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12. FINITE DIMENSIONAL EIGENVALUE PROBLEM

This section is devoted to a review of some important methods of
finding eigenelements of an operator T : " ->c". Let T be
represented by the n x n matrix [ti,j] with respect to the standard
basis SIERRRELN of €% . We shall denote this matrix also by the

letter T . Then T = %, 4] = ™ |

Decomposition Results

Before we discuss the matrix eigenvalue problem, we describe some
decompositions of a matrix. The motivation for these results comes from

the following facts. If T 1is a diagonal matrix (i.e., ti j= 0 if

i # j) . then clearly the diagonal entries are the eigenvalues of T

with €y,....e as the corresponding eigenvectors. Next, if T 1is an

upper triangular matrix (i.e., t j= O if i > j ), then again the

diagonal entries are the eigenvalues of T , but for a fixed i , e

is not an eigenvector (corresponding to ti i ) unless ti j =0 for

all j>1i . If T is partitioned as

Tia T | K
(12.1) T =
0 T2,2 n-k ,
k n-k
then the eigenvalues of T consist of the eigenvalues of T1 1 and of

T2,2 , since det(T—zIn) = det(Tl’l—zIk)det(T2,2—zIn_k) .

Also, if U 1is a unitary matrix, (i.e., UHU =1= UUH) , then

the eigenvalues of T and of UHTU are the same; if x 1is an
eigenvector of UHTU corresponding to A , then Ux is a

corresponding eigenvector of T .
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THEOREM 12.1 (Schur decomposition) There exists a unitary matrix U
such that R = UHTU is upper triangular. Further, U can be so chosen
that the eigenvalues kl,...,kn of T appear in a given order along
the diagonal of R .

Since a matrix is diagonal if and only if it is upper triangular
and commutes with its conjugate transpose, it follows by the above

theorem that T is normal (i.e., THT = TTH )} if and only if there is a

unitary matrix U such that UHTU is upper triangular.

CIf
Ria 2 Ry
(12.2) R=U"Tu={0 A b°|,
0 0 R2’2
and A does not appear on the diagonal of R1 1 then Ux is a
u
corresponding eigenvector of T , where x = |1]| , with
0
(R1 1—AI)u = -a . Since R1 1 - Al is upper triangular and invertible,

this latter system can be solved by back substitution. Similarly, if A

does not appear on the diagonal of R2 then Uy is an eigenvector

,2 7
— O H - —
of TH corresponding to A, where y = |1| , with (R2 2—KI)V =-b .
v ,

The column vectors u ,u of U are known as Schur vectors.

TERERELN
Since TU = UT , we have

k-1

Tuk = Akuk + ‘z rl,kui

i=1
Thus, for each k=1,...,n, Yk = span{ul,...,uk} is an invariant
subspace of T . If IAll > ... 2 Iknl and |Ak| > lAk+1| , then
ul,...,uk form an orthonormal basis for the spectral subspace
associated with T and the eigenvalues Al,...,kk . Let

U, = [ul,...,uk] . and let R, denote the k x k leading principal
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submatrix of R . If \A is an eigenvector of Rk corresponding to
Ai , then Ukvi is an eigenvector of T corresponding to Ai for
i=1,....k .

The proof of the Schur decomposition theorem is accomplished by
induction on the order n of the matrix T ; no constructive proof is
available. We shall later describe a method, called the QR iteration,
which generates matrices that approximate a Schur decomposition of T .

A stable algorithm, however, is available to construct a unitary matrix

UO such that UgTUo is upper Hessenberg, i.e., one with all the
entries below the principle subdiagonal equal to O . (See the comments
after (12.17).)

If we do not insist on unitary equivalence, T can be reduced to a
form which has zeros everywhere except possibly on the diagonal and the

principal superdiagonal.

THEOREM 12.2 (Jordan decomposition) There exists an invertible matrix

W such that W_ITW = diag(Jl,...,Jp) ,  where each Jordan block
A, 1 0
i .
Ji = 1
0 A
i
isan n, x n, matrix with n, + ... +n_=n .
i i 1 p

We remark that T and W_ITW have the same eigenvalues; if x is
an eigenvector of leTW corresponding to A, then Wx 1is a
corresponding eigenvector of T .

