 7\j and the maximum norm of S(M) - '%j , j=0,1,..., L . This

is done only for illustrative purposes. The whole point of PROGRAM

ITEIG is to avoid calculating A(M) and g(M) .

% MAJOR DATA STRUCTURES 3¢

Ml' - THE SERIAL NUMBER OF THE EIGENVALUE OF TM NEAREST TO LAM(O)
DD — M VECTOR CONTAINING EIGENVALUES OF TM
7z, - M BY M MATRIX WHOSE I-TH COLUMN CONTAINS AN EIGENVECTOR OF
TM CORRESPONDING TO DD(I)
TAHZZ — N VECTOR DENOTING THE PRODUCT OF TAH AND THE M1-TH COLUMN
OF ZZ AND HAS EUCLIDEAN NORM ONE
SCP - THE SCALAR PRODUCT OF TAHZZ AND V
PHI —~ THE EIGENVECTOR OF TM CORRESPONDING TO DD(M1) WHOSE INNER
PRODUCT WITH V EQUALS DD(M1)
We declare in the beginning of PROGRAM ITEIG
INTEGER M1
REAL DD(M), ZZ(M,M), WWK(M+Mx(M+1)/2), TAHZZ(N), SCP, PHI(M)

and add the following lines at places indicated by the statement
numbers; the WRITE statements and their formats 690 and 700 are also

changed.



379

ADDENDUM TO PROGRAM ITEIG

EIGENELEMENTS OF TM FOR COMPARISON
JOBN = 12
1z = M

CALL EIGRS (TM,M,JOBN,DD,ZZ,IZ,WWK,IER)

EIGENVALUE OF TM NEAREST TO LAM(O)
DO 615 I=M,1,-1
IF (DD(I1).LE.LAM(0)) THEN
Ml =1
IF ( M1.EQ.M) THEN
GO TO 635
ELSE
GO TO 625
ENDIF
ENDIF
615 CONTINUE
ML =1
625 IF (ABS(LAM(0)-DD(M1)).GT. ABS(LAM(0)-DD(M1+1))) THEN
Ml = Ml+1
ENDIF
635 CONTINUE

WRITE (2,645) M1,DD(M1)
645 FORMAT (/,1H ,5X,"Ml=",13,5X, LAM =",E19.13,/,/)

DO 655 I=1,N

TAHZZ(I) = 0.0
DO 665 J=1,M
TAHZZ(I) = TAHZZ(I)+TAH(I,J)*ZZ(J,M1)
665 CONTINUE

655 CONTINUE

SCP = 0.0
DO 675 I=1,N
SCP = SCP+TAHZZ(I)*V(I)
675 CONTINUE

DO 685 I=1,M :
PHI(I) = ZZ(I,M1)/SCP*DD(MI)
X(1) = PHI(I)-PH(I,O0)
685 CONTINUE

WRITE (2,690)
690 FORMAT (1H ,6X,°J”,9%, LAM(J)”,8X, “LAM-LAM(J)~,1X,
1 “PH-PH(J)”,3X, “RESID”,5X, “RELIN”)
J=0
WRITE (2,700)J,LAM(J),DD(M1)-LAM(J),MAXNORM(X,M)
700 FORMAT (/,1H ,5X,12,2X,E19.13,4E10.2)

DO 995 I=1,M
X(I) = PHI(I)-PH(I,J)
995 CONTINUE

WRITE(2,700) J,LAM(J),DD(M1)-LAM(.J) ,MAXNORM(X,M),
1 RESID,RELIN



OUTPUT OF PROGRAM ITEIG WITH THE ADDENDUM

380

RAYLEIGH-SCHRODINGER SCHEME

FREDHOLM METHOD(2)

KERNEL:EXP (S*T)

NODES:GAUSS TWO- POINTS

WEIGHTS:1/N

N=10 NI=10

M=100

PRECISION FOR STOPPING CRITERIA:]1.0%*-]12

EIGENVALUES OF A
<1133820135241E-14

-104700640233 9E~14

2269934633 9808E-12

47961771 91072E-10  .9238598296043E-08  .10500789862 92E-05
.7441265877077E-04 +355240573082 9E-02 +1059756286 955E+00
+13530284 942 91E+01

