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ASYMPTOTICALLY STABLE SOLUTIONS OF THE NAVIER-STOKES
EQUATIONS AND ITS GALERKIN APPROXIMATIONS

Peter E. Kloeden

In many numerical and theoretical studies in fluid dynamics,
especially in meteorology and oceanography, simpler truncated systems
called Galerkin approximations or spectral systems, are studied instead
of the full system of partial differential equations. The;e are finite
dimensional systems of ordinary differential equations, usually with
only linear and quadratic terms, which are obtained by truncating
infinite dimensional systems involving the time-dependent coefficients
of Fourier-like series expansions of the solutions of the partial
differential equations. An implicit assumption here is that the
qualitative behaviour of the solutions of the truncated system closely
resemble that of the solutions of the full system of partial differential
equations. This is known not to be true, in the Lorenz equations for
example, when the truncation is too severe or the type Qf behaviour
under consideration too complicated. It is, however known from the
work of Foias, Prodi and Temam [2,3,4] that a compact attracting set for
the Navier-Stokes equations is essentially finite~dimensicnal. In
addition Constantin, Foias and Temam [1] have recently shown fof the
Navier-Stokes equations that the presence of an asymptotically stable
steady solution in a Galerkin approximation, defined in terms of the
eigenfunctions of the Stokes operator, of sufficiently high order
implies the existence of a nearby asymptotically stable solution in
the full Navier-Stokes equations. Their proof makes considerable use
of the spectral properties of the linear operators in the Galerkin
approximations and the Navier-Stokes equations linearized about steady

solutions.
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Such a simple spectral theory is not available for more complicated
attracting sets such as periodic or almost periodic solutions, let
alone strange attractors. There is however an extensive theory, see
for example Yoshizawa [6], which characﬁerizes the stability of an
attracting set in terms of Lyapunov functions. I have been looking at
the problem of whethexr the Navier—Stokes;equations has a stable
attracting set of a certain kind whenever a Galerkin approximation
of sufficiently high order has a stable attracting set of the same kind
from the view point of Lyapunov stability theory. I had completed my
proof for an asymptotically stable steady solution, the simplest case,
when I received a preprint of Constantin, Foias and Temam's paper.
Their results are stronger than what I obtained using Lyapunov theory.
Nevertheless I shall outline my results here as they give an indication
of how Lyapunov funcéions can be used. To facilitate the exposition I
shall restrict attention to two-dimensional spatially periodic domains,
although the results also hold for more general domains and boundary
conditions. At the end of this paper I shall briefly discuss extensions
to attracting sets such as periodic and almost periodic solutions, . the

details of which I shall present elsewhere.
MATHEMATICAL PRELIMINARIES

Consider the Navier-Stokes equations

9
(1) §%-vAE + E.VE = -Vp + £

(2) Veu =0
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. . . 2 . .
on a unit square domain £ in R and suppose that u is spatially

periodic in § . Following Temam [5], define

and

for j = 0,1 and 2. (V0 is written H in [5]). Consider the inner

products and norms
(£,9) =J f(x)gxiax , |f| = /(£,£) for £.9€v,
= o~ TR ~ 'L P

and

((£.9))= f VE(x) Vg (x)dx , £l = Y((£,£)) for £,g€vV,
q ~ = thes = trt =g

with [Afl on V2 .

0
Let P be the orthogonal projection of (Hper)2 onto H and

write the Navier-Stokes equations (1)-(2) as

oy
(3) 3% vhu + P(u°VYu) = Pf
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on V., . Then there is a unique solution u for each initial u(0) €V

2 2

which exists for all t20. Moreover there is a constant K = K(|£],1/V)

such that
(4) I‘j(t)l ¢ llue)|l ana |AE(t)l <K

provided u(0) also satisfied these bounds. Clearly any steady

solution u of (4), that is ,
(5) -uAu + P(u-Vu) = Pf

also satisfies the bounds (4).

Let ¢1,¢2,¢3,... be an orthonormal basis of V_ consisting

0

of the eigenfunctions of the Stokes equation

(6) “PAG, = MOy

i i < < < <...8 - . . .
with eigenvalues O Al._kz._l3_ . A :}2 The 91,92,?3, are

also orthogonal in V  with norm ¢, = Ak . Let P~ be the

~k
orthogonal projection of -(ngr)2 onto the linear span of {¢1,¢2,...,¢m}

in v, for m21. The mth-order Galerkin approximation of the Navier-

Stokes equations (3) is the system of differential equations in PmVO

ou
m
N ¥ vAEm + Pm(‘fm ng) - me

with initial data um(O)G PmH. Existence and uniqueness results

analogous to the full Navier-Stokes equations also hold for a Galerkin
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approximation (7) of any order, and the same bounds (4) hold provided
the initial data 1;1m(0) also satisfies (4), uniformly in m = 1,2,3,...

Similarly, any steady solution Gm of (7) , that is

(8) -~V + P (u Vu ) =P £
~m m'am  am m~

also satisfies the bounds (4), uniformly in m = 1,2,3,...

