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In any nu«<ericat approximation process, we deal solely with finite 

dimensional sub:spaces and with operators whose ranges are finite 

dimensional. In this section we study such subspaces and operators. 

We start with a result concerning the closedness of the sum of two 

closed subspaces of a COliTplex Banach space X In general, such a sum 

need not be a closed subspace, as can be seen by X = fl.2 . 

F1 = the closed linear span of {e2n : n = 1,2, ... } i.e., 

and F2 = the closed linear span of 

re. + !.e 
\ 2n n 2n+1 n 1,2, ... } Le., {I b (e2 + 1.. e2 1) : b € C:: 

n=l n n n n+ n 

Then f e2n+l 
belongs to Fl + F for each 

n=1 
n 2 

~ lb 12 ( oo} . 
iL..• n 

n=l 
00 

j = 1,2, ... , but does noL However, if one of the summands 
n 

is finite dimensional, we have the following result. 

Let Y be a finite dimensional subspace and Z be a 

closed subspace of X Then Y + Z = {y + z : y € Y, z € Z} is a 

closed subspace of X In particular, Y itself is closed in X . 

Proof Assume first that Y is one dimensional, say Y = span{y1} 

If y 1 € Z , then Y + Z = Z 

y 1 f: Z let 

Consider a sequence (a y 1+z ) 
n n 

which is given to be closed. If 

in Y + Z , which converges to x in 

X . Now, for every z € Z , we have 

(3.1} 
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This is obvious if = 0 , and if ;;!!' 0 ' then -z/a is :i.n Z 
n 

:Since (a y 1+z ) 
n n 

is a 

follows from (3.1} that (an} is also Cauchy. Let 

sequence, it 

~a € [; . Then 

~ x - ay1 which belongs to Z , since Z is closed. Thus, 

showing that Y + Z is closedo 

I:f Y is of dimension m < m and is a basis for 

Y , then a :repeated application of the above result to Z , 

, ... ,span{y1 , ... ,y ,,Z} shows that Y + Z is closed. 
m-1 

In particular, if we take Z = {0} , then we see that Y + Z Y 

is closed. II 

We are now in a position to prove a result regarding the 

c~mplementation of finite dimensional subspaces, which was promised in 

the last section. 

THEOREM 3.2 Let Y be an m dimensional subspace of X , and let 

form an ordered basis for Y . 

Then there exist 

The map 

3) Px 
m 

l 
j=l 

is a projection on Y along 

Also, 

.4) 

o .. 
1, ,J 

* in X 

i.j 

(x,x~>x. 
J .] 

m 

such that 

1, ... ,m . 

xEX, 

z- n 
j=l 

* Z(x .) , 
J 

so that X Y e z . 
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If then there exist unique 

~ & " 1 ui,j'l,J = , ... ,m. They form the ordered basis of 

to the given ordered basis , ... ,xm of Y . 

Proof Let Y . = span { x1 , ... , x . 1 , x . 1 , ... , x } 
J . J- J+ m 

for j 1, ... ,m Then 

by Proposition 3.1, Y. is a closed 
J 

subspace of X and By 

Corollary 1.2, there *" * * y: is X. EX such that X. € and 
J J J 

= 1 

for each j=l, ... ,m. These satisfy (3.2). 

The map P given by (3.3) is clearly linear and continuous; it is 

a. projection since = x. for j = l, ... ,m by (3.2), so that 
J 

Px . 

Also, R(P) = span{x1, ... ,xm} = Y, and since 

m 

, ... , xm are l inear.ly 

independent, we have Z(P) = n 
j=l 

Z(x. 
J 

Next, for * X E and all x € X , we have 

<P* ,x) <x*,Px> 

<x*. 
m 

* I <x,x/xj> 
j=l 

m 
* * = I ,x><x ,x/ 

j=l 
m 

* * < I <x ,x/xj, x) 
j=l 

Hence we obtain (3.4). 

Now, let X=YGlZ and let p be the projection on y along 

Let j=l, ... ,m Then for i,j = l, ... ,m. 

