CHAPTER 1
INTRODUCTION

1.1 A SHORT HISTORY OF VARIATIONAL PRINCIPLES

Among the first persons to realize the importance of variational problems
and the physical significance of their solutions was G.W. Leibniz (1646-1716).
In his work, however, mathematical and physical reasoning was closely inter-
woven with philosophical and theological arguments. One of the aims of his
philosophy was to solve the problem of theodizee, i.e. to reconcile the evil
in the world with God's goodness and almightiness (c¢f. (Lz]l). Leibniz' answer
was that God has chosen from the innumerable possible worlds the best possible,
but that a perfect world is not possible. (This infinite multitude can only
be conceived by an infinite understanding, which provided a proof of the
existence of God for Leibniz.) This best possible world is distinguished by
a pre-established harmony between itself, the realm of nature, on one hand and
the heavenly realm of grace and freedom on the other hand. Through this the
effective causes unite with the purposive causes. Thus bodies move due to
their own internal laws in accordance with the thoughts and desires of the
soul. In this way, the contradiction between the predetermination of the
physical world following strict laws and the constantly experienced spontaneity
and freedom of the individual is removed. The best possible world must here
obey specific laws since an ordered world is better than a chaotic one. This
proves therefore the necessity of the existence of natural laws. The contents
of the natural laws, however, are not completely determined as is the case
for geometxric laws but are only determined in a moral sense, since they must
satisfy the criteria of beauty and simplicity in the best of all possible

worlds. This leads Leibniz even to variational principles. This is because



if a physical process did not yield an extreme value, a maximum or minimum,

for a particular energy or action integral, the world could be improved and
would therefore not be the best possible one. Conversely, Leibniz also uses
the beauty and simplicity of natural laws as evidence for his thesis of pre-
established harmony. (The notion that we live in the best possible world

was frequently rejected and even ridiculed by subsequent critics, in particular
Voltaire, on account of the apparent flaws of this world, but Leibniz' point
that a perfectly good world is not possible was beyond reach of these

arguments.)

Leibniz, however, did not elaborate his argument concerning variational
principles in his publications, but only in a private letter. Thus, it
happened that a principle of least (and not only stationary) action was later
rediscovered by Maupertuis (1698-1759), without knowing of Leibniz' idea. When
S. KSnig (1712-1757) then claimed priority for Leibniz on account of his letter
ﬁhat he was not able to show however to the Prussian Academy of Sciences
{whose president was Maupertuis) this led to one of the most famous priority
controversies in scientific history in which even Voltaire, Euler, and
Frederick the Great became involved. It was also pointed out that Maupertuis’
principle of least action should be replaced by a principle of stationary
action since physical equilibria need only be stationary points but not

necessarily minima of variational problems.

1.2 THE CONCEPT OF GEODESICS

One of the variational problems of most physical importance and mathe-
matical interest was the problem of geodesics, i.e. to find the shortest (or
at least locally shortest) connections between two points in a metric continuum,

e.g. a Riemannian manifold. Geodesics are critical points of the length



integral
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where ¢ : [0,1] = N 1is the parametrization, as well as, if they are para-

metrized proportionally to arclength, of the energy integral

Here, unfortunately, we find some ambiguity of terminology, since the
mathematical term "energy" corresponds to the physical concept of "action",

while in physics "energy" has a different meaning.

Because of the many applications of geodesics, it was rather natural
to generalize this concept. While minimal surfaces are critical points of
a twodimensional analogue of the length integral, namely the area integral,
the generalization of the energy integral for maps between Riemannian manifolds
ied to the concept of harmonic maps. They are critical points of the
corresponding integral where the squared norm of the gradient or energy
density has to be defined in terms intrinsic to the geometry of the domain

and target manifold and the map between them.