The perturbation u =u -u of a solution u from a steady
~m A am m
solution \Em of an mth-order Galerkin approximation satisfies the

differential equation

le]
~m - -
©) Tt " %t P Ve V) By (Vo) = O

. . m . _om
in PV, . With X(t) € R defined by 0 (t,x) = Zj=l X (€) 94 (%)

this can be written as a linear-quadratic differential equation in R

ax
(0] & A RED

. . 2m m R
where H is an mXm real matrix and b : R -+ R bilinear.

Following Yoshizawa [ 6], the zero solution of (10), or equivalently
(9), is (exponentially) asymptotically stable if there exists a -A >0
such that for each €>0 there can be found a § = §(g) >0 such that
I)E(t) |< ee™® for all t20 whenever |)~((O)[ <6, that is

@15, = lgu@e] see™

> -u = < .
for all t20 whenever Igm(O) Eml ]czm(O) <6
An analogous definition will be used for the asymptotic stability of a

steady solution u of the Navier-Stokes equations (3), namely with the

subscript m deleted above. Necessary and sufficient conditions for

the asymptotic stability of the zero solution of (10) have been given by
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Yoshizawa [6; theorems 11.6,19.1] in texrms of the existence of a
. . . . -+ i} -+
Lyapunov function, that is a continuous function W : R XR * R

such that for all |x|, |x'] £ R and‘:t.ZO

(11.1) || < wie,x) s oz

(11.2) lwie, ) - wie,xn| s n]x-x']
and

(11.3) Digy WEEX) § -AW(EX) |

wher D+ w
’ ere (10)

upper right hand derivative of W along solutions of the differential

for some positive constants L,R and A is the

equation (10), that is

(12) D’;lo)wu:,x) = Tim h—l{w(t,x+h(A}~(+}3()~(,§))) - wie,x )}

o’

Finally bounds of the form

1/2 1/2
M| Jsu] vl

IA

|u-vo|

and

/2

A

lu-vv| '

1/2 1/2 1/2 1
mla| lull o fv| Ay

here u,vE€ V2 and M is a positive constant depending only on £

and the type of boundary conditions, are needed in the sequel.
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MAIN RESULT

The main result here is to show that when a Galerkin approximation
(7) has an asymptotically stable steady solution, then the Navier-Stokes
equations (3) has a nearby steady solution which is also asymptotically
stable, provided the order of the Galerkin approximation is sufficiently
high and its steady solution sufficiently strongly asymptotically stable.
This result is thus weaker than that of Constantin, Foias and Temam [1],
which makes no restriction on how strongly asymptotically stable the
steady solution is. This is a consequence of the simpler techniques

used here.

THEOREM

Let wu  be an asymptotically stable steady solution of an mth-

order Galerkin approximation (7) with Lyapunov function W and
corresponding constants L,R and X . Then, the Navier-Stokes equations
(3) have a steady solution u with

_1/4

[

A

provided m is sufficiently large. Moreover, u is asymptotically
stable when M\ is sufficiently large, depending on the constants

K,L,M and Vv .

I shall only give a sketch of the proof, which has three main parts.
The first part is to show that for any solution u of the Navier-Stokes

equations (3) starting sufficiently close to Gm . Pmu(t) remains close

~
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enough to ﬁm to allow the Lyapunov function W to be used for

Om = Pmu—um ;, provided m is sufficiently large. From Yoshizawa

[6; page 118], the zero solution of (10) is stable under persistent
perturbations g , that is, a solution of

ax
3 a TP RED +g
satisfies |X(t)[§R provided ]X(O)IénR and lg{énXR/L
for some 0<nN<1l. This is applied to a solution wu of the Navier-
Stokes egquations (3) satisfying bounds (4), for which Gm—Pmu—ﬁ

~ I

satisfies

90
=B _ VA + P_(0_*Vu +u_°Vo ) + P_(0_°Vo )
ot M m'im  ~m ~m o ~m m'am o ~m

=p ((Bu)V(Eu -uVy) =g .

. 1/2 1/2 .
- < - <
Since IE ngl..HEH/Xm+l and ”E PmBH__IAE|/Am+1 , it follows that
2,.1/2 .
<
]g|==2MK /Am+l . Hence for Am+1 sufficiently laxge,

- u <
Ipmg(t) Eml =R

i -G <
provided |ng(0) Eml £ NR.

