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INTERPOLATION IN ORLICZ AND SOBOLEV-ORLICZ 

SPACES 

MirosZav Krbec 

§1. INTRODUCTION 

The last two decades witnessed a rapid development of an umbrella-type 

theory of funct.ion spaces, in particular, of those frequently used in t.he 

theory of p.d.e.'s. The interpolation theory has become one of the powerful 

tools. A comprehensive monograph surveying results until the middle 

seventies is ['I'] • The classical interpolation theorems due to Riesz, Thorin, 

and Harcinkiewicz had become the basis for the complex and real interpolation 

method, resp. We shall restrict ourselves to the real method in vir-tue of 

the fac·t that only this method gives finer results in the frame\•mrk of 

Lp-spaces. 
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/:,. c X c 

tion space 

T : z + 

T maps X 

and x 2 be B-spaces embedded into some Hausdorff topological 

As usual let t.(x) = n x2 with the norm llx lit, max( llxll 'llxll l 
xl x2 

xl + 

X. 
]_ 

I 

I (Xl 

into 
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and 

such that T = 

X 
2 

X. 
l 

if for each linear operator 

-+ and Tfx. is bounded, 
l 

llx211 
x2 

interpol-a-

i = 1,2 

X and is bounded here. An interpolation method is a 

mapping T from the family C (A) of all couples X = (X 1 ,x2 ) 'llith properties 

as above into 'che se·t of all B-spaces errJ:>edded into A which satisfies the 

following coJ.J.di-tion~ Whenever Y E C(A) and T is a linear operator 
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such that T maps X. 
1. 

continuously into Yi , i = 1,2 , then T maps 

T(X) continuously into T(Y) . Let us note that various conditions may be 

added, expressing a dependance of IITIIT(x)-+T(Y) 

we shall meet them in due course. 

upon IITIIx .-+Y. 
1. 1. 

i = 1,2 i 

The so~called real interpolation method goes back to Peetre, Gagliardo, 

and Lions. Peetre gave the following abstract construction: J,et X E C (A) 

and define, for x E I(x) and t > 0 , the so-called K-functionaZ 

K(t,x) i 1,2} 

and, for each 8 E (0,1) , p E <1, 00 ) , the space 

llxll 8 ,p 

(with an evident change for p 00). 

The space x 8 ,p is a B-space, it is an interpolation space between x 1 

and the mapping x -+ x8 ,p 
is an interpolation method. !'1oreover, 

llxll 8 ,p 

It is very well known that this - the so-called K-method (together with 

several equivalent definitions) has been very successfully applied to 

L -spaces and to those which are based on them - i.e. Sobolev, Besov and 
p 

Triebel-Lizorkin spaces (see e.g. [T]). 

Let us briefly survey the basic interpolation properties of them. It 

holds that (L ,L ) 8 L (the Marcinkiewicz space) 
p1 p2 ,q pq 

for 0<8<1, 

1 ~ p 1 ,P2 ,q ~ 00 1/p = (1-8)/p1 + 8/p2 , 

(L ,L ) L 
p1 p2 8 ·P p 

which, in particular gives that 
s s 

further, for Besov spaces, (B 1 ,B 2 ) 
pq1 pq2 8 ·q 
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Bs (if p=q) , 
pq 

where s = (1-8)s1 + 8s2 , 1/p = (l-8)/p1 + 8/p2 , 1/q = (l-8)/q1 + 8/q2 , 

and this is valid for .spaces on any domain in JRn permitting a 

bounded ernbedding into corresponding spaces on :iRn Analogous results hold 

for Triebel-Lizorkin spaces 

a particular case 

Fs which include Sobolev (potential) spaces as 
pq 

There are no restrictions on the number s 

and generalizations to cases p E (0,1) were given, too. 

It is clear from this very brief and short survey that despite the fact 

tha·t K-method works very well in abstract B-spaces it does not go "further" 

from Lp -type spaces than ·to Iv!arcir>.kiewicz spaces. (Note that the restrict:ion 

p q is not in fact substan·tial - it can be removed by considering generalized 

"Besov-Lorentz spaces" instead of standc-trd Besov spaces which perhaps 

might be called here "Besov-Lebesgue spaces".) 'I'his is, roughly speaking, yet 

more restrictive in the case of the complex method (with the exception of the 

interpolation between and which does not go out of ·the scale of 

usual Besov spaces) . 

Another aspect of interpolation properties of function spaces and linear 

operators is devoted to the study of spaces w·ith in·terpolation properties with 

respect to a given couple of B-spaces. Very general results in this direction 

for the couple (L1 ,L00) can be found e.g. in [K-P-S]. A great deal of the 

most general results concerns interpolation properties of rearrangement 

invarian·t spaces, which include not only Lp-spaces but also Orlicz spaces. 