M1=100 LAM = .1353030164578E+01

J LAM(J) LAM-LAM(J) PH-PH(J) RESID RELIN
0 -.1353028494291E+01 J17E-05 . 13E-01

1 5135261445573 7E401 -42E-03 -13E-03 -18E-01 .23E-01
2 .1353030065281E+01 .99E-07 .29E-05 .16E-03 -23E-03
3  .1353030261682E+01 =-.97E-07 . 73E-07 .39E-05 .50E-05
4 .1353030164665E+01 -.86E-10 .1lE-08 .92E-07 .13E-06
5 .1353030164536E+01 42E-10  .48E-10 .15E-08 .20E-08
6  .1353030164578E+01 «50E-13 «52E-12 .60E-10 - - 86E-10
7  .1353030164578E+01 ~.28E-13 <75E-13 «69E-12 «84E-12

RESID.LT.1.0E-}2

RELIN,LT.1.0E-12



381

Hodifications of the program ITEIG
We discuss how PROGRAM ITEIG can be easily adapted to deal with a

large number of different situations.

(i) Parameter values

By simply assigning different values to the parameters in the
second line of the program, one can alter the maximum number L of the
iterations, the size M of the grid which discretizes the integral
operator T , the order N of the matrix A in the initial eigenvalue
problem, and the serial number N1 of the selected eigenvalue of A with

vwvhich we start the iteration process.

(ii) Various iteration schemes

Instead of the Rayleigh-Schrodinger scheme (11.18) used in PROGRAM
ITEIG, we can use the fixed point scheme (11.19), the modified fixed
point scheme (11.31), or the Ahués.scheme (11.35). The algorithms 17.9,
17.10 and 17.11 indicate the required changes in the program ITEIG for
implementing these schemes. There is no need for the vector PRIT in
these schemes. Hence the DO loops 930 and 940 can be dropped
altogether. In fact, there is no need for the double arrays
ATPHA(N,0:L) and PH(M,0:L); instead, single arrays ALPHA(N), PH(M)
and PRPH(M) (representing the current solution of the linear system,
the current eigenvector iterate and the previous eigenvector iterate,

respectively) will suffice.

Fixed point scheme: Change the DO loops 820 and 970 as follows:

DO 820 K = 0,J-1
SUM(I) = SUM(I)+LAM(J)*ALPHA(I,K)

820  CONTINUE



382

DOOT0 I =1, M
PH(I,J) = (AVAL(I)+(LAM(O)-LAM(J))*PH(I,J-1)+TMPH(I))/LAM(0)
970  CONTINUE

Modified fixed point scheme: Declare

REAL T2AH(N,M),T2M(M, M), T2AHPH(N) ,MU(L) , T2MPH(M)
Add the following comments and statements after the nested

DO loops 540 and 550 :

* GENERATION OF T2AH
DO 555 1 = 1,N
DO 565 J = 1,M
T2AH(I,J) = 0.0
DO 575 K = 1,M
T2AH(I,J) = T2AH(I,J)+TAH(I,K)*TM(K,])
575 CONTINUE
565 CONTINUE

555 CONTINUE

3 GENERATION OF T2M
DO5S85 I =1.,M

DO 595 J = 1.M

T2M(I,J) = 0.0
DO 605 K = 1,M
T2M(I,J) = T2M(I,J)+TH(I.K)*TM(K.J)
605 CONTINUE
595 CONTINUE

585 CONTINUE



755

745

765

785

775

830

and

S70

383

Add the following lines after statement 740:

DO 745 I = 1,N
T2AHPH(I) = 0.0
DO 755 K = 1,M
T2AHPH(I) = T2AHPH(I)+T2AH(I,K)*PH(K,J-1)
CONTINUE

CONTINUE

MU(J) = 0.0
DO 765 I = 1,N

MU(J)+T2AHPH(I)*V(I)

MU(J) =
CONTINUE
DO 775 I = 1,M

T2MPH(I) = 0.0

DO 785 K =1,M
TOMPH(I) = T2MPH(I)+T2M(I,K)*PH(K,J-1)
CONTINUE

CONTINUE

Delete the DO loops 810 and 820.

