BOUNDARY VALUE PROBLEMS OF LINEAR ELASTOSTATICS AND HYDROSTATICS ON LIPSCHITZ DOMAINS

Eugene B. Fabes

Section I Introduction

In this note I will report on some recent progress in the study of boundary value problems for systems of equations on Lipschitz domains D in \mathbb{R}^{n}, with boundary data in $L^{2}(\partial D, d \sigma)$. The specific problems I will discuss here arise from elastostatics and hydrostatics.

The Dirichlet problem for a single equation (the Laplacian) on a Lipschitz domain D mith $L^{2}(a D, d o)$ data and optimal estimetes was first treated by B. E. J. Dahlberg (see [3], [4], and [5]). His approach relied on pasitivity, Harnack's inequality and the maximum principle, and thus, it could not be used to study for emample the Neumann problem, or systems of equations. Shortly afterwards, E. Fabes, M, Jodeit, Jr., and N. Riviere [6] were able to utilize A. P. Calderon's ([1]) theorem an the boundedness of the Cauchy integral on c^{1} curves, to exterd the classical method of layer potentials to the cese of c^{1} domains. In this work they were able to resolve the Dirichlet and Neumann problem with $L^{2}(a D, d o)$ data, and to obtain optimal estimates. for c^{1} domains. They relied on the Fredhalm theary, exploiting the compactness of the layer potentials in the c^{i} case. In 1979, D. Jerison and C. Eenig [9] were able to give a simplified proof of Dalbbergis results? using an integral identity thet goes back to Relidoh ([15]). However, the method still relied on positivity. Shortly afterwards, they were also able to treat the Neumann problem on

Lipschitz domains, with $\mathbb{L}^{2}(\partial D, d o)$ data and optimal estimates [10]. To do so they combined the Rellich type formulas with Dahberg's results. This still restricted the applicability of the method to a single equation.

In 1981, R. Coirman, A. McIntosh, and Y. Meyer [21 established the boundedness of the cauchy integral on any Lipschitz curve, opering the door to the applicability of the layer potential method to Lipschitz domains. This method is very flexible, and does not in principle differentiate betmeen a single equation or a system or equations. The difeiculty becomes the solvability of the integral equations. Unliue the c^{1} case, on a Lipschitz domain operators like the double layer potential are not compact and so Fredholm theory is precluded.

For the case of a single equation (the Laplacian) this difficulty was overcome by G. Verchota (\mathbb{C} (61) in his doctoral dissertation. He made the key observation that the Rellich identities mentioned before are the appropriate substitute to compactress, in the case of Lipschitz domains. Thus, he was able to recower the results of Dahberg [4], and of Jerison ard Kenig [10], for Laplace's equation on a lipschitz domaing but using the method of layer potentials.

This note sketches the extension of the ideas of G. Verchota to the case of systems of equations. The results thus obtained had not been previously awailable for general Lipschitz domains, although a lot of work rad beer devoted to
the case of piecewise linear domains. For the case of the systems of elastostatics, the result that we are about to state had been previously obtained for C^{1} domains by A. Gutierriez [7], using the Fredholm theory as in [6]. Once again, compactness was a crucial element in his analysis. This is, of course, not available for Lipschitz domains.

The organization of the paper is as follows. Section 2 treats the systems of elastotastics. This is the work of B. Dahlberg, C. Eenig, and G. Verchota. Section 3 considers the Stokes problem of hydrostatics. This is joint work with C. Kenig and G. Verchota. Full proofs of the results stated here will appear in future publications.

It is a pleasure to express my gratitude to B. Dahlberg, C. Eenig, and G. Verchota for allowing me to announce here their unpublished results.

Section 2 Linear elastostatics on a Lipschitz domain.
For simplicity, in the rest of this note we will treat domains D above the graph of a Lipschitz function ψ, i.e., $D=\{(x ; y\}: y) \varphi(x)\}$, where $\varphi: \mathbb{R}^{n-1} \nrightarrow \mathbb{R}$ is a Lipschitz function and $n=3$. Points $(x, f(x))$ or $(y, \varphi(y))$ on $b D$ will usually be denoted by P or Q. Points (x, y) in D or ${ }^{c}{ }^{D}$ will be denoted by X. The surface measure on $a \mathrm{D}$ will be denoted by do, and the inward unit normal will be n. By $\Gamma^{+}(Q), Q \in \partial D$ we will denote a vertical circular cone completely contained in D. Note that the opening of $T^{+}(Q)$
can (and will) be taken to depend ondy on the Lipschitz constant of P. By $P^{-}(Q)$ widl denote the reflection of $T^{+}(Q)$ contained in ${ }^{C} \bar{D}=D-$. For a function ur M defined on D,
 $\mathbb{X} \in R^{+}(P)$
converges non-tangentially at P to a limit if
$1 i m_{H} u(\mathbb{K})=\mathbb{E}$. If u is defined in $\mathbb{R}^{n} \backslash \partial D$ and converges $X \in T^{+}(P) \rightarrow P$
non-tangentiably at $P \in B D$ from D and $D-$ we will denote the respective 1 imits by ut (P) and $u(P)$.