Very soon, there was a need for some more general interpolation methods 

for Orlicz (and Sobolev-Orlicz) spaces, especially in connection with 

pioneering existence theorems for p.d.e.'s in Sobolev-Orlicz spaces (see [ D], 

[Go}) and also with the development of the most general theories which enable 
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the handling of function spaces from ·the point of view of several general 

abstract principles. First results involving Orlicz spaces dealt with 

interpolation of linear operators (see e.g. [S]) in (reflexive) Orlicz 

spaces and we shall not recall these in detail for they will be included 

as a special case in what follows. 

§2. INTERPOLATION METHODS FOR MODULAR SPACES 

2.1 Definition Let X be a (real) linear space. A mapping m 

will be called the modul-ar (on X) if m(x) = 0 iff x = 0 

m(-x) = m(x) , x E X ; m(A.x+nyJ ;; A.m(x) + ]lm(y) , x,y E X , A.,n ;; 0 , A+ n= 1. 

Let 

X(m) {xE X lim m(Vx) 
v+o 

o} • 

The couple (X(m) ,m) is called the modul-ar space (m-space) generated by X 

and m . 

For our purposes, we shall always start directly with X(m) instead of 

X and we shall w.cite simply X instead of X (m) . 

In X ·there can be introduced the (Luxemburg) norm 

llxll inf{:\;m(x/A) ;; 1} . 

A particularly important example of an m-space is the Sobolev-Orlicz space. 

Let rl c JRn be an open set and let ¢ : JR + <Q,oo) be a Young function 

i.e. an even, convex function such t.hat lim ¢ (t) /t = lim t/¢ (t) = 0 . For 
t+O t-roo 

k = 0,1,2, ... , and any measurable function f on rl, having distributional 

derivatives Daf up to the order k , we set 
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The corresponding m-space is denoted by WkL¢(~) and called the Sobolev-

Orlicz space (of the order k ) . For k= 0 , the notation L¢ em = w0L¢ (Q) 

is used and we speak about Orlicz space ; in the latter case i·t is 

also reasonable to consider any measurable II c JRn and 

k 
W L¢(\1) are B-spaces. 

Early results concerned interpolation of linear operators in Orlicz 

spaces as we men~cioned before; ·the restricted conditions upon the behaviour 

of Young func·tions generated the spaces in question. It was proved tha'c 

L, Cm is the interpola'cion space between L"' <m and L"' (Q) when cp i do 
cp '1'1 ~'2 

not increase too rapidly or slowly and ¢-l = (¢~1 ) 1- 8 c¢; 1 ) 8 0 < 8 < 1 ; 

this does not include all Orlicz spaces "between and 

In several papers there was applied the K-method to Orlicz spaces (see 

e.g. [B]). It was proved that the me·thod \vorks in several particular cases, 

namely, 

+ e L(log L) , 0 < 8 < l , 

L 
lq 

+ ) c L. (L log L,L 1 11 ~ 
co - ,p,q pq 

1 < p < 00 • 1 s q s 

An abstract method suggested by Gagliardo for Lp-spaces 

adopted to Orlicz spaces in [G-P] . 

Let us now introduce some useful concepts. 

see [Ga]) was 

2.2 Definition A modular m on the m-space X is said 'co sa·tisfy the 

1':, 2-condition if m(2x) S cm(x) for some c = c (m) > 0 and e<>-ch x E X . v·le 

shall ~:.~_rri·te m E if ·this is ·the case, 
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If m E ~2 it is possible to obtain growth conditions which partly 

substitute the role of the homogeneity of a norm. The function 

A + sup{m(A.x)/rn(x) x E X, x~O} , A > 0 , 

is then finite and submultiplicative so that 

rn(Ax) ,xEX,A>O, 

for some p 1 , p 2 , C > 0 . 

Let X E C(A) and let h <O,oo) + <O,oo) be a concave function. We 

define 

and set 

X= I 
iE 21: 

(in l:(X)) 

and there exists C C(h) < oo such that 

i 
jjl:z.x,/h(2 lllv ~ C , 

J.. l .Llt.l 

i i 
jjl:2 z.x./h(2 lll ~ C , 

1 1 x2 

for any finite sequence 

inf C(h) . 
x=L:x. 

l 

{z.}c 21:} 
l 

The space ~ is an interpolation space between x1 and x2 . When applied to 

Orlicz spaces i·t gives that, 

for 
-1 

¢ it is 

provided at least one of the function ¢1 generates a modular satisfying the 

~2-condition, and that 

satisfying the ~2-condition and sup h(~t)/h(t) = o(max(l,~)) for ~ + 0, 
t>O 

~ + oo • The restrictions are substantial, however, they can be removed by 
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introducing another abstract method and a more general concept of interpolation 

properties. 

