109

INTERPOLATION IN ORLICZ AND SOBOLEV-ORLICZ
SPACES

Miroslav Krbec

§1. INTRODUCTION

The last two decades witnessed a rapid development of an umbrella-type
theory of function spaces, in particular, of those frequently used in the
theory of p.d.e.'s. The interpolation theory has become one of the powerful
tools. A comprehensive monograph surveying results until the middle
seventies is [T]. The classical interpolation theorems due to Riesz, Thorin,
and Marcinkiewicz had become the basis for the complex and real interpolation
method, resp. We shall restrict ourselves to the real method in virtue of
the fact that only this method gives finer results in the framework of
Lp—spaces.

Let x1 and X2 be B-spaces embedded into some Hausdorff topological
space A . As usual let A(X) =X, N X, with the norm ”X”A = max(“x”xl,”xnxz)

and - L(X) = X, + X, endowed with the norm ”x”Z = inf{|x + |z

[l e ¢
1 Xl 2 X2
x=x +x,,x €X , i= 1,2} . Any B-space X such that
A(X) ¢ X c 2(X) (with a continuous embedding) is said to be an interpola- .

_tion space  between Xl and X2 if for each linear operator

T : I(X) > L(X) such that T =X, > X, and T| is bounded, i=1,2,

i
T maps X dinto X and is bounded here. An interpolation method is a
mapping T from the family C(A) of all couples X = (Xl'x2) with properties

as above into the set of all B-spaces embedded into A which satisfies the

following condition: Whenever X , ¥ ¢ C(A) and T is a linear operator
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such that T maps Xi continuously into Yi , i=1,2 , then T maps
T(X) continuously into T(Y) . Let us note that various conditions may be

added, expressing a dependance of T = = upon T i=1,2 ;
T(X)=~T (Y)

Xy, '
1 1

we shall meet them in due course.
The so-called real interpolation method goes back to Peetre, Gagliardo,

and Lions. Peetre gave the following abstract construction: ILet X € C(A)

and define, for x € X(X) and t > 0 , the so-called K-funetional

K(t,x) = inf{|x + tfx x=x_+x_, xiE Xi , i=1,2}

I Il i
1'%, 2'x, 17 %2

and, for each © € (0,1) , p € <1,®) , the space

z - Zy . _ -0 P 1/p _
Xo,p = {xe 2(x) ; Hxlle,p = U: [t X(t,x)] dt/t] < w}

(with an evident change for p = ®).

The space is a B-space, it is an interpolation space between X

X
0,p

and X2 , and the mapping X - ie is an interpolation method. Moreover,
’

1

1-0 6 =
< 3 <6< <ps
Il 5 el llsly o =€ By, 0<0<1, 1spse.

It is very well known that this - the so-called K-method (together with
several equivalent definitions) has been very successfully applied to
Lp—spaces and to those which are based on them - i.e. Sobolev, Besov and

Triebel-Lizorkin spaces (see e.g. [T]).

Let us briefly survey the basic interpolation properties of them. It

holds that (L. ,L ) =1 (the Marcinkiewicz space) for 0 <6 <1,
PP, 0a  Tpq

1= P /Py Lo, 1/p = (1—9)/Pl + e/p2 , which, in particular gives that

S1 Bsz s

L L L further, for Besov spaces =B
( ! P r pa, 8, “pa

= B
p,’ p2)9,p p pa,’

’
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s s
s s s 1 2

S
) =B__, (B B (if p=q) ,
P4, P,yd,)0.q pq

(B /B =
p,9," P9, 0,q rq

where s = (1-—9)51 + 652 , 1/p = (1—9)/P1 + 6/p2 , 1/q = (l—@)/ql + G/q2 ,

and this is valid for spaces on any domain in r" permitting a

bounded embedding into corresponding spaces on r" . Analogous results hold
for Triebel-Lizorkin spaces F;q which include Sobolev (potential) spaces as
a particular case (H; = F ) . There are no restrictions on the number s

and generalizations to cases p € (0,1) were given, too.

