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ASYIVIPTOTICALLY STABLE SOLUTIONS OF THE NAVIER-STOKES 

AND ITS GALERKIN 1.\.PPROXI~lATIONS 

Petm' E, lCloeden 

In many nume:r:ical and theoretical studies in fluid dynamics, 

especially in me·teorology and oceanography, simpler truncated systems 

called Galerkin approximations or spectral sys·tems, are st.udied instead 

of t.he fu.ll system of partial differential equations.. These are f.ini·te 

dirr~ensional syst.ems of ordinary differential. equa·tions, usua.lly wit.h 

only linear and quadrat:ic ·tenrrsy 'Which are ob·tained by tl.llncating 

infinite dimensional sys·tems in"Yolvillg· ·the t.ime-dependent coefficien-ts 

of FourieJ.:.v~lik,e series expansions of the solu-'cions of ·the pa.r·tial 

differential ec_ruation.s"' .AJ.1. implic.it ass.umption here is tha:t t:he 

qu.alitat::.ive :behavicur of i.:he solu.tions of the i:r~.:tn.ca.-ted system closely 

resemble t::ha.-t of ·the sol1..:ttionz of the fv.ll .sys"t:-em (Jf po.:r·tial d.iffe~cential 

s·tea.C!..y solu·'cion in a. Galerkin appro::::i.:m.::1t.iorJ. 1 c:efined in texrns of t:b,e 

eigen.fu.nc:t:ion.s of the s·tokes operat.cn:- t of Sl:tffi cien·tly hig·h order 

implies t.he exis·tence of a nearby asymp·totically stable sol·Lrt:ion in 

·the full N&vier.·-st.okes equat.ions, Theix- makes considerable use 

of ·the spec·tral properties of the linear opera·tors in ·the Galerkin 

approximations and ·the Navier-Stokes equations linearized about steady 

solutions. 
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Such a simple spectral theory is not availo-hle for more complicated 

attracting sets such as periodic or almost periodic solu·tions, let 

alone strange at:·tract.ors. There is an ex-tensive tr.1eo;::""y, see 

for example Yoshizawa [6], ,.;hich charac·terizes the stability of an 

attracting set: in ·terms of Lyapunov functions" I have been looking at 

the problem of whether the Navi.er·-Stokes ·equations has a stable 

at.tracting se·t of a ceJ::·tain kind whenever a Galerldn approximation 

of sufficien-tly high OJ:der ha.s a st:ab1e at:i:rac·ting set of the same kind 

from ·the view point. of Lyapunov stability theory" I b,ad complet:ed :my 

p:rcoof for an asymptotically stable steady solution, the simplest case, 

when I received a preprint of Constan-tin £1 Foia.s and Temam ~ s paper, 

':rheir results are stronger than what. I ob·tained using Lya.punov theory. 

Nevertheless I shall outline my :r·esul ts here as they give an indication 

of ho"'"' L}tapunov func·tions can be used, To facilita-te the exposit:ion I 

shall res·trict attention ·to ·two-dimensional spa'cially peJ:iodic domains, 

although the results also hold for mm:e general domains and boundary 

conditions" At the end of ·this paper I shall briefly disc:uss ex·i:ensions 

to attracting se-ts such as periodic and almost periodic solu·tions, . ·the 

de·tails of which I shall p1:ese1Tt else>vhere. 

MATHEMATICAL PRELIMINARIES 

Consider the Navier-Stokes equations 

(1) -1/p + f 

(2) 0 
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on a unit square domain Q in and suppose that u is spa:tially 

periodic in n Following Ternam [5], define 

and 

V. 
J 

f(x) 

{u E (Hj ) 2 
per 

and 

o} 

2ink~x 5 c e 
k 

for j 0,1 and 2. is \¥ritten H in [5]). Consider ·the inner 

produc·ts and norms 

and 

with ILl! I on 

Let P be ·the or·thogonal projection of 

write t..he Navier-Stokes equations (1)- (2) as 

(3) 
d\;\ at- vnu + P(u•Vw= Pf 

for f ,g E 

for f E 

(H0 ) 2 onto H and 
per 
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on v2 • Then there is a unique solution u for each initial ~(0) E v2 

which exists for all t <;: 0. Moreover there is a constant K = K (I~ I , 1/V) 

such that 

(4) l~<t> I llu <t> II and lt.~(tll ~ K 

provided u(O) also satisfied these bounds. Clearly any steady 

solution u of (4) , that is , 

(5) -]Jt.u + P(u•Vu> pf 

also satisfies the bounds (4). 

