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Then if k is positive Ivl_k = ID-kvlo. 

Define the fractional order SObolev spaces �H�~� (r) (or just 

COO 

be the completion of 0 under or equivalently for t �~� 0 , 

t . { 2 I I } HO = U € L: u t < 00 & fu,l) = 0 

When t < 0, �H�~� includes functions which do not belong to L2. Thus 

the delta "function" Ocr defined by (u,Ocr) = u(cr) , is the limit of the 

smooth functions 

<P (s) 
n 

1 
: = 121[ I exp -imcr exp ims 

o<lml<n 

when t < �-�~� , and hence " t �~�f� Ucr € HO • t < -1:1 • 

These spaces have a number of properties which hold in more general 

circumstances. Here however the proofs involve the simplest properties 

of Fourier series and some standard limit arguments. Thus they are 

omitted. 

THEOREM 2. (i) �H�~� is a Hilbert space with inner product 

(18) 

(19) 

\ 2tA -A­
(u,v)t = L m u(m)v(m) 

(ii) If s < t then H6 -:; �H�~� and the inclusion is 

a compact map. 

(iii) The dual of �H�~� is �H�~�t� That is the functional 

u 1+ (u,v) is bounded on �H�~� if and only if v € �H�~�t� and 

(iv) If t = atl + (1-a)t2 , tl < t 2 , 0 $ a $ 1 

we have the interpolation inequality 

.1111 
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The relevance of these spaces can be seen when r is the unit circle 

c. writing (cos s, sin s) = cis s , and using VSC,VDC etc for the potentials 

in this special case 

(20) 
1 ~(m) 

U'27r- ~ i:I exp ims 

and 

+ l~lml !Iml 
(V- v) (-... cis s) '" -- 2 -- r exp ims 

sc - 2/2-IT Iml 

(These formulae may be obtained by contour integration, or by using the 

uniqueness of the exterior and interior Dirichlet problems and checking (7) 

holds. See [13J). Clearly 

(21) 

Thus is an isometry between and 

For general regions the simple formula (20) is no longer true. However 

we have the decomposition 

(!lsv) (y(s») =-2~rr r Q,nly(s)-y(allv(a)dCT 

-'ff 

That is 

(22) 

where 

r k(s, ·)v 

-'IT 

Note that the kernel function k 

Iy(sl-y(o) I l 
s - cis 0"1 + 9vn Icis s _ cis 01 _ v(O)dO 

Iy(s)-Y(IJ) I 
:= 9vn---------------

lcis s - cis 01 
k(s,a) 

is smooth. Therefore for any 

KSv has derivatives of all orders with 



220 

(23) 
cf -::--I (K v) (5) 

Cls S 

aJ/, 
(--JI, k(s, 0) ,V) 

as 

(Since v E the inner product on the rhs of (23) is defined. A simple 

argument shows that it is the derivat.ive of ) 

is bounded fer any J/" and by properly (ill K 
-1; H • 
0 

Therefore K:= 

S 

-It< is a compact operator en 
S 

decomposition (22) becemes 

(24) iJ s (I+ICl 

Hence K . 
,::' 

H-l:l->-tl,+l 
o 0 

->- is compact. 

and the 

(1 is the identity operator). Therefore 'che bie may be rewrit.ten as ·the 

operator equation en 

(25) f fl f =: 

(Pc is necessary to. check that f E H~1. Since "Ie assume 9 is smoo·th 

~g + !JDg is also smooth, and it suffices 'co shelll ·that (~g+VDg,l) = 0 • 

But by the definition of V~ and using (8) 

A direct calculation shollls \/V-l 
s 

required. ) 

o and hence o as 

The introduc·tion of the spaces has reduced the first kind bie 

to a second kind equation (24), and ·the standard Fredholm theory may be 

applied. If v E 
H-~2 solves (1+K) v ~ 0 , then v ·-Kv and the smooth-

0 

ness properties of K show v is smooth. (Le. v E 
HQ, for all integers 

s 0 

!I, 1 Then the arguments used in the proef of Proposition 1 show v = 0 • 

Hence the Fredholm alternative ([13J) shows (24} (or equivalently (16)) 

has a unique solution. 