Let $\lambda \geq 0, \mu$) beconstants (Lame moduli). We will seek to solve the following houndary value problems, where $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$

$$
\left\{\begin{array}{l}
\mu \Delta \vec{u}+(\lambda+\mu) \nabla d i v \vec{u}=0 \quad \text { in } D \tag{1}\\
\vec{u}_{\mid \partial D}=\vec{E} \in L^{2}(\partial D, d \sigma)
\end{array}\right.
$$

Here and in the sequel we will use the summation convention. Problem (1) is the Dirichlet problem, while Problem (2) is a Neumann-type problemin which $\&$ is an arbitrary, but ixed, positive number. To ease the notation we introduce the operator
$T^{k} \vec{u}=$

The operator T^{k} is oalled the generalized stress.
In the particular case $k={ }^{\prime} \mu$ of problem (2), the operator $T \equiv T^{\mu}$ is called the stress.

Theorem 2.1: a) There exists a unique solution of problem (1) in D, with $(\vec{U})^{*} \in L^{2}\left(\partial D_{g} d o j\right.$ and \vec{u} having non-tangential Iimit $\vec{E}(P)$ for almost every $P \in \partial D$. The solution \vec{u} belongs to the Sobolev space $\mathbb{H}^{1 / 2}(D)$.
b) For every k (0 there exists a unique salution of problem (2) in D, which is o at infinity, with $(\nabla \vec{u})^{*} \in L^{2}(\partial D, d \sigma)$, and with $T^{\text {bu }} \vec{H}$ having non-tangential 1 imit $\overrightarrow{\mathbb{E}}(P)$ for almost every $P \in \partial D$. The solution \vec{u} belongs to the sobolev space $H^{3 / 2}(\mathrm{D})$.

In what follows we will outline the proofs of part a and part b in the case $k \neq \beta$. The case of stress boundary conditions is considerably more involved and an outline of the proof would take us afield of the main ideas. The primary difeiculty in the stress case will be pointed out in the course of the argument.

To begin the proof of Theorem 2.1, we first introduce the Eelvin matrix of fundamental solutions (see [11] for example), $\Gamma(X)=\left(\Gamma_{i j}(X)\right\rangle$, where $\Gamma_{i j}(X)=\frac{A}{2 \pi} \frac{B_{i j}}{|X|}+\frac{c}{4 \pi} \frac{\mathcal{K}_{i} X_{j}}{|X|^{3}}$, and
$A=\frac{1}{2}\left[\frac{1}{\mu}+\frac{1}{2 \mu+\lambda}\right], C=\frac{1}{2}\left[\frac{1}{\mu}-\frac{1}{2 \mu+\lambda}\right]$. Our solution of (1) will be given in the form of a double layer potential

$$
\vec{u}(X)=D \vec{g}(X)=\int_{\partial D}\left\{T^{k}(Q) \Gamma(X-Q)\right\}^{t} \vec{g}(Q) d \sigma(Q)
$$

where the operator T^{k} is applied to each column of the matrix Γ and the superscript t denotes the transpose matrix.

Our solution of (2) will be given in the form of a single layer potential

$$
\vec{U}(X)=S \vec{g}(X)=\int_{\partial 0} r(X-Q) \vec{g}(Q) d \sigma(Q)
$$

Lemma 2.3: Let $\operatorname{Dg}(\%), 5(\vec{g})(\%)$ be defined as above, with $\vec{g} \in L^{2}(\partial D, d o)$. Then, they both solve the system $\mu \Delta \vec{u}+(\lambda+\mu) \quad \nabla$ div $\vec{u}=0$ in D and $D-$ Moreover,
 $c\|\vec{g}\| \mathbb{L}^{2}\left(\partial D_{g} d \sigma\right)$

(c) $\left\|(\nabla 5 \vec{g})^{*}\right\|_{\mathbb{L}^{2}(\partial 0, d \sigma)}+\left\|(\nabla 5 \vec{g})_{-}^{*}\right\|\left\|_{L^{2}(\partial D, d \sigma)}+\right\| 5 \vec{g} \|_{H} 3 / 2(D)$ c $\|\vec{g}\| \|^{2}\left(\partial D_{5} d \sigma\right)$
(d) $\left\langle\frac{\partial}{\partial K_{i}}(S)_{j}\right\rangle^{ \pm}(P)=\mp\left\{\frac{(A+C)}{2} \mathbb{N}_{i}(P) g_{j}(P)-\right.$

