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14. RESOLVENT OPERATOR APPROXTMATION

As promised at the end of the last section, we introduce a mode of
approximation which includes both the norm approximation and the
collectively compact approximation, and which has nice implications for
spectral approximation. At the end of this section we also show that
the conditions needed for the convergence of various iteration schemes
given in Section 11 are fulfilled under this mode of approximation. A
variant of this mode has been called ‘strong approximation’ in the
literature (cf. [CL], [LN]), but we have chosen to give it another more

appropriate name.

A sequence (Tn) in BL(X) 1is said to be a resolvent operator

approximation of T € BL(X) if Tn £, T, and for every z € p(T) ,

(14.1) lI(T-—Tn):R(z)(T—Tn)Il >0 .

We denote this fact by Tn -2, T . Showing that a sequence (Tn) is

]

resolvent operator approximation of T 1is, in general, a formidable
task. However, there are two well known modes of approximation which

imply the resolvent operator approximation. It is obvious that

Tn —E—ue T implies Tn RN I Also, it follows by letting

A = TR(z) , An = TnR(z) for z € p(T) , and B=T , Bn =T in

Proposition 13.3 that T_ LC5 T implies T, LN

Let Tn 27 By the uniform boundedness principle ([L], 9.1

and 9.3),

T £ sup{HTnH tn=1,2,...} <o,
For a closed subset E of p(T) ., we have

max IR(z)Il < ® , v (E) = max I(T-T_)R(z)ll <  ,
Z€E o Z€E n
(14.2) v(E) = sup vn(E) (o,
n=1,2,...
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since the function z » R(z) is continuous on E and IR(z)ll >0 as
lz] = o by (5.9) .

Considering the analytic functions fn(z) = (T—Tn)R(z)(T—Tn) on
p(T) ., it follows by Problem 4.3 that the condition (14.1) holds for
every z € p(T) if and only if every connected component of p(T)
contains a set {zk} with a limit point in that component such that the

condition (14.1) holds for z = z k=1,2,... ; in that case, the

K
convergence is uniform for z in any closed subset of a connected
component of p(T) .

The simplest situation arises when p(T) 1is itself connected.
This is certainly the case if o(T) 1is a countable set, e.g., when T
is a compact operator. In this situation, it can be shown that the

condition (14.1) holds for every z € p(T) if and only if for each

fixed k = 0,1,2,... ,
N(T-T_)T(T-T )l >0 as n -
n n :

See Problem 14.1. If Tn L57T and T is compact, then this condition
is equivalent to H(T—Tn)TnH -0 as n->o .

We assume throughout this section that T Lo,

PROPOSITION 14.1 Let E be a closed subset of p(T) . Then

(T—Tn)R(z) L0, uniformly for z € E, and

(14.3) max I(T-T_)R(2)(T-T_)Il 50 ,
z€E
(14.4) 5_(E) = max I[(T-T_)R(z)1° = O .
Z€E

Proof We assume without loss of generality that the set E is compact.

Let € >0, and find =z in E such that for every z € E

1,...,Zk

there is some Zj with Iz—zjl {e. For z € p(T) , the first

resolvent identity (5.5) shows that
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(T-TR(z) = (T-T )[R(z)-R(z,)] + (T-T)R(z,)

(z—zj)(T—Tn)R(zj)R(Z) + (T—Tn)R(zj) .

Let x € X . Since Tn =N , there exists oy such that for

all n 2 n, and j =1,...,k, we have H(T—Tn)R(zj)xH < e . Then

H(T—Tn)R(z)xH < e[D(E) m:;HR(z)H + 1]
Z

| Hence (T—TD)R(Z)X -0, uniformly for z € E. For z € E, we have
(T—Tn)R(z)(T—Tn) = (z—zj)(T—Tn)R(z)R(zj)(T—Tn) + (T_Tn)R(Zj)(T_Tn) .

Since for j=1,....k , H(T—Tn)R(zj)(T—Tn)H - 0 by assumption, we see

that (14.3) holds. Finally, since

6 (E) £ HT-T _JR(z)(T-T )N max HR(=z)I,
n(B) € mex ICT=T JR(z) (1T, )1 max 1R(2)

we see that 6n(E) -0 as n=>® . V4

For a closed subset E of p(T) ., let nO(E) denote the smollest
positive integer such that for all n 2 nO(E) ,  we have 5n(E) <1.

Such an integer exists by Proposition 14.1.

