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But since dim Y ( we nave 

rank B + dim Z(B) dim Y dim rank 

As rank B "' rail_k �B�1 �~� , we see that * dim Z(B) = dim Z(B ) . This shows 

that the geometric mul tipl ici ties of A and 5\ are equal. II 

Part (c) of the above corollary extends some well 1::novm linear 

algebra results to the discrete spectral values of an infinite 

in , these results are applicable 

to the nonzero spectral values of a compact operator. Also, if A E 

ad(T) , then the nature of the solutions of the operator equation 

Tx - 1\x = y , x,y E X 

can be described in terms of the solutions of the equation 

* * * X ,y € X . 

See Problem 8.2, which gives an analogue of the Fredholm alternative. 

If, however, an eigenvalue A of T is not in the discrete 

spectrum of T 
' 

then 5\ need not be an eigenvalue of T"'f For 

example, let X= 1!.2 and for t 2 let 
' 

[x(1},x(2}, ... ] € e 

t t T[x(l),x(2), ... ] = [x{2),x(3), ... ] . 

Then every 1\ with IAi < 1 is an eigenvalue of T , but has no 

eigenvalues at all ( 12.6(c) and Problem i)). 

We now state a useful result which shows that if 1\ € ad(T) , then 

the associated spectral projection has a simple representation that does 

not involve an integral. 
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~8.3 Let m be its algebraic nrultiplicity, and 

be the order of the pole of at .1\ . Let form an 

ordered basis of the genet·alized eigenspace Z((T-.1\1)2) of T 

corresponding to J\ .. There is a unique basis i~ * {x<, ... ,x} of the 
· 1 m 

generalized eigenspace * - /! (T -:1\I} ) of corresponding to 5\ such 

that 

:l.~i,j::;m. 

Also, if P (resp .• denotes the spectral projection associated with 

T and A . ' T* lli'1d 5\ ) ' 
then 

m . *, .7) P'A: I <.x,x ./X. X € X 
j=l J J 

If, in A is semisimple, then Kll, ... ,xm 

* * x 1 , ... ,xm) form, in fact, an. ordered basis of the •E:igenspace of 

T * (resp., T) corresponding to .1\ 

, and 

Z(P).l , 

Corollary 8.2(b) and .2). Letting Y = R(P) and Z Z(P) in 

Theorem 3.2, we see that there are unique in 

Zl. = Z((T*·-5\I} 2 ) such tl:1at <x;.x/ = oi,j . The formulae (8.7) and 

(8.8) then. follow from (3.3) and (3.4). 

If /1. is semi simple, i.e. , 2 

eigenspace of T corresponding to A 

1 then R(P) = Z(T-AI} is the 

and similarly for R(P*) . The 

last statement of the theorem now follows. // 
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If X is a Hilbert space, T € BL(X) and 0 # x E X , then the 

complex number 

q(x) 2 <Tx, x> / ilxli 

is called the Rayleigh quotient of T at x , and the vector 

r(x) = Tx -

is called the residual of T at x Clearly, r(x) is orthogonal to 

x and hence for any complex number z , we have 

li[Tx - q(x)x] + [q(x)x - zx]!!2 

2 2 2 IITx - q(x)xll + lq(x) - z I lixll 

Thus, 

(8.9) miniiTx . ., zxll 
zE[; 

q(x) . 

This is known as the minimum residual property of the Rayleigh guotient. 

Note that x is an eigenvector of T if and only if r(x) = 0 , and 

in that case q(x) is the corresponding eigenvalue. 

The set of Rayleigh quotients of T is sometimes called the 

numerical range of T . It is a bounded set since !q(x) I ~ IITI! for 

every x # 0 . An interesting property of the numerical range is that 

it is a convex subset of ~ . (See [K], 2. of p.571 for a simple 

proof.) 

More generally, if X is a Banach space, T € BL(X) , x E X and 

* * * x EX with <x,x > ¢ 0 we define the generalized Rayleigh quotient 

* (x,x ) by 

* q(x,x ) 

Notice that in case X is a Hilbert space and we let 

then q(x,x*) = q(x,x} = q(x) , as defined earlier. 