Therefore,
$\left(T^{\underline{k}} S \vec{G}\right)^{ \pm}(\mathbb{P})= \pm \frac{1}{2} \vec{g}(P)+\mathbb{P} \cdot w \cdot \int_{\partial D} T^{k}(\mathbb{P}) \Gamma(P-Q) \vec{g}(Q) d \sigma(Q)$.
The proof of Lemma 2.3 follows from the theorem of
\mathbb{R}. Coirman, A. McIntosh, and Y. Meyer ([21). See [16] for the details in a similar situation.

Thus, the proof of Theorem 2.1 reduces to the invertibility on $L^{2}(\partial D, d \sigma)$ of the operators

$$
\begin{gathered}
\pm \frac{1}{2} I+\mathbb{E}^{\mathbb{k}} \\
\pm \frac{1}{2} I+\left(\mathbb{E}^{k}\right)^{*} \text {, where } \\
\mathbb{E}^{\mathbb{k}} \vec{g}(P)=\mathrm{p} \cdot \mathrm{v} \cdot \int_{\partial D}\left[T^{\mathbb{k}}(Q) \Gamma(P-Q)\right)^{t} \vec{g}(Q) d \sigma(Q) .
\end{gathered}
$$

This is accomplished by means of the following lemma:

Lemma 2.4: There exists a constant C, which depends only on the Lipsohitz constant of ∂D, and on the number k, such that, if $k \neq \mu$ we have, for all $\vec{g} \in L^{2}(a D, d o)$

$$
\|\left(\frac{1}{2} I-\left(\mathbb{E}^{\mathbb{K}}\right)^{*} \vec{g}\left\|_{L^{2}(a \mathrm{D}, \alpha \sigma)} \leq c\right\|\left(\frac{1}{2} I+\left(\mathbb{E}^{\mathrm{k}}\right)^{*}\right) \vec{g} \|_{\mathrm{L}^{2}(\bar{a}, \alpha \sigma)}\right.
$$

and,

$$
\left\|\left(\frac{1}{2} I+\left(\mathbb{E}^{k}\right)^{*}\right) \vec{G}\right\|_{[}{ }^{2}(o D, d \sigma) \quad c\left\|\left(\frac{1}{2} I-\left(\mathbb{E}^{k}\right)^{*}\right) \vec{G}\right\|^{2}(\partial D, d \sigma)
$$

To show that Lemma 2.4 implies the invertibility of the operators in question, we Collow Verchota's ([16J) ideas. First of all the inequalities alearly show that $\frac{1}{2} I+\left(\mathbb{E}^{\mathbb{N}}\right)^{*}$ and $\frac{1}{2} I-\left(E^{K}\right)^{*}$ are one to one. A simple argument using the
contimuity of ($\mathbb{E}^{\text {k }}$) shows that these operators have closed range. We can, therefore, attach an index to these operators which might possibly be infinite. Now, for each t, $0 \leq t \leq 1$, we consider the Lipschitz domain \mathbb{D}_{t} given by the graph of tip. By the theorem of Coifman - McIntosh - Meyer ([2]), the operators $\left(\mathbb{R}_{t}^{\mathbb{K}}\right)^{*}$, corresponding to the domains D_{t}, are continuous in norm. At $t=0$ are in the case of the upper half plane, and, therefore, the index is O. Therefore, the index is also at $t=1$, and the desired invertibility follows. We are indebted to A. McIntosh for pointing out to us this simple argument using the inder.

We, therefore, pass to the proof of Lemma 2.4. In order to do so, we will first explain the boundary conditions in problem (2) from the point of view of second order elliptic systems. Let $\boldsymbol{A}_{j}^{T 5}, 1 \leq \mathbb{N}, 5 \leq M, 1 \leq i, j \leq n$ be constants satisfying the ellipticity condition

$$
A_{i j}^{r s} \xi_{i} \xi_{j} \eta^{r} \eta^{s} \geq c|\xi|^{2}|\eta|^{2}
$$

and the symmetry condition $\boldsymbol{\Omega}_{i j}^{\Gamma 5}=\Omega_{j j}^{5 r}$. We consider vector valued \mathbb{f} unctions $\vec{u}=\left(u^{1}, \ldots, u^{n}\right)$ on \mathbb{R}^{n}, satisfying the diwergence form system

$$
\frac{\partial}{\partial X_{i}} A_{i j}{ }^{5} \frac{\partial}{\partial X_{j}} u^{5}=\emptyset \text { in } D
$$