CORCLLARY 14.2 Let E C p(T) be closed. Then for all =n 2 no(E) ,

we have E C p(Tn) ; if we let Rn(z) = (Tn-zI)—1 for z € E, then

(14.5) R (z) = R(z) I [(T-T_)R(=x)T"
k=0
max IR(z)#l [1 + vn(E)]

mex IIR_(z)1 ZEE ,

2€E 1-5_(E)
so that
(14.8) M(E) = sup{HRh(z)H :z€E, n?2 nO(E)} ™,
(14.7) max HRn(z)x - R(z)xll » 0 for every x € X .

z€EE
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Proof Let n 2 nO(E) . Then

max r_((T-T_)R(z)) < max N[(T-T )R(z)12n*"2 = L6 (E) < 1 .
zeE 7 n Z€EE .o n

let z€E, A=T-2I and B = Tn - zI . By Theorem 9.1, B is
invertible, i.e., z € p(Tn) . Thus, EC p(Tn) . Also, (9.4) shows

that Rn(z) is given by (14.5), and

IR(z)Il T + (T-T_)R(z)!

IR_(z)Il ¢
n 1 - IL(T-T_)R(=) 11
by (9.5). Taking the meximum over z € E , we obtain (14.6). By

(14.2) and (14.4), max HRn(z)H , Y nO(E) , Tremains bounded.
zZ€E

Finally, let x € X . Then for z € E and n 2 no(E) ,
Rn(z)x - R(z)x = Rn(z)(T—Tn)R(z)x
by the second resolvent identity (9.2). Hence

IR_(z)x - R(z)xll < M(E) e H(T—Tn)R(z)xH]

But max ”(T—TD)R(Z)X" - 0 by Proposition 14.1. Hence (14.7)
z€E

follows. /7

We now prove the upper semicontinuity of the spectrum with respect
to the resolvent operator approximation.
THEOREM 14.3 Let Tn L2, T . Let G be an open set containing
o(T) . Then G also contains U(Tn) for all large n .

If A _€o(T ) and A -~ A, then A € o(T) .
n n n

Proof The set E={z €C :z ¢ G, |z| {a} , where
o = sup{HTnH tn=1,2,...} , 1is a compact subset of p(T) . Hence by

Corollary 14.2, we see that E C p(Tn) for all n 2 nO(E) ; but if
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z € o(T_ ), then |z| {r (T.) <IT Il {a . This shows that o(T_) CG
n o''n n n
for all =n > nO(E) .
Let An € G(Tn) and An - A . Assume A € p(T) , and let
d = dist(A,0(T)) . Then the set G = {z € C : dist(z,o(T)) < d/2} is
open and contains o(T) . Hence a(Tn) C G for all large n , so that

dist(An,c(T)) < d/2 . Now,

d = dist(A,0(T)) < I-A_| + dist(A_,o(T))

I+ d2 .
n

This shows that IR—Anl > d/2 for all large n , and contradicts

An - AN . Thus, A € o(T) . V4

Before we proceed to prove the lower semicontinuity of the spectrum

at the discrete spectral values, we prove a useful preliminary result.

IEMMA 14.4 Let I be a simple closed rectifiable positively oriented
curve in p(T) . Then T C p(Tn) for all n 2 no(T). If P and Pn
denote the spectral projections of T and Tn associated with T

respectively, then

B

P -BEsp
n
(14.8)
rank Pn =rank P, n 2 no(F) .

If rank P < @ , then

P =P,

(14.9) N(T-T_)PI >0 , I(T-T )P Il >0,
(14.10) I(P-P_)Pl >0 , I(P-P )P Il >0 ,
(14.11) S(P(X),Pn(X)) -0 .

Proof Since I' is a compact subset of p(T) , it follows by Corollary

14.2 that T C p(Tn) for all n 2 nO(T) . Fix n 2 no(F) . Consider
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the family of operators
Tn(t) =T + t(Tn—T) , t€C,

and the disk

. 1
R R (o) &
z€l

as introduced in (9.14). Since 6n(T) <1, we see that t € ar for
all It} <1 . If Pn(t) denotes the spectral projection associated

with Tn(t) and T , then by Corollary 9.7 we have for t € Br

rank P = rank P (1) = rank P_(0) = rank P .
n n n

Next, by Proposition 14.1, we see that for each x € X ,

Rn(z)x - R(z)x uniformly for z € I' . Hence by (4.8),

1 1
PnX = - 21T_i Rn(Z)X dz = - 2——1—J\ R(Z)X dz = Px ,
r r ,
ie., P Psp .
n

Now, assume that rank P {( ® . Then by Theorem 13.4, we have
Pn <€, P . The relations (14.9) and (14.10) follow immediately from
(13.5).