Change the DO loops 830 and 970 as follows:

DO 830 I = 1,N
BETA(I+1) = (-T2AHPH(I)+MU(J)/LAM(J)*TAHPH(I))/LAM(J)

CONTINUE

DO 970 I =1,
PH(I,J) = (LAM(J)XAVAL(I)+(LAM(0)-MU(J)/LAM(J))=THPH(I)
+ T2MPH(I))/(LAM(0)*LAM(J))
CONTINUE



384

Ahués scheme: Same additions and deletions as in the case of the

modified fixed point scheme. Also, change the DO loops 830 and 970 as

follows:
DOS830 I =1,N
BETA(I+1) = (~T2AHPH(I)+LAM(J)*TAHPH(I)
1 +LAM(0)*(MU(J)-LAM(J)*LAM(J) )*U(I))/LAN(.J)
830 CONTINUE
and
DO 970 I = 1,M
PH(I.J) = (LAM(J)*AVAL(I)+(LAM(J)*LAM(J)-MU(J))*PH(I,0)
1 +(LAM(0)-LAM(J) )TMPH(T)
1 +T2MPH(I))/(LAM(O)>»LAM(J))
970 CONTINUE

(iii) Various methods
By altering, if necessary, the matrices A, AV and TAH appearing
in the nested DO loops 310-320,410-430 and 520-530, respectively, one
can employ any of the following methods: Projection, Sloan, Galerkin(1)
and (2), Nystrom, Fredholm(1). The required alterations can be quickly
found from Table 19.1. For example, to employ the Nystrom method we
need only alter the matrix AV; for this purpose we replace the nested
DO loops 410-430 by
DO 410 I = 1,M
DO 420 J = 1,N
AV(I,J) = KV(I,J)
420 CONTINUE
410 CONTINUE
With these changes, the program will work provided the matrix A is
real and symmetric. If it is not, further changes are necéssary. They

are outlined later.



385

(iv) Kernel, nodes and weights

By changing the definitions of KERNEL, NODE and WEIGHT in the
function subprograms given at the end of PROGRAM ITEIG, we can vary the
kernel of the integral operator T as well as the nodes and the weights
used in the quadrature formula which discretizes T. With these changes,
the program will work if the matrix A remains real and symmetric.

~ Otherwise further changes are required, as detailed below.

(v) General complex matrix A

The matrix A appearing in the DO loops 310-320 is real and
symmetric, and it remains so for the Fredholm and the Nystrom methods as
long as the kernel is real and symmetric and the weights are all real

and equal. When A is not real and symmetric, make the following changes

1. COMPLEX (instead of REAL) declarations of appropriate
arguments; use of the FORTRAN 77 intrinsic function CONJG which yields

the conjugate of a complex number.

2. Instead of the routine EIGRS of the IMSL LIBRARY, Edition 9.2
(or its equivalent EVCSF of the IMSL MATH/LIBRARY, Edition 10.0), the

following IMSL routines need to be called in appropriate cases.

A Edition 9.2 Edition 10.0
Complex Hermitian EIGCH EVCHF
Real general EIGRF EVCRG
Complex general EIGCC EVCCG

A set of Library interface routines is available to link the
routines in the old and the new editions. The routines in Edition 9.2
treat a complex matrix of order N as a real vector of length 2N2 ; an
appropriate equivalence statement may be required when an array is of

one type in the calling program but of ancther type in the subroutine.



386

For the routines in Edition 10.0, the eigenvalues appear in a complex N
vector EVAL in increasing lexicographic order and the I-th colum of a
complex N by N matrix EVEC gives an eigenvector corresponding to

EVAL(I); each eigenvector U 1is normalized such that
max{ |Re U(1)[+|Im U(1)],..... , [Re UMN) [+|Im U(N)I} =1 .

We then pick a simple nonzero eigenvalue LAM(O) of A and a

corresponding eigenvector U according to our choice.

3. Let ACT denote the conjugate transpose of the matrix A .
If A is normal (i.e., ACT commutes with A ) , then U itself is an
eigenvector of ACT corresponding to CONJG(LAM(O)). Hence in this case
we simply need to replace LAM(0) by CONJG(LAM(O)) in the DO loop 360.
If A is Hermitian, then ACT = A and CONJG(LAM(O)) = LAM(O) ., and

there is no change in the DO loop 360.

