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7. ISOLATED SIRGULARITIES OF R(z)

In the last section we have considered the Laurent expansion of the
resolvent operator R(z) in an annulus contained in the resolvent set
p(T) of T € BL(X) . We now specialize to the case when the inner
circle of such an annulus degenerates to a point A ; i.e., when a
punched disk {z € C : 0 < |z-A[ < 6} 1lies in p(T) . Let I be any
curve in p(T) such that o(T) N Int I' C {A} . Since the operators
PF(T) . SF(T,A) and DF(T,A) do not depend on I' , we denote them
simply by P, ., SA and DA , respectively. The operators SX and DA

A
have special features. By the first resolvent identity (5.5). we have

S = _l_.J‘ R(W) _ 4w
Fw—-?\

AT 2ri
= lim 5 | RO gy
zo\ ThIp W T
~ 1im i%f,[ R(z) + R(w) - R(z) 4,
Z=\ tdr w-z
. 1 dw (w—z)R(z)R(w)
= lim 53— [R(Z)I — + j - dw
Zo\ 2wi r¥-z r w -z
= lim [R(z) + R(z)(—P)] .
Z=N\
Thus, we see that
(7.1) SA = lim R(z)(I-P) .
Z=\

Next, it follows by Proposition 6.4 and (5.1) that

(7.2) o(S,) € {0} U {1/(uA) : w€o(T) . uw#2A} .
where the inclusion is proper if and only if A € a(T) . Hence
(7.3) (8,) = -

' oS0 = @ist(no(T)A}) °

Again, Proposition 6.4 implies that

(7.4) U(D}\) = {0} and I‘a(D)\) =0 .
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For this reason, the operator D, will be called the quasi-

A
nilpotent operator associated with T and A . We thus have the
representation
(7.5)

TlPA(X) = AIIPA(X) * DAIPA(X) .

where DA is quasi-nilpotent.

For O < |z-Al < dist(A,o(TI\{A}) . we have the Laurent expansion

k
[ P [
k+1 k A DA
(7.6) R(z) = 3 S zN) - A - T —Sp
k=0 A zZ-\ K1 (z—x)k+1
To have a feeling for the operators PA and SA ., we give a

simple example. Let T be represented by the diagona’ matrix

diag(k,...,k,kl,A2,...) .

where A does not belong to the closure of {Aj :j=1,2,...} . Then

PX = diag(1,...,1,0,0,...) ,
S, = diag(0,...,0,1/(A;-A) , V/(A,A)....) -

Let us consider another typical example. Let X = L2([a,b]) and

let V denote the Volterra integration operator defined by

Vx(s) = Js x(t)dt , x € X, s € [a,b] .

a

Then it is well-known ([L], p.151) that

o(V) = {0} ,
i.e., V 1is quasi-nilpotent. Also, Vx =0 implies x = 0 , since

JS x(t)dt = 0 for almost all s € [a,b] implies that x(t) =0 for
0

almost all t € [a,b] . Thus, O is not an eigenvalue of V . Hence

V is not nilpotent.



89

Considering the isolated spectral point A =0 of V , we easily

see that

Po=1. Dy= (V-0I)P, =V and

(0]
o
]

lim R(z)(I~Po) =0 .
z=0

This confirms with the first Neumann expansion (5.8)

_ Yk GeD)
k=0
y o

k=1 Zk+ 1

R(z)

.
z

for O # z € C, which is also the Laurent expansion (6.22) about O
of R(z) .

It can be readily seen by induction that for each k > 1 ,
_— k-1
ka(s) = %E:I%T—'x(t)dt , x€X, s €[a,b].
a !

Hence, if we let for 0 #z €C ,

© k-1
U(z)x(s) = J: X ot =] xoa

= Js 572 (yat , xeX ., s €[ab] .
a .
then

R(z) = - I/z - U(z)/z2 ,

where U(z) 1is again a Volterra operator with kernel e(s—t)/z .

The above remarks and the infinite representation of R(z) hold
for any quasi-nilpotent operator which is not nilpotent.

In the above example A = 0 is an isolated essential singularity

of R(z) ., since the Laurent expansion (7.6) has infinitely terms with

negative powers of (z-A) .



