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as r•equi:r>ed. 

So A is a Banach algebra under /1•1/ • Rout.ine calculations shoV< 

that, for any x = (a, b) E A we have d(x, lel) = 1zla "' bl , and that 

P(x) is the line segment joining al to bl II 

A Banach space is said to be �s�t�l�'�"�"�~�i�c�t�l�y� convex if every nor,m one 

element is an ex-treme point of the unit balL In such a Banach space,, 

every finite dimensional subspace is Chebyshev, The next example shovm 

that a unital. Banach algebra ca.n have this property. (A simple non-unital 

example is ,e ) for l < p < co �~� 
p 

under pointwise multiplication,} 

EXAIVIPLE 2. The:ee is a unital Banach algebra in �~�1�h�i�c�h� every finite 

dimensional subspace is �C�h�e�b�y�s�h�e�v�~� Once �a�g�a�i�n�~�~� the algebl"'a can be con-

structed to be comlilutative, semisimpJ.e and have an isome"cl"ic involution. 

(1;2 vdth the usual opel"ations, but the 

norm 

II ex, y) II 

It is easy to see that 11·/1 is strictly convex, Euxl that II (l, 1) Jl 1 , 

Submultiplicati.vity of i! ·II follows from the estimates 

I ax - by i "" l:! I a - b ICI x I �~�,� ! Y I ) + l:! I x - Y I ( I a I + I b I ) 
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and 

s !a - b\ [x - Y\ 

More generally, let B be any Banach algebra and give A(B) B EiJ B 

pointwise multiplication and the norm 

y)ll 
2 2 ~ 

{~llxll + '.!IIYII } + llx •· Yll • 

Virtually identical calculations show that A(B) is a Banach algebra 

under this norm. Clearly the map x ~-+ (x, x) is an isometric isomm•phism 

of B into A(B) If B is commutative/unital/strictly convex, then 

so is A(B) Now define an increasing sequence A0 c A1 c A2 ,,, of 

Banach algebras by A0 = ~ , A 1 = A(A ) . 
n·r n 

Then A 
n 

is strictly convex, 
2n 

and algebraically isomorphic to 0: Passing to subalgebras we see that, 

for every n E JN , O:n has a strictly convex algebra norm, Finally, the 

inductive limit of (An):=l is clearly an infinite dimensional, commu

tative, unital Banach algebra. We have not been able to decide whether 

it is strictly convex, although it obviously has a strictly convex dense 
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subspace, 

Let us remark that in any commutative, unital Banach algebra, every 

maximal ideal is proximinal. For i£ J = ker(f) where f is a char-

acter on A then il£11 = f(l) = 1 and thus x - f(x)l E P(x) for 

every x E A Our final example shmvs that this fails if the algebra 

is not unital, 

EXA!~PLE 3, There is a commutative semisimple Banach algebra in which every 

maximal ideal is nonproximinal. 

PROOF. Let II· 11 00 denote the sup-norm on the Banach algebra c0 (JR) , 

We equip the algebra A = c0 (JR) n 11 (JR) with pointwise multiplication 

and ·the norm IJ£11 = llflioo + (J f(t) I dt , It is not difficult to show 

that II. !I is complete and submultiplicative, Thus A is a commutative 

Banach algerxoa. For fixed t EJR 
' 

define lp E }\1: by tp(f) f(t) 

Then lp is a character on A but l~o(f) I < 11£11 l'ihenever .c # 0 J_ 

I-t follows easily that the ideal J = ker(p) is not proximinal. 

It remains to show that the evaluation functionals are the only 

char'acters ey Let lp be any character on A He claim that jtp(f) I < 11£1100 

for all f E A If not, there is an f E A with 11£11., < 1 and 

) = 1 If g(t) = f(t)(l f(t))-l then g E A and g - fg f 

But then 0 = tp(g) - p(g)tp(f) cp(f) = 1 -.rhich is absurd, 

Since A is a dense subalgebra of c0 (JR) , p extends uniquely to 

a functional "" <.p E c0 (JR )"': , which must also be a cha1oacter, But the 

characters on C0 0R) are precisely the evaluation functionals, II 



If M is a finite dimensional Chebyshev subspace, an easy compact

ness argument shows that its proximity map is automatically continuous. 