1.3 DEFINITION AND SOME ELEMENTARY PROPERTIES OF HARMONIC MAPS

Suppose that X and Y are Riemannian manifolds of dimensions n and

N , resp., with metric tensors ( ) and (g,.) , resp., in some local co-
YuB ij

ordinate charts x = (xl,...,xn) and f = (fl,...,fN) on X and Y , resp.
By _ -1 . 1 . }
Let (y ) = (YQB) . If £ : X~>Y is a C -map, we can define the energy
density
incd
1 oB 9f~ 9f
e(f) : = 5 Y (x) gij(f) 3 8

9x 9%



where we use the standard summation convention (greek minuscules occurring
twice are summed from 1 to n , while latin ones are summed from 1 to N) and
express everything in terms of local coordinates. Then the energy of £ is
simply

E(f) = J e(f)dax .
X

If f is of class C2 and E(f) <, and f is a critical point of E , then
it is called harmonic and satisfies the corresponding Euler-Lagrange-equations.
These are of the form

iy, YuB rb 9 g3 3 gk

1 9 aB
(1.3.1) — —— (VY Y + . £ =0
¢ Ik ax” axB
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in local coordinates, where Y = det(YuB) and the T;k are the Christoffel

symbols of the second kind on Y .
(1.3.1) is proved as follows. If £ is critical, then for all admissible

variations ¢ (e.g. ¢ € C:(X), and ¢]3X =0 if 03X # @)

d _
= E(f+t¢)[t=o =0 .

and thus
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since ¢ is compactly supported

and from this, putting nt = gjj¢3 , il.e. ¢j = gjl nl , and using the
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symmetry of Yu in the second integral,

2y 40 .._afi] i J 1 08 3
o=- 4 ax - 5 Lo T . .9, .
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dx
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which implies (1.3.1) by the lemma of Du Bois-Raymond.

We thus obtain a nonlinear elliptic system of partial differential
equations, where the principal part is the Laplace-Beltrami operator on X
and is therefore in divergence form, while the nonlinearity is quadratic in

the gradient of the solution.

We now want to look at the definition of harmonic maps from a more
intrinsic point of view. The differential df of £ , given in local

coordinates by

can be considered as a section of the bundle T*X ® f_l TY . Then

[

aB of of
Y < o 7 > -1
B):4

e(f)
BXB £ 7TY
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i.e. e(f) 1is the trace of the pullback via f of the metric tensor of Y .
In particular, e(f) and hence also E(f) are independent of the choice of

local coordinates and thus intrinsically defined. £ is harmonic, if
(1.3.2) T(f) = 0 ,

where T(f) = trace Vdf , and V here denotes the covariant derivative in



the bundle T*X ® f‘1 TY .

Let us quickly show, why (1.3.1) and (1.3.2) are equivalent (cf. [EL 4 ]).

i
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2.k k iac]
*ey = %8 aaf 5 - 0B XFZLB ?_f? + B lezj .B._f.& §_f_é ,
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and we see that (1.3.1) and (1.3.2) are equivalent.

From the preceding calculation, we see that the Laplace-Beltrami operator

is the contribution of the connection in T*X , while the connection in f_l TY

gives rise to the nonlinear term involving the Christoffel symbols of the image.

With the preceding notations, we can also calculate the Hessian of a

harmonic map £ for vector fields v , w along f (i.e. v and w are

. ~1 . . A
sections of f TY¥) . For this purpose, we consider a two-parameter variation

fSt with

afst afst

VE TSs |sit=0 0 YT TE |s,t=0

1) Here, we distinguish the Christoffel symbols of X and Y by the
superscript X or Y , resp.



We then want to calculate

2
9 E(fst)

Hf(v,w) T Tosot ]s,t;O

We have, writing £ instead of £ and taking scalar products

st ’

<epo> in TEX ® f‘l TY , if not otherwise indicated,

it
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/9% 3/9
gL TY F o of B
= v &= &Y, = ax
Ve a/ot ‘os R
N [af o 9f) of 3f B
+ RS- @™, 2| & 95 gy
< BXOL ot 9s BXB >
N Vf-l TY gl of gy b S
5/ox” 5/5x"
Now
J oty BE g0, L 4b )
« 3 ax® 3/3t 3s i