Let 21 ,p2 .p3 , ••• be an orthonormal basis of v0 consisting 

of the eigenfunctions of the Stokes equation 

(6) 

with eigenvalues 0 < J.1 ~ J. 2 ~ J. 3 ~ ••• ~ Ak +co • 

1/2 
also orthogonal in V with norm pk = Ak 

The P1•Pz•P3•··· are 

Let P be the 
m 

orthogonal projection of (H~er) 2 onto the linear span of {21 •2z•···.'2m} 

in v 0 for m <;: 1. The mth -order Ga"ierkin approximation of the Navier-

Stokes equations (3) is the system of differential equations in PmVO 

(7) p f 
m-

with initial data u (0) E P H. Existence and uniqueness results 
-m m 

analogous to the full Navier-Stokes equations also hold for a Galerkin 
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approximation {7) of any order, and the same bounds {4) hold provided 

the initial data ~{0) also satisfies {4), uniformly in m = 1,2,3, ••• 

Similarly, any steady solution 

{8) 

u of 
m 

p f 
m-

{7) , that is 

also satisfies the bounds {4), uniformly in m 1,2,3, ••• 

The perturbation ~ = ~-~ of a solution ~ from a steady 

solution u of an mth_order Galerkin approximation satisfies the 
-m 

differential equation 

Cla 
{9) at - VLl<!m + Pm {<!m ·il~ +~ ·V~m) + Pm {<!m •il<!m) 0 

in With X{t) E lRm defined by a {t,x) = L~ 1 X.{t)<!J.(x) 
-m - J= J -J -

this can be written as a linear-quadratic differential equation in lRm 

{10) AX+ b{X,X) 

where H is an m x m real matrix and b 

Following Yoshizawa [ 6], the zero solution of {10), or equivalently 

{9), is {exponentially) asymptotiaaUy stable if there exists a . A> 0 

such that for each e: > 0 there can be found a o = o {E:) > 0 such that 

~~(t) I;;; E: e -t for all t ~ 0 whenever j~{O) I ;;; o, that is 

lu {t)-~ I= Ia {t)l ;;;e;e-At for all t~O whenever lu (0)-~ I= Ia {O)j;;; o 
-m -m ·-m _m -m _m 

An analogous definition will be used for the asymptotic stability of a 

steady solution u of the Navier-Stokes equations {3), namely with the 

subscript m deleted above. Necessary and sufficient conditions for 

the aS}~ptotic stability of the zero solution of (10) have been given by 
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Yoshizawa[6;theorems 11.6,19.1] in terms of the existence of a 

Lyapunov function, that is a continuous function W: ~+XEm+~+ 

such that for all 1~1, 1~·1 ~ R and .t~O 

(11.1} 

{11.2} 

and 

{11.3} + 
D(lO} W(t,X} ~ -AW(t,X} 

for some positive constants L,R and A where is the 

upper right hand derivative of W along solutions of the differential 

equation (10}, that is 

(12} 

and 

D7lO}W(t,~} = lim h-1{W(t,X+h(~+~(~,~}}} - W(t,X)}. 

h+O+ 

Finally bounds of the form 

1/2 1/2 

I~·V~I ~ Ml~l lt.~l 11~11 

1/2 1/2 1/2 1/2 

~ M~~~ ~~~~~ ~~~ lt.~l 

here ~~~ E v2 and M is a positive constant depending only on S1 

and the type of boundary conditions, are needed in the sequel. 
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MAIN RESULT 

The main result here is to show that when a Galerkin approximation 

(7) has an asymptotically stable steady solution, then the Navier-Stokes 

equations (3) has a nearby steady solution which is also asymptotically 

stable, provided the order of the Galerkin approximation is sufficiently 

high and its steady solution sufficiently strongly asymptotically stable. 

This result is thus weaker than that of Constantin, Foias and Temam [1], 

which makes no restriction on how strongly asymptotically eytable the 

steady solution is. This is a consequence of the simpler techniques 

used here. 

THEOREM 

Let ~m be an asymptotically stable steady solution of an 

order Galerkin approximation (7) with Lyapunov function w and 

th 
m 

corresponding constants L,R and A Then, the Navier-Stokes equations 

(3) have a steady solution u with 

-1/ 
II~-~ II :> A 4 
- -m m+l 

provided m is sufficiently large. Moreover, u is asymptotically 

stable when A is sufficiently large, depending on the constants 

K,L,M and V 

I shall only give a sketch of the proof, which has three main parts. 

The first part is to show that for any solution u of the Navier-Stokes 

equations (3) starting sufficiently close to u , P u(t) 
-m m 

remains close 
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enough to ~m to allow the Lyapunov function W to be used for 

o = P u-u , provided m is sufficiently large. From Yoshizawa 
~m m~ ~m 

[6; page 118], the zero solution of (10} is stable under persistent 

perturbations ~ , that is, a solution of 

dX 
(13) ~=AX+ b(X,X) + g dt ~ 

satisfies l~<tll :£R provided I~<Oll :£nR and 1~1 :£nA.R/L 

for some 0 < n < 1. This is applied to a solution u of the Navier-

Stokes equations (3) satisfying bounds (4), for which 

satisfies 

Clo 

o -P u-u 
~m m~ ~m 

~t~m - v~~m + P <o ·Vu +u ·Vo > + P (o ·Vo l 
o _ m -m ~m -m ~m m -m -m 

Since 1':-Pm':l :£ 11~11/A.;~~ and 11~-Pm~ll :£ ~~~~ 11..;~~ , it follows that 

1.~ I -..- 2MK 2 /'m1+/21 • Hence for ' suff1' c1' ently large -- ~ h hm+1 , 

IP u(t) - u I :£ R 
m~ ~m 

provided IP u(O) - u I :£ nR. 
m~ ~m 

The second part of the proof is to show that the Navier-Stokes 

equations (3) have a steady solution u which is close to ~m , 

provided m is sufficiently large. This will be done by showing 

that each Galerkin approximation of order 9, ~ m has a steady solution 
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near to ~m , and then taking a convergent subsequence to 

obtain u • The !I, th -order steady Gi:llerkin approximation for !I, <;; m 

can be written as 

(14.1) 