The other extreme case arises when A 1is a removable singularity
of R(z) . so that there are no terms with negative powers of (z-A)
in (7.6). Clearly, this happens if and only if Pk =0, i.e., A€
o(T) {Proposition 6.4(a)) . In this case, SA = R(A) and ﬁe recover

the Taylor expansion (5.7) of R(z) around A :
s k
R(z) = 2 R(A) z—x)

Let us now consider the important case where A 1is a pole of
R(z) . It can be readily seen from (7.6) that A 1is a pole of order

2, 1<&<», if and only if

2-1 2
(7.7) D, #0, but D =

In this case (7.6) reduces to

k
s P 2-1 D
k+1 k A A
(7.8) R(z) = J S)\ {(z-A)" - TN 71
k=0 k=1 (z-A)
2-1 . . 0 . .
where Dk # 0 , with the notation DA = PA . Notice that _Pk is

the residue of R{(z) at AN and that DA is nilpotent..

In order to illustrate the calculation of the coefficients in the

expansion (7.8) of R(z) , we consider a simple example. Let X = @2

and fix t € C . Let

[ 0 t/16} [x(l)}
T(t)x =

4t 2| |x(2)
for x = [x(l),x(Z)]t € ¢® . Then for é €EC,

det(T(t)-zI) = -z(2-z) - t/4 .

Let
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where l4+t2 denotes the principle value of the square root of 4+t2 .
Then every z € {A(t)., u(t)} lies in p(T(t)) . and R(T(t).z) is
given by the matrix

2-z -t/16
-1
(T(t)-=zI) = = 7 [z-A(t)1[z-u(t)] .
-4t -z
~ Note that R(T(t).z) has simple poles at z = A(t) and z = p(t) if
t#+2i , and if t = +2i , then it has a double pole at z =1 . Let

I' denote the circle I'(t) =2 + elt , 0<t<2r . Since for

ltl <2, we have |1 - Jl+t2/4l <1 and |1 + Jl+t2/4l >1, we see

that A(t) lies inside I' and p(t) lies outside I' . Using Cauchy’s

integral formula (Theorem 4.5(b)), we see that for |[t| < 2,

1

Pa(ey = Pr(T(t)) = - o5 - R(T(t).z)dz

is given by the matrix

A(t)-2 t/16

7 (M(t)-u(t)) -
4t A(t)

It can be readily checked that for |[t] < 2,

DA(t) = (T(t)—k(t)I)Pk(t) =0 .

Also, S = lim R(T(t).z)(I-P )} is given by the matrix
YO Tl ACt)
-A(t) t/16
/ (4+t2) .
4t p(t)

Now we prove a result which allows us to characterize the order of

a pole of R(z) .
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LEMMA 7.1 Let A be an isolated point of o(T) .

() For k=1.2.... D=0 if and only if Z(P) = R((T-AD)X)

if and only if R(P)) = Z((T-AD)Y) .

{(b) Let 1< & <w . Then A is a pole of R(z} of order & if
and only if £ is the smallest positive integer such that one {and

hence each) of the following conditions holds:

R((T-AD)%)

i}

(1) Z(r))

(11) R(Py)

[

z((1T-A)%)
In that case,

X = z((T-AD)%) @ R((T-AD)®) .

Proof (a) Let k =1,2,... . We have already noted in Section 6

(just before the definition of a spectral projection) that
(7.9) 2((T-AD)¥) € R(P,)
Similarly, it follows (cf. Probiem 6.2) that
(7.10) R((T-AD)¥) 2 Z(P,) -
Also, since (T-AI) and PA commute, we have
DX = (T-AD)*P, = P, (T-AD)" .

Hence part (a) follows.

{(b) It is clear from part {a) that Di_l # 0 and De =0 if and
only if (i) or (ii) holds and £ is the smallest such positive integer.

In that case,

X = R(P,) ® Z(P,) = z((T-A1)%) @ R((T-AD)®) . 7/
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Remark 7.2 Consider the following two chains of inclusions involving

the null spaces and the range spaces of powers of an operator A :
2
{0} CZ(A) CZ(A™) C ...

X 3 R(A) DR(A%) o ...

A peculiar property of each of‘these chains is that if equality holds at
any inclusion then it persists at all later inclusions. This can be
seen as follows. Let Z(Ak) = Z(Ak+1) . If x€ Z(Ak+2) , then

A ax) =0, d.e.. Ax ez = zaY) . or A¥*lx =0 . Thus.

k+1

z(A% 1y - 7(aA¥*2) . similarly, let R(A¥) = R(AK'D) . 1f

vy € R(Ak+1) , then y = A(Akx) for some x € X ; but

Akx € R(Ak) = R(Ak+1) , i.e., Akx = Ak+1x0 or y = Ak+2xo for some
Xy € X . Thus R(Ak+1) = R(Ak+2) . We shall make use of this property
frequently. See Theorem 2 of Appendix I for a characterization of a

pole of R(z) .