The second part of the proof is to show that the Navier-Stokes
equations (3) have a steady solution u which is close to ﬁm .
provided m is sufficiently large. This will be done by showing

that each Galerkin approximation of order £2 m has a steady solution
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uk near to Gm , and then taking a convergent subsequence to
obtain u . The ﬁth-order steady Galerkin approximation for £2m

can be written as
~VAG_ + P (0 Vu +u Vo ) = =P _(0_<Vo )
~IM m ~M ~Mm ~m ~I m ~m ~I0
(14.1)
P % Vet I Ve VI I "V o V)

in PV and
m

VRGP (g Pty VgD (BB ) (g oYYy

(14.2)
= ) V0"V I T V)
in (Pg—Pm)V2 , Wwhere gm = PmNQ_Em and gm = (PQ_Pm)El . This can

in turn be written as a fixed point

O = Fl(gm'gm) T 9y T F2(gm'gm)

for a continuous mapping (Fl’F2) of the finite-dimensional space
ﬁmvzéﬁ(Pz-Pm)vl into itself. In view of the asymptotic stability
of ﬁm the linear operator on the left hand side of (14.1) has a

~]

bounded inverse from va into vao" with norm bounded by K

2
and 1/A , uniformly in m . (see for example, proposition 2.5

in Constantin, Foias and Temam [1]). Also for m sufficiently

large
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IN

1/2
(15) VAo dg gl JQ LHS(14.2) g
(see for example proposition 4.1 in Foiés, Manley, Temam and Treve [2 1).
A fixed point GZ is then obtained with

-3/4 : -1/4

Xm+l and IKPR_Pm)BZH s

|
>

A

(16) IA(PmEl—Em)] m+1l

uniformly in f£2m , provided m is suffi;:iently large that Am+1
is greater than an expression involving the constants M,K,V .

As these steady solutions ER all satisfy the bounds (4) and (16),
a compactness argument can be used to obtain a steady solution g

of the Navier-Stokes equations (3) which also satisfies the bounds

(4) and (16).

The final part of the proof is to show that u is asymptotically
stable provided the constant A is sufficiently large. Let
0 =P (u-u) and g = u-u_ - O for any solution u of the Naviexr-
~m m'< ~ Zm ~ ~m ~m ~

Stokes equations (3) satisfying bounds (4). Then Om and gm satisfy

the perturbation equations

tle)
~T0

en—— - '|-+—‘ + o’.
ot VAgm * Pm(gm VEm n ng) Pm(..m ng)

Q7.3 - (O Vi TG - G TE (D)
* (OO - (W Vi)
and
Bgm -
5e 7 VAt BBy (G Vit Vap)+ (BoRy) (9, Vey)
(17.2)

= (P=P) (0 *Vutu Vo +0, Vg g *VO 0, VO,)
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Considering (17.1) as an equation of the form (13) and using various

bounds such as (4) and (16), and the first part of the proof, gives

+ 2 2
Diys) + 2 < L|RES(17.1) |W

IN

-1/8

2
< .
(18.1) S CApg W Cllg flew

2 v 2 2 2.2
< —_ =
= C1>\m+1 wo 2“gm“ * V) CZW

Multiplying (17.2) by I 7 integrating over §! and using the inequality

{15), gives

1d 2 v 2 vV 2
5'554?m| * E-Hgm“ * Z)‘\‘m+1lgmI
(18.2) < |rES(17.2)] [?ml
-1/2
2 v 2
C3>\m+1 W §Am+1|gm|
Here C

1,C2 and C3 depend on the constants K,L and M. Combining

(18.1) and (18.2) gives

+ 2 2 2 2
(19) D13y (W +1§m] )+ YW +|%m1 )y £0

where Y >0 provided m is sufficiently large and A28 Cg/v‘, say.

From (11.1) and (19)
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A

2 2 2 2
lo, (€2 | “+]g, (©) | s W (e, x(e))+]g, (t) |

A

o (0,x(0))+|g_(0)fe™'*

I

Lju(oy-u|? &7YE
> 0 as t > ’

provided |u(0)—ﬁ] is sufficiently small. This shows that u is
(locally) asymptotically stable, provided A is sufficiently large.

This completes the outline of the proof of the theorem.
CONCLUDING REMARKS

The proof of Constantin, Foias and Temam [1] makes considerable

use of the spectral properties of the linearized operators
Ag(ag)Gy = -VAG, + Py (yVuy+u, V)

of ngz into Pov, for 22m , in particular the continuity of

the operators AQ in the wvicinity of gm . They can thus establish
the asymptotic stability of the steady solution E of the Navier-
Stokes equations (3), without any explicit restriction, such as A
being sufficiently large as was required above. Such a simple spectral
theory is not available for more complicated attracting sets,; such as
periodic and almost periodic solutions or strange attractors. Lyapunov
functions do however exist for more general asymptotically stable
attractors. A simple extension of the above proof carries over to

perturbations about a time-dependent solution ﬁm(t) ;, but this is

unrealistic (in fact impossible for time-independent forcing)
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as it requires the perturbations and the limiting trajectory to have
identical phase. More realistic is the orbital asymptotic stability

of the attracting set Fm = V{ﬁm(t)ﬂ:ZO} . The Lyapunov functions

W(t,X) here then satisfy constraints such as

dist{x(t),l"m_} < wW(t,x(t)) £ L.dist{X(t),Fm} ,

involving the distance of (unperturbed) solution X(t) £from the

limiting set Fm . See, for example, Yoshizawa [6] for further details.
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