It is clear from this very brief and short survey that despite the fact
that K-method works very well in abstract B-spaces it does not go "further”
from LP—type spaces than to Marcinkiewicz spaces. - (Note that the restriction
p = g is not in fact substantial - it can be removed by considering generalized
"Besov-Lorentz spaces" instead of standard Resov spaces B;q which perhaps
might be called here "Besov-Lebesgue spaces".) This is, roughly speaking, yet
more restrictive in the case of the complex method (with the exception of the
interpolation between BS and le which does not go out of the scale of

Podo P9
usual Besov spaces).

Another aspect of interpolation properties of function spaces and linear
operators is devoted to the study of spaces with interpolation properties with
respect to a given couple of B-spaces. Very general results in this direction
for the couple (Ll,Lm) can be found e.g. in [K-P-S]. A great deal of the

most general results concerns interpolation properties of rearrangement

invariant spaces, which include not only Lp—spaces but also Orlicz spaces.

Very soon, there was a need for some more general interpolation methods
for Crlicz (and Sobolev-Orlicz) spaces, especially in connection with
pioneering existence theorems for p.d.e.'s in Sobolev-Orlicz spaces (see [D],

[Gol) and also with the development of the most general theories which enable
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the handling of function spaces from the point of view of several general
abstract principles. First results involving Orlicz spaces dealt with

interpolation of linear operators (see e.g. [S]) in (reflexive) Orlicz
spaces and we shall not recall these in detail for they will be included

as a special case in what follows.

§2. INTERPOLATION METHODS FOR MODULAR SPACES

2.1 Definition Let X Dbe a (real) linear space. A mapping m : X - <Q,%>

will be called the modular (on X) if m(x) = 0 iff x =0

7

v

m(-x) = m(x) , x € X ; m(Ax+ny) £ Am(x) + Ym(y) , x,y € X , A,n 20, A+n=1.

Let
X(m) = {x€ X ; lim m(vx) = 0} .
V>0

The couple (X(m),m) is called the modular space (m-space) generated by X

and m .

For our purposes, we shall always start directly with X(m) instead of

X and we shall write simply X instead of X(m) .

In X there can be introduced the (Luxemburg) norm

x|l = inf{\;m(x/A) < 1} .

A particularly important example of an m-space is the Scbolev-Orlicz space.

Let £ cR" be an open set and let ¢ : IR + <0,°) be a Young function

i.e. an even, convex function such that 1lim ¢(t)/t = lim t/¢(t) = O . For
>0 troo

k =0,1,2,..., and any measurable function f on § , having distributional

derivatives Duf up to the order k , we set

m (£) = J I 6™ (x))ax .
Q |alsk
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The corresponding m-space is denoted by WkL (Q) and called the Sobolev-

0
Orlicz space (of the order k ). For k=0, the notation L¢(Q) = WOL¢(Q)
is used and we speak about Orlicz space ; 1in the latter case it is
also reasonable to consider any measurable C:Rn . The spaces L¢(Q) and

WkL¢(Q) are B-spaces.

Early results concerned interpolation of linear operators in Orlicz
spaces as we mentioned before; the restricted conditions upon the behaviour
of Young functions generated the spaces in question. It was proved that
L, () is the interpolation space between L -

¢ ¢
not increase too rapidly or slowly and ¢_l = (¢1l)l—9(¢;1)6 , 0<0<1;

() and L, () when ¢, do
1 i

this does not include all Orlicz spaces "between L¢ and L,"
1

ba °
In several papers there was applied the K-method to Orlicz spaces (see
e.g. [B]). It was proved that the method works in several particular cases,

namely,
+ +_.. 6
(L,,L log L) = L(logL) , 0<0O0<1,
1 0,1

(L, L log'L)

[
IA
Q
IA
8

=L
/9.9 g '

$ L, 1<p

+
L1 L,L
(L dog Lol y_1/p,q jle]

A
8
i
IA
Q
A
8

An abstract method suggested by Gagliardo for Lp—spaces (see [Gal) was

adopted to Orlicz spaces in [G-P].

