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ON THE NUMERICAL PERFORMANCE OF SPECTRAL METHODS 

R.B. Anderssen 

ABSTRACT 

In essence, the spec'tral method simply involves: (i) the choice 

of a more or less arbitrary orthonormal system ~" j = 1,2,3, .•• , to 
J 

define approximations of the form 
n 

u = L a ~n) ~ , 
n j=l J J 

(cons'tant) coefficients a (,n) , J ' J = 1,2, ...• n wi'ch unknown 

and (iil the choice of n conditions which, in conjunction with the 

problem being solved, yield a non-singular matrix equation 

L 
n 

(n) 
a 

(n) 
a 

(n) (n) (n) T 
[al ,a2 "",an ] 

for the a ~n) Q j 1,2 , ... , n where the structure of the rna trix L 
J n 

and the right-hand-side vector !(nl will depend on the choice of the 

~ j' j = 1,2, ••. I -the problem being solved, and the n conditions. 

Because of its success, i'c is often viewed as a standard "ansatz" 

for the numerical solution of ordinary and partial differential 

equations as well as integral equations. The key to this success is 

-the choice of the ¢,. j = 1,2,00', to be an orthonormal system;' not 
J 

the 11. conditions of (ii). In this paper, we show hOVl theory developed 

by Yiikhlin for studying the numerical performance of variational 

methods can be used to identify to what extent an arbitrary choice of 

an orthonormal system can be justified numerically. In particular, we 

show for the Ritz-Galerkin and Bubnov-Galerkin counterparts of the 

spectral method that suchan arbitrary choice guarantees numerical 
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stabilH:y, but no'c the convergence of t.he residual for ordinary and 

partial differential equations. The additional conditions necessary 

to guarantee the latter are also discussed. 

§lo INTRODUCTION 

Because the concept of a spectral method is quite general and has 

a natural variational interpretation, 1I,e develop its definition·'VJithin 

the framework of linear operator equations 

(1) f , L u ~ u(x), xEnoJRq , 

where the domain and range of ~, ~(~) and ~(h)' are assumed to be 

dense in some Hilbert space ~ with inner produc'!:: (',.) and norm II· II, 

and n is a bounded region in q-dimensional Euclidean space JRq 
0 

Knowledge of the concept of t.he energy space H associated with a 
. =~ 

selfadjoint and positive definite opera-tor ~ will be assumed (cf . Mikhlin [13], 

§3l. In this paper, :1:- \.ill always denote a selfadjoint and positive 

definite operator. 

Computationally, 'che starting point for spectyul. methods is the 

decision to use approximations of the form 

(2) u (xl 
n 

n (n) 
:2: a J. <P J. (xl 

j=1 

where the0oordinat~ basis, trial., shape) functions <p.(x), 
J 

j = 1,2,0 .. ,n, are chosen to be the first n elements of an orthonormal 

system <p., j ~ 1,2 .... , in~. Clearly, the qualifier "spectral" 
J 

identifies this particular choice for the coordinate functions. These 

methods are subclassified in terms of the procedure used to determine 

the unknowns a~nl, j = 1,2, •. .,n; Le. in ·terms of the n conditions 
J 

which, in conjunction with (1), yield a non-singular matrix equation 

(3) L 
n 

(n) 
~ 

(n) (n) (n) T 
tal ,a2 , ... ,an ] 



for the determination of the a~n) j 
J 
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In this paper, 'VIe limit attention to 

L 1 The Ritz-Galerkin (Spectral) Methods 

This class corresponds to the situation where L = A 

(cf. l'likhlin 1).3] ,§3) and the n condi,tions are defined by the 

projection of the residual 

(4) r, (u ) = A u -f 
!} n - n 

h 1 f (nl ( ',J.. " ) onto t e zero e ement a ~A = span ~1'~2'."'~n ; 

(5) 

In this situation, 

(6) 

and 

(7) 

(rA(u ),<P.) = 0 , _ n J j 

becomes the Ritz-matrilr 

R 
n 

r (~ <Pl,<P l ) 

l (?';- ¢l'<Pn ) 

viz. 