_ [ 8 fo8 3f  Bf 1 gn
jaoc(Y <v8/8tas'aXB> 1 | ax . ax

X



9f . o of B
v —ax , V —— dx
J <Vasst 3s 5 3 P >
of af of
- v — . Y V By -
J < Vot 3s 0/5x® 3eP > 1y
by Stokes' Theorem
_ . of of ) . .
= 0, since Y \ @« B" trace V df = 0, as f is harmonic.
3/9x ¥x
Thus
&1 o1
He (v, w) = j YQB < v Tz v , V EY w > -1
X 9/ 9% 9/9x £ 7 TY
af N{Jf of
-y R {——— , v] 5, W _
jx < BxOc BXB > £ t TY
-1, 1
_ j { yf Ty R w .
X £ TY
N
- f trace, < R (df,v) df , w > - .
X £ Y

For the preceding calculations cf. also [EL4].

We now want to look at the definition of harmonic maps from a somewhat
different point of view. By the famous embedding theorem of Nash ([Nal), Y
can be isometrically embedded in some Euclidean space IRQ . We define the

Scbolev space
VoY) = {£6WS (L RY) ¢ £() € ¥ ae.}

I
Since W;(X,R.) = H;(X,Igﬁ by a well-known theorem of Meyers and Serrin
{(cf. [MS], p.52; we can assume X to be a compact manifold (possibly with

boundary), since we always can localize the problem in the domain. Namely, if



f is a critical point of E on X , then it is also critical on any subdomain)
every element in w;(X,Y) can be approximated with respect to the Wé norm

by smooth mappings, namely from Cm(X,Rg) ; although the corresponding

equality Wé(X,Y) = Hg(X,Y) does not hold in general, cf. [SU2]. 1In particular,

if we compose an element from W;(X,Y) with a smooth mapping, we can apply a

chain rule.
In this Sobolev space, we can still define the energy functional by
E(£) =—$—J |ag () |2 ax (x)
and look for critical points of E in Wé(X,Y) .

Assume that £ € Wé(X,Y) is a critical point of E which maps X into
a compact part YO of Y . YO has a uniform neighbourhood in I& on which

. . . . . L . . .
the projection 1 , mapping a point in ®R  to the closest point in Y , 1is

smooth.

Fhus, if ¢: X->~3R2 is smooth and ¢|8X= 0 and t is sufficiently small,

(f+td) (x) 1lies in this neighbourhood for a. a. x € X . Since f is critical

o
il

] -
3g E(m(ErEe)) [t =0

J < DZTT(f) e D&f , dm(£) Duf > dx
X

+

JX g an() Do , am(£) DE S ax

applying the chain rule,

where Daf = ea(f) and ea is a moving orthonormal frame on X , o = 1,...n

2
= JX < DTT(E) * ¢ Daf , dnm(f) Duf > dx

+ J < Da¢ , am(f) Ebf > ax
X
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since T 1is a projection

= Jx < DzTr(f)'(bJDOLf , Daf > ax

+ D¢, DF ax
| <o e omge>

since mo £ = £ and consequently dm ~Duf = Duf by the chain rule. Thus,

f 1is a weak solution of
2
(1.3.3) 0= Af - DW(£) (af,df) ,

where A is the Laplace-Beltrami operator on X (cf. [SUl] for somewhat
different calculations). (1.3.1) and (1.3.3) are equivalent, since they
both are the Euler-Lagrange equations of the energy functional E . The point
of view leading to (1.3.3) was different, however. Here, the energy was

& 1, . .® ) e
minimized among all maps u : X +* R of class H2 NL (X,R) satisfying a

nonlinear constraint u(x) € Y (for almost all x€ X) . Since the Dirichlet

0

integral is lower semicontinuous w.r.t. weak Hé—convergence we also get

LEMMA 1.3.1  The energy integral is lower semicontinuous w.r.t. weak

1
Hz—convergence.
Finally, let Zl and 22 be surfaces with conformal metrics

Ozdz dz (z=x+1y)
and

pzdu au (u;u1+iu2) resp.

