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3. FINITE DIEENSIONALITY

In any numerical approximation process, we deal solely with finite
dimensional subspaces and with operators whose ranges are finite
dimensional. In this section we study such subspaces and operators.

We start with a result concerning the closedness of the sum of two
closed subspaces of a complex Banach space X . In general, such a sum

2

need not be a closed subspace, as can be seen by considering X = &7 ,

= the closed linear span of {e tn=1,2,...}, i.e.,

{;2 S€on ¢ 2 € C . z Ianl2 < m} and F2 = the closed linear span of
n=1

[+ ]
1 .o . 1 .
{eZn t ey iD= 1,2,...} . i.e., {;21 bn(e2n + ﬁ'e2n+1) : bn ecC,

(v i e
z Ib |2 < w} . Then % 2ot1 belongs to F, + F_ for each
o0 n 1 2

n=1
s on+1
ji=12,..., but ) —=X° does not. However, if one of the summands
n=1

is finite dimensional, we have the following result.

PROPOSITION 3.1 Let Y be a finite dimensional subspace and Z be a
closed subspace of X . Then Y+ Z={y+z :y€Y, z€7Z} is a

closed subspace of X . In particular, Y itself is closed in X .

Proof Assume first that Y is one dimensional, say Y = span{yl} .

If vy €Z , then Y+ Z =727 , which is given to be closed. If

vy € Z , let

d = dist(yl,Z) >0.
Consider a sequence (ahy1+zn) in Y+ Z , which converges to x in
X . Now, for every z € Z , we have

(3.1) la_ld < lla_y +zll .
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This is obvious if o = 0, and if o # 0 , then -z/an is in Z
so that d ¢ Hyl—(—z/an)ﬂ . Since (any1+zn) is a Cauchy sequence, it
follows from (3.1) that (an) is also Cauchy. Let a —a€ C . Then

z, % - ayy which belongs to Z , since Z 1is closed. Thus,

x=ay; + (xay)) €Y+ Z,

\
showing that Y + Z is closed.
If Y 1is of dimension m < ® , and {yl,...,ym} is a basis for
Y ., then a repeated application of the above result to Z ,
span{yl,Z},...,span{yl,..., m—l’Z} shows that Y + Z is closed.

In particular, if we take Z = {0} , then we see that Y + Z =Y

is closed. /7
We are now in a position to prove a result regarding the
complementation of finite dimensional subspaces, which was promised in

the last section.

THEOREM 3.2 lLet Y be an m dimensional subspace of X , and let

ERRREE form an ordered basis for Y .
Then there exist xT,...,x: in X* such that
(3.2) KxD> =6 i,j=1
. xJ.,xi =0 5 i,j = ’f"’m .
The map
o %
(3.3) Px = ) <x,x0x,, x€X,
21 J
J_
m B
is a projection on Y along Z= N Z(x.,) , so that X =Y ® Z
=1
Also,
3 3¢ o 3 % 3 E
(3.4) Px = ) <x ,xj>xj , X €X

j=1
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If X=Y®7Z , then there exist unique QT,...,Q: € Zl which
satisfy <§§,xi> = 6i j,i,j =1,...,m . They form the ordered basis of
il which is adjoint to the given ordered basis KyseoeaX of Y .
Proof Let Yj = span{xl,...jxj_l,xj+1,...,xm} for j=1,...,m . Then

by Proposition 3.1, Yj is a closed subspace of X and Xj (3 Yj . By

Corollary 1.2, there is x? € X* such that x? € Y? and <x§,xj> =1

for each j = 1,...,m . These xT,...,x: satisfy (3.2).

The map P given by (3.3) is clearly linear and continuous; it is

a projection since ij = xj for j=1,....m by (3.2), so that
m m
Px = ) <xoPx, = ) xxox, = Px
o1 77T 5 j
Also, R(P) = span{xl,...,xm} =Y , and since Xy,....X  are linearly
m >
independent, we have Z(P) = N Z(xj) .
5=1

Next, for x* € X* and all x € X , we have

PN = <P

m
<x*, ) (x,x%)x.)
j=1 44

m
) .<x%,x><x*,x.>
=1 ! J

m
<y (x*.x.>x¥, x> .
j=1 3

Hence we obtain (3.4).

Now, let X =Y ®Z and let P be the projection on Y along

Z . Let §§,= ﬁ*x% for j=1,...,m . Then for i,j=1,...,m,
k%0 = <Bx. x> = <x,.x0 =6, .,
1 J 1 J 1 J 1,]
G.xo =<By.x>=0 forall yez®) =% .