Most numerical solutions ·to the bie' s are use piece<,;ise polynomial 

basis functions: - the boundary element method. Thus let 
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-'IT '" So < sl < < sn = 'IT be a subdivision of [-'IT;IT J with 

Isi+1-siIJ = h Define s11. to be "the set of piecewise polynomials 

of order r (degree r-l) , which have V continuous derivatives at the 

knot points {s. } (if V -1 the functions are allmved to be discontinuous.) 
J. 

Let 

o} 

We seek to approximate "the solution voy to the bie by an element of 

h So The ele.ll1ent may be selected in a variety of "ways, but the easiest "to 

analyse theoretically is the Galerkin method, Here 

by the GaZerkin equations 

(26) 

If a basis" {<fl.} 
1. 

is chosen for 
h 

So ' then 

(f,.p) 

v 
h 

is defined 

and the Galerkin 

equations reduce to a systerrt of linear equations for the vector [a. J 0 

1. 

These may in turn be solved by standard or non-s"tandard methods. 

"the procedure breaks dOvm if the linear equations become singular, and 

this possibility must be eliminated in a theoretical jus"tificationo 

Applying the decomposition (24) and using (21) shows that (26) is 

equivalent to 

Thus the Galerkin method for the first kind bie(16) is just the Galerkin 

method for the second kind equation (25) in the space Eu"t then 

the standard theory ([ 3J, [llJ) shows that the Galerkin equations are non-

singular for h sufficiently small and 

(27) Iv -vi, 0; C inf{I<fl-vl_l-..' h --~ -, 
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where here and elsewhere the constant C is independent of v and h 

This bound is the basis for the qualitative convergence theorem. 

THEOREM 3. (i) The Gale:rokin app:rooximate solution to (16!) satisfies 

(ii) If in addition the mesh satisfies the quasi-unifo:romity 

condition 

(29) maX{ls. I-s .I}/min{ls. 1-s.l} ~ cr 
1+ 1 J+ J 

fop some constant cr independent of h; then 

(30) 

Proof. The proof is the derivation of the required approximation 

theory. For any u E H~ let Pu E s~ be the orthogonal projection defined 

by 

(31) (Pu-u,<jl) o 

Then it is well known ([7J for example) that 

(If V is small, the proof of this result is fairly straight forward, 

depending only on a scaling argument.) r 
For any 0/ E HO ' (31) shows 

(Pu-u,o/) 

and hence (18) and (32) give 

Finally (19) with e 1/2r gives 
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(33) 

which combined with (27) gives (28). 

Because of the quasi-uniformity condition, any continuous piecewise 

polynomial satisfies 

(34) 

For any cP € s~ 

hence (34) shows 

O-lcp is a continuous piecewise polynomial, and 

Thus the interpolation inequality gives 

COmbined with (30) and (33) we have 

Ivh-vl o ~ IVh-Pvl o + Ipv-vl o 

~ ch-~Ivh-Pvl_~ + Ipv-vl o 

.1111 

The L2 estimate (30) is a more deep and meaningful estimate of the 

error in vh But (28) is also useful. Assuming Green's identity (16) 

for piecewise polynomials, 
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Thus (28) measures (in the "energy" norm) the difference between the solution 

U of the interior Dirichlet problem and its approximation by the potential 

The Galerkin method is of limited usefulness because of 

the integrations needed to set up the. Galerkin equations. Collocation 

methods are preferred in practice, and some of these can be treated in the 

above framework. For instance let sh be the space of Hermite cubics. o 
Then as V is an isometry H3/ 2 + H5/ 2 , the Galerkin equations 

~ 0 0 

o 

are equivalent to the collocation equations 

([2] or [20]). Thus the convergence of the collocation method (35) 

follows from the Galerkin theory. Indeed this particualr collocation method 

is used in the elastostatic software [19]. However not all collocation 

methods can be analysed in this way. The results and techniques of [8] 

cover some of the remaining cases; but the Fourier analysis there is 

restricted to uniform meshes. The techniques described here are more 

flexible, and can be more easily extended to more difficult problems. 