This is not true for infinite dimensional subspaces, as several examples 

show. Brown [3] constructed one for·which E is strictly convex, while 

M has codimension two and is isometric to a Hilbert space. In spite of 

Propositions 1 and 2, its proximity map is not continuous, 

In particular, Brown's example shows that the Radon-Riesz property 

cannot be dispensed with in Proposition 1 (iv). Another such example 

was considered by Deutsch and Lambert [5, section 5]. They show that a 

certain strictly convex reflexive space has at least one subspace with 

a discontinuous proximity map, by applying a result of O~man [17]. They 

do not explicitly exhibit a subspace with discontinuous proximity map. 

Both of these examples are rather complicated, 

A simple example of a strictly convex reflexive space without the 

Radon-Riesz property was constructed by Smith [19, example 2]. It would 

be interesting to know if every proximity map on this space is continuous, 

although it seems unlikely, 

Holmes and Kripke I6, Theorem 3] showed that a proximity map which 

is continuously differentiable is already linear. What this really says 

is that continuously differentiable pr·oximity map:;; are just as rare as 

linear ones, If every subspace of E is Chebyshev, with linear proximity 

map, then E is already a Hilbert space [l8, Section II.5,1]. The next 

theorem gives more examples - again in Banach algebras - of non-linear 

proximity maps. Recall from the remarks preceding Example 1, and the 

Gelfand-Naimark theorem, that ~1 is a Chebyshev subspace in any unital 
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C"' algebra. 

LEMMA 3. Let X be a compact Hausdorff space containing at least three 

points. Then the proximity map rr; C(X) ~ ~1 is not Lipschitz continuous. 

PROOF. First note that, for each f E C(X) 
' //f ~ U/1 is a minimum 

(i.e •' rr(f) = )J..) when A. is the centre of the (unique) disc of smallest 

radius containing f(X) Now fix n E JN and put 
3 

' 
a = -n 

b = n 
3 -1 

+ in and 
3 -1 Define ~~a: by - n c = n - n p; 

p(x + iy) min{x, c} + iy 

(for x, y E ~) • A routine application of Tietze's theorem shows that 

there is a function f E C(X) whose range f(X) contains, and is con-

tained in the convex hull of, the set {a, -a, b} Then f(X) is 

contained in the disc D(O, lal) , and simple plane geometry shows that 

rr (f) = 0 • Next put g = p 0 f . Then /If ~ g/1 = 
-1 

n and g(X) 

contains, and is contained in the convex hull of, {a, b, c} , It follows 

that g(X} ~ D(~(a +b), ~Ia- bl) , and so 

rr(g) ~(a + b) 
-1 

~(-n + in) . 

For any exponent a > 0 , we then have 

Clearly rr is not Lipschitz continuous, II 
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THEOREM 4. If A is any unital C'''-algebra, and rr; A-> 0:1 is the 

proximity map, then the follmving statements are equivalent. 

( i) rr is uniformly continuous ,. 

(ii) rr is Lipschitz continuous. 

(iii) A is isomorphic to either II 0:2 
' 

(iv) rr is linear and contractive. 

PROOF, (i) (ii) By hypothesis, there is a constant 6 > 0 such that, 

for any x, y E A , 

llx - Yll :s 6"" jjrr(x) - n(y)jj ::: 1 

Since n is homogeneous, i-t follows that 

-1 
jjrr(x) - n(y II s 6 jjx ·- Yll • 

( ii = (iii) Let B be any maximal abelian '"-subalgebra of A , 

Then niB is Lipschitz continuous. By Lemma 3, the dimension 

of B cannot exceed two, The argument of Ogasawara [16, Theorem 1] 

then tells us that (dim A) :s (dim B) 2 :s Lf 

either II , II2 or M2(1I) , 

Thus A is isomorphic to 

(iii) ~ (iv) This part of the proof is due to A.G. Robertson, 

There is almost nothing to prove if A = a: or so suppose that 
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A M2 ([) , and define ~: A~ A by 

[a bl [ d -bl 
p c d -c a, 

It follows from the C'"-equali ty that the norm of any matr·ix is equal to 

the norm of its transpose, Thus 

2 2 2 2 
sup{ idA.- C!J.I + 1-bA. + a~tl : IA.I + lfll ::: 1} 

II [: :JII' 

and so <p is a linear isometry, It then follows that ';,(I + <p) is a 

linear projection of A onto 0:1 with 

II I - !-,(I + 'P) II ::: 1 . 