Let us now introduce some useful concepts.

2.2 Definition A modular m on the m-space X is said to satisfy the

Az-condition if m(2x) £ cm(x) for some c = c(m) > 0 and each x € X . We

shall write m € A2 if this is the case.
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If m € A2 it is possible to obtain growth conditions which partly

substitute the role of the homogeneity of a norm. The function
A+ sup{m(Ax)/m(x) ; x€ X,x#0} , A >0 ,
is then finite and submultiplicative so that
Py Py
m(Ax) £ C max(A JATIm(x) , x€X , A >0,

for some Py s Py cC>0.

Let X € Cc(A) and let h : <0,o) + <0,) be a concave function. We

define
X o= {x€1(® 5 x= ] x (inzX) , x € AR,
. i i
i€Z
and there exists C = C(h) < ® such that
Yz.x /h(2i) <c
” iTi ”X = ’
1
i i
<
[Z27z,x /20|, s c,
2
for any finite seguence {zi}C Z}
and set |x|lz = inf C(h) .
Xh X=X
i
The space ih is an interpolation space between X1 and X2 . When applied to
Orlicz spaces it gives that,
-1 -1 -1, -1 . .
= c
for ¢ ¢1 h(cb2 /¢l ) , it is L¢ (L¢1'L¢2)h

provided at least one of the function ¢i generates a modular satisfying the

A,-condition, and that (L

2 L if both ¢i define a modular

s L), C
h
0, ' o, o
satisfying the A2-condition and sup h(ut)/h(t) = 0 (max(1,u)) for pu~-> 0,
t>0
U =+ o . The restrictions are substantial, however, they can be removed by
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introducing another abstract method and a more general concept of interpolation

properties.

2.3 Definition Let (Xi’mi) , i=1,2, be m-spaces. A linear mapping

T : X, > X, is said to be m-continuous if mZ(YTx) Smy(x) , x € X, for
some Y >0 . An m-space (X,m) is said to be the m-interpolation space
between X and X if any linear mapping which maps Xi m—-continuously

1 2

into Xi , 1i=1,2, maps also X m-continuously into itself.
Analogously, one can introduce a concept of an m-interpolation method.

Let us notice that every m-continuous mapping is continuous in the
usual sense with respect to the norms defined by the corresponding modulars.
Conversely, every bounded linear operator is clearly m-continuous with

respect to norms.

Now, let (Xi,mi) , 1= 1,2 be m-spaces and 0 a measurable positive

function on (0,%®) such that

(2.1) J min(l,t)o(t)dt < o .,
0

Define

(2.2) L(t,x) = L(t,%,X)

= 1nf{m1(xl) + tm2(x2) ;] X = x1 + x2 y xi € Xi , i=1,2},

and
m_(x) = J L(t,x)o(t)dt ,
o 0

and denote-by iO the corresponding m-space and by H-HO its norm.
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It can easily be proved that X is an m-interpolation space between

X1 and X2 and that (Xl,Xz) + X is an m-interpolation method. Moreover,

if X

; are B-spaces then ic is a B-space, as well, and

Itlls .o £ max
%57Y i=1,2

Ty Ly
1 1

Basic properties of spaces obtained are surveyed in following theorems. We

shall suppose that functions 0,01,0 satisfy (2.1) and are locally bounded.

PIARE

2.4 THEOREM (i) Let of(t) = O(Ol(t)) ,t>0, and G(t)=0(00(t)) , b,

Then X_ N X_ CX_  with mn-continuous embedding.
: o, 0, O

(i) Let x, be m-embedded into X, and Gl(t)==0(02(t)), t>0.

Then X ¢ io with m-continuous embedding.
2 1

2.5 THEOREM (i) Let T : X, >» Y be mw-continuous, i = 1,2, and

T : X, > Y be compact. Let O be nonincreasing near +* , lim sup t20(t) = o
oo

If my € A, or m, €A, then T : io > Y 4s compact.