From variational consideration, the most matural boundary conditions are Dirichlet conditions (${ }^{\text {I }} \left\lvert\, \begin{aligned} & \text { D }\end{aligned}=\vec{F}\right.$) or the

Neumann-type condition $\frac{\partial \vec{u}}{\partial v}=\left.n_{i} a_{i j}^{r s} \frac{\partial}{\partial \#_{j}} u^{s}\right|_{\partial 0}=\varepsilon_{r}$. The interpretation of problem (2) in this framework is the Collowing: given k, O, there exist constants $A_{i j}^{r s}(k)=a_{i j}^{r s}$, $1 \leq i, j \leq 3,1 \leq r, s \leq 3$ satisfying the ellipticity and symmetry conditions, and such that $\mu \Delta \vec{u}+(\lambda+\mu) \nabla d i v \vec{u}=0$ in D if and only if $\frac{\partial}{\partial x_{i}} h_{i j}^{r s} \frac{\partial u^{5}}{\partial X_{j}}=0$ in D, and with $T^{\text {F }} \vec{u}=\frac{\partial}{\partial v} \vec{u}=r_{i} A_{i j}^{r s} \frac{\partial}{\partial X_{j}} u^{s}$.

Lemma 2.5: ©The Rellich, Payne-Weinberger, Necas identities (see [15], [14] and [13]). Let $\overrightarrow{\mathrm{h}}$ be a constant vector in
 and \vec{u} and its deriuatives are suitably small at ∞. Then

$$
\int_{\partial D} h_{\ell} \Pi_{\ell} A_{i j}^{r s} \frac{\partial u^{r}}{\partial X_{j}} \frac{\partial u^{5}}{\partial X_{j}} d \theta=2 \int_{\partial D} h_{i} \frac{\partial u^{r}}{\partial X_{i}} n_{\ell} \Omega_{\ell j}^{r s} \frac{\partial u^{5}}{\partial X_{j}} d \sigma
$$

Proof: Apply the divergence theorem to

$$
\frac{\partial}{\partial X_{e}}\left[\left(h_{e} A_{i j}^{r 5}-h_{i} A_{e j}^{r 5}-h_{j} A_{i e^{r s}}^{y} \frac{\partial u^{r}}{\partial K_{i}} \frac{\partial u^{5}}{\partial K_{j}}\right]=0 .\right.
$$

Corallary 2:6: If $A_{i j}^{r s} \frac{\partial u^{r}}{\partial K_{i}} \frac{\partial u^{5}}{\partial H_{j}} \geqslant c \underset{r}{ }\left|\nabla u^{T}\right|^{2}$, then,

$$
\frac{\partial \vec{u}}{\partial u}=n_{i} A_{i j}^{r s} \frac{\partial u^{5}}{\partial X_{j}}
$$

satisfies

$$
\int_{\partial D}\left|\frac{\partial}{\partial v} \vec{u}\right|^{2}=\frac{E}{r} \int_{\partial D}\left|\nabla_{t} u^{r}\right|^{2},
$$

where $\nabla_{t} u^{5}$ denotes the tangential components of the gradient
of u^{r}, and the comparability constants depend only on the Lipschitz constant of $O D$.

Proof: Take $\vec{h}=e_{n}$. Because of the Lipschitz character of就, $\mathrm{He}_{\mathrm{e}} \mathrm{C}$. Then.

$$
\begin{aligned}
& \int_{r} \int_{\partial D}\left|\nabla u^{r}\right|^{2} d o<c \int_{\partial D}{ }^{h_{e}} e^{A_{j}^{5}} \frac{\partial u^{r}}{\partial X_{i}} \frac{\partial u^{5}}{\partial X_{j}} d o= \\
& =c \int_{\partial D}{ }^{n_{i}} \frac{\partial u^{r}}{\partial K_{i}} n_{i} e_{i j}^{M^{5}} \frac{\partial u^{5}}{\partial \alpha_{j}} d \sigma \leq \\
& \left.\leq c\left(\Sigma \int_{\partial D}\left|\nabla u^{r}\right|^{2} d \sigma\right)^{1 / 2} \cdot\left(\int_{\partial D}\left|\frac{\partial \vec{u}}{\partial u}\right|^{2} d \sigma\right)^{1 / 2}\right) .
\end{aligned}
$$

Thus, $\Sigma \int_{\partial D}\left|\nabla_{t} u^{r}\right|^{2} d \sigma \leq c \int_{\partial D}\left|\frac{\partial \vec{u}}{\partial u}\right|^{2} d \sigma$.