Here is an iterative procedure for finding Z(Ak): Let

(7.11) Zy = {0} . Z; = Z(A) \ Z, .

and Zk ={x€X: Ax € Zk—l} , k=2,3,...
Then it is easy to see by induction on k that
z, = Z(A%) \ z(A*)

for all k , i.e., Zk consists of the generalized eigenvectors of A of
grade k corresponding to O . In particular, Zk =@ 1if and only if

241y = 2(A%) . Ve have the disjoint union Z(A¥) =Z U ... UZ_.

PROPOSITION 7.3 Let A be a pole of R(z) . Then A is an isolated
eigenvalue of T , and the associated spectral subspace R(PA)
coincides with the generalized eigenspace of T corresponding to A .

In fact, the order of the pole of R(z) at AN is & if and only if 2
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is the smallest positive integer such that there are no generalized
eigenvectors of T of grade £ + 1 corresponding to A , and in that

case R(PA) is the disjoint union of {0} and the sets of generalized

eigenvectors of T of grade k corresponding to A, k=1,...,2 .

. . 2 £2-1
Proof Since A 1is a pole of R(z) . we have DA =0, but DA #0
for some positive integer £ . .Then there is Di_lx # 0 with

(T-A1)DY 'x = Dfx = 0 .

Thus, Di_lx is an eigenvector of T corresponding to the eigenvalue

A . By (ii) of Lemma 7.1(b) and by (7.9). we have

R(P,) = Z((T-AT}%)
={x€X: (T-A\I)’ = 0 for some k = 1,2,...}
Letting A =T - AL in (7.11), we have

z, = Z((T-AD¥) \ Z((T-An)¥ 1y

and hence

R(P) =ZyU ... UZ, .

where Zi n Zj =@ if i# j . Also, for k 21, Zk+l =@ if and
only if Z((T—Al)k) = Z((T—Al)k+1) ., and this is the case if and only if
R(Pk) = Z((T—kI)k) . Thus, A is a pole of order £ if and only if 2
is the smallest positive integer with Z‘q+1 =0 . Vs

When A 1is a pole of R(z) . we wish to investigate how much
larger the generalized eigenspace PA(X) is as compared to the
eigenspace Z(T-AI) . For this purpose we prove the following result.

It will also allow us to obtain necessary and sufficient conditions for

the spectral projection PA to be of finite rank.
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IFEMA 7.4 Let A be a linear operator on X . Then for k=1,2,...,

(7.12) dim Z(Ak) dim Z(A) + dim Z(Ak_l)

[ZaN

788

k dim Z(A) .
1f ZA)\NZ(A) =7, # 0 . then
(7.13) dim Z(A) + k - 1 < dim Z(AY) .

Proof Since Z(Ak_l) c Z(Ak) , let us extend a basis of Z(Ak—l) to a

basis of Z(Ak) by adding a set W to it. Let SRR € W . Then
Ak—lxl,...,Ak_lxn € Z(A) ., and they form a linearly independent set.

This can be seen as follows. Let

k-1 k-1 k-1
0= clA Xp oo ¥ an x = A (clx1 L Cnxn)
. k-1

for some c,,...,c. in €© . Then x=c¢x%x, + ... +¢cx € Z(A" 7) ,

1 n 171 nn
and since x,,...,x_ belong to W, we must have ¢, = ... =¢c_ =0 .

1 n 1 n
Thus, n < dim Z(A) . This shows that

dim Z(A¥) < dim Z(A) + dim Z(aAK1) .

Applying this result repeatedly for k = 2,3,..., we obtain (7.12).

Next, assume that Z(Ak_l) # Z(Ak) . Then by Remark 7.2, each

inclusion in the chain

z(a) c zA%) ... czaF Y €z
is proper. Hence

dim Z(A) + 1 + ... + 1 { dim Z(Ak) ,

where the 1°s occur (k-1) times. This proves (7.13]}. Va4



THEOREM 7.5 (a) Let A be a pole of R(z) of order 2 . If m is

the rank of P and g is the dimension of the eigenspace of T

\
corresponding to A , then
m £ &g ,
{(7.14)
2<¢{L&+gi{m+1

In particular,

m=1 if and only if £ =1 =g
(7.15) g =1 if and only if m= £

2 =1 if and only if m=g .

(b) For an isolated point A of o(T) ., we have rank PA <o if

and only if A is a pole of R(z) and dim Z(T-AIL) < @ .

Proof (a) By Lemma 7.1(b), we have R(Pk) = Z((T—AI)E) . Hence

letting A =T - ALl in (7.12) we see that
m = dim R(Pk) < ¢ dim Z(T-AIL) = 2g .