Theorem 12.2 follows from (7.16), but again a stable algorithm for
accomplishing the result is unavailable. If none of the Jordan blocks
Ji have any 1°s on the main superdiagonal, then T is said to be

diagonalizable . It is clear that this happens if and only
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if each eigenvalue of T is semisimple, i.e., every generalized
eigenvector of T 1is, in fact, an eigenvector of T .
Closely associated with a Jordan decomposition is the spectral

decomposition

h
(12.3) T = 21 AP, + Dy
where Xl,...,ih are the distinct eigenvalues of T , Pi is the
spectral projection associated with T and Xi , and Di = (T_XiI)Pi

is the associated nilpotent operator (cf. (7.16)).

Perturbation results

We list some important results that give estimates for the change
in the eigenvalues when an n X n matrix TO is perturbed by the

addition of another n X n matrix VO to a matrix T = T0 + VO .

THEOREM 12.3 (Gershgorin circle theorem) All the eigenvalues of T lie
in the union of the n disks

n
Ai={Z€(D: lz—t., .| < 2 It. |}, i=1,...,n.

1,1

A proof is indicated in Problem 12.2. This result gives an estimate of
how close the diagonal entries of a matrix are to its eigenvalues. If a
Gershgorin disk is disjoint from the other Gershgorin disks, then it

contains only one eigenvalue of T ([GV], p.200).

THEOREM 12.4 let R = UHTOU be a Schur decomposition of TO , and let

R=R- diag(r1 TERRRE ) . Let p be the smallest positive integer

T
n,n

such that RP = 0 . Given an eigenvalue A of T = TO + VO , there is

an eigenvalue AO of T0 such that
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I}—AOI < max{e,el/p} ,

VA pil ®l
where e = lIV,I liRH, .
02 i=0 2

For a proof, see [GV], p.201.

THEOREM 12.5 (Bauer-Fike-Jiang-Kahan-Parlett) Let J = W_lTOW be a
Jordan decomposition of T, , and let ¢ be the size of the largest
Jordan block. Given an eigenvalue A of T = TO + V0 , there is an

eigenvalue AO of TO such that

]
Ix—xol

-1
< IW TV WL, .
(1+|)\—7\ol)e'1 072

Note that & =1 if T0 is diagonalizable. In general, the
integer £ in the above inequality can be replaced by the size of the
largest Jordan block to which Ao belongs.

For a proof, see [J].

Theorems 12.4 and 12.5 suggest that if To is not normal, then a
small change in TO may produce a large change in its eigenvalues. A
perturbation analysis for an individual simple eigenvalue of T0 and a
corresponding eigenvector is given in Section 18. For a result on the
perturbation of an invariant subspace of dimension k of TO ,  we
refer the reader to Theorems 7.2-4 and 8.1-7 of [GV].

In case the operator T 1is self-adjoint, all the eigenvalues of T
are real and there is an orthonormal basis of C" consisting of the
eigenvectors of T . Let us denote the i-th largest eigenvalue of T
by Ai(T) , so that An(T) < An_l(T) < ... & A2(T) < Al(T) . We then

have the following result.
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THEOREHM 12.6 (Courant-Fischer minimax characterization) If T is
self-adjoint, then

Ak(T) = max min q(x) ,
dim Y=k Ozx€Y

L1x

where Y denotes a subspace of c® and q(x) = T is the Rayleigh
X X

quotient of T at x # 0 .
For a proof and several interesting consequences of this theorem
regarding eigenvalues of perturbed self-adjoint operators, we refer the

reader to [WI] p.100-108.

Iterative methods

Most of the iterative methods for approximating eigenelements of an
n X n matrix T depend on the following main idea.

Let Xl’ cen ,Xh be the distinct eigenvalues of T (h { n) ,
arranged so that lel > ... 2 Ixhl . Consider the spectral

decomposition (12.3) of T :
T = (7\11’1 +D1) L ()\hPh+Dh) .