(14. 2) 

-v~a + P ccr Vu +u ·Vcr > 
-m m -m -m -m -m 

-P (cr •Vcr ) 
m -m -m 

-v~g + (P 0 -P )(g •Vu +u •Vg > + (P"-Pm) c~m·V~m> -m k m -m -m -m -m N - _ 

(P -P ) (f-u •Vu -g •Vcr -cr •Vg ) 
!1, m - -m -m -m -m -m -m 

This can 

in turn be written as a fixed point 

for a continuous mapping (F1 ,F2 ) of the finite-dimensional space 

of u the linear operator on the left hand side of (14.1) has a 
-m 

bounded inverse from PmV2 into Pmv0 ., with norm bounded by K 

and 1/A , uniformly in m (see for example, proposition 2.5 

in Constantin, Foias and Temam [1]). Also for m sufficiently 

large 
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(15) 
1/2 I VA jg l'lg II s LHS(l4.2) g 
m+l -m 1 -m n m 

(see for example proposition 4 .1 in Foias, Manley, Temam and Treve [ 2 ] ) • 

A fixed point ~t is then obtained with 

(16) 
-3/4 

lt.<P U:o-U: >I s A m-"' -m m+l 

-1/4 
and II<Pt-Pm)~R,II s Am+l 

uniformly in R,;;: m , provided m is sufficiently large that A 
m+l 

is greater than an expression involving the constants M,K, V • 

As these steady solutions ~R, all satisfy the bounds (4) and (16), 

a compactness argument can be used to obtain a steady solution u 

of the Navier-Stokes equations (3) which also satisfies the bounds 

(4) and (16). 

The final part of the proof is to show that u is asymptotically 

stable provided the constant A is sufficiently large. Let 

~m = Pm(~-~) and 2m= ~-~m- ~m for any solution u of the Navier-

Stokes equations (3) satisfying bounds (4). Then a and 
m 

the perturbation equations 

(17 .1) 

and 

(17.2) 

+ P <a va - (u-u)•V<u-u)) 
m -m -m 

()gm 
~t - VA~m + (P-P )(g •Vu +u •Vg )+(P-P )(g •Vg) 
a _ m ~ -m -m -m m -m -m 

satisfy 
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Considering (17.1) as an equation of the form (13) and using various 

bounds such as (4 and (16), and the first part of ·the proof, gives 

(13) + 

(18 .1) 

;;; L I Rf-lS ( 17 .1) I N 

-1/8 

-1/8 

Am+l 

!Vlul"t.iplying (17. 2) by , integrating· over n and using the inequality 

(15) 11 gives 

1 d 
2 

12 \)lla1J2+~A lqJ2 
~m + 2 '1::m1 4 · m+l':::.m 

(18.2) 

and depend on the const.ants K,I, and !4. Combining 

(18.1) and (18.2) gives 

(19) + 2 I 12 2 -1 12 
Dil~) (W + g , ) + y(W + g ) S 0 

t· .:; ...... n1 .....,m. 

where y >o provided m is sufficiently large and 

From (11.1) and (19) 
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+ 0 a·s t+oo 

provided I~<O>-ul is sufficiently small; This shows that u is 

(locally) asymptotically stable, provided A is sufficiently large. 

This completes the outline of the proof of the theorem. 

CONCLUDING REMARKS 

The proof of Constantin, Foias and Temam [1] makes considerable 

use of the spectral properties of the linearized operators 

of 

the operators Ail, 

for !I, ii: m , in particular the continuity of 

in the vicinity of u 
-m 

They can thus establish 

the asymptotic stability of the steady solution u of the Navier-

Stokes equations (3), without any explicit restriction, such as A 

being sufficiently large as was required above. Such a simple spectral 

theory is not available for more complicated attracting sets, such as 

periodic and almost periodic solutions or strange attractors. Lyapunov 

functions do however exist for more general asymptotically stable 

attractors. A simple extension of the above proof carries over to 

perturbations about a time-dependent solution u (t) , but this is 
-m 

unrealistic (in fact impossible for time-independent forcing) 
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as it requires the perturbations and the limiting trajectory to have 

identical phase. More realistic is the orbital asymptotic stability 

of the attracting set r = v{i.i (t);ti;;o}. 
m -m 

The Lyapunov functions 

W(t,X) here then satisfy constraints such as 

dist{X(t),f} ~ W(t,X(t)) ~ L.dist{X(t),f} , 
- -m - m 

involving the distance of {unperturbed) solution X(t) from the 

limiting set See, for example, Yoshizawa [6] for further details. 
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