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THEOREM 8.3 let A € ad(T) , m bg its algebraic multiplicity, and ¢
be the order of the pole of R(z) at A . Let Kpowe X form an
ordered basis of the generalized eigenspace Z((T—AI)E) of T
corresponding to A .. There is a unique basis {xT,...,x:} of the

generalized eigenspace Z((T*—XI)B) of T corresponding to A such

that

Kex.>=6, ., 1<i.j<m.
J 1 1.)

Also, if P (resp., P*) denotes the spectral projection associated with

T and AN (resp., T and X ) . then

L %
(8.7) Px = ) <x,x0%x, ,x €X

j=1 .

% 3% o 3% % 3 %

(8.8) Px = ) <x.x)>x, ,x €X .

j:l Jd
If, in particular, A is semisimple, then Kpseoos X
resp., x*,...,x* form, in fact, an ordered basis of the eigenspace of

1 m

T (resp., T*) corresponding to A (resp., A) .
Proof We have R(P) = Z((T-AI)®) by Lemma 7.1(b), and
z((4An?) = Ry = z(p)t .

by Corollary 8.2(b) and (2.2). Letting Y = R(P) and Z = Z(P) in

Theorem 3.2, we see that there are unique xT,...,x: in
7 - z((T"R1)®) such that <x§,xi> =5, ; - The formulae (8.7) and

(8.8) then follow from (3.3) and (3.4).
If A is semisimple, i.e., & =1, then R(P) = Z(T-AI) is the
eigenspace of T corresponding to A , and similarly for R(P*) . The

last statement of the theorem now follows. //
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If X is a Hilbert space, T € BL{(X) and O # x € X , then the

complex number

q(x) = <Tx,x> / IIxH2

is called the Rayleigh quotient of T at x , and the vector

r{x) = Tx - q(x)x

is called the residual of T at x . Clearly, r(x) is orthogonal to

x and hence for any complex number =z , we have

ITx - sz2 WTx - q{x)x] + [q(x)x - zx]ll2

L1}

2

ITx - q(x)xh + la(x) - z12uxl
Thus,

(8.9) minliTx - zxll = iTx - zxll if and only if =z, = q(x) .
z€C @ 0

This is known as the minimum residual property of the Rayleigh quotient.

Note that x is an eigenvector of T if and only if r{x) =0, and
in that case q(x) is the corresponding eigenvalue.
The set of Rayleigh quotients of T 1is sometimes called the

numerical range of T . It is a bounded set since [q(x)| < ITH for

every x # O . An interesting property of the numerical range is that
it is a convex subset of € . (See [K], 2. of p.571 for a simple
proof.)

More generally, 1if X 1is a Banach space, T € BL(X) , x € X and

x* € X* with (x,x*> # 0 , we define the generalized Ravleigh quotient

f T at (x,x*) by

q(x,x*) = (Tx,x*> / <x,x*> .

o 3 Y 3 *
Notice that in case X 1is a Hilbert space and we let x =x # 0 ,

then q(x,x*) = q(x,x) = q(x) . as defined earlier.
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Let ¢ be an eigenvector of T‘ corresponding to an eigenvalue
A . Assume that A is an eigenvalue of T* with w* as a
corresponding eigenvector. We have seen in Corollary 8.2(c) that this
assumption is satisfied if A € Ud(T) . Now, let ¢y € X and ¢* ex”
be such that <¢,w*> # 0 . Then writing ¥ = ¢ + (y—-¢) and

W* = ¢* + (¢*—¢*) , we have

%, (Tp,0 > + <To b =9 > + g, T (9 )> + <T(Y=p) ¥ =0 >
a(v.¥') = E3 % 3 EE
Kp,9 > + Lo, p —p > + {Ymp,p > + Pgp,p =@ >
- A<, 0> + <o, —p > + W9 ] + <T(o=p) @ =P > )
<4>,<P*> + <<p.\lf*—<p*> + <\IJ—<p,<P*> + <‘P—‘P,<P*-\P*>
Hence
3% 3¢
(8.10) Ay - a = LMol b2
R

(8.11) (e, vy = Al ¢ BRI o gy g g

<y ¥ >l

The above relation is useful.in estimating the eigenvalue A by
q(¢,¢*) if we know some approximations ¥ and w* of the eigenvectors
¢ and w* , respectively. In case X 1is a Hilbert space and
INl = UTH , then A is, in fact, an eigenvalue of T* and w* = ¢ is
a corresponding eigenvector. (See Problem 8.4.) If T is normal, then

this is the case for every eigenvalue A of T since by (1.8) we have

H(T*—i)wu = [I{T-A)¢ll . Thus, in these cases if we take w* =y , we
have
(8.12) © ety - Al ¢ MR e g®

Il

If llp—¢ll is of order e , then I[q(y) - Al 1is of order ez . This

phenomenon is called the superconvergence of the Rayleigh quotient.
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We now prove some special results regarding the spectrum of a

normal operator.