"'* ~ * * 
<xi ,x/ = <Pxi,x/ = <xi,x/ = o. 

l,j 

/ "'*> ~ * for all Z(P) = z '-Y,Xj = <Py.x/ = 0 y € 
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Thus, "'* "-'* x 1 , ... ,xm form a linearly independent set in Since 

is isomorphic to (Proposition 2.2), it has the same dimension as 

y ' This shows that form a basis of 

It follows from (3.3) and (3.4) that 

m 
.5) liP II I II . 

j=l 

If m 1 , then we have 

liPx!l X € X ' 

so that 

liP II sup{IIPxll x € X, llxll ~ 1} 

* llx1 11 llxll . 

If m > 1 , then strict inequality can hold in (3.5). This will be 

clear from the ex~nples we shall soon give. 

Remark 3.3 Here is a result which is 'dual' to the first part of 

Theorem 3.2: Let be a linearly independent subset of 

X* . T:h ·.en there exist x 1, ... ,xm in X such that 

0. . 
]. •. l 

i,j 1, . ., ,m . 

This is an immediate consequence of the following: 

are in x* and * n * Z(y) J n Z(y.) , 
j=l J 

then 

If * y 

fact, consider the conjugate linear function F X ~ ~n given by 

Fx 

// 

In 
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If Fx then * * ~ <y ,x> = <y ,x) Hence we see that there is a 

linear map such that = AF Let 

such that for all c(l), ... ,c(n) in ~, 

A[c(l), ... ,c(n)]t = a,c(l) + ... +a c(n) . 
.t n 

Then for every x E X , 

,x> = A(Fx) 

* = al(yl ,x) + * + a <y ,x) 
n n 

Thus, * y 

Remark 3A 

n 

n * = < l aiyi , x> 
i:::l 

* * * I a.y. € span{y1 , ... ,y} 
i=l 1 1 n 

Let 

that the matrix 

A = [a. .] , a. . 
1,J l,J 

is invertible. Let its inverse be given by 

i,j 1, ... ,m , 

B = [b .. ] 
l,J 

{x1, ... ,xm} is a linearly independent set in X and 

(3.6) 

satisfies 

* m - * 
yJ. = I bk -~ . j 

k=l . J 

0 .. 
l' J 

i,j 

1, ... ,m 

1, ... ,m . 

Then 

This can be seen as follows. Let a 1x 1 + ... + amxm = 0 for some 

a. € ~ , i 
1 

1, ... ,m 

m 

I 
i=l 

Then 

0 ' j 1, ... ,m . 

such 
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Since the matrix A is invertible, the above system has a unique 

solution, naillely =a 
m 

0 Thus, is linearly 

independent in X Again, s:i.nce AB is the identity matrix, we see that 

j 

m 

I a. kbk . . 
k=l l, ,J ,J 

<x. 
]. j 

Hence the result. Also, it can be similarly seen that the set 

{x7, ... ,x:} is linearly independent in x*' and since AHBH is the 

identity matrix, it follows tha.t 

m 

I 
k::l .k~ 

satisfies o .. 
l,J 

( i) Let X be an n-dimesional space and Y be the m--dimensional 

subspace with an ordered basis x 1 , ... , Extend this basis to a 

basis of X by adding the elements xm+1 , ... ,xn to it. Let 

Z = span{x 1 , ... ,x} . Then the projection P on Y along Z is 
m+· n 

represented by the matrix 

m { 

1 0 

0 
0 1 
GG~~~nQ~~o~ooea 

0 0 
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with respect to the ordered basis x1 , ... ,xn.. If E: x* with 

<X* x > " 1· J. 1 m '"h~n. p* { s "-l S" rep~eser•t=d by +he j ' i = U i o j o ' = ' • • • ' ' ~ -~ A ~ V £ • ~ C 

same matrix with respect to the ordered basis 

( ii) Let X be a Hilbert space and Y a subspace with an ordered 

basis Then. X 1 = Y ~ Y , a~d it follows from Theorem 3.2 

that there exist in. (Y1)1 = Y such that 

o . . 
l,J 

i,j 1, ... ,m . 

It is clear that y1 , ... ,ym are linearly independent and hence form a 

basis of y The sets , ... ,xm and y 1 , ... ,ym are said to form~ 

biorthogonal family in Y Given the can be found 

as follows. Since E: Y , we have 

. . . + .X 
J m 

Hence for i 1, ... ,m , 

{j. . 
l,J 

in !C . 

Thus, a 1 ,j, ... ,am,j can be obtained as the unique solution of the 

above system of m equations in m unknowns. 