The qualifier "spec'tra1" is invoked when the <p., j = 1,2, ••. , form an 
J 

orthonormal system. 

1.2 The B~-Galerkin (Spectral) Method 

This class corresponds to the situation where 

(8) 
-1 

A B compact , 

and the n conditions are defined by the projection of the residual 

(9) rr.(ul = L un-f 

onto the zero element of g~n) viz. 

(10) j = 1,2,. '"In • 

The qualifier "spectral" is invoked when the ¢., j = 1,2, •.• form an 
J 
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orthonormal system. 

The rationale for this subclassification is the way in which the 

theoretical resul<i:s are usually derived for variation;;).l and projection 

methods (cf. Mikhlin [14]). They are first established for positive 

definite operators and then extended to linear operator equations of 

the form (8) by exploiting the underlying second kind in<tegral 

equation structure. 

The motivation for the use of spectral methods is two-fold. (1) The 

existence of extensive mathematical properties for particular ortho-

normal systems, such as the l,egendre and Chebyshev polynomials, which 

can be exploited in various ''lays to manipulate the structure of 

numerical methods based on the use of orthonormal functions (cf. 

Delves and Freeman [4] . (2) The knowledge that, in the numerical 

performance of variational methods, the choice of the coordinate 

functions ¢. (x), j = I, 2,0 •• ,n, appears to play a more crucial 1:<ole 
J 

than the n conditions defining (3); and thereby, the heuristic 

conclusion that in some sense an orthono:r:mal system mus·t 

be better than a non-orthonormal. 

Though the success of spectral methods for the approximate 

solution of a wide class of practical problems (cf. Gottlieb and 

Orszag [8] , Hussaini et al. [9] and Peyret and Taylor [17] yields 

verification for this conclusion, i<t is well known (cf. Go·ttlieb 

and Orszag [~ and Anderssen and Omodei [1]) that the choice of 

an orthonormal system does not guarantee unconditionally that a 

spectral method will perform well computationally. 

The aim of this paper is to give a more definite charac·terization 

of the numerical performance of spectral methods for stationary (1. e. 

time independent) problems ·than is contained in the standard texts on 
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the subject (cf. Peyret and Taylor [17] and Fletcher [5]). In 

particular, we show how theory developed by Mikhlin [14]) for 

studying the numerical performance of variational methods can be used 

to identify to what extent an arbitrary choic.e of an orthonormal 

system can be justified numerically. 

After developing appropriate preliminaries in §2 concerning 

minimal systems, simil.ar operators and comparison theorems, we discuss 

in §3 conditions under which an arbitrary choice of an orthonormal 

system in ~ guarantees numerical stability for the Ritz-Galerkin and 

Bubnov-Galerkin procedures. The fact that such an arbitrary choice 

does not guarantee the convergence of the residuals of rA(u) and rL(u) 

of (4) and (9) is pursued in §4. In addition, conditions are examined 

which do in fact guarantee their convergence. Some concluding remarks 

about time-dependent and eigenvalue problems as well as other aspects 

are made in §5. 

§2. PRELIMINARIES: MINIMAL SYSTEMS, SIMILAR 
OPERATORS AND COMPARISON THEOREMS 

As we shall see in §§3 and 4, the key to the present analysis is in the 

comparison theorems for systems {<P·}""l ={</J., j = l,2 ••• }, 
J J 

which lie simultaneously in two Hilbert spaces ~l and ~2. Given that 

the coordinate system is orthonormal in ~2 and that, in some 

appropriate sense, ~l is imbedded in ~2' a comparison theorem 

determines the properties of the coordinate system in ~l. 

For the systems we use the properties of minimal 

systems, while the imbedding is accomplished using similar operators. 

The key concepts are: 
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Minimal Systems 

A system {<Pj}~ which ,spans H is said to be minimal- in ~, if the 

deletion of any element from the system restricts the span of the 

remaining elements to a proper subspace of~; and non-minimal-

otherwise. 