The latter condition then forces rr = !-,(I + ~) • 

(iv) ~ (i) This is trivial. II 

We remark that Stampfli [20] proved that, for all a, x E A , 
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2fjn(x) ·- n(a II < llx- all -t {lix ·- all 2 1· Blfx- aiHa- n(a)l\ 

Thus the proximity map in Theorem 4 is nalmost 11 Lipschitz, If we restrict 

our attention to self-adjoint elements, the situation is quite different. 

PROPOSITION 5, Let Her(A) denote the set of self-adjoint elements of 

a unital C>'<-algebra. Then IRl is a Chebyshev subspace, and the prox--

imity map Jl; Her(A) ->IRl is non-expansive, 

PROOF, Let CJ( ' ) denote the spectrum of an element of A It is easy 

to show that n(a) = ~(min CJ( a) + max o(a)) for any a E Hep(A It 

follows that if n(a) = 0 and '\. E IRl 
' 

then II a -r \II II all + I 1, I 
Thus IRl is a semi summand (defined later in the paper) and the result 

follows from [13, Corollary 1.13], I I 
I 1 

Next , we consider the case when M is merely a pl'oximinal subspace 

of E It is of interest ·to knoH whether it admits a continuous proximity 

map. Nonexistence of a continuous proximity map gives us the useful 

information that any algol'ithm for selecting best approximants vliJ..l 

be unstable, On the other hand, an existence theorem for continuous 

selections does no·t necessarily give a useful algorithm, Even >vhen M 

is finite-dimensional, it might not admit a continuous proximity map. 

For· example [8, Proposition 2,6] if E " C[-1, 1] and M = IRf is the 

one-dimensional subspace spanned by f(t) = t , then there is no contin-

uous selection for the metric projection onto M 

A variety of conditions, sufficient for the existence of continuous 

proximity maps, are known. They all depend on Michael 1 s selection theorem, 
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Hhich requires that P; E-+ 2M be loHer semicontinuous, This means 

that, if K is any closed subset of i'l , then {a; P (a) s; K} is a 

closed subset of E 

Let H(l'l) denote the family of all closed, bounded, convex, non-

empty subsets of Iv! , We make H(M) into a metric space by equipping 

it vd th the Hausdorff metric, 

d(A, B) sup({d(x, A); x E B} U {d(x, B); x E A~) . 

If P; E-+ H(M) is continuous with respect to this metric, it is easily 

shown to be lower semicontinuous, 

Since P(a) = M n B(a, d(a 1M)) it is not surprising that most 

conditions sufficient for M to be proximinal and P lower semicont.inuous 

have been defined in terms of intersecting balls. The most general such 

property was considered by Lau [7]. He calls M a U-proximinal sub-

space of E if there is a function 
+ -:-

;:;; JR -+JR , with r;(p) -+ 0 as 

p -> 0 , such that, if B = B( 0, 1) is the unit ball of E then 

(1 + p)B n (B + M) £ B + s(p)(B n M) 

for all p > 0 , 

PROPOSITION 6, [7, theorem 3,4]. If M is a U-proximinal subspace 

of E , then ~1 is proximinal and the metric projection P. E -+ H(M) 

is continuous, 
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This generalizes two other results which appeared at about the same 

time. Following [12, p. 158] let us say that H has property (P) in 

E if there exist functions 15; JR t -> JR + and h; lR + x H -+ M such tha·t 

B(O, 1 + 15(~)) n B(x, 1) £ B(h(~, x), 1) 