THEOREM 8.4 Let T be a normal operator on a Hilbert space X .

(a) HTil ra(T) ,
and for z € p(T) . we have

(8.13) IR(z)1l

]

1 / dist(z.o(T)) .

(b) Let A be an isolated point of o(T) . Then A is a
semisimple eigenvalue of T , Pk is the orthogonal projection onto the
eigenspace of T corresponding to A , DA =0 and

(8.14) IS\l = 1 / dist(N,o(TINA}) .

Proof (a) For x € X, we have

IT2x2 = <T2x, T2 = <T T2, Tx>

TTTx,Tx> = <TTx, T Tx>

T

Hence HT2H = HT*TH = |IT|I2 . For j=2,3,... , we have

J j-1 j-1
T2 = (T2 )2 ., where T2 is normal. Hence by induction on j ,

J J
i = i,
for all j =1.2,... . The spectral radius formula (5.10) now gives
23 1729

r (T) = lim NT
o o0

= ITH .

Since T 1is normal, we see that R(z) is normal for every z € p(T) .

and
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IR(z)Il = rU(R(z)) =1 / dist(z,0(T)) .
by (5.6).

(b) Let XA be an isolated point of o(T) . Then since

[PA(T)]* = PX(T*) by (8.3) . and since R(T,z) commutes R(T*,W) for

zZz near A and w near A , we see that PA is a normal operator.
» But since PA is a projection, it follows by Proposition 2.3 that
I{(P7\)'L = Z(PA) , i.e., PA is an orthogonal projection.

Next, since DA = (T—AI)PA is normal, we have

ID, Il = r (D) =0 ,

1}

by (7.4). As P, #0 and D,

pole of order 1 of R(z) ., i.e., A 1is a semisimple eigenvalue of T .

0 . we see from (7.7) that A 1is a

(cf. Proposition 7.3.) Thus, by Lemma 7.1(b), PA(X) is the eigenspace

of T corresponding to A .

Lastly, since SA = 5%; gi%lx-dz is likewise normal, we have
r
by (7.3).
HSAH = ra(SA) =1/ dist(N.o(T)\{A}) . //

THEOREM 8.5 Let T be a normal operator on a Hilbert space X .

(a) Let A € o(T) . Then there is a sequence (xn) in X such

that lix Il =1 and
n
(8.15) Tx - =0.
_ n n
For this sequence, we have

(8.16) <Txn,xn> = q(xn) = A
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(b) (Krylov-Weinstein) Given x € X with lxll =1 and z €C ,

there is A € g(T) such that
(8.17) N - z] < ITx - zxIl .

Proof (a) Since (T-AI) is not invertible in BL(X) , either its
range is not dense in X , or it is not bounded below. In the former

case, by Proposition 1.3(c) . we have
* — 1
Z(T -AI) = R(T-AI)™ # {0} .

Hence there is x € X with lixll =1 such that H(T*—XI)XH =0 . By
(1.8), we have I(T-AI)xll = 0 and (8.15) is satisfied. In the latter

case, it is obvious that (8.15) holds. Next,

Iq(xn) - Al = l(Txn—)\xn,xn>|

Hence (8.16) holds.

(b) If z € o(T) , there is nothing to prove. Let z € p(T) .

Then x = R(z)(Tx-zx) , so that
1 = lixll < IR(z)I ITx — zxIl ,
i.e., dist(z,0(T)) < ITx - zxll by (8.13). This shows that there is

N € o(T) satisfying (8.17). //

We now prove the spectral theorem for a compact normal operator.

We have seen in Section 7 that if T 1is a compact operator on a Banach

Space X , then o(T) consists of a countable number of points, and
each such point, except possibly the point O , is in the discrete
spectrum of T . If, in addition, T 1is a normal operator on a Hilbert
space X , then we get a complete description of T 1in terms of its

nonzero eigenvalues and corresponding eigenvectors.
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THEOREHM 8.6 Let T be a nonzero compact normal operator on a Hilbert
space X . Let Rl,k2,... be the distinct nonzero eigenvalues of T ,

arranged so that
L2 g2

Let Pj denote the orthogonal projection onto the eigenspace of T

corresponding to Aj . Then each Pj has finite rank and

For n=1,2,..., we have

n
(8.18) T - Y A

&4 ijH = Ikn+1| .

which tends to zero whenever the sequence (Rj) is infinite, so that

4]
(8.19) T= 3 AP, .

jop 43
Let’ (uk) ., k= ﬁj—l + 1 ,...,nj . denote an ordered orthonormal basis
of the eigenspace Z(T—RJI) , i= 1,2,...,(nO =0} , and let by = Aj

for n. + 1 <{k<{n., . Then
j-1 J

[+
(8.20) Tx = ) &x,udu , x €X .
o
Also, if PO denotes the orthogonal projection onto Z(T) , then

(8.21) x=POx+2PJ.x, x €X .