(When the boundary contains corners for example. See [17].) 

4. A MIXED PROBLEM 

The second advantage of the direct bim is that it can be readily 
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applied to mixed boundary conditions. Here the boundary r is divided 

into two segments fl and f2 and we need to solve 

(36) 

(37) 

L1u (xl 

ul r = 9 
1 

o , X E 

h 

"There we assume the boundary data 9 and h are given as smooth functions 

defined over the entire boundary with (h,l) = o. The direct bim again 

seeks u and v such that + 
V V;v - V~u satisfies the boundary 

conditions (37). That is IIle must satisfy 

so that :::::: U and 

v v - V u - ~u 0 
S D 

v , together with 

(u •• g)1 r = 0 , 
I 

Equivalently 'Ilriting- u = U o + 9 v Vo + h we need 

(38) 

and 

(39) 

v v - V u - ~uo SOD 0 
f , 

uolr = 0 , 
1 

f - tv h-V g-!:;g) 
S D 

For i 1,2 define COO (r. ) 
~ 

to be the smooth functions on the boundary 

r \vhich are zero outside 

satisfied iff 

(40) 

r 
i 

o 

Then (38) is 
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Let be the completion of in the I·I_~ norm. 

In fact 

H~~(rl) =' {vir: V € H~(r) & r v = o} 
1 ~l 

but this useful characterization is not necessary. HO(r2) = L2 (r2) is 

the space of square integrable functions defined on r 2 with norm 

ilull 2 = (u,u) • Then equations (39) are satisfied provided Uo € HO(r2) , 

° -~ ~ For Uo € H (r2) , Vo € HO (rl ) , $ € CO(rl ) 

and thus 

I (VSvO-VDUO,$) I~ c(lvol_~ + IluoU) I$I_~ 

-~ is a bounded functional on HO (rl ) Using 

the compactness of K and VD , there is a compact operator 

° -~ -~ Kl : H (r2) x HO (rl ) + HO (rl ) such that 

~ 

such that for all ~ € C (r2) 

Hence the equations (40) can be expressed as the operator equation on 

(41) + 

where are defined by 
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co 
V<jJ E C (r 2) : (fl'¢)_~ (f ,<P) 

-~ 
00 

V¢ E Co (r 11: (f2 ,1jJ) (f ,1jJ) 

Thus again a first kind bie has been expressed as a second kind equation on 

unfamiliar spaces. 

To solve the bie numerically introduce the spaces 

h {<p E S : <p (xl o x i; r.} 
]. 

Note because and 

The Galerkin solutions to the bie (38)-(39) are the piecewise polynomials 

h 
u h E S (r 2) , defined by 'i1<jJ E sh (r 2) , 

(42) (V U -V ~ -~u -f,¢) = (V v -V ~-f,W) = 0 
S h D n - h S h D h 

These are clearly equivalent to Galerkin's method for the second kind 

equation (41). \"e again conclude that, provided the bie has a unique 

solution, (42) uniquely de-termines and for h sufficiently 

small, and 

0; C inf{IIq:,-uoll + Iw-v I J: '" E Sh(f2l , o -';1 7 

But the proof that the bie has a unique solution depends on illliqueness 

results for mixed probl~ms. This in turn is complicated by the fact that 

u,v are not smooth even though g and h are. That is 

U E for t < 1 f but not for higher t Thus the 

jump formulae and Green's identities need to be proved for non-smooth 

functions. There is also the practical consequence that the piecewise 

pclynomial bases must be modified to produce higher order approximations 
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to u and v ([19], [21]). Nevertheless the abo've theory assures the 

convergence of the Galerkin method if it is applied to well posed problems. 
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