Consider the Gram matix Gn of the first n elements {<Pj}~ of the 

system {<Pj}~: 

(<Pn,<P l ) 1 
(11) 

(<P~:~n) j 
Because Gn is Hermitian and positive definite, its eigenvalues are 

positive and can be written in increasing order as 

(12) o < A(n) ::; 
1 

A(n) ::; 
2 

5 A (n) • 
n 

The interlacing consequences of the minimax principles for such eigen­

values (viz. for all m and n, m 5 n, Am(n+l) 5 A(n) 5 A(n+l» imply that A(n) 
m m+l 1 

and A (n) can only decrease and.increase, respectively, as n increases. As 
n 

a consequence concepts such as strong minimality and almost 

orthonormality are important computationally because they potentially 

limit the growth of the spectral condition number of Gn,K(Gn ) 

The system {<Pj}~ is said to be strongl-y minimal- in ~, if 

(13) inf A (nl 
1 

lim A(n) > 0 , 
n-+oo 1 

and aZmost orthonormal- in ~, if it is strongly minimal and 

(14) sup A(n) 
n 

lim A (n) 
tJ.-+OO n 

Remark 2.1 The central role of the Gram Matrix G in the formulation 
n 

of these definitions can be explained in the following way. It defines 

the matrix Ln which is generated in the construction of best approximations 

of the form (2) for a given f ; or equivalently, the matrix Ln which the 
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Ritz-Ga1erkin method genera'tes w'hen applied to (1) with L '" I , 

the identity operator. Therefore, when viewed as operators, ,the 

Gram matrices Gn define mappings from the elements f E ~ to the 

elements a (n) E 2.. (the Hilbert space of infinite seauences of - ~ -00 

elements a '" (a1 ,a2 , ... ) with norm lIall = I a. 2< co) • 
~ ~ i=l 1 

The above conditions which define minimality, strong minimality 

and almost orthonormality correspond to the conditions which identify 

special properties of the a(n) as elements of R. 2 " A discussion of 

such properties is con'tained in Mikhlin [14], §5, though, as indicated 

there, the original results date back to Lewin [11] and Taldykin [18]. 

In particular, the minimality of the {¢j}~ in ~ guarangees that, 

f f ' " . h (n) h 1" t .c or ~xea J, ·c.e a. . ave l.fiU sa. as n -r 00. 

J J 
However, it is necessary 

to invoke the strong minimality assumption to ensure that the resulting 

infinite sequences (a1 ,a2 ,a3 ,.- .. ) lie in '(/'2" In fact, it follows 

from ·the defini,tion of strong minimality that 

I lar) I ;;; \;lllfll, f E ~ , 

j=l 

and hence that the mappings Gn:~ -)- £2' n=1,2,""", are bounded. 

An immediate consequence is ·the observation tha'c the additional 

condition \oVhich ensures tha·t a strongly minimal system is almost 

orthonormal guarantees that the inverse mappings 

(which exist because of the strong minirnality assumption) are bounded. 

Thus, ",hen the system {¢ j} ~ is almost orthonormal, the mappings 

Gn:~""9v2,n=1,2,o ,0, induce an isomorphism be'tween Hand R.20 

The minimality definitions could be based on these properties, bu·t, 

from a computational poin't of view, those given above are the more 

appropriate because of the key role the spectral condition nuwber 

K(G ) = \ (nl /A5 n ) plays in the numerical analysis of positive definite 
n n l 

matrices. # 
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Similar and Semi-Similar Operators 

For the analysis of spectral methods developed below, t:he key step 

re,s'ts on results ,"Ihich o.l10'llJ the proper'cies of a system {¢.}~ in 
J -'-

one Hilbert space to be inferred from its properties in a related 

Hilbert space ,; in particular, when one space is continuously (densely) 

imbedded in 'the o'ther (cf. Gilberg ami Trudinger [7]) ° In fact, we examine 

the simples't possible form of continuous imbedding "There r for t,wo spaces 

(15) ilull 2 :<; KIIuli l ' U E 1-,11 K = const. 

since we are principally concerned ",ith selfadjoint and positive 

definite operators, 'irle require conditions on them which guarantee 

inequalities of the form of (15). For this we use 'che concept of 

similar and semi-similar opera'cors. 

T'wo selfadjoint and positive definite opera'tors ?l: and Bare 

and semi-simiLar, if 

In particular, one obtains results of the following form (cf. 

