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ABSTRACT

In essence, the spectral method simply involves: (i) the choice
of a more or less arbitrary orthonormal system ¢j, j=1,2,3;..., to

define approximations of the form
n
u = z af“)¢.
n =2 J J
j=1
with unknown (constant) coefficients a;n), j=1,2,...,n ;

7

and (ii) the choice of n conditions which, in conjunction with the

problem being solved, yield a non-singular matrix equation

(n) (n) (n) (n) _(n) (n). T
I—fng- =~f v a = [al 132 l"'lan 1 v
for the aén), j=1,2,...,n , where the structure of the matrix Ln

and the right-hand-side vector §(n)will depend on the choice of the

¢j, j=1,2,..., the problem being solved, and the n conditions.
Because of its success, it is often viewed as a standard "ansatz"
for the numerical solution of ordinary and partial differential
equations as well as integral equations. The key to this success is
the choice of the ¢j, j=1,2,..., to be an orthonormal system;" not
the n conditions of (ii). 1In this paper, we show how theory developed
by Mikhlin for studying the numerical performance of variational
methods can be used to identify to what extent an arbitrary choice of
an orthonormal system can be justified numerically. In particular, we
show for thé Ritz-Galerkin and Bubnov-Galerkin counterparts of the

spectral method that such an arbitrary choice guarantees numerical



stability, but not the convergence of the residual for ordinary and
partial differential equations. The additional conditions necessary

to guarantee the latter are also discussed.

§1. INTRODUCTION

Because the concept of a spectral méthod is guite general and has
a natural variational interpretation, we develop its definition within

the framework of linear operator equations

(1) Iu=£, L:D@ *R@ , u=ux, x€Qor?,
where the domain and range of L, B(Q) and R(L), are assumed to be
dense in some Hilbert space H with inner product (¢,°) and norm flell;

and 9 is a bounded region in g-dimensional Euclidean space rY

Knowledge of the concept of the energy space EA associated with a
selfadjoint and positive definite operator A will be assumed (cf.Mikhlin [13],
§3). 1In this paper, A will always denote a selfadjoint and posifive
definite operator.

Computationally, the starting point for spectral methods is the

decision to use approximations of the form
5 _(n)
(2) u(x) = Z ay ¢j(x) '

where the (coordinate, basis, trial, shape) functions ¢j(x),

j =1,2,...,n, are chosen to be the first n elements of an orthonormal
system ¢j, j=1,2,..., in H. Clearly, the qualifier “spectral"
identifies this particular choice for the coordinate functions. These

methods are subclassified in terms of the procedure used to determine

(n)

the unknowns aj . j=1,2,...,n; i.e. in terms of the n conditions

which, in conjunction with (1), yield a non-singular matrix equation

(n) _ .(n) (n) _ (n) _(n) (n),T
(3) L a '—_g ’ a [al 18y reeendy 1 [



(n)

for the determination of the aj ;, 3 =1,2,...,n.

In this paper, we limit attention to

1.1 The Ritz-Galerkin (Spectral) Methods

This class corresponds to the situation where L=2
(cf. Mikhlin [13],83) and the n conditions are defined by the

projection of the residual

(4) = -
rg(un) A u £
onto the zero element of H(n) = span(¢. ;P ..., ); viz.
=A 172 n
(5) (ré(un),¢j) =0, j=1,2,...,0 .

In this situation, Ln becomes the Ritz-matrix

(a ¢1.¢1) ..o (A ¢n,¢1)
(6) R ces .o ces
(2 ¢i.¢n) ... (B ¢n.¢n)

i

and
(n)

@) £ [(E:01) 0 (£,0,)ene s (£,6)17 .

The qualifier "spectral" is invoked when the ¢j, j=1,2,..., form an

orthonormal system.

1.2 The Bubnov-Galerkin (Spectral) Method

This class corresponds to the situation where

-1
(8) L=A+B, A B compact ,

and the n conditions are defined by the projection of the residual

(9) r%(u) =L un—f
onto the zero element of ggn); viz.
(10) (rL(u)r¢j) =0, j=1,2,c..,n .

The qualifier "spectral" is invoked when the ¢j' j=1,2,... form an



orthonormal system.

The rationale for this subclassification is the way in which the
theoretical results are usually derived for variational and projection
methods (cf. Mikhlin [14]). They are first established for positive
definite operators and then extended to linear operator equations of
the form (8) by exploiting the underlying second kind integral
equation structure.