Proposition 7.3 shows that A 1is an eigenvalue of T . Hence g > 1 .

Since ¢ > 1 , we have 2

<
2 -

¢ + g . Again, since De—1 #0 , but
D’ =0, wehave Z((T-AI)*™1) # z((T-A1)®) . Hence by (7.13),

g+ 8- 1=dimZ(T-AI) + & - 1 < dim Z((T-AD®) = m .
This proves (7.14). The relations in (7.15) are immediate.

{(b) Assume that rank Pk =m < ® . As we have seen in (7.4), DA
is quasi-nilpotent. Since Y = PA(X)' is of dimension m , we see by

0 . Also DA 7 = 0 , where

Z = Z(PA) . Hence D? = 0 , showing that A 1is a pole of R(z) .

Proposition 5.6 that (DAIY)m
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Since Z(T-AI) C PA(X) , it follows that
g =dim Z{(T-AI) {m < @ .

Conversely, let A be a pole of R(z) of order ¢ and let
g = dim Z(T-AI) < ® . Then by (7.14) we see that rank PR o, V4
Let A be an isolated point of o(T) . The dimension of the
associated spectral subspace PA(X) is called the algebraic

multiplicity of A , and the dimension of the corresponding eigenspace

Z(T-AL} 1is called the geometric multiplicity of A .

If the algebraic multiplicity of A is 1, then A 1is called a
simple eigenvalue of T . If A 1is a pole of R(z) of order 1 ,
(i.e.. DA =0) , then A 1is said to be a gemisimple eigenvalue of
T .

Note that an iscolated point A of o(T) is a semisimple
eigenvalue of T if and only if PA(X) = Z(T-AI} (by Lemma 7.1(b)}),
i.e., the corresponding spectral subspace coincides with the
eigeﬁspace.

PROPOSITION 7.6 Let A be a pole of R(z) . (This condition is
satisfied if A is an eigenvalue of T of finite algebraic
multiplicity.}

(a) A is a semisimple eigenvalue of T if and only if (T-AI)x
is not an eigenvector of T corresponding to A for any x € X .

(b} A is simple if and only if there is a unique (up to scalar
multiples) eigenvector ¢ of T corresponding to A , and there is no

x € X such that (T-A)x = ¢ .

Proof Let £ be the order of the pole of R(z) at A . Then by (ii)
of Lemma 7.1(b},

R(P,) = z((T-AD)%) .
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(2) By Proposition 7.3, we see that £ =1 if and only if
2
Z({T-A1)T) = Z(T-ArI) .

Clearly, this happens if and only if there is mo x € X with
(T-AI)x # 0, but (T-AI) [(T-AI)x] =0, i.e., (T-AI)x is not an
eigenvector of T corresponding to A for any x € X .

{(b) By (7.15), A is simple if and only £ =1 and the geometric
multiplicity g of A is 1 . Hence the desired result follows by part
(a). Vs

When the geometric multiplicity of A 1is greater than 1 , it is
possible that for a basis LORRERL of the eigenspace Z(T-AI) , each
of the equations (T-Al)x = ¢ i=1,...,g ., has no solution in X ,
but (T-AI)x = ¢ does have a solution for some O # ¢ € Z{T-AI) : Let
X =€, and T[x(1).x(2).x(3)1° = [Ax(1)+x(2). Ax(2). Ax(3)1° . Then
¢ = [1,Ov,1]t and Py = [1,0,-1]t constitute a basis of Z(T-AI) , but
none of equations (T-AI)x = P i =1,2, has a solution in X .
However, if we let ¢ = [1,0,0]t , then the equation (T-AI)x = ¢ has
[x(l),l,x(3)]t as a solution for all x({1) and %x(3) in € . (In

particular, A 1is not a semisimple eigenvalue of T .)

Remark 7.7 The term 'geometric multiplicity' is self-explanatory,
since it is the dimension of the corresponding eigenspace. To explain
the term ‘algebraic multiplicity’ we proceed as follows.