X#- 0 , 
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Let ~ be an eigenvector of T corresponding to an eigenvalue 

A.. Assume that X is an eigenvalue of * * T with ~ as a 

corresponding eigenvector. We have seen in Corollary 8.2(c) that this 

assumption is satisfied if A. € ad(T) . Now, let ~ € X and ~* € x* 

be such that * <~.~ > '# 0 . Then writing ~ = ~ + (>/~-~) and 

* * * * ~ = ~ + (~ -~ ) , we have 

* q(~.~ ) 
* ** ** ** <T~.~ > + <T~.~ -~ > + <>/1-~.T (~ )> + <T(~-~}.~ -~ > 

Hence 

(8.10) 

{8.11) 

* * * * * * <~.~ > + <~.~ -~ > + <>/~-~.~ > + <>/~-~.~ -~ > 

* * * * * * -A.[<~.~ > + <~.~ -~ > + <>/~-~.~ >] + <T(~-~).~ ~ > 
- * ** * ** 

<~.~ > + <~.~ -~ > + <>/~-~.~ > + <~~.~ ~ > 

* * q(~.~*) _A.= <(T-A.I}(~~}.~ -~ > , 
<~.~*> 

lq{~.~*) - A.l ~ II(T-A.I}II ~~~~II 11~*~*11 . 
1<~.~*> I 

The above relation is useful in estimating the eigenvalue A. by 

q(~.~*) if we know some approximations ~ and ~* of the eigenvectors 

* ~ and ~ respectively. In case X is a Hilbert space and 

IA.I = IITII , then X is, in fact, an eigenvalue of T* and ~* = ~ is 

a corresponding eigenvector. {See Problem 8.4.) If T is normal, then 

this is the case for every eigenvalue A. of T since by {1.8) we have 

* Thus, in these cases if we take ~ = ~ , we 

have 

{8.12) 

If ~~~~II is of order E. then lq(~) - A.l 
2 is of order E. This 

phenomenon is called the superconvergence of the Rayleigh quotient. 
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We :now prove some special results rega:rd:i.ng the spectrum of a 

normal operator. 

~ 8"4 Let T be a normal operator on a Hilbert space X . 

(a) I!TII = r 0 (T) , 

and for z € p(T) , we have 

(8. 13) II 1 / dist(z,a(T)) . 

(b) Let A be an isolated point of Then A is a 

semisimple eigenvalue of T , PA is the orthogonal projection onto the 

eigenspace of T corresponding to A ~ = 0 and 

(8.14) 

Proof (a) For x € X , we have 

Hence IIT2 11 :::: IIT*TII "" IITII2 

2j j-1 
T (T2 )2 where T2 

j-1 

<~x,T2x> = <r*r2x,Tx> 

<TT*Tx,Tx> = <T*Tx,T*Tx> 

iiT*Txli2 . 

For j = 2,3, ... 
' 

we have 

is normal. Hence by induction on j 

for all j 1,2, .... The spectral radius formula (5.10) now gives 

r (T) a 

j j 
= lim IIT2 11 1/2 

j->00 
IITII . 

Since T is normal, we see that R(z) is normal for every z € p(T) , 

and 
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IIR(z)l! = r (R(z)) 
G 

1 / dist(z,a(T)) , 

by (5. 

(b) Let l\ be a:n isolated point of a(T) Then since 

[P, {T) 
A 

(8.3) and since R(T, * commutes R(T .w) for 

z near ;,, and w near 5\ ,. we see that PA is a norwal operator. 

But since P,\ is a projection, it follows by Proposition 2.3 that 

Next, since 

i.e., PI\ is an orthogonal projection. 

= {T -!\I) P is normal , we have ,, 

by = 0 , we see from (7.7) that A is a 

pole of order 1 of R(z} , i.e., A is a semisimple eigenvalue of T 

(cf. Proposition 7.3.) Thus, by Lemma 7.1(b), PA(X) is the eigenspace 

of T corresponding to A. . 

Lastly, since - - 1- J ~:)"' dz is likewise normal, we have 
- 2lri r - '' 

by .3), 

1 / dist(/\,a(T)~{/\}) . // 

~ 8.5 Let T be a normal operator on a Hilbert space X . 

(a) Let 1\ e a(T) 

that llx il = 1 and 
n 

(8.15) 

For this sequence, we have 

Then there is a sequence 

Tx - /\x ~ 0 
n n 

(8.16) <Tx ,x ) = q(x ) ~ A 
n n n 

(x ) 
n 

in X such 
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{b) {Krylov-Weinstein} Given x € X with llxll = 1 and z € CC , 

there is A € a(T} such that 

{8.17} lA- zl ~ IITx- zxll 

Proof (a) Since {T-Al} is not invertible in BL(X) , either its 

range is not dense in X , or it is not bounded below. In the former 

case, by Proposition 1.3{c) , we have 

Hence there is x € X with llxll = 1 such that *-II{T -AI}xll = 0 By 

{1.8}, we have lt{T-AI)xll = 0 and {8.15) is satisfied. In the latter 

case, it is obvious that (8.15) holds. Next, 

Hence {8.16} holds. 

I<Tx -Ax ,x >I n n n 

{b) If z € a{T} , there is nothing to prove. Let z € p(T) . 

Then x = R(z}(Tx-zx) , so that 

1 = llxll ~ IIR{z)ll IITx - zxll , 

i.e., dist(z,a(T)) ~ IITx- zxll by {8.13). This shows that there is 

A € a{T} satisfying (8.17}. // 

We now prove the spectral theorem for a compact normal operator. 