J J
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Thus, ;T,...,§: form a linearly independent set in il . Since il

* . .
is isomorphic to Y (Proposition 2.2), it has the same dimension as
L

Y, wviz., m . This shows that QT,...,§: form 2 basis of 7 . e

It follows from (3.3) and (3.4) that

m

(3.5) WP = 0PN < Y Il M0l .
j:l J J
If m=1, then we have
WPxll = |<x,xT>| el x €X,

so that

PN = sup{liPxll : x € X, lixll < 1}

*
= Hxlﬂ lscll .

If m> 1, then strict inequality can hold in (3.5). This will be

clear from the examples we shall soon give.

Remark 3.3 Here is a result which is ‘dual’ to the first part of

Theorem 3.2: Let {XT,...,X:} be a linearly independent subset of
X* . Then there exist  ERRERE . in X such that
<x¥,x.> =6, ,, i,j=1,....m .
jUi i,
3 e e 3 ° * ) * *
This is an immediate consequence of the following: If y , YooV
n
are in X and Z(y*) 3N Z(y?) , then y* € span{y?,...,y:} . In
j=1

fact, consider the conjugate linear function F : X - c" given by

Fx = [(yT,x),...,(y:,x>]t , X €X .
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If Fx = Fx , then <y*,x> = (y*,§> . Hence we see that there is a
linear map A : C" > C such that y* = AF . Let L ERRRR N € C be
such that for all c(1),...,c(n) in C ,

Alc(1).....c(n)]" = ae(l) + ... +ac(n) .

Then for every x € X ,

Gy L% = A(Fx)
% 3
= a1<y1,x> + ...+ ah<yn,x>
n
=< Z a.y* . XD .
. ivi
i=1
% n % % *
Thus, y = ) a,y; € span{y;.....y } -
i=1
5 3¢ %
Remark 3.4 Let  ERRERE be in X and Kpveoea Xy be in X  such
that the matrix
A= = x,xo . i.i=1
= [ai,j] s ai,j = Xi’xj , i,j=1,....,m,
is invertible. Let its inverse be given by B = [bi j] . Then
{xl,...,xm} is a linearly independent set in X and
m
* - % .
(3.6) vy = ) bk,jxk ., j=1,....m
k=1
satisfies
* —
(xi,yj> = éi,j , i,j=1,....m
This can be seen as follows. Let o %y + ...+ ax = 0 for some
oy €C, i=1,...,m . Then
m
z a.(x.,x¥> =0, j=1,....,m.
. i1

i=1
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Since the matrix A 1is invertible, the above system has a unique

solution, namely a; =... =a =0. Thus, {xl,...,xm} is linearly
independent in X . Again, since AB is the identity matrix, we see that

m
kzl a; kP, =%, -

But for i,j=1,....m,
m m . § _ x
. . = <X, ,%, > .= <x,, b, .x > .
kzl al,kbk,g kzl Xy ¥ bk,J %y kel k,Jxk

Hence the result. Also, it can be similarly seen that the set
% 3
{Xl""’xm} is linearly independent in X* , and since AHBH is the

identity matrix, it follows that

m
3.7 . = b.
S Y kZI 3. K%
satisfies <yj,x:> =6, , i.j=1,....m .

i,J

Examples of projections on finite dimensional subspaces

(i) Let X be an n-dimesional space and Y be the m-dimensional
subspace with an ordered basis S CRRERE S Extend this basis to a

basis of X by adding the elements x

seees it. Let
1 X to

Z = span{x

m+1""’xn} . Then the projection P on Y along Z is

represented by the matrix
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% B3
with respect to the ordered basis L SERERES S If xj € X with
% %
<xj,xi> = 61 i i,j=1,...,m , then P is also represented by the
* *
same matrix with respect to the ordered basis S SEERERE S

(ii) Let X be a Hilbert space and Y a subspace with an ordered

basis ESERERES S Then X =Y ® Yl , and it follows from Theorem 3.2
that there exist Vis---0¥, in (Yl)l =Y such that

<yj'xi> = 6i,j , i,j=1,...,m .
It is clear that Yqye--sy, are linearly independent and hence form a
basis of Y . The sets Xpowe Xy and Yqis---s¥, are said to form a

biorthogonal family in Y . Given KpoooosX s the yj’s can be found

as follows. Since yj €Y , we have

Hence for i =1,...,m,

m
51,3' = <yj.xi> = kZ1 a.k,j<xk,xi> .