Let the algebraic multiplicity of A be m < ® . Then A is a
pole of R{z) . Let & be order of this pole. Since DA is quasi-
nilpotent, and since PA(X) ‘has dimension m { ® , we see by

Proposition 5.6 that D l is, in fact, nilpotent, and £ is the
A PA(X)
smallest positive integer such that (D)\IP (X))e = 0 . Considering the
A

representation (7.5)
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TIP?\(X) = )\IIP)\(X) * D)\lPA(X) '

we see that TIP is represented, with respect to a suitable basis

(%)

of PA(X) , in the Jordan canonical form (cf. (5.14)) by the m x m

matrix
A B
2 . 0
M= 6m .
0
where each Bj is either 0 or 1, 2 < j {m . Thus, ) is a root
of order m of the characteristic polynomial of M , and hence the

algebraic multiplicity of A is said to be m .
By looking at the 5j’s in the above representation, one can also
determine the geometric multiplicity g of A and the order £ of the

[x(1),....x(m)]° € € . Then

pole at A . Let x

Mx

Ax + [62x(2),...,6mx(m),0]t )

Thus, x 1is an eigenvector corresponding to A if and only if

6jx(j) =0 for each j=2,...,m . Hence [1,0,...,0]t is an eigen-
vector, and if 63 =0 for some j , then [0,...,0,1,0,...,0]t is
also an eigenvector, where 1 occurs in the j-th place; these vectors
form a basis of the eigenspace corresponding to A . Thus, the
geometric multiplicity g of A equals one plus the number of zeros
among 62,...,5m . Also, it can be seen that if k 1is the maximum

number of consecutive 1’s among 62""’5m , then the (k+1)-st power

of the matrix
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equals the zero matrix, and no smaller power does so. Thus, the order
2 of the pole at A equals one plus the maximum number of consecutive

1’s among & .,6m . Notice that in the notation used in the

o0 -

description of the Jordan canonical form of a nilpotent operator in

Section 5, we have g = p while m and ¢ have the same meanings

2 -
as used in this section.

We give some simple examples to illustrate the above

considerations. lLet m=4 and let T P be represented by one of the
A

following Jordan canonical forms:

A O O O A1l 0O O A1 OO
0O AN O O 0O AN 0 O O AN 0O O

M, = s M. = 1. M. =
1 0 O A O 2 0O 0 A O 3 0 0 A 1
0O 0 0 A 0 0 0 A 0 0 0 A

A1 O O A1 0 O

O A 1 O O AN 1 O

M, = s M. =
4 0O 0O A O 5 0 0 A 1
0 0 0 A 0 0 0 O

For M1 ., g£g=4 and £ =1:; for M2 ., g=3 and ¢ =2 ; for
M3 ., g=2 and £ =2; for M4 ., g=2 and £ =3 and for M5 R
g=1 and & =4 . Note that these are the only possibilities for the

case m = 4 .

We say that A is a discrete spectral value of T if A 1is an

isolated point of o{T) and the corresponding spectral projection Pk
has finite rank, i.e., A is an eigenvalue of T of finite algebraic
multiplicity. The set of all discrete spectral values of T

constitutes the discrete spectrum ad(T) f T . The discrete

spectral values of T form by far the most tractable part of o(T) .
as we shall see in the later sections. See Corollary 3 of Appendix I

for a characterization of Ud(T) .
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In order to tell when the spectral projection PT associated with

a curve I' in p(T) has finite rank, we prove a preliminary result.

LFEMA 7.8 Let a curve I' in p(T) enclose only a finite number of

(isolated) points Al,...,kn of o(T) . If Pj denotes the spectral
projection associated with kj , 1<¢<j<{{n, and P = Pr , then
P=P, +. + P s
1 n
Pij=O, j#k,
R(P) = R(Pl) ® ... 0 R(Pn) .
n
TP = AP +D.) ,
jzl(JJ 3

where Dj is the quasinilpotent operator (T—AjI)Pj .

Proof TFor each j . let Fj be a curve such that Aj € Int Fj and

Fj C Int I' N Ext Fk , k# o

Figure 7.1

Then by Cauchy’s theorem (Theorem 4.3(a}).

J; R(z)dz - J;l R(z)}dz - ... - J; R(z)dz = 0 ,

n

so that P = P1 + ... 4 Pn . Also, if j #k , then by (4.17),
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-1
e e R(W)R(z)dw]dz
- 2wi r 2ri r :
k J
_ P RWR(2) 4y |az
T 27 w -z :
T, T,
J
But, for all w € Fj and z € Fk , we have
J wdf z - I de z - 0.
Fk Fj

since w € Ext Fk and z € Ext Fj . Hence for all j # k , we have

PP =0 . sothat R(P,) NR(P) = {0} . This shows that

R(P) = R(Pl) ® ... 8 R(Pn) . Finally, since Dj = TPj - Kij , we have
TP =TP, + ... + TP
1 n
n
= AP4D.) . 4
jzl(JJ 3

THEOREM 7.9 Let I be a curve in p(T) . Then the associated
spectral projection PT is of finite rank if and only if o(T) N Int T
consists of a finite number of discrete spectral values of T , and in
that case, the rank of PF equals the sum of the algebraic

multiplicities of the eigenvalues of T inside T .