For a Cl—map £ 2 Zl + Y , the energy is then given by

1 i3,..1i7
E(f) 5 JZ gij(uxux+uyuy)dx dy

1

]

in those coordinates. Hence
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LEMMA 1.3.2 If Xk : Iy~ El 18 a conformal map between surfaces, then
E(f°k) = E(f)

This means that the energy is conformally invariant.

Moreover, the Laplace-Beltrami operator of Zl in our coordinates is

given by “é—-jL-é— ;, and (1.3.1) hence takes the form
a2 9z 3z
{1e)
L5 e 0
R
1 ,9u . oJu 1 2u . ou
B el M= == + 1)) .
(where uz 5 (Bx i 3y uE 5 (Sx i By))
In the case the image is the surface 22 ; this in turn reads as
2p
(1.3.4) i%-u S+ Q%___E u u. =0 .
o zZ g z Z

Thus, the harmonicity of u does not depend on the special metric of
Zl , but only on its conformal structure, since we can simply multiply the

equation by 02 . Hence

LEMMA 1.3.3  Suppose u : I, > Y is harmonic, and k : Ly > L, isa
‘conformal map between surfaces. Then uok s also harmonic. In particular,

in two dimensions conformal mappings are harmonic.

The harmonicity of u does depend, however, on the image metric, unless
u, =0 or u =0, i.e. u is conformal or anticonformal. (Note that this

distinction is only meaningful for oriented surfaces.)

We also note the following

LEMMA 1.3.4 If u : I, > L, 18 a harmonic map between surfaces, then
2
lu, |

©-
[

« - Iuy|2 - 21 < ux,uy > d22 (z= x+1iy)

u dzz

i
N
©
N}
o
o
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g a holomorphic quadratic differential.

Proof Multiplying (1.3.4) by the conformal factor 02 , we obtain

Zpu
T(u) :=u -+ —u_ u. = 0 .
zZ oz =z
Thus,
G- = 2 u- u_u_ + 2 4. u_u_ + 2 i+ 00 u
z PP, Uz vy Y, Pz Hz By B, TP Bz u, T 0 U, Ys
=02 (@i +ut@) =0
o z z

g.e.d.

We also observe, that if ¢ is holomorphic then T(u) = 0 with the possible

exception of points where [ﬁzl = lu I , 1l.e. where the Jacobian ]uZ|2-luE|2

z
vanishes. This was actually used by Gerstenhaber and Rauch [GR] as a

definition of harmonic maps between surfaces.

We note moreover, that ¢ is just the (2,0) part of the differential

form u*(4p2(u)dudﬁ) , i.e. the pull-back of the image metric under u .

Finally, of course ¢ = 0 if and only if wu 1is conformal or anti-
conformal. Therefore, Lemma 1.3.4, together with the observation that by
Liouville's Theorem ¢ = 0 is the only holomorphic guadratic differential

2 .
on S , shows that any harmonic map from 52 is conformal or anticonformal.

1.4 MATHEMATICAL PROBLEMS ARISING FROM THE CONCEPT OF HARMONIC MAPS

From 1.3, one sees that new mathematical difficulties arise compared to
the case of geodesics. Here, critical points lead to systems of non-linear
partial differential equations, while geodesics lead only to systems of ordinary
differential equations. The natural space to look for critical points of E

[ee]
is the Sobolev space W%(X,Y) N L (X,Y) , since the equations for weak
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solutions of (1.3.1), namely
i,.1 . 3 k.
(1.4.1) o= J VOB [ﬁﬁa éﬂg -3 §£a éﬁg ot ax
9x 09X I oax” ax

. 1 N ©
make sense only for test functions ¢ € W2(X,I{) nL (X,PN)

From an analytical point of view, it is not surprising that the equations
(1.3.1) turned out to be rather difficult to handle, since the nonlinearity is
quadratic in the gradient of the solution. Such systems may have nonsmooth
weak solutions. This phenomenon can even occur in the present situation.