Then for j =1,2,...,

. o.4) o [E [i]%}—lni] ..+ [% [uii]"'.]'-iD}il]

i=1 i=0
If IAll Do 2 I)kl > |)k+1| > ... 2 I)hl , then it is clear that the
first k summations in (12.4) will dominate the others as j »® . The

dominance would be sizeable if lxkl is much larger than ,Xk+1’

To illustrate how this idea works in practice, and for the sake of

simplicity, let us assume that T is diagonalizable. Let Al""’xn
be the eigenvalues of T arranged so that Ikll > ... 2 l%nl , and let
U,,...,u_ be a basis of € such that Tu, =A,u, , i=1,...,n.

1 n i ii
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Assume that Ikll > !A2I . Let X, € € be such that HxOH =1

and

u, + ... + c u. with ¢y #0 .

Then for j =1,2,...,

i j n Ai hi
Txg = 7‘1[°1“1 + 1 °iLK'] “i]
i=2 1

Find Yo € " such that ygu1 #0, and for j=1,2,..., define

sgn(yTx. ;) T
= — I ,
J Hij_lﬂ j-1

(12.5) %

provided ij—l #0 . Here sgnz equals O if z =0 , and equals
z/1zl if 2z #0 . Then it can be seen by induction on j that
_ i, ypd j _ H
X = sgn(ygT xO)T X, / T xOH and that X, - X = sgn(youl)u1 / Hulﬂ as
j »® . (See the proof of Theorem 11.12.)
This is a variant of the power method discussed in Section 11.

Note that all Xj and x have norm 1 . The scalar factor sgn(ygzjo)

ensures that the sequence (Xj) itself converges to a fixed eigenvector

XHTX

x of T . It is then clear that the Rayleigh quotients q(xj) = 3

H
XX,
J 3
converge to the dominant eigenvalue Al = xﬁTx of T . It is apparent
X X
that (cf. Table 19.6)
Az J

(12.8) ij—xﬂ = O{IXII ] = |q(xj) - All .

If z, € p(T) 1is closer to an eigenvalue A of T than to any
other eigenvalue, we can apply the above considerations to the operator

(T—ZOI)_I and obtain the following variant of the inverse iteration:
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Let Xq € € be such that HxOH =1 and let Yo e ™ . TFor
i=1,2,..., let
(T—zOI)xj =Xy 1
(12.7)
sgn(ygg-) .
X, = ——3 % .
J u§ju J

" If in the j—th step we use a shift equal to the Rayleigh quotient of T
at the previous iterate, we obtain the following version of the Rayleigh

qudtient iteration:

Let x, € ¢ with lxglly =1 . For j=12,..., let
H
zy = xj—lij-l ;
if Zj is an eigenvalue of T ., solve (T~zj1)§j =0

(12.8) to find a corresponding eigenvector; otherwise, solve

(T‘Z.I)g. =x, , , and normalize x_ =%,k / lIx_ Il .
RN j-1 J J J

i =1,2,..., decrease

The residual ) =Tx, - =z, AN
resi s r(xJ) Xy T Ziq¥g 3

monotonically if T is normal (Problem 12.3).

THEOREHM 12.7 Let T be normal and Zj € C and xj € € be defined
as in the Rayleigh quotient iteration (12.8). Then the sequence (Zj)
converges: also, either (Zj’xj) converges to an eigenpair of T , in
which case the asymptotic rate is cubic, or (Zj) converges (linearly)
to a point equidistant from k (2 2) eigenvalues of T and the
sequence (xj) does not converge.

A proof of this result, along with a discussion of the Rayleigh
quotient iteration for nonnormal matrices is given in [P]. The special
case of self-adjoint operators is treated in Sections 4.6 to 4.9 of

[PA].
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Simul taneous orthogonal iteration

If we wish to find several eigenvectors of T associated either

with the dominant eigenvalue or with a few of the largest (in modulus)

eigenvalues of T , then we need to look beyond the power method.
Also, the power method fails if Ikll = Ikzl , and it converges very
slowly if IA2I is near IAII . Actually, the power method is a

process of iteration on the subspaces defined by FO = span{xo} .

Fj = span{Tkj_l} . So, more generally, we can iterate on a
k-dimensional subspace and hope to reach a k-dimensional invariant
subspace of T . In practice, one chooses a basis of the starting
subspace and iterates on it by T . To achieve numerical stability and
to make sure that the iterated basis vectors do not point in nearly the
same direction, one can orthonormalize them at each step. This gives us
the following simul taneous orthogonal jiteration.