Since the gap between the subspaces P(X) and Pn(X) satisfies

(cf. (2.4))

S(P(X),Pn(X)) < max {I(P-P )Pl , 1(P_-P)P_II} ,

it follows from (14.10) that, it tends to zerc as n = ® . V4

Now we prove a very important theorem.

THEOREM 14.5 Let A be a discrete spectral value of T of algebraic

multiplicity m , geometric multiplicity g , and let it be a pole of
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order & of R(z) . Let I be a curve in p(T) separating A f{from
the rest of o(T) .

(a) For each n 2 nO(F) , U(Tn) N Int I' consists of a finite

number of eigenvalues A s s of T , where k <m .
n,1 n,kn n n
(b) If An € {An,l";"kn,kn} s .then as n = ®©
(14.12) An A,

and if P is an eigenvector of Tn corresponding to An of norm 1 ,

then

- _ary _
(14.13)  llg = Pp Il < groms e IR(z) Il H(T-T )o Il =0

where £(I') is the length of I' . Also, a subsequence of (¢n)

converges to an eigenvector of T .

{c) Let m j (resp., £, j) denote the algebraic (resp.,

geometric) multiplicity of An i and let Bn i be the order of the

B )

pole of Rn(z) at An,j . Then
mo1 + ...+ mn,kn =m for all n > no(T) s
(14.14) gn,j g for j= 1,...,kn and all large n ,
< En!1 + ...+ en’kn for all large n .

Proof (a) For n 2 nO(F) , we have I C p(Tn) by Lemma 14.4, and if
P (resp., Pn) denotes the spectral projection associated with

T(resp., Tn) and ' , then
rank Pn =rank P=m .

Hence by Theorem 7.7, a(Tn) N Int T consists of a finite number of
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eigenvalues A se e s of T_ and we have
n,1 n,kn n
mn’1 + ... mox = rank Pn =m .
n
(b) For e >0, let Fe denote the circle with centre A and
radius e . Then for all sufficiently small e and all n 2 no(Te) s

we have by (14.8)

rank Pre(Tn) = rank Pre(T) =rank P =

This implies that for all n. O(T ), A . €IntI" , i.e.,
n,j e

Ikn,j—kl <e for j = 1,...,kn . Thus, if A € {xn,l""’xn,kn} ,
then An AN, as n = _ Next, let fn be an eigenvector of Tn
corresponding to An of norm 1 . By the second resolvent identity

(5.5), we have

P - J [R(z)—R (z)]dz

n 2ﬂ1

1

=57 R(z)(T —T)R (z)dz .

But Rn(z)¢n = @n/(kn—z) for z € p(Tn) . Hence

o~ Po_ = (P-P)o_ = [2,” f —RE— dz] (T_-T)o_

Since An > A, we see that for all z € I' and for all large n
Ixn—zl > d/2r , where d = dist(A,T') .

Also,
H(T—Tn)wnﬂ = H(T—Tn)innH < H(T—Tn)PnH

which converges to zero by (14.9). Hence (14.13) follows.

Since P 1is compact and P L5 p by Lemma 14.4, we conclude

that the set
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U {an ikl <1, n 2 nO(F)}
is totally bounded in X . Now, each P = Pn¢n is in this set, so

that there is a subsequence (¢nk) which converges to some ¢ in X .

Since I(T-T_ Jo_ I < I(T-T )PnkH -0 by (14.9) . we have

Te = 1lim T =1im T ¢ = lim A_ ¢ = A¢ ,
P i Pk P Ty
i.e., ¢ 1is an eigenvector of T corresponding to A .
(c) We have already §hown that m1 + ...+ mn,kn =m for all
n 2 nO(T) . To show gn,j g for all large n and j = 1,...,kn s
assume that dim Z(T -A_ . I) =g . 2h for all n in an infinite
n'mn,j n, j
n n
subset N and j_ € {1,....k } . Let A_=A_. . By the Riesz
n n n n,.]n

lemma ([L].6.8; cf. Problem 3.1.), there is Xk € Z(Tn—AnI) for

k=1,...,h such that llx .l =1 and
n,k
k-1
lix - 2 c.x .l >1/2 for k=2,...,h and all c, € C .
n,k jop n.i i
Since for each k =1,...,h , a subsequence of (xn k) converges to
some x, € Z(T-AI) . we see that kau =1 for k=1,...,h and
k-1
ka - 121 cixiH >1/2 for k=2,...,h and all ¢y eC.
This shows that the set {xl,...,xh} is linearly independent in
Z(T-AI) , i.e., g 2 h . Thus, g, j { g for all large n and
j= 1,...,kn .