For the opposite inequality, observe that, for each rys.j
 n. Because of lemma 2.5.

$$
\begin{aligned}
& \int_{\partial D} \operatorname{h}^{n_{i}} n_{i j}^{r s} \frac{\partial u^{r}}{\partial X_{i}} \frac{\partial u^{5}}{\partial X_{j}} d \sigma= \\
& =2 \int_{\partial D}\left(h_{e} n_{e} A_{i j}^{\Gamma 5}-h_{i} n_{e} A_{e_{j}}^{5}\right) \frac{\partial \mathbb{H}^{2}}{\partial H_{i}} \frac{\partial u^{5}}{\partial X_{j}} \text { da. }
\end{aligned}
$$

 and so.

$$
\int_{\partial D}\left|\frac{\partial \vec{u}}{\partial v}\right|^{2} d \sigma \leq c \int_{\partial D}|\nabla \vec{u}|^{2} d \sigma \leq c \sum_{\partial D}\left|\nabla_{t} \int^{r^{2}}\right|^{2} d o .
$$

Femark 2.7: At this point we can explain the difeerence between problem (2) Eor $k \neq \mu$ and for $k=\beta$. In the ase of problem
(2) with $\neq \mu, h_{i j}^{T S}(k)$ satisfy the hypothesis of corollary
2.6. On the other hand, when $k=\mu, h_{i j}^{r s} \frac{\partial u^{5}}{\partial K_{i}} \frac{\partial u^{r}}{\partial \%_{j}}=\lambda(d i v \vec{u})^{2}$
$\left.+\frac{\mu}{2} \underset{i, j}{\sum} \frac{\partial u_{j}}{\partial X_{i}}+\frac{\partial u_{i}}{\partial K_{j}}\right)^{2}$, which obviously does not satisfy the hypothesis of 2.6 .

Proof of Lemma 2.e日: Let $\vec{u}(X)=S \vec{g}(X):$ We will apply Corollary 2.6 to \vec{W}, winch we can in the case $\neq \mu$. We will do so in D and also in $D-$. First note that $T^{k} \vec{u}=\frac{\partial \vec{u}}{\partial v}$.
 Therefore; $\int_{\partial D} \mid\left(\left.T^{k \vec{X})}\right|^{2} d o \simeq \int_{\partial D} \mid\left(\left.T^{k \vec{k})}\right|^{2} d o\right.\right.$. But again using Lemma 2.3 (d), we see that Lemma 2.4 follows immediately: We have thus estahlished Lemma 2.4 and hence Theorem 2.1.

Section 3: Linear hydrostatics on a Lipsohitz domain We will continue utilizing the notation introduced in Section 2. We will discuss the so-called Stokes problem of hydrostatics.

We seek a vector valued function $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and a scalar valued function p satiseying
(4)

$$
\left\{\begin{aligned}
\Delta \vec{u} & =\nabla \mathrm{p} \\
\mathrm{di} v \overrightarrow{\mathrm{H}} & =0 \\
\vec{u} \mid \partial \mathrm{D} & =\overrightarrow{\mathrm{i}} \in \mathrm{~L}^{2}(\partial D, d \sigma)
\end{aligned}\right.
$$

Theorem 3.1: There exists a unique solution of problem (4) in D, with ($\vec{u})^{*} \in L^{2}(a D, d \sigma)$, and \vec{u} having non-tangential 1 imit $\vec{E}(P)$, for almost every $\mathbb{P} \in D D$. The solution \vec{U} belongs to the Sobolev space $H^{1 / 2}(\mathrm{D})$.

In order to sketch the proof of Theorem 3.1 (which parallels that of Theorem 2.1), we introduce the matrix of fundamental solutions (see the book of Ladyzhenskaya, [121) $T(X)=\left(\Gamma_{i j}(X)\right)$, where $r_{i j}(X)=-\frac{1}{8 \pi} \frac{\delta_{i j}}{|X|}-\frac{1}{8 \pi} \frac{X_{i} X_{j}}{|X|^{3}}$, and its corresponding pressure vector $\vec{q}(x)=\left(q^{j}(X)\right)$, where $q^{i}(X)=\frac{-X_{i}}{Q n|X|^{3}}$. Observe that $\Delta \Gamma_{i j}(X)=D_{X_{i}} q^{j}(X)$. Our solution of (4) will be given in the form of a double layer potential

$$
\overrightarrow{\mathrm{u}}(\mathrm{~B})=\boldsymbol{\operatorname { l g }}(\mathrm{K})=\int_{\partial \mathrm{D}}\left\{\mathrm{~T}^{\prime}(Q) \Gamma(\mathrm{K}-Q)\right\} \vec{g}(Q) d \sigma(Q),
$$

where $T^{\prime}(Q)$ is a matris of first order boundary operators. As we have already seen in Section 2 there are several possibilities for $T(Q)$. In the case of elastostatios any T ' Q) connected with a pseudo-stress ($k \neq \mu$) could have been used to formulate an elastostatic double layer potential. Let's make clear at this point the procedure for constructing double layer potentials.

