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3

(2.4.1) w(x) = kr®cos 6/2 + wo(x)

where Wy o leOl =0(1) as x =+ 0 .

Figure 3.

Note that Vw has an r_%—type singularity as x + 0 . The coefficient k
in (2.4.1) may, by analogy with fracture mechanics, be called the stress
intensity factor. (In linear elastic fracture mechanics the stress intensity
factor gives some indication of the tendency of a crack, as modelled by a

slit, to extend under the applied loading data.)

Following exactly the same procedure as in §2.1 we can obtain an
extraction expression for k

(2.4.2) k= lmt U f¢+J gﬂ +J V%W_J Vo~ hiw
o r Q Iy

e+0
N,

where now Qe = {xeQ: lx|>€} , FN,€= {xe FN' Ix[>e} and

(2.4.3a) O (x) = %'r—%cos 8/2 + NEY)

3

where ¢g , |Vy| = o(x ) as x>0 .
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(2.4.3b) ¢ =0 on FD .

(2.4.3c) V2¢ extends smoothly to all of Q ; V¢'ﬁ extends

smoothly to all of FN .

In (2.4.2) the line integrations treat the part 6=0, 21 of _FN as

two-sided. Note that the leading term of (2.4.3a) already satisfies

[ - ~
Vztl r%cos §]= 0 in Q , and th r %cos gJ'n =0 on 6=0,27m
m 2 ™ 2

(r#0) . Therefore functions ¢ satisfying (2.4.3) are readily constructed

by the usual cut-off or blending function technigues.

§2.5 EXTRACTION EXPRESSIONS FOR INTEGRALS OF BOUNDARY FLUXES

Consider the case explicitly implied by Fig.l where FD has two

1
components, Fg and Fé say. (We assume that Tg and FD are a non-zero

distance apart.) Suppose we are interested in the quantities

0 r1

p
(2.5.1) A= J
Iy D

Vw-ﬁ ds and Al = J Vwen ds .

In mechanical terms we can think of AO and Al as measuring how much of

B!
the total applied load L[= J fi-JF gJ is carried by each of the fixed
Q

N

supports FD and FD respectively. (A simple integration by parts shows

that L = AO + Al. ) Although the expressions of (2.5.1) for AO'Al are
already in some sense integrals of the solution, they are not of the proper

form for an extraction expression as set out in (2.1.11). However it is

not difficult to derive some appropriate extraction expressions.

Let ¢a(u=0,l) be any sufficiently smooth function defined on

which satisfies
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(2.5.2)

A simple integration by parts shows immediately that
2 ~
(2.5.3) A = J £fo  + J gd  + J V' w - J Voo nw (a=0,1) .
o 0 o r a Q o T Q

Finding smooth functions that satisfy (2.5.2) clearly presents no great
difficulty. Obvious adaptations of cut-off function or blending function
constructions could for instance be employed. (The smoothness of ¢a and
the resulting extraction functions will obviously depend on how far Tg

and F; are apart.)

§2.6 MODIFIED VERSIONS OF THE PROBLEM (2.1.1)

In §2.1 we showed how to obtain extraction expressions for solution
values and derivatives in a mixed boundary value problem (2.1.1) foxr
Poisson's equation. These extraction expressions were constructed from
the classical point source, and dipole solutions for the entire plane.

An examination of the derivation in §2.1 shows that only the local
behaviour of these solutions at P was essential to the argument. The
fact that they also happened to be harmonic in - {P} was more or less
immaterial. This suggests that extraction expressions for sclution values
and derivatives for equations with (smooth) non-constant coefficients
should be closely related to the corresponding extraction expressions for

the equation with "frozen" coefficients at P .
As an illustration consider the following generalization of (2.1.1)

= Ve (kVw)

1
h
"
jal
2

w=0 on T

kVwen

I
Q
]
=}
—
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where k is a smooth function on § , k(x) 2 k0> 0 (x€Q) . BAgain let us

be interested in w(P) and Vw(p) for P an interior point of Q .

Proceeding as in §2.1 we obtain extraction expressions of the form

(2.6.1) imt J £ + J g + j Ve (kVd)w - J kV¢e nw
e+0 IQ Ty Q T

for the quantities w(P) and Vw(P) , where ¢ satisfies

( -1
O = 3oEy log|x-P| + 9 (for w(P)) ;
x_ =P
1 171 1 3k
(2.6.2a) { ¢(x) = + +— (P) log|x-P) |+ ¢
2 ®) |xp|? 4w (k)2 9%, 0
R . . |(for Vw), ()
L d(x) = + == (P) log|x-P| + ¢
2@ 1y 212 aree)) 2 ox, 0

(for (Vw)z(P))

-1
where ¢, , |V¢0] =o(|x-P|™") as x » P.
(2.6.2b) ¢=0 on T .