Proof lLet Y = PF(X) and dim Y < ® . Then Ty isa finite

dimensional operator and hence U(TY) consists of a finite number of

(isolated) eigenvalues A .,An of TIY . But by (6.10} (the

17"

spectral decomposition theorem),
a(TY) =o(T)y N Int T .

Hence kl,...,kn are isolated points of o(T) . If Pj denotes the

spectral projection associated with Aj , then by Lemma 7.8,
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R(P) =R(P;) ® ... ® R(P,) .

Hence each Pj has finite rank, i.e., Aj € ad(T) .

Conversely, let

o(Ty N Int T = {kl,...,kn} ,

where each Aj € ad(T) . Then again by Lemma 7.8,

dim PF =

I 118

dim P, {( « .
J

j=1

Note that dim Pj is the algebraic multiplicity of Rj . V4

We now describe some general situations where discrete spectral

values are always encountered.

(i) Let X be finite dimensional, and T € BL(X) . Then

o(T) = ad(T) = {Al,...,kn} , say. If T C p(T) encloses all the
spectral values of T , then PF =1 = P1 + ... + Pn , and by Lemma
7.8, we have

n
7.16 T = AP+ D,
(7.16) 2, Oyt

where each Dj is nilpotent. Let Tj = (ijj+ DJ)IR(PJ) . We have

seen earlier that in a suitable basis for R(Pj) , Tj is represented

by the matrix

A, O . 0
J :
0 5. o
J. = .
J B

o ... 0 A,

J

where & denotes either 0 or 1 . Thus, we obtain a block diagonal

matrix representation



J1 0 0
0
J=
0
] 0 Jn
of T , known as a Jordan canonical form. It is immediate from the

above representation that

n m,
det(J-zI) = T (A,-z) I
=t 7
(7.17)
n

tr(T) = tr(J) = jzl mjkj s

where mj is the algebraic multiplicity of Rj .

In this case, the range of the spectral projection Pj associated

m,
with T and Aj is the generalized eigenspace {x € X : (T—AJI) J =0y
of T corresponding to Aj , and its null space is the direct sum of

the remaining generalized eigenspaces of T :

n n
Z(P.) = Z[I - ) P.] = R[ Y P.]
J i=1,i#j Li=1,ix5 1
n n m,
(7.18) = & R(P)= 0 {% €X : (T-\I) 'x = o} )
i=1,1i#j i=1,i#j
(ii) Let T € BL(X) be a compact operator, i.e., let the closure

of the set {Tx : x € X, lixll { 1} be compact in X . Then one shows
that T - I 1is one to one if and only if it is onto. ([L], 18.4(b)).
This implies that every nonzero spectral value of T 1is, in fact, an
eigenvalue of T . The compactness of T then implies that the set of
eigenvalues of T is countable, and has no limit point except possibly
the number O ([L], 18.2). Thus, every nonzero A in o(T) is an
isolated point of o(T) . Let T C p(T) separate A from the rest of

o(T) and also from zero. Then
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1
P)\ = PI., = - 2—11'-; r R(Z)dZ
1 I

= am L [; * R<Z)]dz
=~ | L[1+2R(2)1az
- 27i r?z

(7.19) = -2 | Lr(z)az

. 2ri r z :

by (5.4). Now, since T is compact, so is TR(z)/z for every z €T .
" Hence PT is compact, being the limit (in BL(X)) of the Riemann-
Stieltjes sums (4.5) of compact operators. But a compact projection

must have finite rank by Corollary 3.9, so that the rank of Pk is
finite.

Thus, every nonzero spectral value of a compact operator is an
eigenvalue of finite algebraic multiplicity, i.e., it is a discrete
spectral value. If O € a&(T) also, then o(T) will consist of a
finite number of discrete spectral values, and Lemma 7.8 will imply that

X is finite dimensional. Hence whenever X 1is infinite dimensional

and T is compact, we have
aa(T) = o(T) \ {0} .

Let, now, Al,kz,...

of T . Let Pj denote the spectral projection (of finite rank)

denote the nonzero (isolated) spectral values

associated with Aj . i=1,2,... . If we let

then we have as in Lemma 7.8,
n
TQ_ = AP+ D,
% = X Oy D)

where each Dj is nilpotent. However, T need not have the infinite

representation



106

o0
AP+D)
321 (5P By

as the example of the Volterra integration operator V shows. In this
case, we have o(V) = {O} , so that there is no nonzero spectral point
of V., but at the same time V # O . In the next section we shall
considér compact normal operators on a Hilbert space for which the

above infinite expansion is valid.