We first look for a Neumann-type boundary condition, $\frac{\partial}{\partial v}$, for wioh the conclusion of corollary 2.6 is valid. We then apply $\frac{\partial}{\partial v}$ to each column of the funcamental matrix, $\mathrm{T}(\mathrm{X}-\mathrm{Y})$, as efunction of Y = This defines a matrix of kernels denoted by
$\{T$ ' $Q)[(\mathbb{S}-Q)\}$ with $Q \in D D$. The corresponding integral
operator is called a double layer potential.
In the case of Stokes problem, we will show that for functions, $\vec{U}(\mathbb{X})$, satisfying $\Delta \vec{u}(X)=\nabla p(\mathbb{X})$, an appropriate Meumann-type condition is

$$
\frac{\partial \vec{u}}{\partial v}=\frac{\partial \vec{u}}{\partial n}-p n .
$$

Having now chosen this boundary operator, we write down the corresponding double layer potential

$$
D \vec{g}(K)=\int_{\partial D} \ell T^{\prime}(Q) \Gamma(X-Q) \cdot \vec{g}(Q) d \sigma(Q) .
$$

where $(T \cdot(Q) \Gamma(X-Q))_{i \ell}=\sigma_{i j} Q^{\ell}(X-Q) \quad n_{j}(Q)+\frac{\partial r_{j \ell}}{\partial Q_{j}}(X-Q) n_{j}(Q)$. We also introduce the single layer potential,

$$
\vec{u}(x)=S \vec{g}(X)=\int_{\partial D} r(X-Q) \vec{g}(Q) d \sigma(Q),
$$

and observe that $\Delta S \vec{g}=\nabla P_{S} \vec{g}$ where

$$
\mathbb{P}_{S \vec{g}}(X)=\int_{\partial D} g^{e}(X-Q) g_{\theta}(Q) d \sigma(Q)
$$

Lemma 3.2: Let $\operatorname{gg} \vec{g}^{\prime}, S(\vec{g})$ be defined as aboves with $\vec{g} \in \mathrm{~L}^{2}(\partial \mathrm{D}, \mathrm{d} \sigma)$. Then $\vec{u}(W)=\mathscr{F}(\vec{g})(X)$ solves

$$
\begin{aligned}
\Delta \vec{u} & =\nabla p \\
\text { div } \overrightarrow{\underline{u}} & =0 \text { in } D \text { and } D_{-}=\text {Moreover }
\end{aligned}
$$

$$
\text { (a) } \quad\|(D \vec{g}) \pm\|_{L^{2}(\partial D, d \sigma)}+\|D \vec{g}\|_{H^{1 / 2}(D)} \leq c\|\vec{g}\|_{L^{2}(\partial D, d \sigma)}
$$

(b) $(\mathscr{g}) \pm(P)= \pm \frac{1}{2} \vec{g}(P)+p_{0} w_{0}-\int_{\partial D}\left[T^{\prime}(Q) \Gamma(P-Q)\right] \vec{g}(Q) d \sigma(Q)$
(c) $\left\|(\nabla S \vec{g}){ }_{+}^{*}\right\|_{L^{2}(\partial D, d \sigma)}+\left\|(\nabla S \vec{g})_{-}^{*}\right\|_{L^{2}(\partial D, d \sigma)} \leq C\|\vec{g}\|_{L^{2}(\partial D, d \sigma)}$
(d) $\left(\frac{\partial}{\partial X_{i}}(S \vec{G})_{j}\right)^{ \pm}(\mathbb{P})= \pm\left\{\frac{n_{i}(\mathbb{P})_{j}(\mathbb{P})}{2}-\frac{n_{i}(\mathbb{P}) n_{j}(\mathbb{P})}{2}\langle\mathbb{R}(\mathbb{P}), \vec{g}(\mathbb{P})\rangle\right\}$ $+\left(p \cdot v \cdot \int_{\partial \mathrm{D}} \frac{\partial}{\partial \mathrm{F}_{\mathrm{i}}} \Gamma(P-Q) \vec{g}(Q) \mathrm{d} \sigma(Q)\right)$, and
 $\mathbb{K} \rightarrow P^{ \pm}(\mathbb{R})$
$\mathbb{X} \in r^{ \pm}(\mathbb{P})$
where
$(T(P) \Gamma(P Q))_{i \ell}=n_{j}(P) \frac{\partial \Gamma_{i \ell}}{\partial P_{j}}(P-Q)-\delta_{i j} q^{\ell}(P-Q) n_{j}(\mathbb{P})$.
The proof of Lemma 3.2 follows, as the one in lemma 2.3. from [2]. See [12] for the case of 5 mooth domains. Thus, the proof of Theorem 3.1 reduces to the invertibility in $L^{2}(\partial D, d o)$ of the operator