Finally, by Lemma 7.8 and Lemma 7.1(ii), we have

2 2
n,l1 _ n.k
] ® ... 0 Z[(Tn xn,k ) n] .

P (X) =2 [(Tn—)\n’ B :
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Let
~ en 1 en k
Tn = _(Tn—7\n’11) .. '(Tn_)\n,knl) n, n2 nO(F) .
Assume that & + ... + ¢ =h for all n in an infinite set N .
n,1 n,kn
Since T —p—)T, A .=>A, and P LP, we have
n n, j n

¥ B (At . fr B (maanPe,
n nn

as n runs through N . But clearly, Tnpn = 0 , so that (T-—)\I)hP =0,
i.e., R(P) C Z((T—)\I)h) . Since Z((T—?\I)h) C R(P) always, we see by
(ii) of Lemma 7.1 that & {( h . This shows that for all large n , we

must have &€ £ & + ... + & . //
: n,1 n,kn

REMARKS 14.6 (i) We give simple examples to show that in (14.14), £

need not equal Bn,1+. . .+en’kn and g need not equal
gn.1 + ...+ gn,kn for all large n .

0 1 n 1/n 1

A =1 1is an eigenvalue of T with m=g =2 and £ =1, but the’

Let X = €2 and T=[1‘°], T =[1 O]. Then IIT_-Til -0

only eigenvalue A =1 of T  satisfies m_ =2 , g =1, & =2.
n n n n n
. . . 1 1 1 1
Again, if we consider T = [O 1] and Tn = [l/n 1] , then
IITn—Tll -0, A=1 is an eigenvalue of T with m=2, g=1 and
2 = 2 , while the eigenvalues 7\n 1= 1 +{1/n and 7\n 9 = 1 -1/n of
Tn satisfy mn,j = gn,j = en’j =1 for j=1,2.

Next, we give an example to show that if 7\n - AN and L is a
corresponding eigenvector of Tn of norm 1 , then the sequence (cpn)

itself (even after multiplying 1 by a constant of absolute value 1)

may not converge to an eigenvector of T , although a subsequence of
1/
(«pn) must converge. let X = 032 and T = [(1) (1)] , Tn = [1}11 1n]

Then IlTn—TII -0, A=1 is an eigenvalue of T with m=g =2 ,



while An =1+ 1/n and An 1 - 1/n are eigenvalues of Tn .

.1 .2

Let A =1+ (-1)"/n ., and o = (INZ, (-1)"A2) . Then ¢ isan

eigenvector of Tn corresponding to An of norm 1 , the sequence
(c,¢)) - vhere |cn| =1, has no limit, but the subsequence (¢, )
converges to (142 , 1A42) , while the subsequence (¢2n+1) converges
to (1AN2 , -1A42) , both of which are eigenvectors of T
corresponding to A =1 .

(ii) Let A be a discrete spectral value of T ., separated by a
curve I' from the rest of o(T) as in Theorem 14.5. It is often of
importance to know which eigenvalues of Tn are close to A . We deal
with a special case here. Let A be the dominant spectral value of

T . Then there is a circle I C p(T) with centre O such that

o)\ {A}CInt T and IFCExt T .

o]o ©

A,

=3

7777+ o(T) \ {0}

Figure 14.1
For n 2 nO(T) , let kn,l""'kn,kn be the eigenvalues of Tn which
lie inside I , the sum of their algebraic multiplicities being equal

to m . Let, now, n 2 nO(F) as well. Then I'C p(Tn) , and the

spectral decomposition theorem (Theorem 6.3) shows that

o(T ) N Ext T = U(Tn|(1_§ )(X)) ,
n
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where ?n is the spectral projection associated with Tn and T . If
P is the spectral projection associated with T and T, then by

Corollary 9.7,
rank(I—?n) = rank(I—?) =rank P=m ,

’An,k
n

since P+ P =1 . Hence An are precisely the spectral

R
points of Tn outside I' . This shows that for n max{(no(F) ,

no(f)} ,

sup{lpl : p € a(Tn) TR An,j . J = 1,...,kn}

< min{l)\n jl S

L.k} .