Proof Since T is compact, we know that

o(T) \ {0} = oy(T) \ {0} = (ApA,---} .

where Ikll > IA2I > ... . Since T is normal, each xj is a
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semisimple eigenvalue of T , and the associated spectral projection is
the orthongonal projection Pj onto Z(T—AJI) {Theorem 8.4{b)). Since

A, €0,(T) ., each P_, is of finite rank, and since A, ., We see
J a™ J J;”\k

k
For n=1,2,..., let

from Lemma 7.8 that PjP =0 if j#£k .

Since Dj = (T—AJI)PJ =0 ., we have

TQn=TP1 + ... +TPH=?\1P1 + ... +)\nPn.

Now, by the spectral decomposition theorem {cf. (6.10)), the spectrum

of T(I—Qn) can differ from {Anﬁl’xn+2""} only by O . Hence

ro(T(1-0)) = I\, |

i _ * i
But since TQn = QAT and Qn = Qn , we conclude that T(I—Qn) is

normal. Hence
n .
T - 321 AP = IT(I-Q ) = r (T(I-Q.)) .
by Theorem 8.4(a}. This proves (8.18). Now, whenever (Aj) is

infinite, it must tend to 0O , since 0 1is the only limit point of

n
o(T) . Thus, T is the limit in BL(X) of 3 A
j=1

.P. . In other
J ]

words, {8.19) holds. The representation {8.20) is immediate from (8.19)

n,
since P.x = Z <x,uy 2w, .
k=n_, _+1 Kk
j-1
Now consider the orthogonal projection PO onto Z(T) . Let
x € R(PO) , and y € R(Pj) for some j = 1,2,... . Then by (1.8),
IT%N = ITxll = 0 , while Ty = Ay . Hence

Xj<x,y> = <, Ty> = <T*x,y> =0 .
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But kj #0 , so that <x,y> = 0 . This shows that P Pj =0 for

0
i=1.2,...
It is clear that {ul,uz,...} is an orthonormal set in R(PO)'L .

Llet x € R(Po)'L and <x,uk> =0 for each k=1,2,... . Then by
(8.20), we see that Tx =0, i.e.., x € Z(T) = R(PO) . But since

x € R(Po)l , we have x = 0 . The Fourier expansion theorem ([L],

‘ 22.10) now shows that {ul,u2,...} is, in fact, an orthonormal basis
)l

of R(PO Since x - Pox € R(PO)l for every x € X , we have

L] «©
x-Px= ) <&Xxudu = Y Px .
A e R j=1 4

This proves (8.21). Ve

A self-adjoint operator T on a Hilbert space is normal, and hence
the results of Theorem 8.5, and of Theorem 8.6 (in case T is also
compact) hold for T . There are some interesting results regarding the
spectrum of a self-adjoint operator. By (1.9), the Rayleigh quotient

q(x}) of T at O # x € X is a real number. Let

1}
1} .

i

m. = min{gq(x) : x € X , lixl

MT = max{q(x) : x € X , lxll

THEOREM 8.7 Let T be a self-adjoint operator on a Hilbert space X .

(a) The spectrum o(T) of T is contained in the closed interval

[mT,MT] of the real line, and m. as well as MT belong to o(T) .
(b) (Kato-Temple) Let x € X with lxll =1 . Then
(8.22) dist{q(x).o(T)) < lUr(x)ll .

Consider A € o(T) such that |gq(x) - Al = dist(q(x).o(T)) . Then
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(8.23) la(x) - Al < Ir(x)I2 7 dist(q(x).0(TI\A}) .

Proof (a) By part (a) of Theorem 8.5, we see that every A € o(T) is
the limit of a sequence of Rayleigh quotients. Since each Rayleigh
quotient belongs to [mT’MT] , it follows that o(T) C [mT,MT] .

We show that my, € o(T) . Let x € X be such that Han =1 and
q(xn) =y . Then <(T—mT)xn,xn> =0 . It can be verified by using the

generalized Schwarz inequality for ((T—mTI)x,y> that
ITx_-mx 1% < 1T-m 1013¢(T-mT)x_,x >
n "T°n - T B ¥ %n” -

(cf. [L], p.257.) Hence HTxn—menH = 0 . This implies that (T—mTI)
is not bounded below, so that my. € a(T) . The proof for MT € o(T) is

very similar.