Let the eigenvalues of an arbitrary n x n matrix T satisfy

N2 e 2 IS Il 2 2 I

Let Yk (resp.. Yé) denote the spectral subspace associated with

T and Al,...,kk (resp., TH and Xl,...,Xk) ; it is of dimension
k . Let FO be a k dimensional subspace of € such that
(12.9) F.n (Yt = {0}
. 0 k .
Since the dimensions of FO and (Yﬁ)l add up to n , the condition

(12.9) 1is almost always satisfied. In case T is diagonalizable and
L EERERLN is a basis of eigenvectors of T corresponding to

Al,...,kn , the condition (12.9) is equivalent to

(12.10) FO n span{uk+1,...,un} = {0} .
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Consider an orthonormal basis qgo),...,qﬁo) of FO , and let
QO = [qgo),..., £0)] be the n x k matrix with columns ng) .
i=1,...,k . For j=1,2,..., let

TQ. =Q.R.
QJ'l QJ J

be the QR factorization. (See Theorem 4 of Appendix II.) Then each

; - rold) (3)
» Qj is of rank k . If Qj = [ql seeesQy ] . then
TJ(FO) = span{qu),...,qﬁJ)} .
Given e > O , there is a constant C(k.,e) such that

j
Nl +e

(12.11)  8(T(F,).Y,) < Clk.e) {—ﬁk_'-—e_] . §=1.2,...

For the definition of the gap S(Tj(Fo),Yk) , see (2.4). The proof of
this result is quite involved and we refer the reader to [GV], p.212.
Also, see [W]., p.430 for an outline of the proof when T is
diagonalizable; in that case, we can let e =0 in (12.11).

The above result shows that as j = ® the space spanned by the
columns of Qj comes close to the invariant subspace Yk of T at the
Merp |9

M

Note that QJQ? is the orthogonal projection with range

rate I (cf. (12.86)).

span{qgj),...,qéj)} = Tj(Fo) . If qi,...,qk is an orthonormal basis
of Yk and Q = [ql,...,qk] , then the orthogonal projection onto Yk

is given by QQH . (See Problem 2.7.) Also, by (2.6)
i o H W
5(T (Fp).Y,) = nquj Q7 .

which tends to zero as j =% .
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Consider unitary matrices U = [Q.0] and U, =[Q,,0,] . Then

. oo QHra] e Q‘}m S Q?Taj
U= , U, TU, =
g gl 77 g, @,

Now,

0 o
u6HrQH2 = [GHTQ] y = 1 L?{]m - QQHTQIIZ
= imQ - oqran, = npre-odtre.ogu,,

Q

H
= I[TQ-00"1Q,0] [6H] lly,

= ITeq! - QQHTQQHIIZ .

. ~ H )
Slml}l{arly,H ||Q§.L1'qu2 = Q0 - @ jQI;TQjQ?Ilz . Since
10,Q; - "l >0 . we see that lngLerllz > IIQHTQII2 . But O°TQ = 0

since the space Yk spanned by the columns of Q is invariant under T

and the columns of Q are orthogonal to those of Q . Hence
(12.12) ITQ N, 50 as joo,
ity 2
i.e., the matrix U?TUJ comes close to a block triangular matrix.
As we have seen earlier, the Schur vectors CIERRERL form an
orthonormal basis of the invariant space Yk of T associated with
Al""’xk . Further, Al""'Ak are the eigenvalues of the k x k

matrix QHTQ~, and if vy is an eigenvector of QHTQ corresponding to
Ai , then u; = Qvi is an eigenvector of T corresponding to Ai s
i=1,...k .

Stewart has suggested a technique for accelerating the convergence

of approximate eigenvalues. It combines the simultaneous orthogonal

iteration with what he calls a Schur-Rayleigh-Ritz step. It is as

follows.
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For j=1,2,..., let
TQj—l = —jﬁj (QR factorization)
(12.13) RJ = ﬁ?(é?Téj)Uj (Schur decomposition)
Q,=0Q0. .

where the diagonal entries of the upper triangular matrix Rj are in

descending order of absclute value. Let 1 (i (k. Then the ith
Meyq |
diagonal entry of Rj is an approximation of Ai of order I N l ,
i

provided Ihil > |Ai+1l {and of course, Ikkl > |)k+1|) ([GV], pp.212

and 311).