Thus, if the dominant eigenvalue A of T has algebraic multiplicity
m , then the m eigenvalues of Tn with largest moduli (counted
according to their algebraic multiplicities) converge to A . This
argument can be modified to treat the case where T has no dominant

spectral value, but
o(T) N (A ¢ Al = £ (T)} € ay(T) .

A similar result for discrete spectral points of T with second largest
absolute value can also be proved. See [KY]. and Problems 14.5, 14.6.
These results are of great importance in choosing an initial
approximation An of A 1in the iteration schemes we have developed in
Section 11.

(iii) Let A be an isolated point of o(T) ., and assume that

F={ze€eC:0<lzAl £ eo} C p(T) for some ey >0 . First, if

A €0(T.) and IN Al <€ then A_ - A . This can be. seen as
n n n n

0 *
follows. Let (A ) be a subsequence of (A ) such that A -=>pu .
e n i

Then |u-Al < e Also, p € o(T) , for otherwise there is r > O

o0 -
such that E = {z € C : |z-u| { r} C p(T) and hence for all
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n 2 nO(E) , we have E C p(Tn) , contradicting knk = with

kn € o(T_ ) . Hence p =N . Thus, every convergent subsequence of
k

the bounded sequence (kn) converges to A , i.e., An - A . This

proves the upper semicontinuity of o(T) at A . (Cf. Theorem 14.3.)

it

Secondly, let 0 < e £ e and Fe = A+ ee , 0<t<2r . Then

0’
for every n 2 nO(Te) , there exists An,e € a(Tn) such that

IAn e—AI { e . This follows by noting that for n 2 nO(Fe) s

rank PF&(Tn) = rank Pre(T) #0 .

We thus have the lower semicontinuity of o(T) at A . (Cf. Theorem

14.5(b).)

(iv) We note that Theorem 14.5 (along with its proof) remains valid if
we only assume that Tn L5T and H(T—Tn)R(z)(T—Tn)H - 0 for every

z €' , in place of our overall assumption Tn Lo,

We now consider a very important special case.

Let A be a simple eigenvalue of T , separated by a closed curve
I' from the rest of o(T) . Let ¢ (resp., w*) be an eigenvector of T
(resp., T*) corresponding to A (resp., A) such that INI =1 =
‘<¢,w*> . Then the spectral projection P associated with T and A

is given by
%
Px =<,y >¢ , x €X .

Let Tn SN By Theorem 14.5, I contains only one spectral
value kn of Tn and it is a simple eigenvalue of Tn for each

3 . %

n 2 nO(T) ; let ? (resp.. wn) be an eigenvector of Tn (resp., Tn)

- *
corresponding to Rn (resp.. An) such that u¢nu =1= <¢n,¢n> .  Then
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the spectral projection Pn associated with Tn and Rn is given by
P x = <x,0.> € X
nX— x.‘Pn‘Pn, X .
Since Pn 2 p by Lemma 14.4, we have
3
(14.15) (¢,¢n>¢n = in —P=y .

In fact, if ¢n is any eigenvector of Tn corresponding to Rn .
then there is a constant <, such that the entire sequence (cnwn) {(and
not just a subsequence) converges to an eigenvector of T corresponding
to A . In fact, since An is a simple eigenvalue of Tn for all

n 2 no(T) ,  we have <wn,¢:> # 0 , and if we let

3 %
c, = <\ll,<pn> /<wn,¢n> ,

3%
then cn¢n = cnPn\pn = <¢,¢n>¢n >y .

Next, H¢nﬂ =Iyll =1, so that (14.15) implies
Ipo ol > 1.
Taking scalar products with w* in (14.15), we élso have
(14.16) <w,¢§><¢n.¢*> S =1 .
Let n; be an integer such that

|<¢,¢:>| >1/2 forall n)n

1
and let
%
(14.17) ¢ =V / <¢,¢n> .
Then, ¢ is an eigenvector of T corresponding to A ; it depends on

n and satisfies

<¢,¢:> =1, gl <2 .



Note that by (14.6)

sup{lIRn(z)II tz €70, n2 nO(I")} =M(T) <= .

THEOREM 14.7 Let A be a simple eigenvalue of T . With the

notations introduced above, we have for all large n ,

(14.18) A1 < 2P 1t i(r=T it < LOME) yerr ypn
n n n w n
o 2(T)M(T g

(14.19) llp=p I = U(P-B Yol < srtts I(T-T )PIl .

