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The relevance of these spaces can be seen when I' is the unit circle

C . Writing (cos s, sin s) = ¢&is s , and using USC’VDC etc for the potentials

in this special case

g 1 A
.1 . s=0 _ —— v v(m) .
(20) (VSCV)(s) = Eﬁ-[q?n|251nr374v(c)dc = o/ z I exp ims
and
(Ut )(r cis s) = —L z‘e(m) £|m| .
v) (r cis s) = exp ims .
sC 2/21 || P

(These formulae may be obtained by contour integration, or by using the
uniqueness of the exterior and interior Dirichlet problems and checking (7)

holds. See [13]). Clearly

(21) WVgoviv) = (v,v) _, and |v|_% = IVscvll5 .
. . - +12
Thus VSC is an isometry between H0 and H0 .

For general regions the simple formula (20) is no longer true. However

we have the decomposition

LT
Vv (v (s) =-Lf tn|Y(s) =y (0) |v(0)do

2m
-
el Iy ]
=- ¢nlcis s - cis ol + &n v(o)do
2m B |cis s - cis Ul_ :
- =T
That is
(22) (VSV) (y(s)) = (VSCV) (s) + (KSV) (s}
where
g [v(s) -y (o) ]
(Kw)(s) = | k(s,*)v , k(s,0) := n .
S |cis s - cis UI

=

Note that the kernel function k is smooth. Therefore for any v € Hg .

KSV has derivatives of all orders with
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(23) f% (st) (s) = (.—B—% k(s,"),v) .

s , ds
(Since v € HE the inner product on the rhs of (23) is defined. A simple
argument shows that it is the derivative of KSV . ) Hence KS: H8%~+Hg+l
is bounded for any & , and by properly (ii) KS: Ha% -+ Hﬁ is compact.
Therefore K:= (VSC)—lKS is a compact operator on Ha% , and the

decomposition (22) becomes
(24) VS = VSC(I+K)

(I is the identity operator). Therefore the bie may be rewritten as the

operator equation on H,"
(25) (TeKyv = £, £=V2iegtl @) .
! sC D

-3
(It is necessary to check that £ € Hdi. Since we assume g is smooth
Lg + VDg is also smooth, and it suffices to show that (%g+VDg,1) =0 .

But by the definition of V; and using (8)
= L. ¥ - -
(agtV g, 1) = (g VD) (CHURNN IS IR

A direct calculation shows VV;l = 0 , and hence (V;l)vlr =0 as
required.)

The introduction of the spaces H; has reduced the first kind bie
to a second kind equation (24), and the standard Fredholm theory may be
applied. If vV e Hg% solves (I+K)v = 0 , then v = -Kv and the smooth-
ness properties of KS show v is smooth. (i.e. Vv ¢ H% for all integers
£ ) Then the arguments used in the proof of Proposition 1 show v = 0 .
Hence the Fredholm alternative ([13]) shows (24) (or equivalently (16))
has a unique solution.

Most numerical solutions to the bie's are use piecewise polynomial

basis functions: - the boundary element method. Thus let



221

T = sO < sl < ... < sn =T be a subdivision of [-T,T] with

max{|s,

1+1-sil} =h . Define Sh to be the set of piecewise polynomials

of order r (degree r-l) , which have V continuous derivatives at the
knot points {Si} (if Vv = -1 the functions are allowed to be discontinuous.)

Let
st ={pes: (,1) =0} .

We seek to approximate the solution veoY to the bie by an element of

Sg . The element may be selected in a variety of ways, but the easiest to
analyse theoretically is the Galerkin method. Here v, € S% is defined
by the Galerkin equations
(26) ¥ et W ,d = (5.0 .

0 Sh' !

If a basis '{¢i} is chosen for Sg , then vh = Zai¢i and the Galerkin
equations reduce to a system of linear equations for the vector [ui] .
These may in turn be solved by standard or non-standard methods. However
the procedure breaks down if the linear equations become singular, and
this possibility must be eliminated in a theoretical justification.
Applying the decomposition (24) and using (21) shows that (26) is

equivalent to
Wov-5g-V g,9) = (Vg lv, =v),¢) = ((I+K) (v, =) ,9) , =0 .