OR iteration

Assume that

|A1l > Ikzl >oo.. 2 Ikn_ll > lknl ,
and let uy be an eigenvector of T corresponding to Ai . Let
UO = [ugo),...,ugo)] be a unitary matrix such that for
k = 1,...,11— 1 s
(0) (0) -
(12.14) span{u1 eees Uy n span{uk+1,...,un} = {0} .

Then it follows by the convergence theory of the simultaneous orthogonal

iteration ((12.10) and (12.11)}) that if we let for

(12.15) TUj—l = UjRj (QR factorization) ,

for j=1,2,... , then the n xn matrix U?TUJ tends to a block

triangular form

(k (k
Ti1 Tiafk

0 Ték% n-k

k n-k
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for every k=1,...,n -1, i.e., it converges to an upper triangular
matrix R . Thus, Tj = U?TUj approximates a Schur decomposition of
T . (Note that each Uj is unitary.) The QR iteration process

arises by considering how to compute Tj directly from Tj—l . Now,

since TU, =U.R, , we have
Jj-1 i

H
12.16 T. . =U% v, . =0 (wr,) =@ UR, .
( ) Jj-1 J—ITUJ-I J-I(UJRJ) ( j-1 J) J

where U?—luj is unitary and Rj is upper triangular. If we let

Qj = U?—IUj . we obtain the QR factorization

of T, . Then
Ty = UTU; = (UT0, (U0 =R, -

Thus, Tj is obtained by computing the QR factorization of Tj—l and
multiplying the factors in the reverse order. The QR iteration is
defined as follows.

Let U0 be a unitary matrix, and T0 = UgTU0 .

For j =1,2,... , let
Tj—l = QjRj (QR factorization)
(12.17)
T.=R.Q. .
J JQJ

The starting unitary matrix UO can be chosen so that

TO = UgTUO = [hi,j] is upper Hessenberg, i.e., hi,j =0 for all i
and j which satisfy i > j+ 1 . In fact, UO can be obtained as a

product of (n-2) Householder matrices. (See (6) of Appendix II.) A

stable algorithm which reduces T to an upper Hessenberg form in this

way requires g-nB flops and is given in [GV], p.222.

Let TO be upper Hessenberg and invertible. Then all the iterates

Tj of the QR iteration (12.17) are upper Hessenberg (Problem 12.4).

Hence the number of flops of each QR iteration comes down to 0(n2)
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from 0(n3) . In case To is not invertible, the zero eigenvalue of
TO emerges after just one QR step. (See Problem 12.6.) Also, an
indication of the distance from the span of the first k columns of Uj
to span {ul,..., k} is given by the single nonzero entry of the

(3

subdiagonal block of dimension (n-k) x k of Tj , namely, by kil k -

Further, if the upper Hessenberg matrix To = UgTUo = [hi,j] is
unreduced, i.e., hi+1,i #0 foreach i=1,...,n-1, then the
condition (12.14) for the. convergence of the QR iteration is always
satisfied (Problem 12.5). In case hi+1,i =0 for some i , then the

eigenvalue problem for T0 (and hence for T ) gets decoupled into two
smaller eigenvalue problems of order i and n - i (cf. (12.1)).

We had assumed Ikll > lkzl > ... > Ikn_ll > Iknl to motivate the
principle behind the QR iteration. In this case the matrix Tj .
which is unitarily similar to T , converges to an upper triangular
matrix R having its diagonal entries equal to the eigenvalues of T
arranged in order of decreasing modulus. When T has a number of
eigenvalues of equal modulus, the limiting matrix is no longer
triangular, but if |A| occurs p times as the modulus of an
eigenvalue of T , then Tj tends to have an associated diagonal block
submatrix of order p ; this submatrix does not tend to a limit, but
its eigenvalues converge to the p. eigenvalues whose modulus is [\]
(See [WI].)