Proof Noting that |<\p,¢:>| 2 1/2 for n2n consider the operator

1
Q - Pn(X) - P(X) given by

n
3¢
(14.20) Q(te) =t/ Ghp>, t€C.
Then it is clear that IlQnII <2, and
AL = BRI
= IIQ_P_(T-T )Pyl
< 20P_ I W(T-T_)Pl
n n
¢ YN yert ypn
T n
since Pn = - 211'_—1 ar(z)dz . Thus, (14.18) is proved. Next, since
%
Cpop > =1,
¢ = ¢, = (P-P )o = (P-P )Po ,
1
P - Pn == 5T L“ [R(z)—Rn(z)]dz
: 1
= - éﬁ r Rn(Z)(Tn"T)R(Z)dZ .

Since for the semisimple eigenvalue A we have R(z)P = P/{(A-z) and

llell < 2, we see that {14.19) holds. //



256

In Section 11, we have developed several iteration schemes for
finding successive approximations to eigenelements A,¢ of T by
starting with eigenelements Ao,wo

wish to show that if (Tn) is a resolvent operator appproximation of T

of a 'nearby' operator TO . We now

(which, of course, includes the important cases of the norm and the

- collectively compact approximations), then we can choose TO = Tn .

0
where 0o is fixed, and have the conditions for the convergence of the
iteration schemes satisfied.

Before we consider other iterative schemes discussed in Section 11,

we prove some preliminary results.

PROPOSITION 14.8 Let T 25T on a closed subset E of p(T) .

and let n 2 nO(E) . Then as n - ® ,

(14.21) max W(T-T )[R (z)-R(z)H - O ,
Z€F n’tn

(14.22) mage W(T-T_)R (z)xll >0 for every x € X ,
Z€E n’’n

(14.23) :2; H(T—Tn)Rn(z)(T—Tn)H =0,

(14.24) max H[(T-T )R (2)1°1 » 0 .
z€E

Proof For n 2 no(E) and z € E, let
A_(z) = (T-T_)[R_(z)-R(2)] -
By (14.5), we have

(T R,(2) = (T REIHTRC)] 3 [(T-T )R(z)1* .

so that

A(2) = [(T-TR(z)T® + (T—Tn)R(z)[I+(T—Tn)R(z)]jzl [(T-T_)R(z)1> .
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Recalling Dn(E) = suIE): ||(T—Tn)R(Z)|I and 5D(E) = ma)E{: Il[(T—Tn)R(Z)]2" s
z€ ’ z€

we see that

v (E)[1 + vn(E)]]

IA_(2)I < & (E) [1 N )

But by (14.2), Dn(E) < v <® and by (14.4), 6n(E) - 0 . Hence

max HA_(z)Il = O .
z€E T

We have thus proved (14.21). Let now x € X . By Proposition 14.1, we

have

max H(T—Tn)R(z)xH -0 .
z€E

Since (T—Tn)Rn(z)x = An(z)x + (T—Tn)R(z)x , we see that (14.24)

follows easily. Next, we note

(T-T R (2)(T-T,) = (T-T)[R (2)R(2)I(T-T) + (T-T)R()(T-T,) .
||(T—Tn)Rn(z)(TT—Tn)u < HA_(Z)IN(T-T_ )Nl + U(T-T_)R(z)(T-T_)I .

Now, max ”AD(Z)” -0, and max I(T-T_)R(z)(T-T_)Il - 0 by (14.3).
Z€E Z€E ° "

Hence (14.23) holas. Since sup{HRn(z)H tn nO(F) , z € E} <® by

(14.6). we see that (14.24) holds as well. /7

THEOREM 14.9 Let I C p(T) separate a simple eigenvalue A of T

from the rest of o(T) . For mn 2 nO(T) ,  let An be the simple

eigenvalue of Tn inside I' , and let 1 (resp., ¢:) be an

eigenvector of Tn (resp., T;) corresponding to An (resp., Xn) such
*

that HwnH =1= <¢n,yn> . Let S (resp., Sn) denote the reduced

resolvent associated with T and A (resp., Tn and An). Then

(14.25) I(T-T_)o Il >0 .

(14.26) (H¢:H) is a bounded sequence,
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(14.27) Snx - Sx for every x € X,

(14.28) ("Snﬂ) and (H(T-Tn)SnH) are bounded sequences,
2

(14.29) H(T—Tn)Sn(T—Tn)" -0, H[(T—Tn)Sn] I-=0.

Proof Since
H(T—Tn)wnu = H(T—Tn)innH < H(T—Tn)PnH

and H(T—Tn)PnH - 0 by (14.9), we see that H(T—Tn)¢nH -0 . Next,

since
3¢
an = <x,¢n>¢n

and llg I =1, we see that H¢*H =NIPNl . But P_-B5P . Hence by
n n n n
the uniform boundedness principle, (H¢:H) is a bounded sequence.