$$
\frac{1}{2} \mathbb{I}+\mathbb{E} ; \text { where }
$$

$\mathbb{E} \vec{g}(P)=p \cdot v^{\prime} \cdot-\int_{\partial D}\left\{T^{3}(Q) \Gamma(P-Q) \vec{G}(Q) d o(Q)\right.$. As in section 2, this in turn follows from

Lemma 3.3: There exists a constant C, which depends only on the Lipschitz constant of ∂D, such that, for all $\vec{G} \in L^{2}(\partial \mathrm{D}, \mathrm{d} \sigma)$,

$$
\left\|\left(\frac{1}{2} I-\mathbb{E}\right) \vec{G}\right\|_{L^{2}(a D, d \sigma)} \leq c\left\|\left(\frac{1}{2} I+\mathbb{E}^{*}\right) \vec{G}\right\|_{L^{2}(\partial D, d \sigma)}
$$

and

$$
\left\|\left(\frac{1}{2} I+\mathbb{E}^{*}\right) \vec{g}\right\|\left\|_{\lambda}^{2}(\partial D, d \sigma) \leq c\right\|\left(\frac{1}{2} I-\mathbb{E}^{*}\right) \vec{g} \|_{L^{2}(\partial D, d \sigma)}
$$

We turn now to the proof of Lemma 3.3. The proof relies on two integral identities.

Lemma 3.4: Let \vec{h} be a constant vector in \mathbb{R}^{n}, and suppose that $\Delta \vec{u}=\nabla p$ giv $\vec{u}=0$ in D, and that \vec{u}, p and their deriwatiwes are suitably small at ∞. Then,

$$
\begin{gathered}
\int_{\partial D} h_{e} n_{e}=\frac{\partial u^{5}}{\partial X_{j}} \frac{\partial u^{5}}{\partial X_{j}} d \sigma=2 \int_{\partial D} \frac{\partial u^{5}}{\partial n^{2}} \cdot h_{e} \frac{\partial u^{5}}{\partial X_{e}} d o- \\
2 \int_{\partial D} p \cdot n_{s} h_{e} \frac{\partial u^{5}}{\partial K_{e}} d \sigma
\end{gathered}
$$

Lemma 3.5: Let \vec{k}, \vec{u} and p be as in Lemma 3.4. Then,

$$
\begin{aligned}
\int_{\partial D} h^{n} e^{2} d \sigma= & 2 \int_{\partial D} h^{r} \frac{\partial u^{r}}{\partial n}=p d \sigma-2 \int_{\partial D} h^{r} \frac{\partial u^{r}}{\partial X_{i}} \frac{\partial u^{i}}{\partial n} d \sigma+ \\
& 2 \int_{\partial D} h^{n} s \frac{\partial u^{5}}{\partial X_{j}} \frac{\partial u^{r}}{\partial M_{j}} d \sigma
\end{aligned}
$$

The proofs of Lemmas 3.4 and 3.5 are 5 imple applications of the properties of \vec{u}, p, and the divergence theorem.

An immediate consequence of Lemma 3.5 is

Corollary 3.E: Let \vec{H}, p be as in Lemma $3.4, \mathrm{D}$ a Lipschitz domein. Theñ: $\int_{\partial D} p^{2} d \sigma \leq c \int_{\partial D}|\nabla \vec{U}|^{2}$ do, where c depends only on the Lipsohitz constant of $\partial D=$

A consequence of corollary 3.6 and Lemma 3.4 is

Corollary 3.7: Let \vec{u}, p be as in Lemma 3.4, D aipschitz domain. Then,

$$
\int_{\partial D}\left|\frac{\partial \vec{u}}{\partial v}\right|^{2} d \sigma \simeq \Sigma \int_{\partial D}\left|\nabla_{t} u^{r}\right|^{2} d \sigma
$$

where, by definition $\frac{\partial \vec{u}}{\partial v}=\frac{\partial \vec{u}}{\partial n}-p n$.