The motivation for the use of spectral methods is two~fold. (1) The
existence of extensive mathematical properties for particular ortho-
normal systems, such as the Legendre and Chebyshev polynomials, which
can be exploited in various ways to manipulate the structure of
numerical methods based on the use of orthonormal functions (cf.
Delves and Freeman [4]). (2) The knowledge that, in the numerical
performance of variational methods, the choice of the coordinate
functions ¢j(x), j =1,2,...,n, appears to play a more crucial role
than the n conditions defining (3); and thereby, the heuristic
conclusion tha£ in some sense an orthonormal system must
be better than a non-orthonormal.

Though the success of spectral methods for the approximate
solution of a wide class of practical problems (cf. Gottlieb and

Orszag [9] , Hussaini et al. [§] and Peyret and Taylor [L7] yields

verification for this conclusion, it is well known (cf. Gottlieb
and Orszag [8] and Anderssen and Omodei [1]) that the choice of
an orthonormal system does not guarantee unconditionally that a

spectral method will perform well computationally.

The aim of this paper is to give a more definite characterization
of the numerical performance of spectral methods for stationary (i.e.

time independent) problems than is contained in the standard texts on



the subject (cf. Peyret and Taylor [17] and Fletcher [5]). In
particular, we show how theory developed by Mikhlin [14]) for
studying the numerical performance of variational methods can be used
to identify to what extent an arbitrary choice of an orthonormal
system can be justified numerically.

After developing appropriate preliminaries in §2 concerning
minimal systems, similar operators and comparison theorems, we discuss
in §3 conditions under which an arbitrary choice of an orthonormal
system in H guarantees numerical stability for the Ritz-Galerkin and
Bubnov-Galerkin procedures. The fact that such an arbitrary choice
does not guarantee the convergence of the residuals of rA(u) and rL(u)
of (4) and (9) is pursued in §4. 1In addition, conditions are exam;ned
which do in fact guarantee their convergence. Some concluding remarks

about time-dependent and eigenvalue problems as well as other aspects

are made in §5.

§2. PRELIMINARIES: MINIMAL SYSTEMS, SIMILAR
OPERATORS AND COMPARISON THEOREMS

As we shall see in 883 and 4, the key to the present analysis is in the
o
comparison theorems for systems {¢j}l ={¢j, i =1,2...},

which lie simultaneously in two Hilbert spaces H, and gz. Given that

1

the coordinate system is orthonormal in 32 and that, in some

appropriate sense, H. is imbedded in EZ’ a comparison theorem

1

determines the properties of the coordinate system in gl.
For the systems we use the properties of minimal

systems, while the imbedding is accomplished using similar operators.

The key concepts are:



Minimal Systems

A system {¢j}T which spans: H is said to be minimal in H, if the
deletion of any element from the system restricts the span of the
remaining elements to a proper subspace of H; and non-minimal
otherwise.

Consider the Gram matix Gn of the first n elements {¢j}; of the
system {¢j}T:

(03007) e (0401)]
(11) G = e e oo .
(6100)  eee (0,00

Because Gn is Hermitian and positive definite, its eigenvalues are

positive and can be written in increasing order as

(12) 0 < A\ <)
1 2 n

The interlacing consequences of the minimax principlesfor such eigen-

. (n+1) (n) (n+l), . (n)
values (viz. for all m and n, m £ n, Xm < Am < xm+l ) imply that Al

n . . .
and Xé ) can only decrease andincrease, respectively, as n increases. As

a consequence concepts such as strong minimality and almost
orthonormality are important computationally because they potentially

limit the growth of the spectral condition number of Gn,K(Gn) = Xén)/A{n).
[ee]
The system {¢j}l is said to be strongly minimal in H, if

(13) ing A 2 1im @ 5
1 !

and almost orthonormal in H, if it is strongly minimal and

(14) sup A(n) = lim A(n) < o,
n hoo B

Remark 2.1 The central role of the Gram Matrix G, in the formulation

of these definitions can be explained in the following way. It defines
the matrix Ln which is generated in the construction of best approximations

of the form (2) for a given f ; or equivalently, the matrix Ln which the



Ritz-Galerkin method generates when applied to (1) with L = E R
the identity operator. Therefore, when viewed as operators, the
Gram matrices Gn define mappings from the elements f € H to the
elements i‘n)e 22 (the Hilbert space of infinite sequences of