(2.6.2c) Ve (kV9) extends smoothly to all of Q ,

kV¢efi smooth on PN .

The task of constructing functions ¢ satisfying (2.6.2) is a little
more difficult than that encountered in §2.1. The new difficulties arise
from the first part of (2.6.2c). The operator Ve (kV(¢)) applied to the
leading terms of (2.6.2a) no longer yields functions that can be smoothly
extended to all of {1 . For instance, in the case of extraction expressions
for w(P) ,

Vx'k[vx[?ﬂil('ﬁ 1og|x—Pl:H = T::P? ((x-P) *Vk)
which is singular at x = P . This problem may be overcome however by being

a little more specific about the form of ¢0 . If for example we take
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- 1 2
n(x) = 10 []_ogR -5 k,lxllogR+ k,gx2 logR) + —Lo—é'((klg_))z

2rk 2k 8(k7)

(2.6.3) T
0,2,._2
+ (k,2) JR” log 3]
0 0 ok .

where k = k(P) ., k,i =— (P) , R= ]x—P| A Xi = xi-Pi (i=1,2) then

T o9x.
i
Ve (kVy) is bounded in a neighbourhood of P . By adding further terms
of the form x‘;‘ log R, R° log R (m,s€N) with suitable coefficients,
Ve (kVU) can be made successively better behaved at P . We may now employ
a cut-off function on blending function construction, just as in §2.1, to
U to obtain functions satisfying (2.6.2). Similar considerations apply

to the cases of extraction expressions for Vw(P).

Another modification of (2.1.1) that can be similarly handled is the

inclusion of an absolute term. Consider for instance

- V2w + cw = f in @
w = 0 on T

kVwen =g on T

where ¢ 2 0 1is assumed for simplicity to be a constant. Again for this
problem one can obtain extraction expressions for w(P) and Vw(P) (P€ Q)

of the form

(2.6.4) Int J £ + j 9o + J V2p-ch)w - [ Voonw .
e+0 /g Iy Q r

Here the generalized Green's functions ¢ are essentially the same as in
§2.1, though again with a somewhat more sgpecific form for ¢o to ensure
that V2¢ - c¢ is smooth in a neighbourhood of P . For instance, in the

case of an extraction expression for w(P) if we take

=L < g2
Hix) = o (1+4 R”) log R

then Vzu-cu = O(Rzlog R) in the wvicinity of P . The usual cut-off and
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blending function constructions applied to U will yield a suitable

generalized Green's function for use in (2.6.4).

§2.7 GENERALIZATIONS

The extraction expressions that were derived in §2.1, §2.3, and §2.4
depended on having certain singular solutions of Laplaces equation available
explicitly. Clearly this sort of requirement places a limitation on the
class of equations for which the techniques can be effectively generalized.
However for some practically important equations such as the biharmonic, and
those arising in linear elasticity, many of the required singular solutions
are available in tractable form from classical sources. For instance in the
case of plane linear elasticity, extraction expressions for pointwise
displacements, stresses etc and for stress intensity factors can be readily
derived with the help of the methods of [4]. As indicated in §2.6, once
extraction expressions are available for a basic equation, then it may not
be too difficult to obtain corresponding extraction expressions for sliéhtly
modified equations (e.g. equations with non-constant coefficients, equations

with absolute terms etc.).

§3.1 NUMERICAL EXAMPLE: A TORSION PROBLEM

Consider the boundary value problem

- V%=1 in Q= (-1,1)°
(3.1.1)
w=0 on 39(=FD)

We shall employ the theory of §2.1 and §2.3 for the calculation of
approximate values for w(0) and (Vw)l(l,O) . A series solution for (3.1.1)
can be found by the method of separation of variables, so exact values of

w(0) and (Vw)l(l,O) are available for comparison with any approximations.
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The extraction expression (2.1.9) becomes in the current setting

(3.1.2) w(0) = lmt J o+ J Vow .
e+0 ‘Q Q

We shall compute with three specific choices for the generalized Green's

function ¢ .

CASE I d(x) = n(X)@i log |x|)
i
where NG = n)n,)
1 -3t
with n) =

l—8([tl—%)3 3<|t]s1

CASE II b(x) = %% log |x| - ¢*(x)
(1+x2)(l+x2) ¥
% -1 1 2
where ¢7 (%) = EE'log E_____ET_—___] .