and llh(~, x)ll :::: r; , for all x EM a.nd c; > 0 , From [12, Theorems 

2 and 3] it can be seen that any subspace with property (P is prox-

iminal, with continuous metric pl'ojection, But c1early any subspace 

with property (P) is U-proximinal, 

Following [21] we say that M has the l!:i-bal1 property in E if 

the conditions M n B(a, 1) f. rp and IJall < 1 t E always imply that 

M n B(O, ~) n B(a, 1) f. p 

As in I21] it can be sho;,m that such a subspace is prox:imina1, and that 

d(P(a), P(b)) :::: 2lla - biJ for all a, b E E • It is easy to show that 

the 1!:;-ball property implies U-proximina1ity, 

l-Ie rernark that these la·tter two properties are quite different from 

each other, Any Banach space has the 11.:1-ball property in itself, but 

a strictly convex space which is not uniformly convex will not have the 

property (P) in itself, On the other hand, if E is uniformly convex, 

then every subspace has property (P) [12, Proposition 1], but no proper 

subspace has the 1~-ball property [22, p, 301]. 

Anyway, we can now give a few examples of subspaces which admit 
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continuous proximity maps, Most of these examples can be found in [7], 

[12] or [21], 

PROPOSITION 7, In each of the following cases, M is a U~proximinal 

subspace of E 

(i) E = C(X) ~ ··dhere X is compact, Hausdorff, and M is any 

closed (self-adjoint) subalgebra 

ii) E is uniformly convex, and H is any subspace 

(iii) E is the operator space B(.ep' .eq) 

M is the subspace of compact operator•s 

where p < ~ ~ and 

( iv) E where f..\, is any measure, and 11 

( v) E = B(F, c 0 ) where F is any Banach space, and H 

If !VI is U-proximinal in E , it is not hard to show that, for 

a.EE\M, 
:l 

2 
d(a1 --P(a_1_),a2-P(a2 ))Sd(a1-a2 ,M) -1- max d(a.,M)s(2d(a1-a?,M)/d(a.,M)). 

i=l :l ~ :l 

It then follows from the methods of [ 21, section l] that the pl"oximi ty 

map can be chosen to be continuous, homogeneous and quasi-additive. The 

latter term means that 'IT(x+m) = 1T(x) + m whenever m E 11 • This leads 

us to consider the promised non-linear generalization of projections. 

A retract 'IT: E + M is called a semipNJjection if it is quasi 

additive and homogeneous. If there is also a. function f: JR2 + JR. for 
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which the identity 

llxll f(JJrr(x)JJ, JJx- rr(x)JJ) 

holds, then M is said ·to be a semisummand in E , If the annihilator 

is a semisummand in then is said to be a semi.ideal in 

If M00 is a semisummand in EM' ·then M is called a semiidealoid 

in E , There is no need to extend this series of definitions, since 

M0 is a semisummand in E'" v1henever H000 is a semisummand in E'"'"'" 

E 

These concepts, and the fundamental results concerning them, are due to 

Mena-cTura.do, Paya-Albert and Rodriguez-Palacios [13], 

If M is a semis=oand 1-rhose semipl"Oj ection is linear, then !'1 is 

said to be a summand in E If Mo is a su.mmand in E''' , then M is 

said to be an ideal in E These concepts ·w-ere first considered by 

Alfsen and Effros [1] for the L and jvj nOl"lllS on JF2 They called 

lYl an L-summand of E if it was a sununand, with f(a, ~) "' u. ·c ~ If 

was an L-suromand of they called M an M-ideal in E 

Their characterization of Jvl-ideals in terms of intersec·ting balls [l, 

Them•ems 5, 8 and 5, 9] shows that every M-ideal has the 1'2-ball property. 

Mena-Jurado et, al, Il3] showed that if JvJ00 is a summand in then 

is already a summand in E'' 

If M is a complemented subspace, it is obviously possible to 

renorm E in such a way that B becomes a semisummand, A typical 

example of a nonlinear semiprojection is the proximity map from 1R(X) 

onto the Chebyshev subspace ~l , In this case we have f(a, ~) = a + ~. 