[ee]
elements 0 = (0. ,0.,...) with norm |laf = Z a_2< ).
~ 1772 ~ i=1 i

The above conditions which define minimality, strong minimality
and almost orthonormality correspond to the conditions which identify
(n)

special properties of the a

as elements of 22. A discussion of

such properties is contained in Mikhlin [141,85, though, as indicated
there, the original results date back to Lewin [11] and Taldykin [18].
In particular, the minimality of the {¢j}j in H guarangees that,

for fixed j, the a;n)

have limits aj as n>®, However, it is necessary
to invoke the strong minimality assumption to ensure that the resulting

infinite sequences (al,az,a3,;..) lie in Rz. In fact, it follows

from the definition of strong minimality that

n
Ilag™1 s aghiel . een,
=1

J
and hence that the mappings Gn:§-+22, n=1,2,..., are bounded.

An immediate consequence is the observation that the additional
condition which ensures that a strongly minimal system is almost
orthonormal guaranteesthat the inverse mappings G;1:£2-+§, n=1,2,...
(which exist because of the strong minimality assumption) are bounded.
Thus, when the system {¢j}§ is almost orthonormal, the mappings

Gn:§-+22,n=l,2,..., induce an isomorphism between H and 22.

The minimality definitions could be based on these properties, but,
from a computational point of view, those given above are the more
appropriate because of the key role the spectral condition number
K(Gn) = Kén)/kin) plays in the numerical analysis of positive definite

matrices. #



Similar and Semi-Similar Operators

For the analysis of spectral methods developed below, the key step
rests on results which allow the properties of a system {¢j}01 in
one Hilbert space to be inferred from its properties in a related
Hilbert space; in particular, when one space iscontinuously (densely)
imbedded in the other (cf. Gilbarg and Trudinger [7]). In fact, we examine

the simplest possible form of continuous imbedding where, for two spaces

[[}=]

and Ezwith norms | and “.“2'21 is dense in H,_ and

1 Il )

(15) “u“2 < K“u"l , ueH K = const.

1

since we are principally concerned with selfadjoint and positive
definite operators, we require conditions on them which guarantee
inequalities of the form of (15). For this we use the concept of
similar and semi-similar operators.

Two selfadjoint and positive definite operators A and B are
similar, if D(3) = D(B); and semi-similar, if H, = H..

In particular, one obtains results of the following form (cf.

Mikhlin [14], §3):

Theorem 2.1. ILet A and B be positive definite operators such that

=

18 contained in Hp. Then there exists a constant c such that

(16 < - .
) |u|B clulA ’ u e H

= = ~

Theorem 2.2. ILet A and B be selfadjoint and positive definite
operators which are similar. Then there exists positive constants cy

and c,y such that

(17) clugun < laull < czﬂgun ' u e D(A) .

Theorem 2.3. et & and B be selfadjoint and positive definite
operators which are semi-similar. Then there exist positive constants

¢ and c, such that



< <
(18) cl|u|B < lulA < czlulB

where IulA and Iulg denote the energy norms of gé and 5@’ respectively.

=

Comparison Theorems

The results which allow the properties of a system {¢j}? in
one Hilbert space to be inferred from its properties in another
Hilbert space are called comparison theorems. For the minimality,
strong minimality and almost orthonormality concepts defined above,

the relevant comparison theorems are

Theorem 2.4. Let H be continuously imbedded in B, and assume that the

coordinate system {¢j}? lies in and spans H . If this system is (strongly)

minimal in H, it is (strongly) minimal in H -

o
Proof. The denseness of H, in H, implies that the system {dﬁ}l also

spans H_. The minimality in H

H, and the continuous imbedding of H

2 1

in H, imply, using a reductio ad absurdum argument, minimality in H

1-
For the strong minimality case, we let G;, i=1,2, denote the following

Gram matrices

(6300) 4 reeer (040,

(¢1'¢n)il‘ AN (¢nl¢n) :

1



10

where (u,v)i denotes the inner products of §i, i=1,2. We know from

Remark 2.1 that strong minimality in 52 implies that the mappings

Géz):gz-*lz,n=1,2,..., are bounded. Because 21 is continuocusly

. 2
imbedded in gz, it follows from (15) that the mappings Gé ):22-*22,n=1,2,...,

are bounded. This implies the existence of a constant uo , greater

than zero and independent of n , such that

. (n)
inf . = U,
11'1 0

where the A{ni denote the smallest eigenvalues of the matrices Gél);
14

and therefore establishes the strong minimality in H

.- #

Theorem 2.5. et H, and 5, be continuously imbedded in each other.