Case I is a cut-off function construction, while in Case II a blending
function method has been used. Ths third choice, Case III, also employs a
blending function construction though space does not permit us to give

complete details here.

Likewise from 2.3 we have the extraction expression of the form

(3.1.3) (V) | (1,0) = Imt J o+ J Vo .
e+0 Q) Y/
Again we shall consider a number of choices for ¢ . Cases A and B will

involve a combined cut-off function and blending function construction,
while C and D just use blending function techniques. We shall only give

details here of the construction of ¢ for Case B.
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1 %571
CASE B o (x) = n(x) | 5= 0% ()
|x=(1,0) |
1 O§x1§l
where n(x) =
1—!x1|3 -1§x1<0
xl—l
and o* (x) = — -
(xl-l) +1
1 %7t
Notice that the singular term T already vanishes on x1= 1 (xz%O).
|x=(1,0) |

To completely satisfy (2.4.1b) a blending function technique has been used
to ensure that ¢=0 on x,= 1 , and a cut-off function method to handle

the edge = -1 .

Because of the symmetry present in (3.1.1), when solving for the finite
element approximation W we need only work on the guarter segment'(o,l)2 .
A sequence of uniform square meshes employing bilinear elements was established
on this quarter segment. The top portion of Table 1 shows the finite element
error as measured by Hw-%HE for each of these meshes. The remainder of
Table 1 compares the accuracy of the direct approximations w(0) and
(VW)l(l,O) , to the accuracy of approximations based on the extraction
expressions (3.1.2) and (3.1.3). ©Notice that the first integral of (3.1.2)
is strictly speaking improper, though in the computations it was evaluated
using the standard 4-point Guassian quadrature on each element. However
the first integral of (3.1.3) is more critical, and care is needed in its
evaluation near (1,0). One possibility is to evaluate it analytically,

though there are other possibilities.

Table 1 shows, as expected for bilinear elements and smooth solution w ,

3

(i) an N~ rate of convergence for both the global error as measured by

”w—WHE , and the error in (V%)l(l,O) ; and (ii) an N_l rate of convergence
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TABLE 1

NUMERICAL RESULTS FOR THE EXAMPLE OF §3.1

N (No of elements in
quarter segment, 4 16 64
uniform mesh.)
i|w—€«]|E / ||w||E 30.1% 15.2% 7.62%
Relative error in
approximations for w(0):
Direct Evaluation w(0) 5.4% 1.3% 0.31%
Extraction Expressiocn (3.1.2)
Case I 8.7% 2.5% 0.62%
IT 2.5% 0.63% 0.16%
IIT 0.95% 0.25% 0.064%
Relative error in
approximations for (Vw)l(l,O):
Direct Evaluation (V%)l(l,O) 29% 16% 8.7%
Extraction Expression (3.1.3)
Case A 4.1% 0.49% 0.096%
B 1.3% 0.32% 0.076%
C 1.5% 0.37% 0.089%
D 0.59% 0.15% 0.038%
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for |w(0)- %(0)| . Turning now to the errors in the extracted approximations
based on (3.1.2) and (3.1.3), Table 1 shows that in all cases these errors

are O(Nwl) . This is consistent with the assertion made in §2.2 that these
errors should all behave as O(Hw—%”é) . Notice in particular that for
approximations to the derivative this is twice the order of accuracy of the
derivative of the finite element solution itself. The fact that the rates of
convergence for w(0) and the cases I~ III are the same is a consequence

of our use of bilinear elements; quadratic elements would have produced

-%

~ -2
O (N ) for w(0) , but a superior O(N ) rate for cases I-III .
Nonetheless, even for bilinear elements cases II and III consistently

give better accuracy than w(0) .

The variation of accuracies amongst the cases I, II and III, or amongst
the cases A, B, C and D can, at least partially, be attributed to the relative
smoothness of the respective extraction functions. For instance, one would
expect the extraction function b = V2¢ arising in case I +to be more
rapidly varying than that arising in case II. It is not surprising then,

that case II yields a consistently more accurate approximation than case I.

§3.2 NUMERICAL EXAMPLE: A SLIT DOMAIN PROBLEM

Consider the model problem (see Fig. 4.)

V2w =0 in @
~ 0
Vwen = 0 on PN (considered two-sided)
~ 1 1
Vwen = il%ﬁfl r? cos 6/2 on FN

where the boundary data has been chosen to give an exact solution

3 %>

w=1r° cos 0/2 + ¢ cos 36/2 .

Cbviously the exact value of the stress intensity factor k associated with

w is 1. (cf. §2.4)
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Figure 4.