Note that the set is orthonormal iff 

j 1, ... ,m Often it is convenient to have an orthonormal basis 

each k = l, ... ,m. Such a set can be obtained by the famous 

Gram-Schmidt orthonorma!ization process ([L], 22.3)" 

Note that the projection P on Y along yl is given by 

m 
Px = L <x.y /xj 

j=l 
xEX. 

for 
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Since P is an orthogonal projection and P # 0 , we see by 

* Proposition 2.3 that P = P and IIPII = 1 Since 

1 = I <x .• y . > I < llx .II lly .II • 
J J - J J 

we see that the upper bound for IIPII given in (3.5) , namely 

m 
I llxjll llyjll , is very rough when m is large. 

j=1 

As a concrete case, consider X= L2 ([0,1]) and x.(t) = tj , 
J 

0 ~ t ~ 1 • for j = o .... ,m- 1 

space of all polynomials of degree ~ m - 1 To find y. € Y with 
J 

Since 

m-1 
y.(t) = ao . + a1 .t + ... +a 1 .t J ,J ,J m- ,J 0 ~ t ~ 1 . 

Jl k+i 1 
<~.xi> = 0 t dt = k + i + 1 ' 

we see that [a. .] is the inverse of the m x n Hilbert matrix 
1,J 

[i+~+1] • i,j = o .... ,m- 1 This matrix is, however, known to be 

numerically intractable. It is, therefore, advisable to orthonormalize 

the set {x0 , ... ,xm_1} to obtain the Legendre poLynomiaLs and work with 

them. 

{iii) Let X = C{[a,b]) with the supremum norm. Consider a 

partition 

of [a,b] The points t 1 , ... ,tm will be called the nodes. Let 

Y = {x € X xis linear on [t. 1 .t.] , i = 1, ... ,m + 1 , 
1- 1 

and x(t ) = x{b)} 
m 
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Every element x of Y is piecewise linear; the linearity of x can 

break down only at the nodes t 1 •... ,tm Let ei € Y be such that 

e 1. (tJ.) = o . . 
l,J 

i,j = 1, ... ,m . 

The functions 

in Figure 3.1. 

\ 
a 

a 

a 

form a basis of Y 

t. 1 J-

Figure 3.1 

their graphs are shown 

b 

t b m 

We give explicit formulae for these piecewise linear hat functions 

for later computational use: 

r· if a s; t < t1 

e1(t) = :t2-t)/(t2-t1) if t1 s; t < t2 

if t2 s; t s; b 

r· if a s; t < tm-1 

e (t) = (tm-1-t)/(tm-1-tm) if tm-1 s; t < t m m 

1 • if t s; t s; b 
m 
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and for j = 2, ... ,m- 1 . 
0 if a ~ t < t. 1 J-

(t. 1-t)/(t. 1-t.) . if t. 1 ~ t < t. 
e.(t) = J- J- J J- J 

J (tj+1-t)/(tj+1-tj) if t. ~ t < tj+1 . 
J 

0 if tj+1 ~ t ~ b 

It can be easily checked that for j = 1, ... ,m, ej(t) ~ 0 for all 

t E [a,b] , ej vanishes outside [tj_1 ,tj+1] , at any fixed 

t E [a,b] at most two of the functions e1 , ... ,e~ are nonzero, and 

for all t , 

Because of such very nice properties, these so-called hat functions 

e1 .... ,em prove to be very useful in numerical calculations. 

* * For j = 1, ... ,m, define e. EX by 
J 

11\en * <eJ.,e1.> = fJ • • 
l,J 

Consider for x E X , 

m 
Px = I x{t .)ej 

j=1 J 

Then P is a projection on Y along 

Z = {x EX: x(t.) = 0 for each j = 1, ... ,m} . 
J 

Note that for t E [a,b] , 

m 
IPx{t)l ~ I 

j=1 
lx(t.)l le.(t)l 

J J 

m 
~ llxll00 I e.(t) = llxll00 

j=1 J 
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Hence IIPii = 1 Also, it is easy to see that lie .II 
J j = 1 for 

j = 1, ... ,m Again., we see that the bound for IIPII given in (3.5) 

need not be sharp. 

We now con.sider operators whose ranges are finite dimensional. An 

operato!' T E BL(X) is said to be of finite rank if the dimension of 

its range R(T) is finite; this dimension is called the rank of the 

operator. 