Examples of isolated spectral values.

(i) let X =.22 . and let T € BL(X) be represented by the

diagonal infinite matrix

diag(1, %3 1, %, 1, %; e )
Then for z #0, 1, %-, %-, ... , the resolvent operator R(z) is
represented by the matrix
. 1 2 1 3
Veelyz 1z 1= 132> )

The eigenvalue A = 1 has infinite geometric and algebraic

multiplicities since each Cone1 * P = 0,1,2,..., 1is an eigenvector of
T corresponding toe A =1 ; the associated spectral projection P1 is
it

given by termwise integration of R(z) over I'(t) =1 + re ~,

0L t<2r, 0<r < 1/2, it is represented by
diag(1l, 0, 1, 0, ... )
Hence it follows that
D1 = (T—I)P1 =0 .
Thus, € =1, i.e., A 1is a semisimple (but not a simple) eigenvalue

of T . In this case, S1 = lim R(z)(I—Pl) is represented by
z-1
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lim diag(i%z s T%§E , ...)diag(0, 1, 0, 1, ... )
z=1 )
= diag (0, -2, O, :%-, 0, :g . eee )

(ii) Let X = 82(2) , the space of all square summable doubly

infinite complex sequences. Let T € BL(X) be given by the matrix

173 .
172 .

where all the remaining entries are equal to zero. It can be verified

([L], Problem 18(ii)) that
o(T) = {0} U {l/n : n=1,2,...} ,

that A = 1 has geometric multiplicty 1 , but infinite algebaic

multiplicty; it is, in fact, an essential singularity of R(z) .

(iii) Let X = L2([0.1]) and

1
Tx(s) = J; k(s,t)x(t)dt , x € X, s € [0,1] ,

s/2 , 0<{{s <t
k(s.t) = .

(2t-s)/2 , t (s <1

I~

Then it can be checked that Tx =y , x € X if and only if y' is

absolutely continuous on [0,1] , y'' € X and
vy =x,y(0)=0,y(0) +y' (1) =0 .

The eigenvalues of the compact operator T are 1/[(2j—1)1r]2 .

j=1,2,... . We can verify that corresponding to the eigenvalue
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A= 1/1r2 , xl(t) = sin wt is an eigenvector, while x2(t) = t cos Tt

is a generalized eigenvector. In fact, in thiscase g=1, m=2 =

¢ . Thus, A 1is not a semisimple eigenvalue.

(iv) Let X =L1%([-1.1]) and

1
Tx(s) = J k(s.t)x(t)dt ., x € X , s € [-1,1] .
-1
e(1+t—s)/2 + e(—1—t+s)/2 L S1¢t<s
k(S,t) = i—%—
e(--1+t—s)/2 + e(1-—t+s)/2 L s<t<1

Then Tx =y , x € X if and only if y' is absolutely continuous on

[-1,1] ., y'' € X, and

v Ey=x.y(-D) =y(1) Ly D) =y (1)

The eigenvalues of T are 4/(4ﬂ2n2+1) , n=20,1,2,... . Corresponding
to the eigenvalue A = 4 , we have only one linearly independent
eigenfunction xo(t) =1 . But corresponding to the eigenvalue
An = 4/(472n2+1) , n=1,2,..., we have the eigenfunctions
Xn,l(t) = sin nwrt and Xn,2(t) = cos nwt ; in fact, in this case
g=m=2, &=1

(v) The nonzero eigenvalues of many operators which describe
various physical situations are simple. We now qu§te some general

results regarding the 'simplicity' of eigenvalues.
Let X be finite dimensional and T € BL(X) be representd by a

matrix K = (k, .) . Perron’s theorem states that if ki j >0 for

i.J

all i,j , then T has a positive simple eigenvalue which exceeds the
moduli of all other eigenvalues. Frobenius’ generalization of this

theorem says that if ki j 20 forall i,j and K is irreducible
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(i.e., there is no permutation matrix P such that
Kl 1 Kl 2
PHKP = ’ ’ , where K and K2 are square matrices of
1,1 .2
0 K
2,2
~order less than the order of K ) , then all the eigenvalues of T of

largest modulus are simple. ([G].p.53). Another fundamental result
states that if (a) ki,j 20 forall i and j ., (b) all the minors
of K have nonnegative determinants, (c) ki,j > 0 whenever [i-jl| ¢
1, and (d) det K > 0, then all the eigenvalues of T are positive
and simple. ([G], p.105).