Namely, mapping the unit ball p" of dimensions n 2 3 onto its boundary

via radial projection, can be interpreted as a weakly harmonic map (i.e. a

solution of (1.4.1)) £ : D" » g™, cf. [Hxw3].
In order to verify this, we first show that TET has finite energy
for n 2 3
n X
For x € D, f(x) = TQT ,and hence for x # 0
) X ea x-xa
(1.4.2) —_———— = =~ (here, e is a unit vector, and
EREI R IR @
3% [x]
o
X =X e )
Q
and
2
(1.4.3) la = = {n=1),
l] |x|“
(1.4.3) clearly implies that TET has finite energy for n > 3 (and also,

that the energy is infinite for n=2 ).

TET is smooth for x # 0 , and we shall verify now, that T?— satisfies

»

equation (1.3.3) for x # 0

£

We note m(f) = If] , and from (1.4.2) thus

e
_é__ﬂ(f)=_0L‘_LfOL

Yo E g3
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and moreover

B o
dan 82 £ eaf er faaB . 3ffaf3
. . — e = - - - 5
ey R T  FI L L At
. 2 o o Y _ -1, 4.4) yield
Since |f| = 1 implies £ i 0 (y=1,...n) , (1.4.4) yields
Ix
2 O B
2 3 £) 3£% of 2
(1.4.5) D q(f) (af,df) = Y———}-———~—“— = ~f |af|
e%eB U1 5 Y

n . n-1 .
Hence the equation for a harmonic map from D into S is by (1.3.3)

and (1.4.5)
2
(1.4.6) Af + Elag|” =0 .

£ now satisfies this equation, since by (1.4.4)
=T

and by (1.4.3)

ld X 12 X (n-1)x .
=R k)?
X n n-1 . .
The following lemma then implies that 4 : D -+ S indeed is a weak

|

solution of (1.4.1).

LEMMA 1.4.1 If £ : X+ Y <s a map of finite energy which is smooth and
harmonic outside a subset of X of capacity zero, then £ is weakly harmonic

on X .

For simplicity, we shall show this only for dim X = 3 and the case

where £ 1is not smooth only at one isolated point. This suffices for our

application.

We have to show that
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J (Yasnafins¢l-y“BF;kDufJDBfk¢l)VV ax = 0

[ee]
for all ¢ € H; N L (X,¥Y) . Let us choose the local coordinates in such a way

that 0 is the singular point of £ . We define

1 1 m-1 . -m o] < o+l
;Eii (TQT -2 if 2 "< x| =2
. ~m+1
n, =4 0 it 27 < x|
1 if |x| =27

Clearly, nm is Lipschitz continuous.

We write

¢ = (1-n s +n_ o

(o]
Since f is harmonic for x # 0, f € HY and ¢ € H; NL”, it suffices

2
to show
(1.4.7) j YuBDafl(DBn)¢l/7‘dx -+ 0 as m > ® .
However,
B
x3 21m for 2m:||<2m+l
x|
DBY]m-—
0 otherwise .
Hence
Ipan | = =2
Bm |x

and (1.4.7) follows from Holder's inequality, since we assumed n = 3 .

g.e.d.

It might be worth pointing out that the regularity problem for weakly

harmonic maps actually has two inherent nonlinearities, one being the
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nonlinearity of the equations, i.e. arising from the local geometry of the
image, and the other one coming from the fact that in general the target
space itself does not have a linear structure, i.e. arising from the global
topology of the image.

In these notes, we shall first be concerned with the local regularity
problem for solutions of the equations, i.e. the first nonlinearity, in
chapters 3 and 4, and then deal with the global topological difficulties
only in two dimensions, where the regularity theory is easier.