Mikhlin [14], §3l: 

Theorem 2. L Let A and B be positive definite operators such that H =£, 

is contained in !J,!?o Then there exists a constant c such that 

(16) U E H 
=l:; 

Theorem 2.2. Let A and B be seLfad.joint and positive definite 

operators which are similo:r. Then there exists positive constants c 1 

m~d c 2 such that 

(17) U E ~(l::l 

Theorem 2.3. Let l:: and ~ be seLfadjoint and positive definite 

operators which are semi-simiLar. Then there exist positive constm~t$ 
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(18) Cl~U§~ $ lul~ $ c2 1ui B 

where lum!J. and lumg; denote the energy norms of ~!l- and ~J?' respectively. 

Comparison Theorems 

{ 100 
The results which allow the properties of a system ¢jJ 1 in 

one Hilbert space to be inferred from its properties in another 

Hilbert space are called corrrparison theorems. For the minimality, 

strong minimali ty and almos·t orthonormali ty concepts defined above, 

the relevant comparison theorems are 

Theorem 2.4. Let H be continuously imbedded in L_'12 and assume that the 
=1 

coordinate system {¢ j} ~ Z ies in and spans ~l' If this system is (stloongly) 

minima t. in ~2' i'/; is (strongly) m'/:nima l ·in ~l 

Proof. The denseness of ~l in ~2 implies that the system also 

spans ~2' The minimality in !:!2 and the continuous imbedding of ~l 

in !:!2 imply, using a reduct·io ad absurdum argument, minimality in ~1' 

i 
For the strong minimali ty case, ','Ie let Gn , i=l, 2 v denote the following 

Gram matrices 
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where (u,v)i denotes the inner products of ,i=1,20 We know from 

Remark 2" 1 that; strong minimality in 1)h implies -that the mappings 

(2) 
,n=1,2,."", are bounded. Because ~1 i.s continuously 

imbedded in ~2' it follows from (IS) that the mappings 

are bounded. This implies the existence of a cons-t.ant l-l0 ' greater 

than zero and independent of n, such that 

where the Ai~i denote the smallest eigenvalues of the matrices G~l); 

and therefore establishes the strong miniwality in ~l' # 

Theorem 2.5. Let ~l and be continuously imbedded in each other" 

I f the system {¢j}~ is almost orthonormal in one of them it is 

almost orthonormal in the o-ther. 

§3. THE STABILITY OF THE RITZ-GALERKIN 

AND BUBNOV-GAlERKIN METHODS 

The starting point of the backwards error analysis approach is 

the decision to in-t.erpret the computed solution x of the matrix 
-c 

equation (cf. Wilkinson [21]) 

(19) A x b 

as the exact solution of some other matrix equation 

(20) 

where the choice of B and d will depend on circumstances under which 

.ec was derived from (19) as \.e11 as on A and b. Clearly, because ~c is a 

specific solution, it must be viewed as the unique solution of (20). 

This implies that B must be non-singular and § uniquely defined. 

Usually, it is assumed that (20) takes the form 

(21) (A + OA) 
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Because a standard argument (cf. Wilkinson [21]) yields a bound 

for ~c - x in terms of o~ and oA, it follows that, if a definition of 

stability is required, it must assert the boundedness of lI~c xii in 

terms of lIo~11 and lIeA!I. This is the essence of the definition of 

stability introduced by Mikhlin [14]). 

Corresponding to the exact Ritz-Galer-kin process 

(22) R .e(n) '" I(n) , 
n 

n=1,2,3,. •• , 

one considers the perturbed Ritz-Galer-kin process 

(23) n = 1,2,3,. . ., 

which defines the exact Ritz-Galerkin process for the non-exact Ritz­

Galerkin solu"cion b (nl . 

Definition 3. L The Ritz-Galerkin process is said -to be stable, if 

there exist constants p, q and r independent of n such that, for 

II r nil :<; r and arbitrary 0 (n), the matrix Rn + r n is non-singular and the 

following inequality holds 

(24) 

The relationship between this and other fo~~s of stability are 

discussed and examined in Linz [12] (§4.3) and Omodei [15]. 