Here are some infinite dimensional analogues of some of the above

results. Let X = 82 , and a compact normal operator T be
represented by the infinite matrix (ki j) . If ki j >0 for all 1i,j
and ki j > 0 whenever |i-jl <1, then ITIl 1is a simple eigenvalue

of T ([KR] ., Prop. (B"). Sec.3). Similarly, let X = Lz([a,b]) and

let T be a compact normal integral operator

Tx(s) = Jb k(s,t)x(t)dt , x € X , s € [a,b] ,
a

where the kernel k 1is continuous on [a,b]x[a,b] , k(s.t) > 0 for all
s,t , and k(t,t) >0 for all t . Then ITll is a simple eigenvalue

of T ([KR], Prop.(B'). Sec.3).

Problems

7.1 Let X = 82 and

Tx(1). x(2). x(3), ... 1° = [x(2), ¥EL, X4 ¢

Then T 1is quasi-nilpotent but not nilpotent. R(z) has an essential

singularity at O .
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7.2 Let A be an isolated point of o(T) . If x € R(PA) and

o0
z € p(T) ., then R(z)x = - ) (T—AI)kx / (z—-)x)k+1 . Also,
k=0

R(P\) = {x €X: u(T—AI)“xul/“.» 0 as n->®} .

7.3 Let dim PA(X) = 3 and assume that there are two linearly
independent eigenvectors corresponding to A , but no more. Then

2
TP, # AP, . but TP, = AP, (2T-AI) .

7.4 Let A be an isolated point of o(T) . Then the function z »
R(z)(I—PA) has a removable singularity at A . If T C p(T) and

Int I' contains only a finite number of points of o(T) , then the

function z » R(z)(I—Pr) has only removable singularities in Int I' .

7.5 Let A€ aa(T) and Y = R(PA) . Then for n=1,2,... ,
R((T-AD)™) = {y € X : By € R((Ty-AI)™)}

and it is a closed subspace of X .

7.6 Let A be a pole of R(z) of order £ . Then every nonzero
element of R(Di-l) is an eigenvector of T corresponding to A

(0]
(Note: DA = PA) .

7.7 Let A, B € BL(X) . Then ad(AB) \ {0} = ad(BA) \ {0} . Let

0 #£ANE€E Ud(AB) have algebraic (resp., geometric) multiplicity m
(resp.., g), and let A be a pole of order 2 of R(AB,z) . Then the
same holds if we replace AB by BA . (Cf. Problem 5.1.) In fact,
APA(BA) = 7\(AB)A . If X is finite dimensional, then 0 is an
eigenvalue of the same algebraic multiplicity of AB and of BA , and
it is a pole of the same order of R(AB.,z) and R(BA,z) , but the

dimensions of Z(AB) and Z(BA) may not be equal.
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7.8 Let zy € p(T) . A complex number A is an isolated point of o(T)
if and only if 1/(A—zo) is an isolated point of U(R(zo)) ; in that
case, the associated spectral projections are the same and Z(T-AI) =
Z(R(zo)—I/(A—zo)) . Moreover, the order of the pole of R(T,z) at A
is the same as the order of the pole of R(R(zo),z) at 1/(%—20) .

(Hint: (5.2) and Problem 4.8)

" 7.9 Let A be an isolated point of o(T) . For z € p(T) . we have

[s)\ - ;f?]‘l = ~(z NI - (z-0)R(2)(I-P,) .

Then p(# A) is an isolated point of o(T) if and only if 1/(u-A) is
an isolated point of G(SA) ; in that case, the associated spectral

projections are the same, and Z(T-pI) = Z(SA—I/(M—A)) .

7.10 Let A be a pole of R(z) of order &, A=T- AL and

S=8S, . Then A and S satisfy SAS =S, Ae

2
N SA=A", SA=A4AS

(i.e., Sk is the Drazin inverse of T — AI) . If A is semisimple;
then SAS =S, ASA=A, SA=AS (i.e., SA is the group inverse of
T - AN) . Let X be a Hilbert space and A semisimple. Then the
projection Pk is orthogonal if and only if SA = A*S* (i.e., S is

the Moore-Penrose inverse of T - Al ; see the Penrose conditions on

page 403}.

7.11 Let X = L2([—w.v]) , and for x € X,

Tx(s) = JW k(s,t)x(t)dt , s € [-w,7] ,

-
sin ¥2(s-t) + (cot W2) cos V2(s-t) ., -1 { t { s {7
k(s.t) = —— |
PAP) .
sin V2(t-s) + (cot m™2) cos ¥2(t-s) , -r { st <™
The eigenvalues of T are 1/(2—n2) , n=20,1,... . The dominant

eigenvalue 1 1is semisimple but not simple.