Proof: Lemma 3.4 clearly implies that

$$
\int_{\partial D}|\nabla \vec{u}|^{2} d \sigma \leq c \int_{\partial D}\left|\frac{\partial \vec{u}}{\partial v}\right|^{2} d \sigma
$$

Arguing as in the proof of Corollary 2.6, using Lemma 3.4, we see that

$$
\int_{\partial D}|\nabla \vec{U}|^{2} d \sigma\left\{\left.c\left(\Sigma \int_{\partial D}\left|\nabla_{t} u^{r}\right|^{2} d \sigma\right\rangle+\| \int_{\partial D} p_{5} n_{D} \frac{\partial u^{5}}{\partial X_{Q}} d \sigma \right\rvert\,\right.
$$

Since \vec{H} is divergence free (i.e.g div $\vec{H}=0$)

$$
n_{5} h_{e} \frac{\partial u^{5}}{\partial X_{i}}=n_{5} h_{e} \frac{\partial u^{5}}{\partial X_{e}}-n_{e} h_{e} \frac{\partial u^{5}}{\partial X_{5}}
$$

It is easy to check that for 5 fimed the above operator is a tangential wector ield on u^{5}. From this fact and Corollary 3.6 we have the bound,
$\left.\| \int_{\partial D} P_{s} h_{s} \frac{\partial u^{r}}{\partial H_{e}} d \sigma \right\rvert\, \leq C\left[\int_{\partial D}|\nabla \vec{U}|^{2} d \sigma\right]^{1 / 2}\left[\Sigma \int_{\partial D}\left|\nabla_{t} u^{r}\right|^{2} d o\right]^{1 / 2}$. Hence $\int_{a D}|\nabla \vec{u}|^{2}$ do is equivalent to both $\int_{\partial D}\left|\frac{\partial \vec{u}}{\partial v}\right|^{2}$ do and $\sum_{r} \int_{\partial D}\left|\nabla \vec{u}^{2}\right|^{2} d \sigma$; and so these last two quantities are themselves equivalent.

We can now prove Lemma 3.3. In fact; if we set $\vec{u}=S \vec{g}$, Lemma 3.3 is an immediate consequence of Corollary 3.7 and the second part of (d) in Lemma 3.2 .
[1] A. P. Calderon, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sc. U.5.A. 74 (1977), 1324-1327.
[2] R. R. Coirmang A. McIntosh and Yo Meyerg L'intégrale de Cauchy definit un opérateur borné sur L^{2} pour les courbes lipschitziennes. Annals of Math 116(1982). 361-387.
[3] B. E. J. Dahl 3 erg. On estimates of harmonic measure, Arch. Rational Mech. Anal 65 (1977), 272-288.
[4] B. E. J. Dahberg. On the Poisson integral far Lipschitz and c^{1} domains, Studia Math. 66 (1979), 13-24.
[5] B. E. J. Dahlberg Weighted norm inequalities por the Lusin area integral and the non-tangential maximal functions for functions harmonie in a Lipschitz domain, Studia Math 67(1980), 297-314.
[6] E. Fabes, M. Jodeit, Jr, and M. Riviére, Potential technique ror boundary value problems on c^{1} domains, Acta Math. 141, (1978), 155-186.
[7] A. Gutieriez, Bomndary value problemfor Iinear elastostatics on c^{i} domains. Iniwersity of Minnesota preprint. 1980.
[8] D. Jerison and C : Eenigs An identity with applications to harmonic measures Bull. MMS. Vol. 2 (1980). 447-451.
[9] D. Jerison and G Eenig The Dirichlet problemin nor- 5 mooth domains, Annals of Math. 13 (1981), 367-382.
[10] D. Jerison and C. Eenig. The Meumanm prablem an Lipschitz domains, Bull. APS, Vol. 4 (1981), 203-207.
$[11]$ V. D. ${ }^{[1] p r a d z e}$ Three dimensional problems of the mathematical theory of elasticity and thermoelasticity, Morth Holland, New Yor聠, 1979.

```
[12] O. A. Ladyzhenskaya, The mathematical theory of
        wiscous incompressible flow, Gordon and Breach,
        New York, 1963.
    [13] J. Necas, Les méthodes directes en théorie des
        equations elliptiques, Academia, Prague, 1967.
[14] L. Payne and H. Weinberger, Mew bounds for solutions
        of second order elliptic partial differential
        equations, Pacific J. of Math. 8 (1958), 551-573.
[15] F. Rellich, Darstelling der eigenwerte von \Deltau + \lambdau
        durch ein randintegral, Math. Z. 46 (1940), 635-646.
[16] G: Verchota, Layer potentials and boundary value
        problems for Laplace's equation in Lipschitz
        domains, Thesis, University of Minnesota, 1982.
```

University of Minnesota
Minneapolis 55455 U.S.A.
(Based on C. Kenig's Lecture in the Seminaire
Goulaowic-Meyer-Schwartz, Ecole Polytechnique, May 1984).