For a general (real or complex) matrix A , we generate ACT as

follows:

%  GENERATION OF ACT
DO 360 I = 1,N
DO 370 J = 1,N
ACT(I,J) = CONJG(A(J.I))
370 CONTINUE

360 CONTINUE

We can then solve the eigenvalue problem for ACT just as we do for
A . Let CONJG(LAM(O)) be the N2-th entry of the vector D or EVAL, so
that an eigenvector of ACT corresponding to CONJG(LAM(O)}) appears in the
N2-th column of the matrix Z or EVEC. To obtain an eigenvector V
of ACT whose inner product with U is 1/LAM(0), we proceed as follows.

The complex argument SP denotes 'scalar product'.



387

COMPLEX SP
SP = 0.0
DO 380 I = 1,N
SP = SP+U(I)*CONJG(Z(I,N2))
380  CONTINUE
DO 390 I = 1,N
V(I) = Z(I,N2)/CONJG(SPXLAM(0))

390 CONTINUE

Alternatively, we can find V as the least squares solution of a
linear system with its coefficient matrix CBAR and right hand side

BETABAR, defined as follows:

COMPLEX CBAR(N+1,N), BETABAR(N+1)
%  GENERATION OF CBAR
DO 360 J = 1,N
CBAR(1,J) = CONJG(U(J))
360  CONTINUE
DO 370 I = 2, N+1
DO 380 J = 1,N
CBAR(I,J) = ACT(I-1,J)
380 CONTINUE
370  CONTINUE
DO 390 I = 1,N
CBAR(I+1,I) = ACT(I,I)-CONJG(LAM(0))
390  CONTINUE
BETABAR(1) = 1/CONJG(LAM(0))
DO 400 I = 1,N
BETABAR(I+1) = 0.0

400 CONTINUE



388

If ACT is a real matrix, the IMSL subroutine LLBQF of Edition 9.2
or LSBRR of Edition 10.0 can be used for the solution of the above least
squares problem. The LINPACK routines SQRDC and SQRSL also give the
solution of a least squares problem with a real coefficient matrix.

Their complex analogues CQRDC and CQRSL are available.

Since V is, in general, a complex array, and since thé inner
product is conjugate linear in the second variable, we change V(I) to
CONJG(V(I)) in the DO loop 740 of PROGRAM ITEIG which gives LAM(J) and

in the DO loop 765 of its modification which gives MU(J).

4. If the functions KERNEL and WEIGHT are real-valued, LAM(O) is
real and the entries of U and V are real, then the coefficient
matrix C and the right hand side vector BETA are %-eal. We can then
continue to use the IMSL routine LLBQF or LSBRR for obtaining the least
squares solution ALPHA in the DO loop 840. Otherwise, LINPACK routines

CQRDC and CQRSL can be employed to handle the complex case.

Unless A is normal and U has Euclidean norm 1, the scaling
factor ZETA for the first row of C may be inappropriate (Cf. (18.15)
and (18.17)). Hence the DO loop 470 may be dropped and the DO loop 480

be changed as follows:

DO 480 J = 1,N
C(1,J) = CONJG(V(J))
480  CONTINUE

We describe an alternative method for obtaining the solution SOL in
the DO loop 840. It is based on our discussion of (18.18) and (18.20).
Instead of generating the matrix C in the DO loops 470 to 510, we

generate an N by N matrix B as follows.



389

COMPLEX B(N,N)
%  GENERATION OF B
DO 470 I = 1,N
DO 480 J = 1,N
B(I,J) = A(I,J)-LAM(O)%LAM(0)U(I)*CONJG(V(J))
480 CONTINUE
CONTINUE
DO 400 I = 1,N
B(I,I) = B(I,I)-LAM(0)

490 CONTINUE

Then SOL can be obtained as the solution of the linear system with
coefficient matrix B and right hand side BETA(I+1),I=1,...,N . The

following IMSL routines can be used to compute this solution.

B Edition 9.2 Edition 10.0
Real symmetric LEQ2S LSASF
Complex Hermitian - LSAHF
Real general LEQT2F LSARG

Complex general LEQ2C 1.SACG