1

If the system {¢j}? is almost orthonormal in one of them it is

almost orthonormal in the other.

§3. THE STABILITY OF THE RITZ-GALERKIN
AND BUBNOV-GALERKIN METHODS

The starting point of the backwards error analysis approach is
the decision to interpret the computed solution §c of the matrix
equation (cf. Wilkinson [21])

(19) Ax=Db
as the exact solution of some other matrix equation
(20) Bx =d

where the choice of B and d will depend on circumstances under which

. was derived from (19) as well as on A and E. Clearly, because X, is a
specific solution, it must be viewed as the unigue solution of (20).

This implies that B must be non-singular and d uniquely defined.

Usually, it is assumed that (20) takes the form

(21) (a+da)x =D+ db .
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Because a standard argument (cf. Wilkinson [21]) yields a bound
for §c - X in terms of 69 and §A, it follows that, if a definition of
stability is required, it must assert the boundedness of "§c - xl in
terms of bl and ISAll. This is the essence of the definition of
stability introduced by Mikhlin [141]).

Corresponding to the exact Ritz-Galerkin process
(22) R a =f ’ n=1,2,3,...,

one considers the perturbed Ritz-Galerkin process

(n)

(23) R +T )b = ¢
n. n -~ ~

+ 3 v n=1,2,3,...,

which defines the exact Ritz-Galerkin process for the non-exact Ritz-

(n)

Galerkin solution b .

Definition 3.1. The Ritz-Galerkin process is said to be stable, if
there exist constants p, g and r independent of n such that, for

(n)

ﬂFnﬂ < r and arbitrary § , the matrix Rh-+rn is non-singular and the

following inequality holds
(24) ip™ - 2™ < pir 1+ qis™ .

The relationship between this and other forms of stability are
discussed and examined in Linz [121(§4.3) and Omodei [15].

The result of Mikhlin [14], which we use to characterize the
numerical performance of spectral methods, is contained in his stability
theorems. For the Ritz-Galerkin and Bubnov-Galerkin methods introduced

in §1, we have:

Theorem 3.1. A necessary and sufficient condition for the stability

of the Ritz-Galerkin process is that its generating system

=A

~

{¢j}: be strongly minimal in H_.

Theorem 3.2. Sufficient conditions for the stability of the Bubnov-
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Galerkin process are that Lu = £ has only one solution and that its
o
generating system {¢j}1 is strongly minimal in any B, for
which L = A + B with AT B compact. :
Thus, the task of guaranteeing the stability of the Ritz-Galerkin
and Bubnov-Galerkin processes reduces to identifying the properties of

{¢j}? in H which imply the strong minimality of {¢j}? in H,. In

i

particular, the numerical performance of spectral methods can be

characterized in terms of the conditions which must be imposed on the
choice of an orthonormal system in H to guarantee strong minimality in
Eé.

In fact, from the results of §2, we obtain

Proposition 3.1. 4 system {¢j}? which lies in both H and H > which is

orthonormal in H and which spans H, s ig strongly minimal in Hy -

Proof. On the strength of Theorem 2.1, EA is imbedded in H. However,

when H cannot be imbedded in H Theorem 2.5 cannot be applied.

A'
Thus, only the strong minimality of an orthonormal system in H is

preserved in gA as shown by Theorem 2.4. #

~

The proviso of Proposition 3.1, that the orthonormal system be
located in both EA and H, is needed so that the imbedding assumptions
of Theorem 2.4 and 2.5 hold, and is guaranteed by the global-D(A)

- (o]
and global-gA conditions on the system {¢j}1 which ensure convergence.

§4. LIMITATIONS ON THE UTILITY OF THE SPECTRAL METHOD

The proposition derived in 83 yields direct verification of the

utility of spectral methods. It shows that convergent and stable
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approximations of the form (2) can be constructed using arbitrary
orthonormal systems in H, when the procedures used to determine the
unknowns a;n), j=1,2,.e.,n, n=1,2,..., correspond to one of the
standard methodologies such as Ritz-Galerkin, Bubnov-Galerkin or
Least Squares.

There are however limitations on the utility of taking arbitrary
orthonormal systems in H to construct approximations of the form (2)
for (1). The example of Anderssen and Omodei [1] shows that the
use of orthonormal systems cannot undo the damage being done by a poor
methodology for the construction of the approximations (2). 1In
addition, even using the standard methodologies, an arbitrary choice
is unable to guarantee all the desirable numerical properties,such as
the existence of a bounded condition number for the Ritz matrices
Rn, n=1,2,..., and the convergence of the residuals % un—f and % un—f.