Finite element approximations w were computed for a sequence of
specially refined meshes for this problem. Transformed bilinear square
elements were used. The presence of a singularity at O means that uniform
or quasi-uniform meshes are not appropriate for this problem. For each such

approximation the extraction expression (2.4.2) was employed (with

¢ = %~r_% cos 0/2) to extract an approximation k from w . Some results
are shown in Table 2. For the sake of comparison we also give the results
of an alternative method for approximating k . This method is based on
o w(x) . . .

rewriting (2.4.1) as k = 1lmt I and then approximating this

x+0 r®cos0/2

(0#m)
limit by evaluating
(3.2.1) K* = %W(X)

r° cos 6/2

at points x sufficiently close to O .

The following two comments can be made concerning the results shown

in Table 2:

(a) The error in the extracted approximation k behaves roughly like
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TABLE 2

APPROXIMATIONS TO STRESS INTENSITY FACTOR k

N
(No of degrees-of- 28 63 98
freedom)
l|w—w||E / ||wnE 13.6% 8.7% 6.86%
Extraction Expression (2.4.2) .9857 .9922 .9956
(relative error in
parentheses) (1.42%) (0.77%) (0.43%)
Method of (3.2.1) with
*
(i) (xl,x2)= (.125,0) ) 1.038 1.067 1.093
(ii) (0,.125) 0.8144 0.8179 0.8486
(iii) (.125,.125) 0.9718 1.022 1.041
*
(iv) (.0625,0) *) 0.9887 1.009
(v) (0, .0625) 0.8735 0.8815
(vi) (.0625,.0625) 0.9411 0.9895
*
(vii) (.03125,0) ) 0.9632
(viii) (0,.03125) 0.9036
(ix) (.03125,.03125) 0.9262

(*) These points are vertices of the element E for this mesh.

L
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O(Hw—%”é) . (The energy norm of the error Hw—%HE itself has an
3

experimental convergence rate of N . This is a consequence of our

use of "optimally" graded meshes.)

(b) For each mesh considered the extracted approximation is markedly
better than those based on (3.2.1) which are seen to be sensitive to the point
x used. The problem with (3.2.1) is that the non-leading terms of (2.4.1)
will pollute k* . To minimize this pollution one can try to move =x closer

to 0 , however w(x) can then be expected to become less accurate.

We shall also use this example to illustrate the difficulties that may
arise when the extraction expressions of §2.1 are applied at points P close

to 9 . Suppose we wish to find the x component of Vw at P = (.5,.05).

1
If we apply the techniques of §2.1 in a straight forward manner using the
generalized Green's function (2.1.14) with ¢0 = 0 , then we obtain the
poor results shown in the first part of Table 3. The reason for these poor
results is that the boundary extraction function b = —V¢-ﬁ is changing
rapidly along Fg near P . As was remarked in 82.2 this will generally

mean that the solution Y of the auxiliary problem (2.2.1) will also not

be well behaved near P . Thus the factor inf ”W-ZHE in the estimate (2.2.2)
z€S

could well be quite large. Moreover, any rapid changes in b will have a
bearing on the accuracy of any quadrature formula used. One way to overcome
these difficulties is of course to locally refine the mesh near P . However
this is probably not very practical. Another possibility is to slightly

modify the generalized Green's function used above.

Let
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TABLE 3
APPROXIMATIONS TO Xl—DERIVATIVE AT (.5,.05)

N
(No of degrees-of- 28 63 98
freedom)
Approximation of (VW)1 8.2996 -1.5278 -1.5477

using unmodified
generalized Green's
function.

Approximation of (Vw)

using modified 1

generalized Green's 1.7681 1.7693 1.7677
function.

(zzlaiige errors in (0.095%) (0.163%) (0.073%)
parentheses)

Exact Value: (Vw)l(.S,.OS) = 1.7665

where P* = (.5,-.05) is the image point of P in the xl-axis. Then WU is
harmonic (except at P and P¥*) and Vu-ﬁ = 0 on the x1 axis and so in
particular on (both sides of) Fg. Clearly W has the necessary asymptotic
behaviour at P for a generalized Green's function (see (2.1.4)). To
complete the modification we can apply any of a variety of cut-off or blending
function constructions. For instance, if 1 is any sufficiently smooth

function defined on § , satisfying n = 1 in a neighbourhood of P and

n = 0 in a neighbourhood of P* , then

$(x) = n(x)ux)
is an appropriate generalized Green's function.
The extraction approximations resulting from such a modification are

also shown in Table 3. The improvement in accuracy over the previous case

is obvious.
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