2.3 Definition Let (Xi,mi) , i = 1,2, be m-spaces. A linear mapping 

T : x1 + x2 is said ·to be m-continuous for 

some y > 0 An m-space (X,m) is said to be the m-interpolation space 

between X 
l 

and X 
2 

if any linear mapping which maps X. 
l 

m-continuously 

in·to Xi , i = 1,2, maps also X m-continuously into itself. 

Analogously, one can introduce a concept of an m-interpolation method. 

Let us notice that every m-continuous mapping is continuous in the 

usual sense with respect to the norms defined by the corresponding modulars. 

Conversely, every bounded linear operator is clearly m-con·tinuous with 

respect to norms. 

function on (O,oo) 

(2 .1) 

Define 

(2. 2) L (t,x) 

and 

1,2 be m-spaces and 0 a measurable positive 

such that 

Joo min(l,t)0(t)dt < oo . 
0 

L(t,x,x) 

X 

m (x) = Joo L(t,x)0(t)dt , 
0 0 

i 1,2} ' 

and denote·by x0 the corresponding m-space and by 11·11 0 its norm. 
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It can easily be proved that X is an m-interpolation space between 

xl and x2 and that (Xl,X2) -+X is an m-interpolation method. Moreover, 

if xi are B-spaces then X is a B-space, as well, and 
a 

Basic properties of spaces obtained are surveyed in following theorems. We 

shall suppose that functions a,a1 ,a2 , ••• satisfy (2.1) and are locally bounded. 

2.4 THEOREM (i) Let a(t) = 0(a1 (t)) , t-+ 0 , and a(t) = 0(a0 (t)), t-+ oo • 

Then Xa n X c X 
o al a 

with m-continuous embedding. 

(ii) . Let x 2 be m-embedded into x1 and a1 (t) = 0 <a2 (t)) , t-+ 0. 

Then with m-continuous embedding. 

2.5 THEOREM (i) Let T : X. -+ y be m-continuous, i = 
~ 

T : xl -+ Y be compact. Let a be nonincreasing near +OO t 

If m2 E /',.2 or ffiy E /',.2 then T xa -+ y is compact. 

(ii) Let T : y -+X. be m-continuous, i = 
~ 

T Y -+ xl be compact. Let lim a(t) 0 
t-+00 

If ffiyE /',.2 or m. E /',.2 t i = 1,2, then T y -+ xa 
~ 

Sketch of the proof (i). Let {x } c X , llx II < 1 , n a n a 

xn = xnl + xn2 = xnl(t) + xn2(t) , and 

m1 (xn1 (t)) + tm2 (xn2 (t)) ~ 2L(t,x) • 

Let ( J: min(l,T)a(T)dT]-l and 

M = M(t) ~ max(l,2c1max(l,t)) 

Then {Txn1 } is relatively compact in Y for 

1,2, and 

lim 2 sup t a(t) 00 

t-+00 

1,2, and 

is compact. 
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m 

Then 

X 
n 

X , 
mn.J. 

which yields 

fo:r· m,n + co 
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xmnl + xmn2 = xmnl(t) + xmn 2 (t) be chosen so that 

xmi 

if 

X , 
nl 

X 
n 

i 1,2 . 

L(T,2-1 (x -x ))0(T)dT 
m n 

(x -x ) ) , 
m n 

E 6 2 we can use the m-continuity of T , x2 + Y • 

Hence, for each E: > 0 ll'rx_m 2 (t) - Tx It) nl' 
< E: for sufficiently 

large m, n, and some t > 0 so that {Tx } is relatively compac·t in Y 
n 

The proof of (ii) is similar. 

A s .. ca:bili·ty of the n1e·thod can be est:a.blished, too, never-theless ·the 

Droc,f is rat.her lengthy e<.nd vvill be therefore almost:. fully omi·ttedu Details 

can be found in [K] ~ 
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We shall suppose that x1 , x2 are m-spaces, again, and we shall call 

a function w satisfying (2.1) admissible if it is nonincreasing, 

differentiable and if the function t + tl+Ew(t) t > 0 , is nonincreasing 

and the function t + t 2-Ew(t) , t > 0 , is nondecreasing for some E > 0 

on (O,oo) • 

and satisfy (2.1) and denote E 

(Xl, X2) = X 'w. w. 
i = 1, 2 

J.. l 

First of all we present a formula for the L-functional (in the form of 

two inequalities) . 