It is this aspect which we pursue here using the backwards error analysis

for matrix equations developed in §3.

One interpretation of the backwards error analysis representation
(21) for the computed solution %, of A x = b is that, except for the
errors §A and Sb which were introduced during the construction of (20)
to yield (21), the matrix equation is solved exactly (without error).
Clearly, in this interpfetation, the effect of rounding errors is
ignored. Even if (21) is interpreted as accounting for the errors
arising during both the construction of (20) and the subseguent
approximate solution of the matrix equation, the present stability
analysis has one crucial defect. It is limited to an analysis of
absolute errors.

As the standard texts in numerical analysis indicate, relative
errors are usually more appropriate in assessing the effect of

rounding errors than absolute. Thus, a definition of stability based
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on relative errors (i.e. a relative error stability) must assert the
boundedness of ﬂ§c-§"/H§H in terms of I8bll/lpl and Isal/lal. However,

we know from Wilkinson [21] that

fx -xl
(25) ~c -

. K (2) {"6A“ . I8ply
e~ S T-K@) Ial/Ial | Tal * Tpl| *

where K(A) denotes the condition number of the matrix A

(26) K(a) = hal 1a~h

Usually, results like this are used to emphasise the importance of
the concept of condition number in the analysis of rounding error (cf.
Atkinson [2], Forsythe and Moler [6]). In the present context,
it shows immediately that demonstration of stability for relative errors
reduces immediately to proving the boundedness of K(A) independent of n.

Recalling the definition of almost orthonormality, we obtain

Proposition 4.1. For the matrix spectral norm, a sufficient condition for

the relative error stability of the Ritz-Galerkin process is that its

=A"

generating system £¢j}? be almost orthonormal in H

Efggff Since the spectral norm of a general matrix A corresponds to
the positive square root of the largest eigenvalue of ATA, it follows
immediately that the spectral condition number of Rn, Ks(Rn), is given
by

_ 5 (n) 4 (n)
(27) K (R) = An /Al

If {¢j}: is almost orthonormal in H,, then there exist constants Ao

~

and AO such that

(28) 0 <Ay < A;“) Shy <, m=1,2,00e,0, 0 =1,2,000.

This proves that KS(Rn) is bounded independently of n by AO/XO. #
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In passing, we note that, as a direct consequence of the minimax
properties of the eigenvalues X;n), m=1,2,...,n, n=1,2,..., it
follows that KS(Rn) is an increasing function of n.

A similar proposition holds for the Bubnov-Galerkin process.

We have already seen in the proof of Proposition 3.1 that,

when the Hilbert space H from which = is formed cannot be imbedded

in EA' an orthonormal system in H can only be strongly minimal in H, .
It follows from Theorem 2.5 that, if the orthonormal system {¢j}i in H

was also orthonormal or almost orthonormal in a Hilbert space ﬁ such
that H and H, could be imbedded in each other, then {¢j }?_ would be

almost orthonormal in EA' Further, it follows from Theorems 2.2 and

2.3 that a sufficient condition for

hm>

and EA to be imbedded in each
other is that ﬁ correspond to the energy space 53 of an operator B
wich is either similar or semi-similar to A. In fact, we have

established

Proposition 4.2. For the spectral norm, a sufficient condition for
the relative error stability of the Ritz-Galerkin spectral process is
that the (orthonormal) system {¢j}i in H be almost orthonormal in the

energy space H, -

A similar proposition holds for the Bubnov-Galerkin process.

If A and L are unbounded operators, then it is well-known that,
for the approximations un generated by some of the standard
variational methods such as the Ritz-Galerkin and Bubnov-Galerkin (but
excluding least squares), there is no guarantee that the residuals
A un—f and L un—f will converge. As for stability, this difficulty can
be circumvented by imposing additional conditions on the choice of the

{¢j}°;.
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In fact, the basic result is given by (cf. Mikhlin [14], §22)

Theorem 4.1. ILet A and B be similar positive definite operaters with

domains contained in the separable Hilbert space H and B have a

8 m>

discrete spectrwri. If the coordinate system {¢j} consists of the

1
normalized eigenfunctions of B, then the residual A u -f converges to
zero when the approximations \in are constructed using the Ritz-

Galerkin process.