1.5 SOME EXAMPLES OF HARMONIC MAPS

The variational problem for harmonic maps seems to be the most natural
such problem one can pose for mappings between manifolds, and hence it is
not surprising that many other canonical or natural maps turn out to be

harmonic. In the sequel, we shall list some examples:

- isometries of Riemannian manifolds

- harmonic functions on Riemannian manifolds

- geodesics as maps Sl - M

- minimal immersions and parametric minimal surfaces

- Hopf maps 53 *‘SZ ’ S7 - 54 ’ 515 -+ 58

- conformal maps on two-dimensional domains (cf. Lemma 1.3.3) (in
higher dimensions, they are in general not harmonic, however)

- holomorphic maps between K;hler manifolds (Holomorphic maps between
arbitrary complex manifolds are in general not harmonic. This is not surprising,
since the K;hler condition just means that the metric and the complex structure
of the manifold agree. The definition of harmonic maps was given in terms of
the metric structure, and when deriving the Euler-Lagrange equation for
stationary points of the energy integral, we tacitly used the fact that the

manifold is endowed with the Levi~-Civita connection. Otherwise, as is already

the case for geodesics, those two concepts - minimizing the energy or length
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integral on one hand and being éutoparallel on the other hand for geodesics -
would not agree. On the other hand, holomorphic maps are defined in terms of
the complex structure, and as mentioned above, the Kahler condition means
that the complex connection, i.e. the unique torsionfree connection for which
the complex structure is parallel, and the Levi-Civita connection, i.e. the

unique torsionfree connection for which the metric is parallel, do agree.)

- Gauss maps of minimal submanifolds of Buclidean space, or more
generally, of submanifolds with parallel mean curvature vector. This is a
theorem of Ruh and Vilms [RV]. With the help of this theorem, one can prove
Bernstein type theorems for minimal submanifolds of Euclidean space by
proving Liouville type theorems for harmonic maps, since, if the Gauss map
is constant, the submanifold has to be a linear subspace. We shall come back

to this point in chapter 4.

1.6 SOME APPLICATIONS OF HARMONIC MAPS

We want to calculate for a harmonic map £

Ne(£f)

, 1 _aB i3
i.e. A 5 Y (A)gij(f(x))fxafXB .

In order to do this, it will be convenient to introduce normal coordinates
i i.e. =6 A =:(S
at the points x and £(x) , 1i.e YuB(X) aB and gij(f(x)) ij and
all Christoffel symbols vanish at x and £(x) , so that we only have to

take derivatives of the Christoffel symbols into account which will yield

curvature terms eventually.

First of all, we write the equation for harmonic maps in the form

, ) v s
(1.6.1) 0= Yfola B~ e Xrgg £t v ) ka fQB‘
X X x ©ox X
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Differentiating this equation at x w.r.t. x8 , we obtain

y yet

1
.6.2 £ = = -
(1.6.2) 2 oy Yan,ae ao,me’ N

+
o 0_€ on,0e

_ 1 ( + B y 0 kL
2 9%, m T 90i,kn T Kkl im IR

using of course that by our choice of coordinates all first derivatives

of the metric tensors vanish, and the Christoffel symbols are given by,
i _ 1 im

&9 N =39 Ome et Ing, k™ %e,n

Furthermore, in our coordinates

oB -
(1-6-3) Y orge T 7 Yog,o0

and by the chain rule

k .8
(1.6.4) Agij(f(x)) = 955 k0 AN
h:4 X
From (1.6.2) - (1.6.4) we obtain
1 . .
(1.6.5)  AZy*Bg. (geo)et £
2 ij a B
X X
=l fl
x%%0 3O
i i
+ - - £ £
(YuB,OG YOU,&B You,oB Yaa,os) <& XB
i 3 Kk L
+ . + L= g, A S £ £ £ £
(glj,kx gkz,lj glk,jl gjl,lk) xu x& XG XO
i i X i i b4 i j k
= - £ £ £ £
£ o, of 0o " RaB £ o £ 8 Rikjl o o g o'
X X X X X h:4 X p:4 X X

X .
where Ru is the curvature tensor

is the Ricci tensor of X and R¥ .
8 ikjL

of Y .
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In arbitrary coordinates, this formula is of course transformed into

. . k 2 . X m n
£ 5f
Ae(f) = gij<f(x))ya8(x)y0n(x) fla st 3 E—] [fJB - ri 3f 3f
X