Thus the Galerkin method for the first kind bie(16) is just the Galerkin

L
method for the second kind equation (25) in the space H ? . But then

0
the standard theory ([3], [11]) shows that the Galerkin equations are non-

singular for h sufficiently small and

27) !vh—vl_% <cC inf{i¢-v!_%: ¢ € Sg} '
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where here and elsewhere the constant C is independent of v and h .

This bound is the basis for the qualitative convergence theorem.
THEOREM 3. (i) The Galerkin approximate solution to (16) satisfies
(28) v, vl , < Ch’“-+’flv|r )

(ii) If in addition the mesh satisfies the quasi-uniformity

condition
(29) max{]si+l-sil}/min{|sj+l—sj|} <0

for some constant o independent of h ; then

r
0 = < .
(30) |vh VIO Ch !vlr
Proof. The proof is the derivation of the required approximation
0 . . .
theory. For any u € HO let Pu e Sg be the orthogonal projection defined
by
h

(31) ¥o € S (Pu-u,¢) =0 .

o 7
Then it is well known ([7] for example) that
r
- <
(32) |Pu ulo < Ch lulr .

(If Vv is small, the proof of this result is fairly straight forward,

r
o’

depending only on a scaling argument.) For any Y ¢ H (31) shows
(Pu-u,¥) = (Pu-u,¥-p¥) < c[Pu-u!o|W-PT[0 .
and hence (18) and (32) give
: 2r
[pu~u| = sup{(Pu-u,¥)/|¥|} < ch™|u| .
=r r r

Finally (19) with 0 = 1/2r gives
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) 1-6
(33) |pu-ul, = |pu—u]? |pu-u|}7° < cn 2l
which combined with (27) gives (28).

Because of the quasi-uniformity condition, any continuous piecewise

polynomial satisfies

(34) lv| sch'll‘Plo )

1

For any ¢ € Sh ’ D_1¢ is a continuous piecewise polynomial, and

0

hence (34) shows
=1 =1y -1 -1
l6ly = ID770l, s cn™[p7¢[  =cn " fol ; .
Thus the interpolation inequality gives
ki 5 -5
lol Ly, = ol folg < en™lol -

Combined with (30) and (33) we have

Ivh-vlo < |vh-Pv|0 + va-vIO
< Ch—%|
< vh—Pv| a4t IPv-vlo
< Ch_%([vh—vl_% + lV—PVI_%) + IPV-VIO
<

r
Ch Ivlr /4

2
The L estimate (30) is a more deep and meaningful estimate of the

error in Ve But (28) is also useful. Assuming Green's identity (16)

for piecewise polynomials,
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2

2
Lflvvs (v, =v,) |© + LZ-IVVS(Vh-VO) (Vg tv, =) v, v )

((1+K) (vh-vo) ,vh-vo) -

2
C|vh--vo -y .

IN

Thus (28) measures (in the "energy" norm) the difference between the solution
U of the interior Dirichlet problem and its approximation by the potential
+ yt, o
V= sth VDg .
The Galerkin method is of limited usefulness because of

the integrations needed to set up the Galerkin equations. Collocation

methods are preferred in practice, and some of these can be treated in the

h

above framework. For instance let S0 be the space of Hermite cubics.
Then as VSC is an isometry Hg/z . Hg/z , the Galerkin equations
Vo e st (U (v =v),0), = ((I+K) (v —v) ,0), - = O
0" S h rYh2 h 'Yi3/2
are equivalent to the collocation equations
35 i = = = =
(35) Vi Vs(vh v)(si) DUS(Vh v)(si) 0

([2] or [20]). Thus the convergence of the collocation method (35)

follows from the Galerkin theory. Indeed this particualr collocation method
is used in the elastostatic software [19]. However not all collocation
methods can be analysed in this way. The results and techniques of [8]
cover some of the remaining éases; but the Fourier analysis there is
restricted to uniférm meshes. Thé techniquesydescribed here are more
flexible, and can be more easily extended to more difficult problems.

(When the boundary contains corners for example. See [171.)