We have seen in Section 7 that if T is a compact operator on a Banach 

space X , then a(T) consists of a countable number of points, and 

each such point, except possibly the point 0 , is in the discrete 

spectrum of T . If, in addition, T is a normal operator on a Hilbert 

space X , then we get a complete description of T in terms of its 

nonzero eigenvalues and corresponding eigenvectors. 
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~ 8.6 Let T be a nonzero compact normal operator on a Hilbert 

space X Let A1 .~···· be the distinct nonzero eigenvalues of T, 

arranged so that 

Let P. denote the orthogonal projection onto the eigenspace of T 
J 

corresponding to Aj Then each P j has finite rank and 

j '# k . 

For n = 1,2, ... , we have 

{8.18) 

which tends to zero whenever the sequence (Aj) is infinite, so that 

()() 

{8.19) T = I Alj 
j=1 

Let· (~) , k = nj_1 + 1 , ... ,nj , denote an ordered orthonormal basis 

of the eigenspace Z{T-Ajl} , j = 1,2, ... ,(n0 = 0) , and let ~ = Aj 

for nj_1 + 1 ~ k ~ nj . Then 

(8.20) Tx = I ~<x,~>~ , x € X . 
k=1 

Also, if P0 denotes the orthogonal projection onto Z{T) , then 

{8.21) 

P0P. = 0 , j = 1,2, . . . , 
. J 

()() 

x = P 0x + I P jx , x € X 
j=1 

Proof Since T is compact, we know that 

where Since T is normal, each Aj is a 
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semisimple eigenvalue of T , a:nd the associated spectral proj,ection is 

the orthongonal projection P. onto 
J 

A. € ad(T) , each P. :i.s of finite rank, a:nd. since 
J . J 

from Lelll.lna 7.8 that P .P, = 0 if j # k . 
Jl iK 

For n = 1,2, ... , let 

Since (T-X.I)P. "'0 
J J 

we see 

Now, by the spectral decomposition theorem .10)), the spectrum 

can differ :from 'A ' ' n+2' · · · f only by 0 Hence 

But since TQn = O"nT a:nd 

normal . Hence 

= Qn , we conclude that T(I·-~) is 

li 

by Theorem 8. TI1is proves is 

:infinite, it must tend to 0 , since 0 is the only limit point of 

n 
a(T) . Thus, T is the limit in BL(X) of I 

j=l 
j . In other 

words, (8. holds. The representation 20) is immediate from 

since P.x = 
J 

Now consider the orthogonal projecti.on onto Z(T) . Let 

x E R(P0 ) 
' 

and 

IIT*xll "' IITxll = 0 

y E R(P .) fo:r 
J 

whi.le Ty 

5\.<x,y> = <x, 
J 

some j -· 19 2, ~ . ~ Then by (1.8), 

'A.y Hence 
J 

0 . 



But A.j ¢ 0 , 

j = 1,2, ... 

so that 
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<x.y> = 0 . This shows that 

It is clear that {u1,u2 , ... } is an orthonormal set in R(P0)~ 
l. Let x € R(P0) and <x.~> = 0 for each k = 1,2, .... Then by 

(8.20), we see that Tx = 0, i.e., x € Z(T}- = R(P0) . But since 

~ x € R(P0) , we have x = 0 . The Fourier expansion theorem ([LI .. 

22.10) now shows that {u1 ,u2 , ... } is, in fact, an orthonormal Basis 

~ ~ of R{P0) . Since x - P0x € R(P0) for every x € X , we have· 

co co 

This proves (8.21). // 

A self-adjoint operator T on a Hilbert space is normal, and lienee 

the results of Theorem 8.5, and of Theorem 8.6 {in case T is also. 

compact) hold for T . There are some interesting results regarding the 

spectrum of a self-adjoint operator. By (1.9), the Rayleigh quotient 

q(x) of T at 0 ¢ x € X is a real number. Let 

~ = min{q(x) x € X llxll = 1} 

Kr = max{q(x) x € X llxll = 1} 

THEOREK 8.7 Let T be a self-adjoint operator on a Hilbert space X . 

(a) The spectrum a(T) of T is contained in the closed interval 

[~·MTJ of the real line, and ~ as well as MT belong to a(T) . 

{b) (Kato-Temple} Let x € X with llxll = 1 Then 

(8.22) dist(q(x),a(T)} ~ llr(x}ll . 