Thus, ,a_ . can be obtained as the unique solution of the

al’j,... m, j

above system of m equations in m unknowns.

Note that the set {xl,...,xm} is orthonormal iff Yy =¥y for
j=1,...,m . Often it is convenient to have an orthonormal basis
{ul,...,um} of Y such that span{ul,...,uk} = span{xl,...,xk} for
each k=1,...,m . Such a set can be obtained by the famous

Gram-Schmidt orthonormalization process ([L]. 22.3).

Note that the projection P on Y along Yl is given by

X, y.ox., , x€X.
yJ J



34

Since P 1is an orthogonal projection and P # 0 , we see by

Proposition 2.3 that P* =P and Pl =1 . Since
1 = [Kx,,y.>| < lix 0 ly. I,
lJyJI_ sy

we see that the upper bound for Pl given in (3.5) , namely

m

z ijH HyjH , 1is very rough when m is large.
j=1

As a concrete case, consider X = L2([0,1]) and xj(t) =t ,
0<tg1l, for j=0,....m=-1. Then Y = span{x ,...,xm_l} is the

space of all polynomials of degree { m - 1 . To find yj €Y with

y..x.,> =06, ,, we consider
J 1 1,]
m-1
yj(t) = aO,j + al,jt + ...+ am—l,jt , 0<t<1.
Since
X ,X.> = 1tm'idt——l—-—
X %57 = o Tk+i+1°

we see that [ai j] is the inverse of the m x n Hilbert matrix

1 L . o
[{;E;T] , i,j=0,....,m 1 . This matrix is, however, known to be
numerically intractable. It is, therefore, advisable to orthonormalize
the set {xo,...,xm_l} to obtain the Legendre polynomials and work with

them.

(iii) Let X = C([a,b]) with the supremum norm. Consider a

partition
a =t < ty < ... K< t < o+l = b
of [a,b] . The points tl,...,tm will be called the nodes. Let
Y ={x €X: x is linear on [ti—l’ti] ,i=1,....m+ 1,

x(a) = x(tl) and x(tm) = x(b)} .
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Every element x of Y is piecewise linear; the linearity of x can

break down only at the nodes tl,...,tm . Let e € Y be such that
ei(tj) = 6i,j , i,j=1,....,m .
The functions S EEREEL form a basis of Y ; their graphs are shown

in Figure 3.1.

1
a t1 t2 b
e.
J
a i £ €t b
e
m
a tm‘_1 tm b
Figure 3.1

We give explicit formulae for these piecewise linear hat functions

for later computational use:

-
1, if a{t( t1
el(t) = 3 (tz—t)/(tz—tl) , if ty tX ty
i 0., if t, <t {b
o, if a{t< tm_1
em(t) = < (tm_l—t)/(tm_l—tm) > if ot 4 ¢ttt ,
1. if t <t<db
L m
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0 , if aft<dt,
j-1
t, ~t)/(t, .-t.) . if t, < t< t,
e.(t) = (g7 gmty) 3 5y J
J _ _ .
(tj+1 t)/(tj+1 tj) , if tj <tX tj+1
0 , if j+1 <tghb
It can be easily checked that for j=1,....,m, ej(t) 20 for all
t € [a,b] , e vanishes outside [tj—l’tj+1] , at any fixed
t € [a,b] at most two of the functions €y.---.€  ~are nonzero, and
for all t ,

el(t) L em(t) =1.

Because of such very nice properties, these so-called hat functions

e .6~ Pprove to be very useful in numerical calculations.

100
For j=1,...,m , define e? € X* by
e*(x) = x(t.) x €X
J - i’’’ ’
Then (e%,e.) =6, . . Consider for x € X ,
ji i,j
)
Px = x(t,)e, .
=1 I

Then P is a projection on Y along
Z={x€X: x(tj) =0 for each j=1,...,m} .

Note that for t € [a,b] ,

IPx(t) | < f Ix(t.)!] le (t)]
i=1 J J

m
< lixlly _21 e;(t) = lixll,, .
J=
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Hence |IPIl = 1 . Also, it is easy to see that HejH = He?" =1 for
j=1,...,m . Again, we see that the bound for IIPll given in (3.5)

need not be sharp.

Finite rank operaters

We now consider operators whose ranges are finite dimensional. An
operator T € BL(X) is said to be of finite rank if the dimension of
its range R(T) 1is finite; this dimension is called the rank of the
operator.