4. A MIXED PROBLEM

The second advantage of the direct bim is that it can be readily
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applied to mixed boundary conditions. Here the boundary I is divided

into two segments Pl and Fz and we need to solve

(36) CAUx) =0, xe@F,
(37) vl

where we assume the boundary data g and h are given as smooth functions
defined over the entire boundary with (h,1) = 0 . The direct bim again

+ + ..
seeks u and v such that V = VSV - Vgu satisfies the boundary

conditions (37). That is we must satisfy

Vv - - Lu =

sV VDu hu = 0
+ + .

so that V |P = u and Vv‘T = v , together with

(u - @lr =0, (v - hﬂr =0 .
1 2

Equivalently writing u = u, +qg9g, v= V5 + h we need

(38) sto - VDuO - %uo =f, f= —(Vsh—VDg-%g)
and
(39) ul. =0, v.|. =0 .

0 Fl 0 F2

For i = 1,2 define Cm(Fi) to be the smooth functions on the boundary
o CO {>e]
T which are zero outside Pi . CO(Ti) =C (Fi) n CO(T) . Then (38) is

satisfied iff

v e C Ty)) » Ve CO(Fl)

(40) (%u0+VDuO—VSVO-f,¢) =0 = (VSVO-VDuo—f,w) .
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Let H-%(F ) be the completion of Cg(Pl) in the |-|

0 1 noxrm.

]
In fact ‘

= B _Lz
Ho%(Fl) = {vlrl: v e Hy () & L‘ v = 0}
1

2 .
but this useful characterization is not necessary. HO(FZ) =1L (F2) is
the space of square integrable functions defined on F2 with norm

0
e H (Pz) ’

2
lul™ = (u,u) . Then equations (39) are satisfied provided Uy

-3 0 ] ©
v, € Hy (Pl) . For ujcH (PZ) A Ho (Pl) , boe CO(Fl)
-1
(VSVO—UDuO,W) = ((I+K)v0 - VSCVDU0:¢)_%
and thus

I(USvO-vDuO,w)ls C(IVOI_% + uuou)lwl_% .

. . =% .
> _
Hence VY (VSVO VDuO,w) is a bounded functional on HO (Pl) . Using

the compactness of K and VD , there is a compact operator

Kl‘ HO(PZ) x H:’(Pl) > H:f(rl) such that

(VSVO-VDUOIIP) = (u0+K1(uO.V0) ,w)_;i °
-5

Similarly, there is a compact operator K_: Ho(Pz) X Hy (Tl) +~HO(P2)

2
such that for all ¢ € Coo(I"z)

(u0+2VDuO-2VSVO,¢) = (uO+K2(uO,VO),¢)

Hence the equations (40) can be expressed as the operator equation on

-4

0
H (P2) X HO

(rl) 14

(41) + = H

where f. € HO(PZ) , £, e H (') are defined by

1
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¥ e C (T): (£, , = £.0,
¥ e Co(T): (£,,0) = (£,) .

Thus again a first kind bie has been expressed as a second kind equation on
unfamiliar spaces.

To solve the bie numerically introduce the spaces

') ={pes 6x) =0 xxT.} ,
1 1
h h h
so(Fi) =S (Pi) n sO .
Note sg(rl) - H(‘)"’(rl> because sg(rl) < B)(r)) and HO(T) < H:i(rl) .

The Galerkin solutions to the bie (38)-(39) are the piecewise polynomials

h h . h h
w €S (Tz) PV € So(Fl) defined by ¥ € S (TZ) , Uoe So(Fl)

(42) (Vsuh—VDuh—%uh-f,¢) = (sth—VDuh—f,w) =0 .

These are clearly equivalent to Galerkin's method for the second kind
equation (41). We again conclude that, provided the bie has a unique
solution, (42) uniquely determines uy and vy for h sufficiently

small, and

Po-ugh + |vy vyl
. h h
<C 1nf{“¢—uoﬂ + !w—vol_%: ¢ €S (Fz) r Ve SO(Tl)} .

But the proof that the bie has a unique solution depends on uniqueness
results for mixed problems. This in turn is complicated by the fact that
u,v are not smooth even though g and h are. That is

t t-1 :
ue H(T) , ve Ho (TY for + < 1, but not for higher t . Thus the
jump formulae and Green's identities need to be proved for non-smooth

functions. There is also the practical consequence that the piecewise

polynomial bases must be modified to produce higher order approximations
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to u and v ([193, [21]). Nevertheless the above theory assures the

convergence of the Galerkin method if it is applied to well posed problems.
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