Shifts of origin are employed to speed up the convergence of the

QR iteration. If zj € C is the shift at the j-th step, the shifted

QR algorithm reads:

vy

0~ Y00

T. -z.1 R, factorization
-1~ %3t = QR (R facto )

U0 unitary, T

RQ. +z.1.
JQJ J
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Often the shift Zj = tﬁJ% ., which is the last entry of Tj , is

chosen; the Wilkinson shift equals the eigenvalue of the bottom right

(3 RE))
n-1,n-1 n-1,n (i)
2 x 2 submatrix which is closer to thn
() e) :
n,n-1 n,n

There is another process, called the LR iteration which

historically preceded the QR iteration: Let L. be a lower triangular

0
n xn matrix with 1°’s on the diagonal, and TO = LalTLO . For
i=12,... , let
T. , =L.R, (LR factorization)
j-1 3
T, =R.L
J J

Although an arbitrary matrix may not have an LR factorization (cf.
Theorem 1 of Appendix II)., Rutishauser showed that if T has
eigenvalues of distinct moduli, then in general T, tends to an upper
triangular form, the diagonal entries tending to the eigenvalues of T
arranged in order of decreasing modulus. In case of eigenvalues of.
equal modulus, the behaviour is similar to that of the QR iteration.
The matrix L0 may be chosen so that TO is upper Hessenberg. The LR
algorithm can be modified by allowing partial pivoting when a matrix
does not have a LR factorization or has a numerically unstable LR
factorization. (Cf Theorem 2 of Appendix II):
“For j =1,2,... ,

Tj—l = PijRj

Tj = RijLj ,
where Pj is a permutation matrix. Also, shifts of origin can be

introduced to speed up the convergence.
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For both QR and LR iterations, we ultimately have
U TU =R,

where R 1is upper triangular and U is the product of all the
transformation matrices used in the execution of the iteration process;
if this product is retained, then we can calculate the eigenvector of T
in a manner described earlier. (See (12.2).) |

If only a few of the eigenvectors of T are needed, one can
proceed as follows. In practice we obtain only an approximation R of
R with diagonal entries Byseeesby Since By is very close to Ai
but in general not equal to it, we can assume that By € p(T) . With an

almost arbitrary starting vector x we can employ the inverse

0
iteration with a fixed shift Zo =My - (See (12.7).) We remark that
if the matrix T 1is very large, then the QR iteration (to find the
eigenvalues) and the inverse iteration (to find a single eigeﬁvector)
can be impractical to implement. (Note that in inverse iteration, one
has to solve a large system of linear equations arising from

(T—zoI)x = xo.) In this situation, the methods discussed in Section 11
can be useful, where a small eigenvalue problem for a nearby matrix TO
of size n. xn

0 0

system of linear equations is computed. See Sections 17 and 18 for the

is first solved and then a solution of an ngy X ng

algorithms constructed for these methods.

Self-adjoint matrices

If T is self-adjoint (i.e., TH =T), and To = UgTUO is upper
Hessenberg, then, in fact, TO is tridiagonal (i.e., has zeros
everywhere below the principal subdiagonal and above the principal

superdiagonal.) If a fixed shift is used, then the self-adjoint and the
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tridiagonal character is maintained in the QR iteration process. In
case the entries of T are real there is no need for complex shifts
since the eigenvalues of T are also real. Then the Householder
tridiagonalization as well as the QR algorithm with Wilkinson’s shift
both require %—n2 flops each. (See [GV] pp.277 and 282.) The
symmetric QR algorithm is one of the most effective and elegant
methods of solving eigenvalue problems, especially for small and full
matrices.

In case T 1is large and sparse, the Householder tridiagonalization
becomes impractical because multiplication by Householder matrices
destroys sparsity, and we may end up with large full matrices. Starting
with an arbitrary first column ugo) with Ilugo)ll2 =1, we can,
however, attempt to find directly a unitary matrix UO = [u§0)’.'.,u£0)]

such that T, = UHTU is tridiagonal. Let

o = Yo
a B
_ |B a _
T, = |P1 9 5 = UgTUO
n-1
Bn—l an
Since TU, = UT . we have (with Byul®) =0 )
: o="YoT - 0Y% :

(12.18) Tu(o) = B, (0) + aiu( ) 4 B, ugfg . i=1,....n-1

As ugo) must be orthogonal to u(o) and ufgi , and have Euclidean

norm 1 , we see that
(12.19) o, = [P a{® | -1 a-1
Then, if we let

= (T—a I)u(o) - B1 v SO) s
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(12.18) shows that u; = Biui+1 . If we choose Bi = Iluill2 , then
0) _ % ;
(12.20) U=y / Bi , provided Bi #0 .