The result of Mikhlin [14 J, which we use to characterize the 

numerical performance of spectral methods, is contained in his stability 

theorems. For the Ritz-Galerkin and Bubnov-Galerkin methods introduced 

in §l, we have: 

Theorem 3.1. A necessary a:n.d sufficient condition for the stability 

of the Ritz-Galerkin process is that its generating system 

{¢j}~ be strongZy minimal in ~A' 

Theorem 3.2. SUfficient conditions for the stability of the Bubnov-
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Galerkin process are that f'u ~ f has only one solution and that Us 
00 

generating system {<jJj}l is strongly min'l-mal in any !;!A for 

which I, A + B with 
-1 

A 13eonrpaai;o 

Thus, the task of guaranteeing the stability of the Ritz-Galerkin 

and Bubnov~Galerkin processes reduces to identifying the properties of 

00 00 

{¢'}l in H which imply 'che strong minimali'i::y of {¢'}l in In 
J =' , J 

particular, the nQmerical performa..ce of spectral methods can be 

choice of an o:cthonormal syst,em in H to guarantee strong minimality in 

In fact, from the resul-ts of §Z, we obtain 

jj system {d? j}~ 7J)hich lies in both g and ~h . which is 

orthonormal in g and which spans gl', , is strongly minimal in ~A 

Proof, On the st.rength of Theorem 2.1, H is imbedded in 
""b 

However, 

when 1! cannot be imbedded in Theorem 2.5 ca.nnot be applied. 

Thus, only the strong minimality of an orthonormal system in H is 

preserved in ~A as shown by Theorem 2.4. # 

The proviso of Proposition 3.1, that the orthonormal system be 

located in both BA and ~, is needed so tha-t the il'nbedding assumptions 

of Theorem 2.4 and 2.5 hold, and is guaranteed by the global-~(~) 

and global-!;!A conditions on -the system {¢j}~ which ensure convergence. 

§4. LIMITATIONS ON THE UTILIty OF THE SPECTRAL METHOD 

The proposition derived in §3 yields direct verification of the 

utility of spectral methods. It shows that convergent and stable 
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approximations of the form (2) can be constructed using arbitrary 

orthonormal systems in g, when the procedures used to determine the 

unknowns a~n), j = 1,2, ••• ,n, n = 1,2, .•• , correspond to one of the 
J 

standard methodologies such as Ritz-Ga1erkin, Bubnov-Ga1erkin or 

Least Squares. 

There are however limitations on the utility of taking arbitrary 

orthonormal systems in H to construct approximations of the form (2) 

for (1). The example of Anderssen and Omodei [1] shows that the 

use of orthonormal systems cannot undo the damage being done by a poor 

methodology for the construction of the approximations (2). In 

addition, even using the standard methodologies, an arbitrary choice 

is unable to guarantee all the desirable numerical properties, such as 

the existence of a bounded condition number for the Ritz matric.es 

Rn' n = 1,2, •.. , and the convergence of the residuals A un-f and L un-f. 

It is this aspect which we pursue here using the backwards error analysis 

for matrix equations developed in §3. 

One interpretation of the backwards error analysis representation 

(21) for the computed solution ~c of A ~ = ~ is that, except for the 

errors oA and oE which were introduced during the construction of (20) 

to yield (21), the matrix equation is solved exactly (without error). 

Clearly, in this interpretation, the effect of rounding errors is 

ignored. Even if (21) is interpreted as accounting for the errors 

arising during both the construction of (20) and the subsequent 

approximate solution of the matrix equation, the present stability 

analysis has one crucial defect. It is limited to an analysis of 

absolute errors. 