X XO kb Bxa Bxg o BXB an
X i3 oB,,.,0n Y i3 ok 4
+ gij(f(x))RuB(x)fxdfxB Y U(x)Y (x)Rika(f(x))fxanBfXOfXn

and in invariant notation, if ea is an orthonormal frame at x ,

. X
Ae(f) = [Vdf]2 + <dfRic’(e ), dfre > ~< RY(df°ed,df-e ) df-e ,dfce >

B8 B

(1.6.5) immediately yields the following

COROLLARY 1.6.1 ([ES]) Suppose £ : X ~ Y <is a harmonic map, X 1is

. X . . ..
compact, Ric® = 0 , and the sectional curvature of Y is nonpositive.

Then £ <s totally geodesic and has constant energy density. If the
Ricel curvature of X 1is positive at one point of X at least, then £ <is

constant.

If the sectional curvature of Y <s negative, then £ is either constant
or maps X onto a closed geodesic of Y .
Proof Since JAe(f)dX = 0 , the integral over the right hand side of (1.6.5)
X
has to vanish. Since the integrand is pointwise non-negative by assumption, it

has to vanish identically. In particular, ]Vdf[ =0, and thus £ 1is

0 , and since harmonic functions on

il

totally geodesic. Furthermore Ae(f)

compact manifolds are constant, e(f) = const.

If at x € X, st(x) is positive definite, then

i i _
(x) £ o £ g~ 0

X
RaB
X X

implies that at x and hence everywhere e(f) = 0, and f is constant.
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If Y has negative sectional curvature, then in the same way we see

that

dim(df(TxX)) =1 for any X € X

If the dimension is zero somewhere, then e(f) = 0 at this point and hence
everywhere. Otherwise, f as a totally geodesic map has to map X onto a

closed geodesic.

We now want to apply Cor. 1.6.1 in conjunction with the following
basic existence and uniqueness theorem of Eells-Sampson (existence) and
Hartman (uniqueness) which will be proved in chapter 3 in order to reprove
some well known theorems about nonpositively curved manifolds by using harmonic

maps .

" THEOREM 1.6.1 If X and Y are compact Riemannian manifolds and Y has
nonpositive sectional curvature, then every homotopy class of maps from X
to Y contains a harmonic map. If the curvature of Y 18 negative, then
this harmonic map is unique unless its image is a single point or contained
in a closed geodesic in which case every other homotopic harmonic map can

differ from the given one only by a rotation of this closed geodesic.

We first deduce Preissmann's Theorem:
THEOREM 1.6.2 If Y <s a compact Riemannian manifold of negative sectional

curvature, then every Abelian subgroup of the fundamental group is cyclic.

Proof Suppose a and b are commuting elements of ﬂl(Y) . The homotopy
between ab and ba allows us to construct a map g from the twodimensional
torus T2 into Y . By Thm. 1.6.1 g is homotopic to a harmonic map

£ : T2 -+ Y , and the image of f is contained in a closed geodesic by

Cor. 1.6.1. Hence both a and b are homotopic to some multiple of this

geodesic.
g.e.d.
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Furthermore, we can prove the following consequence of the Hadamard-

Cartan theorem.

THEOREM 1.6.3 If Y s a nonpositively curved compact Riemannian mantfold,
then all homotopy groups T ) vanish for m= 2, <.e. Y <s a K(m1)

manifold.

Proof We have to show that every map g from a sphere s™ , m= 2, into
Y is homotopic to a constant. By Thm. 1.6.1, g is homotopic to a harmonic
map £ : st -y , and f is constant by Cor. 1.6.1.

g.e.d.

Finally, we deduce

THEOREM 1.6.4 If Y s a negatively curved Riemarnnian manifold, then every
isometry of Y homotopic to the identity coincides with the identity, and the

isometry group of ¥ <1s discrete.

Proof This follows from the uniqueness part of Thm. 1.6.1, since isometries

are harmonic.
g.e.d.

The preceding argument can be generalized to show that the larger the
isometry group of a compact manifold is, the more restrictions exist for
mappings of this manifold into negatively curved ones, since composing a
harmonic map with an isometry again yields a harmonic map. Cf. [SY3] for

more details.