Proof (vainikko [20]1). The key step is to convert A un-f to a form
which allows the properties of the {¢j}i to be exploited; namely,

B ¢j =uj¢j,(where the Y. denote the eigenvalues of B corresponding to

L}

the eigenfunctions {¢j}f. We assume that uf(the solution of Au=f) takes
the form ®
(29) up = Z oyt

j=1
and, with respect to the metric of g, define gn to be the following

orthogonal projection

(30) P i B> B = span(d,0,e.-00) -

we write 2™ =1 - P .

The proof first exploits a consequence of Theorem 2.2, the

boundedness of A §-1 and g_l B:

1

(31) Iz u -£l = la(e -uldl < 12 B I B -ul .

The importance of this step is that it brings B into direct relation- .

ship with the Ritz-Galerkin approximation u constructed from the

{¢j}?. In addition, because g(n) u

N 0, it follows that

(n) (n)
B gn(uf-un) +BP u..

(32) Blug-u) =B(R +P .

) (uf -un)

Appropriate estimates for the terms on the right hand side of

(32) are derived from the following consequences of the definitions of
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the {¢j}j and g(n) : 8%, 0<a <1, and P commute; and

o _ o -0 _(n), _ -o
(33) IB gnu il iB- 20 = Ui

In fact, using (29), it follows that
o]

c.o.l =11 £ c.u.¢.l >0
33 jen#1 3373

34 s ™ ul=p

(n) 2
: 2z

j=1
as n > . In addition, using (33) and the best approximation
properties of u in gA, it can be shown that

AP T S (n)
(35) s gn(uf-un)ﬂ < la®* B %l I8 2 *l IB P ull .

~ £

The convergence of the residual A un-f now follows from Theorem 2.2,

(31), (32), (34) and (35). : ' , #

This proof depends crucially on the ¢j being eigenfunctions of a
positive definite operator B which is similar to A and has a discrete
spectrum. However, it does not rule out the possibility that some
subclass of the almost orthonormal systems in EB might also guarantee
convergence of the residual A un-f. Nevertheless, it clearly
illustrates a further limitation on the numerical performance of

spectral methods when the orthonormal system is chosen arbitrarily

from H.

§5. CONCLUDING REMARKS

As explained in the Introduction, the aim of this paper was to
show how theory developed by Mikhlin [14] for studying the numerical
performance of variational methods could be adapted for an examination
of the numerical performance of spectral methods. For this reason,‘
attention has been limited to stationary problems. In particular, it
has been shown that the construction of spectral methods, using

arbitrary orthonormal systems in H, is sufficient to guarantee
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absolute error stability, but not relative error stability nor
convergence of the residual of an unbounded operator. In addition, the
properties which orthonormal systems in H must satisfy to guarantee
relative error stability and convergence of the residual are discussed.
The basic characterization developed here extends naturally to
the study of the numerical performance of spectral methods for time
dependent problems , and eigenvalue problems. However, a discussion is
beyond the scope of this paper. Appropriate results for eigenvalue
problems can be found in Mikhlin [14] and Chatelin [3]. In addition,
deeper results than those derived here would be obtained if a more
specific exploitation of the theory of variationél methods was
applied to the study of spectral methods. Source references for
such material are Kreiss and Oliger [10],Gottlieb and Orszag [8],

Voigt et al [19] and Hussaini et al [9].

The material of Mikhlin [14] has been motivated by thevneed to
have, for gpecific problems, reliable choices for the coordinate
systems. For spectral methods, one needs the converse: for specific
orthonormal systems, a catalogue is required which lists the numerical
properties they guarantee for various classes of ordinary and partial
differential equations as well as integral equations. Such
information is contained in references like Gottlieb and Orszag [8],
Orszag [16], and Delves and Freeman [4].

The sufficient conditions for relative error stability of §4 were
derived using the spectral norm for matrices. Because the spectral
condition number of a matrix is always bounded above by the maximumv
norm condition number, it follows that the Ritz-Galerkin process could
yield an approximation which exhibits relative error stability in the
lz—norm but not relative error stability in the maximum norm. This is
not surprising since it is well known how to construct n-component
vectors which, as a function of n, are arbitrarily large in maximum
norm and bounded in 22. Clearly, to prove the Proposition 4.1 for

the maximum norm would automatically guarantee its validity for the
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spectral norm. However, in terms of the properties of strongly
minimal and almost orthonormal systems, the natural setting for

Proposition 4.1 is the spectral norm.
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