We do not know of any semisUillllland which is not a complemented subspace. 
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It seems plausible that the following conditions could be equivalent, 

(A) M0 is a complemented subspace of E* 

(B) M has the 1~-ball property in E (possibly after renorming E) 

(C) M is a semiideal(oid) in E (possibly after renorming E) • 

The arguments from [21, section 1] show that (C) implies (A). 

According to R, Paya-Albert [private communication], (C) implies (B). 

Concerning the other possible implications, not much seems to be known. 

If P; E ~ H(M) is continuous, Michael's theorem guarantees the 

existence of a continuous selection, Suppose P is Lipschitz continuous; 

must it admit a Lipschitz continuous selection? This is a significant 

unsolved problem. A positive solution would show that (B) implies (A). 

For, as we remarked earlier, P is Lipschitz continuous when M has 

the 1~-ball property. A result of Lindenstrauss [10, Theorem 3 (a)] 

ensures that M0 is complemented whenever M is the range of a Lipschitz 

continuous retract on E . Likewise, an example satisfying (B) but not 

(A) would show that there can be no Lipschitz version of Michael's selec-

tion.theorem, 

For the reverse implication (does (A) imply (B)?) we have the 

following partial result. First recall that if y, ya E t 1 and 

ya(n)-+ y(n) for all n , then /lya/1 - /ly - ya/1-+ /ly/1 . 

THEOREM 8, If M is isomorphic to c0 , then E can be renormed so 
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that M becomes an M-ideal in E • 

PROOF. Since E'~/M0 is isomorphic to el • the open mapping theorem 

permits us to write E''' = YEll M0 
' 

where y is isomorphic ·to el 

Let 1·1 denote the el norm on y and 11•11 the original norm on 

E1' Since {y: IIYII::: 1} is bounded, its weak''' closure is contained 

B(O, r) , for some r > 0 Define a new norm on E* by 

IllY + zlll rJyl -:- llzll ' for 0 y E Y and z E M 

in 

0 This clearly makes M an 1-summand in E* It remains to show that 

Ill · lfl is induced by some equivalent norm for E 

So let y + za-+ y + z ' weak'" Since 
a 

is weak'~ closed, we 

may suppose that z converges weak'' to some 0 
E M , Put 

a 

Then Ya-y converges weak'' to zl and so 

I Y I - I Y - Y I -+ I Y I · Then a a 

::= r( jyj + lim in£1y - Yl) + lim infllz II a a 

= r lim inf J y I + lim infllz II a a 

s lim inf Ill Y + z Ill • a a 



267 

Thus Ill • II/ is weaki• lower semicontinuous, as required. 

The first paragraph of this proof shows that M0 is complemented 

in E,., , whenever M is isomorphic to c0 • But every M-ideal has 

II 

the 1~-ball property, So this theorem establishes a stronger conclusion 

than we are interested in, under a very strong hypothesis. We show now 

that the stronger conclusion does not follow from the weaker hypothesis (A). 

EXAMPLE 4. If E = t 1 , there exists a subspace M such that 

(i) M0 is complemented in E* 

(ii) no renorming of E can make M into an ideal. 

PROOF. Let M be the subspace exhibited by Lindenstrauss [9], He 

showed that M0 is complemented in E* 

in any dual space - in particular E 

but that M is not complemented 

If some renorming of E makes M into an ideal, then, by [13, 

Theorem 2.6] we can suppose that M is already an M-ideal, Being 

uncomplemented, it cannot be an M-summand, But any proper M-ideal 

contains an isomorphic copy of c0 , according to [2, Corollary 4.5], 

This is clearly impossible for a subspace of t 1 , II 

A similar argument shows that the same conclusions hold when M is 

the predual of the James-tree space [11] and E = M** , It would be 

interesting to know whether, in these two examples, E can be renormed 

so as to give M the 1~-ball property. 
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Finally, a word of warning concerning the implication (A)~ (C), 

If (A) holds, then obviously E* can be renormed so that M0 becomes 

a summand. We cannot conclude (C) from, this, since the new norm on E•'< 

might not be a dual norm, Example 4·illustrates this, 
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