(b) Let x€X with lixll =1, and q = q(x) . By part (b) of
Theorem 8.5 with z = gq ., we immediately obtain (8.22). Let A € o(T)

such that |g-A| = dist(q,o(T)) , and
d = dist(q.o(T)\{7A}) .
For t € ["'T‘MT] , consider the function
£(t) = (t-A)[t-(a-d)] = £ - (A+g-d)t + A(q-d) .

Since no t € (gq-d.,\) lies in o(T) . we see that f(t) 2 O for all
t € o(T) . Hence ([L]. 31.4 and 32.6)

J‘ f(t)da(t) 2 0,

.

where at) = <Ptx,x> . {Pt} being the normalized resoltuion of the

identity associated with the self-adjoint operator T . But
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.

r

tzda(t) = (sz,x> = IITxII2 . J t de(t) = Tx,x> =q ,
m.

J da(t) =<x,x> =1 .

i

_?

Thus,

ITh? - (Mg-d)q + AM(g-d) > 0 , or ITxI® - q© » d(A-q) .

IlTxII2 - q2 . we have

Since llr(x)ll2 = {Tx-gx,Tx—qx>
2
AN=-gq < lie(x)l™ /4.

Similarly. by considering the interval (A.q+d) and the function

g{t) = (t-A)[t—-(q+d)] . we obtain
a-A<rE)I2 /4.

The above two inequalities imply (8.23). Va4

Problems

8.1 Let X be a Hilbert space, and T € BL(X) . Then ITIl =
[ra(T*T)]ll2 . If T is normal and z € p(T) . then

ITR(z) Il = max{IA[/IA-z] : X € o(T)} .

8.2 Let A€ Ud(T) . Then the dimension of the solution space
{x€X : Tx - Axx =0} is the same as the dimension of the solution

% 3 3% 3%
space {x € X : Tx

— 3¢ 3¢ *

-Ax =0} . Let {xl,...,xg} and {xl,...,xg}
3

be bases of these two spaces, respectively. Given y € X (resp.., y €

22
X'} . the nonhomogeneous equation

Tx - & =y (resp.. T - & =y)
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possesses a solution if and only if
(x?,y) =0 (resp., <xj,y*) =0), j=1.....g .

3¢
If Xo (resp.. %0 ) 1is a solution of this equation, then its most

general solution is

+ + + * ¢ * v + *)
Xg * ¢1%g RIS (resp., Xg * 4% v chg
where Cqs---sC, are complex numbers.
8.3 Let X = Cs , and the operators T and T* be given by the
matrices
N1 00O X000 O
0OA100 1 X000
0 0ANOO and 01 AO00O
0 0 0 A 1 0 00 XNO
0 0 0 0 A 0 001X
respectively. Then e and e, are eigenvectors of T , while ey -
eq and ey are generalized eigenvectors. But eq and ey are
eigenvectors of T* , while ey . ey and e, are generalized

eigenvectors. (Cf. Theorem 8.3 for a nonsemisimple eigenvalue A .)

8.4 Let X be a Hilbert space, T € BL(X) and IA]l = ITH . If
Tk~ Ax =0, then Tx-Ax=0. If lxll=1 end

ITx_ - Ax Il -0, then I - A Il » 0 .
n n n n

8.5 Let T be a normal operator on a Hilbert space X , and A be an

isolated point of o(T) . Then by (4.7) and (8.13),

D, = 2—11;; L (z-\)R(z)dz = O ,

where I is a small circle with centre A , proving that every
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isolated point of o(T) 1is a semisimple eigenvalue of T . (This proof

does not use the spectral decomposition theorem.)

8.6 Let x € X with lixll =1 and T € BL(X) be self-adjoint. Let
N € cd(T) be such that [q(x)-Al = d(q(x).0(T)) = do , say. Let P
denote the orthogonal projection onto Z(T-AI) . Assume that Px # O

and let 6 be the acute angle between x and Px . Then

[Ilr(x) II2—dg] 172

2 2
d —do

(8.24) sin 6 ¢

where d = dist(q(x).o(T)\{A}) . In particular,
(8.25) sin 6 < lir(x)ll 7 4 .

8.7 Let X be a Hilbert space and A be an isolated point of o(T) .,

T € BL(X) . Assume that PA is orthogonal. Then

-1
3 % -
S)\s)\IZ(P}\) = [(T —AI)(T—M)|Z(P)\)] ,
(8.26) a(S)\S:) = {0} U {}J— :0#£pu€ a((T*—XI)(T—)\I))}

IS, Il = 1 / inf {G :0Fp€E a((T*—XI)(T-M))} .