(i1) Let T : Y = X, be m-continuous, i = 1,2, and

T Y >X be compact. Let 1lim O(t) = 0 .
o

If my € A, or m, €A, i=1,2, then T : Y~ ic is compact.

Sketch of the proof (i). Let {xn} c ig s =l <1,

x = xnl + X 5 = xnl(t) + xn2(t) , and

ml(xnl(t)) + tm2(xn2(t)) < 2L(t,x) .

oo -1
Let ¢, = [ J min(1l,T)o(T)dr and

M= M(t) 2 max(1,2c1max(l,t)) .

Then {Tan} is relatively compact in Y for



117

<
ml(xnl/M) <2 max(l,t)L(xn/M,l)
<
< (201/M)max(l,t)m0(xn) .
Let x.- xn = xmnl + xmn2 = xmnl(t) + anz(t) be chosen so that

-1
tm2(2 xng(t))

Then

;= o (B - ox ()

< 2L(e,27 e %))

Lee,2 e —x )

n

IA

A

which yields
-1
m2(2 xmn2(t))

The last term tends to

for m,n > % ;

|
|

m
w 1 (7 1
J o(r)dr]' J L(t,2 " (x_-x_))o(T)ar
m  n
t t
- o(yar| tm_ (27 (x_-x))
Ty m n !
t
(o]
=m (2_1(x -x__)) £ 2it o(t)drt -1
2 m2 " n2 = -
t
if t>®, and if m, € A, then ||xm2--xn2|[O + 0
if m, € A2 we can use the m-continuity of T : X, + Y .

2

Hence, for each € > 0 , HTxmz(t) - Txnl(t)HY < g for sufficiently

* large m, n, and some t > 0 so that {Txn} is relatively compact in Y

The proof of (ii) is similar.

A stability of the method can be established, too, nevertheless the

proof is rather lengthy and will be therefore almost fully omitted.

can be found in [K].

Details
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We shall suppose that X X are m—-spaces, again, and we shall call

17 %2

a function  satisfying (2.1) adnmissible if it is nonincreasing,

differentiable and if the function t - t1+€w(t) , t >0, is nonincreasing
2— .

and the function t > t E:(x)(t) , t >0, 1is nondecreasing for some € > O

on (0,%) .

Let wl and wz satisfy (2.1) and denote E = (El’Ez) y

Ei = (Xl'XZ)w, = Xm, , 1= 1,2 .
i i
First of all we present a formula for the L-functional (in the form of

two inequalities).

2.6 LEMMA (i) Let c21, t>0, Et >0 and W, i=1,2 be

admissible. Then there exists C > 0 such that

L{t,x/8C,E)

o]

(ii) Let w, o, i=1,2, be admissible and let the function

€t *©
L(s,x,i)wl(s)ds + t J

L(s,x,i)wz(s)ds }, x € T(X) .
0 Et

wy(t) = w (8)/wp(t) , t >0, be such that t > t—6w3(t) 18 nondecreasing

on (0,9) for some & >0 . Then for each C 2 1 there exists C > 0
such that
-1
W, () ) )
J L(s,x/2C,X)wl(s)ds + t J L(s,x/ZC,X)wz(s)ds
0 wgl (t)

<S¢ L(t,x,E) , x € 2(X) .

2.7 THEOREM Let w, , W

1 A be admissible and let w, = w, /W, satisfy

2! 3
the condition from the previous lemma. Then there exists an admissible

function © such that
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Moreover, if
0O
M) = J A(s)ds , t >0,
t

then 6(t) ~ wl(t) A(w3(t)) .

Sketch of the proof Let m be the modular in E, = (X ,X_ ), . Lemma
A A w, M, A
2.6 gives

00

-1,
t
w, (t)

mx(x) = J A(t) L(s,x,i)wl(s)ds dt
o]

+ J tA(t) J L(s,x,%)w,(s)ds dt
0 -1 2

Wy ()

After a change of variables

K, = fo [wl(t) Jt A(w3(s))w§(s)ds] L(t{x,X)dt ,

*© t
K, = jo [wz(t) Jo A(w3(s))w§(s)w3(s)ds] L(t,x,%)dt .