Let x € X . By (14.7) Rn(z)x - R(z)x uniformly for z €T .
Also, since Rn = A by (14.12), we see that dist(An,F) 2 dist(\,T)/2 >
0 for all large n . Hence

R (z)x
S x 1[ Do dz > | MEX g, o
r

o T 2w zZ = A 2wi 4
n r

The sequences (HSnH) and (H(T—Tn)SnH) are then bounded by the

uniform boundedness principle. Lastly, to prove (14.29) we note that

dz .

(T-T_ )R (z)(T-T )
1
(T_Tn)sn(T_Tn) = §;§-J‘ . zn— An .

Again, since dist(hn,r) > dist(A,T)/2 > 0, we see by (14.23) that
H(T—Tn)Sn(T—Tn)H - 0 . Since (HSnH) is a bounded sequence, we also

2
have H[(T—Tn)Sn] t-0. Va4

REMARK 14.10 Ve are now in a position to show that various conditions
needed for the convergence of the iteration schemes and for obtaining

error estimates considered in Sections 10 and 11 can be fulfilled if we
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choose T, =T for some suitable n, , when T IO, T . Leta
0] Dy 0 n

simple eigenvalue A of T be isolated from the rest of o(T) by a
simple closed rectifiable curve I' in p(T) , and let =n 2 nO(T) .
Then by Theorem 14.5(b), the only spectral value of Tn inside I is a

simple eigenvalue An . Since

max r((T-T_)R_(2)) < max N[(T-T )R (2)71"/% >

z€l z€l’

0

by (14.24), we can choose n, 2 nO(F) such that

max II[(T—Tn )R(z)]2H <1 . Hence
z€l 0

22¥ ra((T—TnO)RnO(z)) <1.

Then the Rayleigh-Schrodinger series (10.4) for the eigenvalue A(t) of

T(t) =T + t(T-T_ ) (with initial term A_ ) converges for
0, n, n,

[t] <1, because 1 € ar . (See (9.14).) In particular, putting
t =1, we see that A(1) 1is the only spectral value of T(1) =T
inside I’ and it is a simple eigenvalue. Hence it must coincide with

the eigenvalue A we started with. Thus,

A=A+
n

Ay -
0 kzl (k)

As for the convergence of the Rayleigh-Schrodinger series (10.7) for the

eigenvector ¢(1) of T(1}) =T . it is sufficient to have

a + (a+b )e <1,
n n n° n

where
2, = mex N[ (T-T_)R_(z)1%1l .
b = mex I(T-T_)R_(z)l .
o e(TYN(T-T_)o_I uwzn

m O orfdist(n.1)T°



260

(See Proposition 10.2.) Now, the relations (14.24), (14.6), (14.25),

(14.26) and the fact that )\n - A as n =%, show that a -0,

(bn) is a bounded sequence and c, = O . Hence we can choose n, so
that a_ + (a_+b_)c_ <1, and ensure the convergence of the
n, n, 1y’ Ny i

eigenvector series

o(1) = %o ) ) -

k=1
Next, let
= W(T-T ] =l *H = lIS_Ii
My = ( n)¢n W SN e
a = H(T—Tn)SnH , Bn =nps, 7= max{an , ﬁn} ,
2 3/2,.1/2
e = max{N[(T-T )s 1% . B> . a6} .

Then by (14.25), (14.26), (14.28) and (14.29) we see that n, 20,

(pn) . (sn) and (an) are bounded sequences, Bn-» 0 and e o .

For the estimates given in (11.30) for the Rayleigh-Schriodinger
iteration scheme (11.18) as well as the fixed point iteration scheme
(11.19), we need Jen < 1/4 . This can now very well be achieved for a

convenient value Ny of n . Then, as pointed out in Remark 11.9(v),

we have better bounds for the successive iterates at every other step.

In case Tn —H—!ﬁ T , we have o - 0 , and hence L -0 . If, in

this case, we choose o, such that L < 1/4 , then Theorem 11.5
0

shows that better bounds for the iterates are available at every step.
Thus, we have a geometric convergence of the iterates, as against the

semigeometric convergence when we only have Jén < 1/4 . (See Table
0

19.4, Rayleigh-Schrodinger and fixed point schemes.)