2.6 LEMMA (i) Let c f:: 1 , t > 0 ~t > 0 and w. 
J.. 

i 1,2 be 

admissible. Then there exists c > 0 such that 

L(t,x/BC,El 

;;; c [J~t L (s,x,X)w1 (s) ds + t f~ L(s,x,X)w2 (s)ds ]. X E L:(xl 

0 

(ii) Let w. , 
J.. 

t > 0, 

on (0, 00 ) for some o > 0 

such that 

-1 

t 

i = 1,2, be admissible and let the junction 

be such that -o t + t w3 (t) is nondecreasing 

Then for each c f:: 1 there exists C > 0 

w3 (t) 

J L(s,x/2C,X)w1 (s)ds + t 

0 

;;; C L(t,x,E) , x E L:(X) 

2.7 THEOREM Let w1 , w2 , A be admissible and let w3 = w/w2 satisfy 

the condition from the previous lemma. Then there exists an admissible 

function 8 such that 
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A(t) 

r5{ V 
\ w 'Ll.w 
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J
co 

A ( s) ds , 
t 

t > 0 ' 

Sketch of the proof Le'c rnA be the modular in 

2.6 gives 

r A(t) 
0 

After a change of variables 

K = 
1 Jco Joo 

[Wl (t) . 
0 1: 

w -l(t) 

J 3 
L(s,x,X)w1 (s)ds dt 

0 

r"" 
+ j 

0 
tA (t) 

Asymptotic properties of functions wi and ;, give 

i .. e, 

Lemma 
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Analogous considerations will prove that the function 8(t) 

is admissible. 

§3. CONNECTIONS WITH L -SPACES AND SOME APPLICATIONS p 

First of all, let us show how the method applies to Orlicz spaces. 

Let ¢1 , ¢2 be Young functions and Q ClRn be measurable. Then for 

any 0 satisfying (2.1) we have 

(Ln, {Q) 1 Ln, {Q)) 
'1'1 '1'2 ° 

where 

(3.1) 

and 

(3.2) k(t) I: min(l,tT)0(T)dT • 

An analogous result can be proved for weighted Orlicz spaces generated by 

the same Young function. 

Let us now turn our attention to connections between and Orlicz 

spaces. Actually, interpolation methods enable us to derive various properties 

of Orlicz spaces very easily from those of Lp-spaces. Let ¢ be a Young 

function, the corresponding modular satisfying the ~2-condition. It can be 

shown that there exist numbers pi E <1, 00 ) , i = 1,2, and a concave function 

k such that 
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In fact, this is an easy consequence of the fact that the function 

A.-+ sup ¢(;\.t)/¢(t) is submultiplicative (cf. §2 after Def. 2.2) so that 
t>O 

(3. 3) ¢(At) 

For instance, ·this immediately gives a generalization of the Mikhlin-Lizorkin 

multiplier theorem ( cf . [T) ) . 

3.1 THEOREM Let ¢ be a Young function sat·isfy1:ng (3 .3) 1uith some 

< ~ < Let n 
-+ be such that 1 q q M : JR 

0 1 

I a ( ll s_· I ,-a D M X . c XI f 

each multi-index a 
' lal :£ [l+n/2] Then M is a Fourier multiplier 

in L. ( cp 

(3. 4) 

, i.e the mapping 

f -+ (f-1H) * f 

For the proof, it is sufficient ·to realize that the mapping {3.4) is 

m-cont~inuous in each Lp with respect. to the modular f + II flii ' 1 < P < 00 

p 

Using ·the well-known. ~cechnique of Bessel po·tentia.ls and ex·tension 

theorems it is easy to prove 

3.2 THEOREM Let Q c JRn be a bounded domain uJUh Lipschitz 

Q =IRn and k E li'\i Lei; q; 1 and be Young functions 

cond·ition (3 .3) with pc;wm~s greatel' than l . for each 0 

(2.1) 1iJe have 

uJhere ¢ is 

cvf:L cb <rn 
'l 

(\l) )0 

(3~1) and (3o2)~ 

or 

the 
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Let us note that both Sobolev-Orlicz potential spaces with Young functions 

not satisfying the condition of the last theorem and also Besov-Orlicz spaces 

(Le. spaces based on Orlicz spaces instead of on Lp ) has no'c ye'c been 

included into ·the theory as far as the author is informed. 

Finally, let us demonstrate the power of interpolation techniques by 

ano·ther example using § 2. 

Let ¢ be a Young function satisfying the condition (3. 3) wi·th 

Let ~ CJRn be a bounded domain with Lipschitz boundary 

for a suitable concave 

function h and According to the well-known 

Hardy-Littlewood-Sobo1ev imbedding theorem VJe have W1 ml C L (~) , 
pi qi 

where 

1,2 • It follows immediately that - 1/n i 

w1Lc/J(Q) c Lc/J*(Q) with 

Cf. [D-T]. 

-1 1/p1-1/n l/p2-1/p1 I 
(cp*) (t) ~ t h (t - ) t - 1 nq:, - 1 (t) 
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