Asymptotic properties of functions Wy and A give

0 t
X(w3(s))wé(s)ds ~ wz(t) J X(w3(s))w§(5)w3(8)ds ’

wl(t) J .

t

lve]

w3(t) A(w3(t)) ~ Jo g% [~A(w3(s))]w3(s)ds .
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Analogous considerations will prove that the function 0(t) = wl(t) A(w3(t))
is admissible.
§3. CONNECTIONS WITH LP—SPACES AND SOME APPLICATIONS

First of all, let us show how the method applies to Orlicz spaces.

Let ¢l B ¢2 be Young functions and § cR" be measurable. Then for

any O satisfying (2.1) we have

(L¢1(Q),L¢2(Q))O = L¢(Q) '
where
(3.1) b(t) ~ & (Bk(P,(E) /9, (1))
and
(3.2) k(t) = Jm min(1,tT)o(T)dr .
0 .

An analogous result can be proved for weighted Orlicz spaces generated by

the same Young function.

Let us now turn our attention to connections between LP and Orlicz
spaces. Actually, interpolation methods enable us to derive various properties
of Orlicz spaces very easily from those of Lp—spaces. Let ¢ be a Young
fﬁnction, the corresponding modular satisfying the Az—condition. It can be
shown that there exist numbers pi € <1,®) , 1i= 1,2, and a concave function

k such that

P b,-p
0 £ 1-0

o) ~t 7 k( ) .
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In fact, this is an easy consequence of the fact that the function

A =+ sup ¢(At)/d(t) is submultiplicative (cf. §2 after Def. 2.2) so that
t>0

9 9
(3.3) d(At) £ C max(t ~,t T)P(t)
with some 1 < d, < q < o

For instance, this immediately gives a generalization of the Mikhlin-Lizorkin

multiplier theorem (cf. [T]).

3.1 THEOREM Let ¢ be a Young function satisfying (3.3) with some

1<4q, < a; <w ., Let M :R +R' be such that

|DuM(x)l < Clxl_a , x# 0,
for each multi-index o , |a] £ [1+n/2] . Then M is a Fourier multiplier
in L¢(E55 , 1-e. the mapping
(3.4) £+ Flwy * £

18 continuous from L (R™) into itself.

¢

For the proof, it is sufficient to realize that the mapping (3.4) is

m-continuous in each LP with respect to the modular £ - Hf”i y 1<p<o |

Using the well-known technique of Bessel potentials and extension

theorems it is easy to prove

3.2 THEOREM ILet Q CIR' be a bounded domain with Lipschitz boundary or
Q=m" and k €W . Let ¢, and ¢, be Young functions satisfying the
condition (3.3) with powers greater than 1. Then, for each o satisfying
(2.1) we have

(vf{L(p () WkL

@)= WL, (@)
) 6, o = W

where ¢ is given by (3.1) and (3.2).
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Let us note that both Sobolev-Orlicz potential spaces with Young functions
not satisfying the condition of the last theorem and also Besov-Orlicz spaces
(i.e. spaces based on Orlicz spaces instead of on LP ) has not yet been

included into the theory as far as the author is informed.

Finally, let us demonstrate the power of interpolation techniques by

another example using §2.

Let ¢ be a Young function satisfying the condition (3.3) with
1< P,y < P, <n . Let © cR" be a bounded domain with Lipschitz boundary

or =mR" . Then WlL Q) = (W1 Q) W1 ) for a suitable concave
o p. 0,y

/e,  Up,~1/py

function h and ¢—1(t)- t h(t . According to the well-known

Hardy-Littlewood-Sobolev imbedding theorem we have W; Q) c Lq () , where
i i
1/qi = 1/pi -1/n, i=1,2 . It follows immediately that

1/p1—1/n 1/p,-1/p,

WL, T, @ with 99 7H®) ~t h(t ) = £ Yy

Cf. [D-T].
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