Let T be of finite rank. Consider a subspace Y of X
containing R(T) , and let Kyooooa X be an ordered basis of Y . By
Theorem 3.2, find x? € X* , J=1,....,m such that <x§,xi> =6,

i,j -
For x € X , we have

Tx=ax, + ... +ax , a, €C.
1™ m m j

By applying x? on both sides, we see

m m
(3.8) Tx = ) Txxox, = ) <xTxox, .
j=1 I 5 75
Now, T maps Y into Y and x?IY , J=1,...,m form the
ordered basis of Y* which is adjoint to the ordered basis  SERRRRE .
of Y . Hence TY is represented by the matrix (ti j) with respect
to the basis x,,...,x_, where t, . = (Tx.,x%) , i,j=1,....,m . The
1 i i,j Jj'7i

]

% % % -
operator (TY) : Y =Y is then represented by the matrix [tj i

. . % B3
with respect to the basis Xy oo Xnly -

See Example (i) at the end
of Section 1.
The sum of the diagonal entries <ij,x§> ,j=1,...,m of

the above matrix (ti j) is called the trace of the finite rank

operator T :

m 3*
(3.9) tr(T) = _z T

j=

4
L
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We now show that the trace of T does not depend on the choice of the

finite dimensional subspace Y which contains R(T) , or the ordered
%
basis x.,...,x  of Y , or its adjoint basis x*,...,x .
1 m 1 m

PROPOSITION 3.6 Let Y. be a finite dimensional subspace of X

0

. . 3¢ B
containing R(T) . Yq»---s¥, an ordered basis of YO , - and Yir--eo¥,
an adjoint basis. Then

o 3
tr(T) = ) <Ty,.y,> .
i=1 373
J...
Proof We can assume without loss of generality that YO contains Y .
For, otherwise we can consider the subspace Y1 spanned by Y and YO
and argue in a similar manner twice.

Now, if necessary, extend the linearly independent set {Xl,...,xm}
in Y to an ordered basis Hpoeoea Xy of YO in such a way that for
i=m+ 1,...,n , we have <x§,xi> =0, j=1,....m . For
. . 3¢ 3¢
j=m+1,...,n, find Xj € X such that

x>=6, ., i=1,....n.
J 1 1,3

For m+ 1< j<{n ., we have ij €Y so that
Tx, =ax, + ... +ax , a, €C.
J m m J

1”1

Hence for j=m+ 1,...,n we have

1l
o

m
<Tx.,x%> = ) a.(x.,x%)
S R ES P A R

Thus,

i

o E3
(3.10) Y <Tx %> = tr(T) .

Jj=1 i

%]

(Tx,,x0O
PR R
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Since {xl,...,xn} is a basis of YO , we have

n
yi=k§1ak,ixk’ ak,ie([:, i=1,...,n .

Similarly, since {xElY :k=1,...,n} is a basis of Y: . we have
0
n
3 > .
inYO = kgl Bk,ixleO ’ Bk,i €t.i=1....n.
Now,
n n
3% 3¢
6, .=<y,.y.>= 3 B <x., ) o x>
i,J JjU1 kel k,j *x p=1 p.ip
§ -
= B, . ., i,j=1....,n .
kel k., ak,l
If A= [ai j] and B = [[3i j] . then we see that AHﬁ =1 . Hence
the matrix A 1is nonsingular and A.-1 = BH , so that ABH =1, i.e.,
n —
Hence
DRI A )
Ty.,y.> = LTx, , B. .x
i=1 ol i=1 k=1 ak'l "k j=1 J.1d
= <T: ,X> ﬁ
k=1 j=I 5 ket Fo
n
%
= 21 (Txk,xk> .
o %
Now (3.10) shows that ) <Tyi,yi> = tr(T) . Ved

i=1

Let us now consider the adjoint of a finite rank operator.

THEOREM 3.7 If T 1is of rank m < @ , then so is T* . In fact, if
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Xys-...¥X  is an ordered basis of R(T) and x? € X' with

xx,>=6, ., then Tx,,....,T'x. forma basis of W=R(T) , and
3 i, J 1 m
(T*)W : W->W is represented by the matrix [Ej i] with respect to

this basis, where t, ., = {Tx., *> . For x* € X* ,  we have

(3.11) T = &L xOT %, .
J J
Moreover, we have

(3.12) R(TYY = (Tt .