Let T be of finite rank. Consider a subspace Y of X 

containing R(T) , and let be an ordered basis of 

Theorem 3.2, find E x* 

For x E X , we have 

By applying 
;<; 

X. 
J 

on both sides, we see 

m 
(3.8) Tx I 

j:::l 

Now, T maps y :i.nto y and *! Kj y . j = 1, ... ,m form 

* 

Y. 

{j • • 
l,J 

the 

ordered basis of y which :i.s adjoint to the ordered ·basis xl' ... ,xm 

of Y . Hence Ty is represented by the matrix ( t. .) 
l,J 

with respect 

where ,i,j=l, ... ,m. The 

is then represented by the matrix (t . . ] 
J' 1 

1'fi th respect to the basis * * xliY,. .. 'xmiY · See Example (i) at the end 

of Section 1. 

The sum of the diagonal entries * <Tx.,x.> , j = 1, ... ,m of 
J J 

the above matrix (t .. ) is called the trace of the finite rank 
l,J 

operato;r T : 

(3.9} tr(T) 
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We now show that the trace of T does :not depend on the choice of the 

finite dimensional subspace Y which contains or the ordered 

basis of Y, or its adjoint basis 

V::t Y0 be a finite dimensim;al subspace of X 

containing 

an adjoint basis. Then 

an ordered basis of 

n 
I <Ty ~·Y 

.1""1 

and 

We can assume without loss of generality that contains Y . 

For, otherwise we can consider the subspace Y1 spanned by Y and 

and argue in a :similar !TialJne:r twice. 

Now, if necessary, extend the :linearly independent set 

in Y to an ordered basis , ... ,x11 of Y0 in such a ¥ray that for 

i m + 1, ... ,n 

j m + l,,..,l1 

we have 

find 

* <x. 
J 

t' * ' ... X. ~Xo) 
J l 

* X. € 
J 

. .i 

For m + 1 ~ j ::; n. , we have 

Tx. = alxl + > •• 

J 

= 0 j l, ... ,m. For 

such that 

E Y so that 

+ ax € (: 
m lll 

Hence for j ::: m + 1, ... ,n we have 

* 
m 

* <Txj,x/ = I ,xj> 0 
i=l 

Thus, 

n 
* * {3.10) I <Txj,x/ {Txj,x/ tr(T) 

j::::l 

y 
0 
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I '\:.i~ . 
k=l 
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a. . € It • i = 1, ... ,n . K,1 

Similarly, since k = 1, ... ,n} is a basis of y* 
0 

* n * 
Y ·ly = I f3k x.IY • f3k · € a:: • i = I.···· n · 1 0 k=1 ,i K 0 ,1 

Now, 

* n * n 
6 . . = <yJ.,yi> = I (jk .<x. • I a .x > 
1,J k=1 ,J K p=l p,1 p 

n 

we have 

= I f3k . a. . . i.j = 1. ... ,n 
k=1 ,J K,1 

If A = [a . . ] and B = [(3 • . ] , then we see that AHa = I . Hence 1,J 1,J 

the matrix A is nonsingular and A-1 = BH, so that ABH =I , i.e., 

n 
I a. .iL . = {jk . i=1 K,1 J,1 ,J 

k, j = 1. ... ,n . 

Hence 

n 
* 

n n n 
* I <Ty. ,y.> = I I '\:.i<T~, I (3 • • x .> 

i=l 
1 1 

i=l k=l j=l J,1 J 

n n 
* 

n 
= I I <T~.x/ I '\: . lf . . 

k=1 j=l i=l ,1 J,1 
n 

* = I <T~·~> 
k=l 

Now {3.10) shows that // 

Let us now consider the adjoint of a finite rank operator. 

THEOREK 3.7 If T is of rank m < oo , then so is T* . In fact, if 



xl' ... , 

·* (X., 
.J 

{T*lw 

40 

is an ordered basis of R(T) and X~ € x* With 
J 

. j 

W""'W 

~~ * * * ""' "" R(T*' then T , ... , T xn11 form a basis of "' - • 1 

is represented by the matrix (t .. ] 
J,X 

with respect to 

this basis, where t .. 
l,J 

<Tx. 
J 

For * X € we have 

m 
.11) I 

j=l 

f-l:oreover, we have 

(3. 