Consider A. € a{T) such that (q{x} - A.l = dist(q(x),a{T)} Then 
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" 23) lq(x) - )\I ~ li:r(x) I!"" / dist( q(x) ,a(T)\{7\}) 

of Theorem 8.5, we see that every )\ E is 

the l :hni t of a s<aquence of Rayleigh quotients. Since each 

We show tl'.at ~ E Let E X be such that llx I! 
n 

1 fu'1d 

It can be verified by using the 

generalized Schwarz i.:neqUD.Hty for 

(cf. [L], p.257.) Hence liTx -m...:x II ~ 0 
n 1 n 

is not bounded below, so that ~ E 

very similar. 

that 

Th.is implies that 

The proof for E is 

(b) Let x € X with llxll = 1 , and q = q(x) 

Theorem 8.5 with z = q , we immediately obtain (8. 

By part (b) of 

Let A. € a(T) 

such that lq-:i\1 = dist(q,a(T)) , and 

d = dist(q,a(T)\{A.}) 

For t € [my.MTJ , consider the function 

f(t) = (t-7\)[t-(q-d)] == t 2 - (A.+q-d)t + A.(q-d} 

Since no t E (q-d,7\) lies in a(T) , we see that f(t) >- 0 for all 

t € a(T) Hence ([L], 31.4 and 32.6) 

f(t)da(t} ~ 0 , 

where a(t) = <Ptx,x> , {Pt} being the normalized resoltuion of the 

identity associated with the self-adjoint operator T . But 
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= <rx.x> = 11Txn2 • JM.r t da(t) 

DT 
= <Tx,x> = q , 

~ J da(t) = <x.x> = 1 . 

DT 

Thus, 

11Txll2 - (A+q-d)q + A(q-d) L 0 , or 11Txll2 - q2 L d(A-q) 

Since 2 2 2 llr(x)ll = <Tx-qx,Tx-qx) = IITxll - q we have 

2 A - q ~ llr(x)ll / d 

Similarly, by considering the interval (A,q+d) and the function 

g(t) = (t-A)[t-(q+d)] , we obtain 

2 q - A ~ llr(x)ll / d 

The above two inequalities imply (8.23). // 

Problems 

8.1 Let X be a Hilbert space, and T € BL(X) . Then liTH= 

[r (T*T)] 1/ 2 . If T is normal and z € p{T) , then a 

IITR(z)ll = max{ IAI/IA-z I : A E a(T)} . 

8.2 Let A € ad{T) . Then the dimension of the solution space 

{x € X : Tx - Ax = 0} is the same as the dimension of the solution 

space * . ..* * * - * {x € X : T x - Ax = 0} . 

be bases of these two spaces, respectively. Given y € X 

X*> • h nh t e no omogeneous equation 

( T* * '··* *> Tx - Ax = y resp. , x - /U<. = y 

* * {x1 , ... ,xg} 

* (resp., y € 
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possesses a solution if and only H 

<x~ 
J 

= 0) , j = l, ... ,g. 

If is a solution of this equation, then its most 

general solution is 

where c 1 , ... ,cn are complex numbers. 

5 * 8.3 Let X "" 1!:: , and the operators T and T be given by the 

matrices 

r A 
1 0 0 0 

r ~ 
0 0 0 0 

1 .o A 1 0 0 5\ 0 0 0 

0 0 A 0 0 al!d l ~ 1 5\ 0 0 

0 0 0 A 1 0 0 5\ 0 

0 0 0 0 A 0 0 1 5\ j 

respectively. Then el and are eigenvectors of T, while 

e3 and e5 are generalized eigenvectors. But e3 and e5 are 

eigenvectors of T*, while el e2 and are generalized 

e2 , 

eigenvectors. . Theorem 8.3 for a nonsemisimple eigenvalue /1. .) 

8.4 Let X be a Hilbert space, T E BL(X) and li\1 = IITI! . H 

Tx-"Ax=O then T* x - 5\x = 0 . If lix II = 1 and 
n 

IITx - Ax II ~ 0 , then liT* x - 5\x II ..,)> 0 . 
n n n n 

8.5 Let T be a normal operator on a Hilbert space X , and A be an 

isolated point of a(T) Then by (4.7) and (8.13), 

= 2~J (z-i\)R(z)dz = 0, 
1Tl r 

where f is a small circle with centre A , proving that every 
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:isolated point of is a semisimple eigenvalue of T (This proof 

does not use the spectral decomposition theorem") 

8"6 Let x € X with lbdi = 1 and T E BL(X) be self-adjoint. Let 

,a(T)) say. Let P 

denote the orthogonal projection onto Assume that Px ;t 0 

and let B be the acute a.ngle betT\feen x and Px . Then 

1/2 
(8.24) sin e ~ 

where d , a(T)\.{/\}) . In particular. 

(8.25) sin e ~ II/ d . 

8.7 Let X be a Hilbert space and X be an isolated point of a(T} , 

T E EL(X) Assume that is orthogonal. Then 

(8.26) *-0 # jJ. E a( (T -/\I) 

r- * 1 / inf l-.!,11 0 # p. € a( (T 


