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THE EXISTENCE OF IVlAXIMAL SURFACES 

R. Bartnik 

'I'he minimal surface (Pla·teau) problem is ,,vell-known - one seeks 

a surface with minimal area amongst all surfaces spanning a given boundary. 

Instead we ask the analogous question in a Lorentzian space, so in the 

simplest case we are considering spacelike surfaces in flat Minkowski 

space JR 3 • 1 which maximise area. Recall that JR 3 · 1 is the 4-dimensional 

Euclidean space with metric 
~ . 2 2 

,~1 dx1 --dt d h L an t at a vector (x,t) is 

spacelike/time1ike/null according as 
2 2 I x I - t > 0 I < 0 I = 0 respectively. 

A surface M = graphS] u, u E C00 ($]) , S] c JR 3 is spacelike if all its tangent 

vectors are spacelike. This means ·that the induced me·tric is 

Riemannian, 

(1) 6 .. - u.u. > 0, 
l] l J 

where 
dU 

and hence [nul < L The maximal surface equation is u. = 
l dXi 

the Euler-Lagrange equation arising from the induced area functional: 

(2) Area (M) ldet g .. dx 
lJ 

and in Minkowski space can be written 

(3) 
1 

h-[oul 2 

D.u D.u 2 
( 6. . - _l_J_ ) D u 

lJ 1-[Dul2 ij 
0. 

Like the minimal surface equation, this is a nonlinear, non-

uniformly ellip·tic equation and a priori estimates for [ Du I are needed 
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in order to prove existence theorems. Quite good estimates are now 

available [BS] , [G], [B], but before describing 'chese I' 11 discuss some 

applications. 

Lorentz.ian manifolds are of interest because of general relativity, 

where they a_re called space-times. They have quite different properties 

from the familiar Riemannian manifolds, owing 'co the non-compact,ness of 

the Lorentz group. It is known [HE] that even physically reasonable 

spacetimes can have singularities and these can have quite unexpected 

properties. One promising approach to exploring the properties of 

a spacetime is -to decompose it in-to "space + t:ime". Now, the geometric 

generalization of (3) is -that the surface M is a spacelike submanifold 

of the spacetime with constant (zero) mean extrinsic curvature, and 

the constant mean curvature (CMC) surfaces provide a natural space + time 

decomposition. For example, it is conjectured [ES] that C~1C surfaces 

avoid singularities in phsyically reasonable spacetimes. These surfaces 

have already been used to study the space of solutions -to Einstein's 

equations, and more importantly, maximal slicing conditions have proved 

very useful in numerical studies of colliding black holes and other 

physically interes-ting situations. A more geome-tric applica'cion 'I!>Jas 

the positive mass conjec-ture [SY] which used the fact that a maximal 

surface in a spacetime satisfying the c•Jeak energy condition has positive 

scalar curvature. 

These applications all assume -tha-t CMC surfaces are smooth 

spacelike submanifolds, but is is only very recen-tly tha-t this has been 

proved in any generality [G] , [B] . The method is to prove apriori 

gradient and height bounds and then apply standard nonlinear ellip-tic 

theory. The basic assumption is -that_ the spacetime admits a time 

function: - this allows us to define the height ftmc-tion u of a surface 

!Vi , and provides a reference timelike vector field T. 'I'he basic 



49 

equations are then 

(4) 

(5) 

where a is the lapse function of the coordina·tes, N is the unit 

normal vector ~co M, I A I is the length of ·the second fundamental form 

and \! = -<N,T>-(l-!Duj 2 )--~ measures· !Dul. A comple·te derivation 

and explanation of these formulae is given in [B]: - no~ce that (4) 

is the nonflat generalization of (3), and (5) follows from the shift-

lapse equation/second variation formula. 

Using these equations and a maximum principle argument it is 

possible [B] theorem 3,1) to estimate \! in terms of supjuj and 

the mean curvature of the boundary of M Previous es·timates [BS], [G] 

depended on I rl I and boundary gradient estima·tes, which were difficul·t 

to obtain, In many cases an estima~ce for sup I u I follows from 

compactness assumptions and this leads imrnediately to existence theorems, 

for the Dirichlet problem ([B] theorem 4.2l,and the cosmological problem: 

THEOREM [G] Let II be a 
co 

c cosmological spacetime 

(i.e. V ""S x JR where S is a compact, boundaryless 3-manifold), 

with past and future crushing singularities [ES]. Then there is a 

Cauchy BU1~face H fl c V such that fl for any !lEJR. 

The maximal surface problem considers zero mean curvature surfaces 

in asymptotically flat spacetimes. Because the domain is unbounded 

and estimates for suplul do not follow from natural conditions, this 

is a more difficult problem. However, a test function argument based 
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on (4) and using the asymptotic flatness conditions very strongly gives 

the required estimate. This leads to the main theorem: 

THEOREM [B] Existence of maximal surfaces 

Let V be an asymptotically fl-at spacetime with uniform interior 

(see [B]§5 for a precise definition). Then there is a maximal. surface 

asymptotic to every Z.eveZ. set of the time function. 

The conditions are satisfied by a wide class of spacetimes, one 

easy example being asymptotically simple spacetimes. These are topologically 

and have me'cric satisfying 

where r = o:~ xi2)! and H0 is the mean curvature of the slices 

t = cons·tant. The uniform in'cerior condition •1ill be satisfied if 

there is a constant K such that the vec·tor (I; ,K J E;! ) , !; E JR 3 

is timelike (with respect to 9;q} for all s E JR 3 , throughout V • 

Heuristically, this says that ·the light cones of V don't tip over. 

A complete statement >vith proofs is given in [B] . 
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