Proof For x* € X* and x é X , we have

m
(x*,Tx) = (x*; Y <x,T*x¥>x.>
j=1 JJd

TR0

[}

3

TR 0K LK,
P 3 3

fay

= <
J

Il M8

<x*,x.>T*x%, x> .
1 J

Hence (3.11) follows. This shows that

W= R(T*) = span{T*xT,...,T*x:} .
Since X, € R(T) . let Xy = Tuj, u, €X for j=1,....m . Then
(3.13) Tu> = TuD = <KLx,> = 6, .
J 1 J 1 J 1 1,]
Hence T*XT,...,T*x: are linearly independent as well. Thus, T* has
rank m . Let
T*(T*x%) =s, Tx #...+s .Tx . s, . €C.
J 1,3 1 m,Jj m i,J

Then (3.13) shows that

4]
1}

= <THTN ) = T Tu>
i,j AR AR

<T*x%,x.> = (xf,Tx.) .
J 1 J 1
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Hence T* W is represented by the matrix (gj i) , where

£, . = <Tx_.%.> .
i, i
Finally, it is easy to see that R(T*) is contained in Z(T)'L .

On the other hand, let y- € Z(T)' . Since for x € X , we have

m
Tx = ) <Tx,x%>x. and x, = Tu, , we see that
=1 i j j
o %
x - ) <Tx,x_»u, € Z(T) .
21 i3
J_
Hence
% x o %
Gy .x> =<y, ) <Tx,xoup
2 i
J_
m
= <Y GudTx, © .
3¢ o % % 3% %
This shows that y = ) <y ,uj>T Xy € R(T') . and proves (3.12). 7/
j=1

Before we conclude this longish section, we give a characterization

of bounded operators of finite rank.

PROPOSITION 3.8 T € BL(X) is of finite rank if and only if T is

compact and R(T)} 1is closed in X .

Proof ILet T be a bounded operator of finite rank. If (xn) is a
bounded sequence in X , then (Txn) is also a bounded sequence in
R(T) , which is finite dimensional. Hence by the Heine-Borel theorem,
(Txn) has a convergent subsequence. This shows that T is compact.
Also, being finite dimensional, R(T) is closed in X by Proposition
3.1.

Conversely, let T be compact and R(T) be closed in X . Then

T : X - R(T) is a continuous map from the Banach space X onto the



Banach space R(T) . By the open mapping theorem ([L]., 11.1), there is
8 >0 such that y € R(T) and liyll < 6 imply y = Tx for some x € X

with lxll <1, i.e.,
{y € R(T) : liyll < 8} C {Tx : Ix < 1} ,

Since T 1is compact, the closure of the set {Tx : lixll < 1} is
compact. This shows that the closed ball of radius & in R(T) is

compact. Hence R(T) is finite dimensional ([L], 6.9). Ved

COROLLARY 3.9 Let P € BL(X) be a projection. Then P is of finite

rank if and only if P 1is compact.

Proof Since R(P) = Z(I-P) is closed, the result is immediate from

Propesition 3.8. V4
Problems
3.1 'If Y is an m dimensional subspace of X , then there is a

basis {yl,...,ym} of Y such that HyjH =1 and

dist(yj,span{yl,...,yj_l}) =1 . Can we have, in fact,

: =172
dlst(yj,span{yl....,yj_l.yj+1.---,ym}) =17

B 3
3.2 Let X=Y®Z, and let RRREEE . {resp., Xl""’xm) form an
ordered basis of Y (resp., ZL) such that <xi,x§> = 6i ;- Then

il = 1/dist(x..X.) .
i 377

where Xj = Yj ®Z , with Yj = span{xl,...,xj_l,xj+1,...,xm} .

3.3 Let tl,...,tm be the nodes in [a,b] for the piecewise linear

hat functions e e Let X = NBV([a,b]) ., and for X € X

. U:ej(t)dx(t)]fj s

1°°°

~

Qx =

IZE]

J
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where fj is the characteristic function of the set [tj,b} . J =

1.....m . (In case ty=2a. we take fl(a) =0 .) Then Q 1is the

projection on span{fl,...,fm} along {§ e¥: Jb ej(t)dg(t) =0, j=
a

1,...,m} and has norm 1. It can be identified with the adjoint of the

projection P of Example (iii).

3.4 T € BL(X) 1is of finite rank if and only if there exist  SERRREE N
in X and XT,...,X: in X* such that
n 3%
Tx = z xxpox, , x€X,
=1 J J
J._.
and in that case,
3% 3% o 3¢ % 3% 3
Tx = ) <x.x0x.,, x €X
2 i
J._
One may assume without loss of generality that the sets {xl,...,xn}
and {xT,...,xz} are linearly independent.

3.5 If T € BL(X) is of finite rank and A € BL(X) , then TA and

AT are of finite rank, and tr(TA) = tr{(AT) .