As the standard texts in numerical analysis indicate, relative 

errors are usually more appropriate in assessing the effect of 

rounding errors than absolute. Thus, a definition of stability based 
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on relative errors (i.e. a relative error stabiZity) must assert the 

boundedness of lIl,{c -l,{II/IIl,{1I in terms of lIopll/lipli and IIOAIi/nAIi. However, 

we know from Wilkinson [21] tha'c 

(25) 
II>: - xII 
~c -

1Il,{1I 
K(A) {1I0AiI ~opllJ 

s l-l{(A) IloAIi/IiAIi . II All + IIpllJ P 

where KIA) denotes the condition number of the matrix A 

(26) K(A) '" IiAIl IIA 

Usually, resul"ts like ·this are used to emphasise the importance of 

the concept of condition number in·the analysis of rounding error (eL 

Atkinson [2], Forsythe and Moler [6]). In the present context, 

it shows immedia.tely that demons·tration of stability for relative errors 

reduces immedia'cely ·to proving the boundedness of K (1',) independent of n. 

Recalling the definition of almost orthonorma1ity, we obtain 

Proposition 4.1: For the matrix spectral norm, a sufficient condition for 

the relative err02° stabiUty of the Ritz-C~lerkin process is that its 

generating system f¢j}~ be aZmost orthonormaZ in l;!Ao 

Proof. since the spectral norm of a general matrix A corresponds to 

the positive square root of the larges·t eigenvalue of A TA , i1: follows 

immediately that the spectral condition number of Rn' Ks(Rn), is given 

by 

(27) ff () 'n(n) 1'1(11) _ "s Rn = /\ /\ • 

If {¢j}~ is almost orthonormal in ~A' then there exist constants AO 

and Ao such that 

(28) o < A ~ A (nl A < o m ~ 0 00, m = 1,2, ... ,n, n = 1,2, .••. 

This proves that Ks(Rn) is bounded independently of n by AO/AO. # 
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In passing, we note that, as a direct conseqdence of the minimax 

properties of the eigenvalues A (n), m = 1,2, ••• ,n, n 
m 

1,2, ••• , it 

follows that Ks(Rn) is an increasing function of n. 

A similar proposition holds for the Bubnov-Ga1erkin process. 

We have already seen in the proof of Proposition 3.1 that, 

when the Hilbert space ~ from which ~~ is formed cannot be imbedded 

in ~~' an orthonormal system in ~ can only be strongly minimal in ~~. 

It follows from Theorem 2.5 that, if the orthonormal system {$j}~ in ~ 

was also orthonormal or almost orthonormal in a Hilbert space ~ such 

that ~ and ~~ could be imbedded in each other, then {$j}~ would be 

almost orthonormal in ~~. Further, it follows from Theorems 2.2 and 

2.3 that a sufficient condition for ~ and ~~ to be imbedded in each 

other is that E correspond to the energy space ~B of an operator ~ 

wich is either similar or semi-similar to~. In fact, we have 

established 

Proposition 4.2. For the spectraZ no~~ a sufficient condition for 

the reZative error stabiZity of the Ritz-GaZerkin spectraZ process is 

that the(orthono~aZ)system {$j}~ in ~ be aZmost orthonormaZ in the 

energy space !!A 

A similar proposition holds for the Bubnov-Galerkin process. 

If ~ and ~ are unbounded operators, then it is well-known that, 

for the approximations un generated by some of the standard 

variational methods such as the Ritz-Galerkin and Bubnov-Galerkin (but 

excluding least squares), there is no guarantee that the residuals 

~ un-f and ~ un-f will converge. As for stability, this difficulty can 

be circumvented by imposing additional conditions on the choice of the 
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In fact, the basic result is g-iven by (cf. Mikhlin [14], §22) 

Theorem 4.1. Let ~ and!? be simUar posi.tive definite operaturB wUh 

domains contained in the separable HUbert space ~ and £I have a 

discrete spectrwn. If the coordinate system {cpo 
J 

consists of the 

normalized eigenfunctions of ~. then the residual A 

zero when the appJf'oX1~mations are construatedusing the Ritz-

GaZerkin process. 