If ~ < 1/4 (resp., Ye_ < 1/4), then Theorem 11.8 (resp.,
%o %o

Problem 11.2) shows that both the iteration schemes (11.18) and (11.19)

converge to a simple eigenvalue u of T , and pu is the closest
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spectral point of T to An . Thus, if the simple eigenvalue A of
0

T with which we started is the closest spectral value of T from AO ,
then g = A . Note that this can be achieved by taking 0y large
enough since An - A as n ->% . Another way of achieving this is to

choose T to be a circle with radius { dist(A,o(T)\{A})/2 and centre

A, and find an eigenvalue A of T inside T .
"o %o

Next, assume that A 1is the dominant (simple) eigenvalue of T .

Since rU(Pn(P—Pn)) - 0 by (14.10), we can choose 0, such that

(14.30) rU(PnO(P—PnO)) <1.

Remark 11.13(a) shows that we can let Xo = ¢, and x; = ¢§ as the

starting vectors in the power method (Note: £ =1, D =P and

%
Pp_ ,9o >#0) .
"o "o

Finally, let A # O . Then by Theorem 14.7, for all large n
lk—xnl . H¢—¢nﬂ < cH(T—Tn)PH s

where the eigenvector ¢ of T depends on n , and

2(T)M(T) 1
—— s U e o A

M(T) sup{HRn(z)H tz €T ,n2 no(T)} (o,

i}

Also, by (14.9), H(T—Tn)PH -0 . Now, assume that T is compact. Then

H(T—Tn)TH - 0 . Thus, we see that the modified fixed point iteration

scheme (11.31) would converge to ¢ and A if we choose TO = Tn for
0
a suitably large n, - This remark holds for the Ahués iteration scheme
(11.35) as well. The error bounds (11.34) are in terms of II(T—Tn )T
0

and they improve at every step.
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Problems

14.1 Let A, B, T € BL(X) be such that lA Il and IIB Il are
n n n n

bounded. Then
IAR(z)BIl -0, as n->®
n n

for all z in the unbounded conncected component of p(T) if and only

if
CIATB I 50, as noo
n n
for each fixed k = 0,1,2,... . (Hint: Problem 4.3, (5.8) and (5.9))

14.2 Let E C p(T) be a compact set, and let I' be a simple closed

rectifiable curve in p(T) . (a) Let T, B0, T . Then

Rn(z) LN R(z) wuniformly for z € E and PF(Tn) nn, PF(T) . (b)
Let Tn <5 T . Then Rn(z) =<, R(z) wuniformly for z € E (i.e.,

Rn(z) P, R(z) wuniformly for z € E, and for some positive integer

ng the set
0
U U {R(z)x -R(z)x : x €X, lxll {1}
. n
n=n, z€E

has a compact closure in X ) and PF(Tn) <L, PF(T) . (Hint:
Proposition 4.2 of [AN]. Compare this result with Lemma 14.4, where the

rank of PF(T) is assumed to be finite.)

14.3 Let ' Cp(T) , rank P (T) <® and T —>T . Then for all

large n , we have T C p(Tn) , and the arithmetic mean of the
eigenvalues of Tn inside I converges to the arithmetic mean of the
eigenvalues of T inside I . Let X € PF(Tn) and Han =1 . Then

Hxn—Pan -0, HPan > 1, and there is a subsequence (x_ ) such

that x_ = x for some x € R(P.) with IxIl =1 .
o r
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14.4 With the notations of Theorem 14.5,

k
n
§ 2 .$m+kn—j§1gn’j§m.

14.5 let T € BL{X) and assume that
g(TyN{necC: [Al = rU(T)} = {Au} C Ud(T) .

with AN # g . The considerations of Remark 14.6(ii) can be extended to

A and pu .

14.6 Let T € BL{(X) ., A be the dominant discrete spectral value of T
and let p be a discrete spectral value of T such that if X e o(T) ,
XN#A, XNs#pu, then IX| < ul . Then Remark 14.6(ii) can be

extended to u .

4.7 With the notations of Theorem 14.7, |<q>n,\p*>| - 1 . Choose 51
such that n > n, implies |<<pn,¢*>| >1/2 . Let
M) = sup{liR(z)lIl : z € T} . Then
IA-A_ | < 20PH H(T-T Yo Il < B_Q%E(ﬂ ITp A o Il ,
lig_~Pe_Il = II(P_—P)g I < 277%—2% I(T-T_)o Il .
To

14.8 Let A€ ad(T) be isclated by a closed curve I . If Tn — T,

then (II(T—Tn)SAII) is bounded and Il(T—Tn)Sy\(T—Tn)II -0 .