This tells us how to find the (i+l)-st column of Uo iteratively as
long as Bi # 0 . It can be shown by induction that Bk = 0 if and only
if k = dim span{ugo),'l‘ugo),...,Tn_lugo)} . If B =0 for k<nmn,

then the eigenvalue problem gets decoupled. If ﬁk # 0 , then for

i=1,...,k+ 1, we have by induction,
(12.21) span{u%o),...,ugo)} = span{ugo),Tugo),...,Ti_lugo)} .
Thus, the columns u%o),...,ugo) of UO form an orthonormal basis for

‘the Krylov subspace K(ugo),T,i) = span{ugo),Tugo),...,Ti_lugo)} .
The above property is the foundation of another iterative method

known as the Lanczos method for finding approximate eigenelements of a
(0)
1

self-adjoint operator T . Starting with a unit vector u , sets of

orthonormal vectors ugo),...,ugo) are constructed such that (12.21)
holds. This can be accomplished by using the formulae (12.18), (12.19)
and (12.20). Let Qi = [u§0)’_:.’u§0)] . Then the minimax

characterization (Theorem 12.6) gives

M. = A (QﬁTQ,) = max q(Q.x) < max q(x) = A, (T) .,
i IV %0 i %0 1
m; = 2 (QT0,) = min q(Qx) 2 mn a(x) = (1) -

By considering the directions of most rapid increase and decrease
of the Rayleigh quotient gq(x) , it can be seen that the property
(12.21) guarantees Mi < Mi+1 and ™o > m o, unless, of course,

= = = N (T
M, = KI(T) or m, = An(T) . (See [GV]. p.323.) Note that M 1( )
and m = An(T) . (Cf. Ritz theorem, [L], 27.14 for an infinite

dimensional analogue.)
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0

- The orthonormal vectors uy .,ugo) are called Lanczos vectors.
The extremal eigenelements of the matrix QI;TQi give progressively
better estimates of the extremal eigenelements of T as i increases to
n . This method is quite useful in dealing with large sparse matrices.
The Lanczos algorithm requires (4+k)n flops to execute, if each
matrix-vector product is assumed to involve only kn flops (k being
much smaller than n , due to the sparsity of T ) .

There are other special methods for approximating eigenelements of
a self-adjoint matrix T such as the Jacobi methods and the bisection
method. We refer the interested reader to Section 8.5 of [GV]. The

Rayleigh quotient iteration (12.8) is an effective method of computing a

single eigenpair because of its global cubic convergence (Theorem 12.7).

Problems

12.1 An n xn matrix T is diagonal if and only if it is triangular

as well as normal.

12.2  Gershgorin’s theorem follows by noting that if A is an

eigenvalue of T and A # ti i for i=1,...,n, then T - AI is

not invertible but D - AI is invertible, where

D = diég(tl’l,...,tn'n) , and hence
_1 n
1 < I(D-AI) “(T-D)Il, = 321 |ti’j| / |7\—ti’i|
J#i

for some i , 1 <i<n.

12.3 Let T be normal, Xg € X with onH2 =1 . Let Zj and Xj
be defined as in (12.8) for j =1.,2,... . Then by (8.9),
I!(T—zj+2I)xJ.+1II2 < H(T—zj+11)xj+1H2g H(T—zj+11)xjﬂ2 .
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12.4 Let TO be upper Hessenberg and invertible. Then for

j=1,2,..., the matrix Tj in the QR iteration (12.17) satisfies

RjTj— Rfl and hence is upper Hessenberg.

T 18;

J

12.5 Let TO = UISTUO be unreduced upper Hessenberg, and let

0 0 . .
UO = [ug ),...,ug )] . Let (Al,ul),...,(An,un) be eigenpairs of T
with Ikll >0 IAnI . Then for every k=1,...,n -1,
0 0
span{ug ),...,u£ )} n span{uk+1,...,un} = {0} .

12.6 Let TO be unreduced upper Hessenberg and singular, and let

T Q1R1 be the QR factorization. Then the last entry réli of R

0

is zero. The zero eigenvalue thus emerges in the lower right hand

1

corner in one step of the QR iteration.