While in the preceding part of this section, we have used harmonic maps
to reprove some elementary theorems merely for the sake of illustration, we
now want to briefly mention some more difficult applications most of which
we shall not prove in these notes.

- One can prove rigidity theorems for certain classes of nonpositively

curved Kahler manifolds, i.e. that the topological type already determines
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the complex structure, by showing that a suitable harmonic map is actually a
holomorphic diffeomorphism. Such results were obtained by Siu [Si], Jost-Yau
[JY], Jost-Mok-Yau.

- One can easily prove many results of Teichmiiller theory using
harmonic maps, for example that Teichmiiller space is contractible or even a
cell (details can be found in [EE], [Tr], and [J8].) Also, one can recover
the Weil-Petersson metric of Teichmiller space from the second variation
formula for harmonic maps.

- One can reduce boundary regularity for the minima of certain
quadratic functionals to the nonexistence of nontrivial solutions for a
certain Dirichlet problem for harmonic maps, cf. [JM] and [SU2].

- As was pointed out by Eells-Wood [EW], harmonic maps can provide
an analytic proof of the Theorem of Kneser, that a.continuous map ¢ between

closed orientable surfaces Zl and 22 has to satisfy the inequality
>
lad) | x(x) = x(z)

between its degree and the Euler characteristics of Zl and 22 , in case
X(Zz) < 0 (cf. chapter 5).
- As we shall show in chapter 4, harmonic maps can be used to prove

Bernstein type theorems.
1.7 COMPOSITION PROPERTIES OF HARMONIC MAPS

In this section, we shall display{an elementary composition property
which shall be useful in the sequel. First of all, if u € CZ(X,Y) is a map
between Riemannian manifolds, and h ¢ CZ(Y,IR) is a function, then the
following Riemannian chain rule is valid.

(1.7.1) ‘ A(hou) = Dzh(ueu,uea) + <(grad h)ou, T(u)> v’
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where eu is an orthonormal frame on X . In particular, if u 1is
harmonic, i.e. T(u) = 0 , this reads as
(1.7.2) A(how) = D°h(u _,u )

ea, eu

or in local coordinates

B

A(hou) = Y& Dzh(u ot

X

3) .
X

Thus

LEMMA 1.7.1 If n <s a (strictly) convex function on ¥ and u 18

harmonic, then hou <s a subharmonic function on X .
We note the following consequence (cf. Goxdon [Gol).

COROLLARY 1.7.1 Suppose x <s a compact manifold, possibly with boundary,
and u : X > Y 18 harmonic. If there exists a strictly convex function on
u(R) , and u(dX) <s constant in case O3X # @ , then u <is a comstant

mapping.

Proof From the maximum principle for subharmonic functions, it follows that
hou is constant, and since h has definite second fundamental form, (1.7.2)

implies that u itself is constant.

In section 2.3, we shall see that the assumptions of Cor. 1.7.1 are in
particular satisfied, if u(X) 1is contained in a ball B(p,M) which is
disjoint to the cut locus of p and satisfies M < 5%4, where Kz is an
upper curvature bound on this ball, because in this case d2(°,p)c is

strictly convex.
Another consequence is

COROLLARY 1.7.2 Suppose X 1is a compact manifold with T (X) =0 and the
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sectional curvature of Y is nonpositive. Then any harmonic map u : X * Y

is constant, provided u(dX) <s constant inm case 0K # O .

Proof By the homotopy lifting theorem, we can lift u to a harmonic map

9 : X > ¥ into the universal covering of Y . The required strictly convex

function is then dz(',p) , where p is any point in ¥ .

If instead of a real-valued function, h is a map from Y into some
other Riemannian manifold, then instead if (1.7.1) we get
(1.7.3) A(hou) = Vdh(u 0L,u u) + (dh)ou ° T(u) .
e’ e

In particular

LEMMA 1.7.2 If h s totally geodesic and wu +is harmonic, then hou is

again harmonic.