Proof (Vainikko [20J). The key step is t.O convert ~ un -f to a form 

which allows the properties of the {qJj}~ to be exploited; namely, 

B qJ 0 = V 0 cp 0' where the V 0 denote the eigenvalues of B corresponding to 
- J J J J . - -

the eigenfunctions {qJj}~' We assume tha-t ur(the solution of Au=f) -takes 

-the fol."lll co 

(29) 

and, with respect to the metric of define En to be the following 

orthogonal projection 

(30) p 
-n 

We write p(n) = I _ P 
-n 

The proof first exploits a consequence of Theorem 2.2, the 

boundedness of A B-1 and A-I B: 

(31) 

The importance of this step is that it brings ~ into direct relation-

ship with the Ritz-Galerkin approximation un constructed from the 

{qJ j }~. In addition, 
(n) 

0, it follows that because E U n 

(32) ~ (ur - un ) '" B(P +p(n» (u _ = B P (u - + B P u f - -n - f -n f 

Appropriate estimates for the terms on the right hand side of 

(32) are derived from the following consequences of the definitions of 
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·the {cjJj}~ and l'(nJ : !}a, 0 < a < 1, and En commute; and 

(33) 

In fact, using (29), it follows that 

pen) 1If;(nl 
co 

(34) II~ ufl! B 2.: c j cjJ j II = II 2.: 
j=l j=n+l 

as n -+ co" In addition, using (33) and the best 

properties of u in ~A' it can be shown that 
n 

(35) 

-a 
lln+l 

CjlljcjJjll -+ 0 

approximation 

The convergence of the residual A un-f now follows from Theorem 2.2, 

(31), (32), (34) and (35). 

This proof depends crucially on the In. being eigenfunctions of a 
- 7) 

positive definite operator ~ \l1hich is similar to !'; and has a discrete 

spectrum. However, it does no·t rule out the possibili'cy that some 

subclass of the almost orthonormal systems in ~B might also guarantee 

convergence of the residual ~ un-f. Nevertheless, it clearly 

illustrates a further limitation on the numerical performance of 

spectral methods when the orthonormal system is chosen arbitrarily 

from H. 

35. CONCLUDING REMARKS 

As explained in the Introduction, the aim of this paper was to 

show how theory developed by Mikhlin [14] for studying the n1LTtlerical 

41 

performance of variational methods could be adapted for an examination 

of the numerical performance of spectral methods. For this reason, 

attention has been limited to stationary problems. In particular, it 

has been shown that the construction of spectral methods, using 

arbitrary orthonormal systems in ~, is sufficient to guarantee 
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absolute error stability, but not relative e~ror stability nor 

convergence of the residual of an unbounded operator. In addition, the 

properties which orthonormal systems in g must satisfy to guarantee 

relative error stability and convergence of the residual are discussed. 

The basic characterization developed here extends naturally to 

the study of the numerical performance of spectral methods for time 

dependent problems, and eigenvalue problems. However, a discussion is 

beyond the scope of this paper. Appropriate results for eigenvalue 

problems can be found in Mikhll.n [14'] and Chatel:ii'l [3]. In addit'ion, 

deeper results than those derived here would be obtained if a more 

specific exploitation of the theory of variational methods was 

applied to the study of spectral methods. Source references for 

such material are Kreiss and Oliger [10],Gottlieb and Orszag [8], 

Voigt et al [19] and Hussaini et al [9]. 

The material of Mikhlin [14] has been motivated by the need to 

have, for specific problems, reliable choices for the coordinate 

systems. For spectral methods, on.e needs· the converse: for specific 

orthonormal systems, a catalogue is required which lists the numerical 

properties they guarantee for various classes of ordinary and partial 

differential equations as well as integral equations. Such 

information is contained in references like Gottlieb and Orszag [8], 

Orszag [16], and Delves and Freeman [4]. 

The sufficient conditions for relative error stability of §4 were 

derived using the spectral norm for matrices. Because the spectral 

condition number of a matrix is always bounded above by the maximum 

norm condition number, it follows that the Ritz-Galerkin process could 

yield an approximation which exhibits relative error stability in the 

~2-norm but not relative error stability in the maximum norm. This is 

not surprising since it is well known how to construct n-component 

vectors which, as a function of n, are arbitrarily large in maximum 

norm and bounded in ~2. Clearly, to prove the Proposition 4.1 for 

the maximum norm would automatically guarantee its validity for the 
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spectral norm. However, in terms of the properties of strongly 

minimal and almost orthonormal systems, the natural setting for 

Proposition 4.1 is the spectral norm. 
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