For € x* and X € X ' 'l'e have 

* * <T x ,x) 

Hence .11) follows. This 

w R(T*) 

Since X. E R.(T) let X. 
J J 

(3.13) ** <T xj'ui) 

m 
I 

j=l 
m 
'\ * * * L <T xj ,x)(x , 

j=l 

( 

shows that 

* * * * = span{T x1, ... ,T x} 
m 

Tuj, u. EX for j 
J 

* * (xj,Tu1> <x. 
J 

1, ... ,m . Then 

,j 

and 

Hence * * * * T x 1 , ... ,T xm are linearly independent as well. Thus, T* has 

rank m . Let 

Then (3.13) shows that 

* * * * * s . . = <T (T x . ), u. > = <T x . , Tu. > 
l,J J 1 J l 

<x~,Tx.> 
J l 

E [; . 
'j 



41 

Hence ~'" 1 lw is represented by the !l'.atrix where 

t. . <Txqx~> 
l,J J 1 

Finally, it is easy to see tl1at R(T*} is contained in Z(T}~ 

On the other hand, let * y E Since for X EX we have 

Tx * <Tx x >x and Tu. we see that , j j J 

X-

Hence 

IT! 

* <y ,x> * <y ' I 

This shows that * y 

j::::l 

* * ;"' ,u.>T x. € R(T ) , ru~d proves (3.12'. 
J J J 

/I 

Before we co~clude this longish section, we give a characterization 

of bounded operators of finite rank. 

PROPOSITION 3.8 T € BL{X) is of finite rank if and only if T is 

compact and R(T) is closed in X 

Proof Let T be a bounded operator of finite rank. If (xn) is a 

bounded sequence in X , then (Tx ) is also a bounded sequence in 
n 

R(T) , which is finite dimensional. Hence by the Heine-Borel theorem, 

(Tx } l:m.s a convergent subsequence. This shows that T is compact. 
n 

Also, being finite dimensional, R(T) is closed in X by Proposition 

3.1. 

Conversely, let T be compact and R(T) be closed in X . Then 

T X 4 R(T) is a continuous map from the Bat"lach space X onto the 
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Banach space R(T) By the open mapping theorem ([L]. 11.1). there is 

0 > 0 such that y € R(T) and llyll ~ 0 imply y = Tx for some xEX 

with llxll < 1 • i.e., 

{y € R(T) llyll ~ o} c {Tx llxll < 1} . 

Since T is compact, the closure of the set {Tx : llxll < 1} is 

compact. This shows that the closed ball of radius 0 in R(T) is 

compact. Hence R(T) is finite dimensional ([L]. 6.9). // 

COROLLARY 3.9 Let P € BL(X) be a projection. Then P is of finite 

rank if and only if P is compact. 

Proof Since R(P) = Z(I-P) is closed, the result is immediate from 

Propeisition 3.8. // 

Problems 

3.1 'If Y is an m dimensional subspace of X , then there is a 

basis of Y such that and 

dist(y .• span{y1 , ... ,y. 1}) = 1 . Can we have, in fact, 
J J-

dist(yj.span{y1 •...• yj-1'yj+1'"""'ym}) = 1? 

3.2 Let X = Y m z . and let 

.L * ordered basis of Y (resp., Z) such that <xi,xj> = 0 .. 
l,J 

* . llx.ll = 1/dlst(x.,X.) , 
J J J 

with Y. = span{x1 •... ,x. 1.x.+1 .... ,x} 
J J- J m 

where 

form an 

Then 

3.3 Let t 1 , ... ,tm be the nodes in [a,b] for the piecewise linear 

hat functions Let X= NBV([a,b]) , and for ~ € X 

QX. = I ff e.(t)~(t)Jf. 
j=1 ua J J 
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where is the characteristic function of the set j = 

1, ... ,m. (In case t 1 =a, we take 

projection on span{f1 , ... ,fm} along 

f 1(a} = 0 .} Then Q is the 

{i € X : rh e.(t}di(t} = 0 j Ja J 

1, ... ,m} and has norm 1. It can be identified with the adjoint of the 

projection P of Example (iii}. 

3.4 T € BL(X} is of finite rank if and only if there exist x1 .... ,xn 

such that 

and in that case, 

x* € x* . 

One may assume without loss of generality that the sets {x1 , ... ,xn} 

and * * {x1 , ... ,xn} are linearly independent. 

3.5 If T € BL(X} is of finite rank and A € BL(X} 

AT are of finite rank, and tr(TA} = tr(AT} . 

then TA and 


