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P. R. \'li H iamson 

In reflection seismic ex-ploration we attempt to determine as much 

as possible about the nature of a region of the earth (near the surface) 

from the propagation of energy from some artificial source, e.g. an 

explosion located at or near the surface, to an array of receivers. At 

each receiver a record of displacement or velocity against time after 

source activation is produced for analysis. In most such work the 

source and receivers are colinear and a "'seismic line" is shot by 

interspacing the shotpo:int source location and receivers along the line 

(with a typical receiver sepa.ration being 25-50m.), and repeating the 

shooting process many times until shots have been made all along some 

desired length. For such a line the problem is assumed to be 

two-dimensiol~l. with no significant variation perpendicular to the 

vertical plane containing the line in its vicinity (the interpretation 

being subject to correction for large systewatic variations revealed by 

cross-lines). A typical length of seismic line in exploration work 

would be several km. long, made up of repeated use of an array 

containing 24-48 receivers with length up to ~1 km. 

Energy reaches the receivers either directly (surface waves) or by 

reflections from or refractions by changes in the earth's properties. 

The direct energy is not generally very informative, but in regions of 

the crust where it is stratified, i.e. composed of a series of 
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geologically distinct layers, the reflected arrivals may in principle 

permit estimation of the depth and/or shape of layer boundaries, the 

reflection coefficients at these boundaries, and the propagation 

velocities within layers. The former are of particular interest since 

we may hope to delineate possible stratigraphic traps, e.g. for 

hydrocarbons, but the velocities may also be of direct interest in 

geological discrimination, as well as being necesary for depth 

calculations. 

In typical conventional seismic data processing the receiver 

records are arranged into "common midpoint gathers" i.e. all traces 

which were generated with the same central point between shot and 

receiver are grouped together and ordered by shot-receiver offset; the 

traces in each gather are then effectively added together, after a time

varying correction has been made for offset, to produce a "stack 

section". This correction requires an estimate of the velocity field, 

a11d this is achieved assuming a locally one-dimeilsional structure 

(variation with depth only). The stack section, which is :still 

essentially a time section, is finally converted into a representation 

of the earth's strattfication (depth section) by "migration"; this 

includes correction for the effects of dipping (non-horizontal) 

reflectors. All this amounts to a crude but very robust inversion. 

However the search for increasingly subtle traps now requires more 

accurate, higher resolution inversion procedures that make full use of 

the large amounts of available data at only reasonable computational 

cost. It is to this end that the work described here has been directed. 
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2. Foln1!ard Modelling 

Mathematical modelling of the above process is usually based upon 

the elastic wave equation, generally under the assumption that the earth 

is isotropic. However, in our attempt to produce a more detailed 

velocity f:i.eld and thus improve the imaging of the reflectors, we work 

with a subset of the available data, the traveltimes of the particular 

arrivals from reflector(s) of :interest. We therefore simplify the model 

by assuming that a ray approximation is valid, i.e. that the dominant 

wavelength is less than the scale lengths of structures of interest. We 

further reduce the scale of the problem by considering only a single 

layer extending from the surface down to the one reflector of interest. 

Initially, while developing the inversion procedure, we assume that the 

reflector lies parallel to the surface at a known depth, so that we 

concentrate only on velocity recovery. Now, because traveltimes are 

line integrals of the reciprocal of the velocity ("slowness"), we may 

adopt a tomographic approach to the inversion. [Tomography literally 

means the production of pictures of slices through 3-D objects, so to 

that extent all. 2-D reflection seismology may be considered to be 

tomographic. However wi.th the advent of medical X-ray tomography it has 

acquired a more specific connotation in high-resolution imaging.] 

Initially the region under consideration is modelled as a 

collection of square cells of uniform properties; shot/receiver points 

(S/R's) are spared uniformly along the surface at 25 m. intervals, and 

this (somewhat arbitrary) separation fixes the minimum cell side. Thus 

a model 500m. long by 250mo deep divides into a 20x10 cell grid. We 

shall consider rays from each SIR to itself and all others, but as there 
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may be more than one possible ray path for a given shot-receiver pair, 

only the path corresponding to the shortest travel time is considered. 

The forward problem is to trace a ray from source to receiver via 

the reflector, and evaluate its traveltime (in fact the forward problem 

does not actually require the actual raypath but it is necessary for the 

inversion). For a general velocity field this is not easy to accomplish 

directly, leaving aside the fact that we do not really wish to attempt 

to implement the reflection process directly by the rule of equal angles 

of incidence and reflection on a potentially rather 

approximately-specified interface especially when it becomes more 

complicated than the flat, level surface considered here. Therefore we 

propose a scheme in which Fermat's Principle is directly applied. 

(Fermat's principle states that a physical raypath between fixed 

endpoints is such as to extremise (usually minimise) the traveltime.) 

A series of rays is timed one-way from each SIR down to the 

reflector so that their arrival points more or less span its length at 

intervals rather less than the cell side, and the traveltimes, arrival 

positions and take-off angles stored. A cubic spline routine is then 

used to produced continuous functions with continuous first derivatives 

for the traveltime and take-off angle in terms of the arrival position's 

horizontal coordinate, x. Then to trace the first arrival ray between 

the ith and jth SIR's we add their two time functions, ti(x) and 

t.(x) , and find that x which this sum is minimum. The spline 
J 

functions now yield a traveltime and the take-off angles from which the 

ray may be traced (in two parts). 
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We should Ilote at this point that the square-cell parmneterisation 

proposed gives rise to the possibility of rather unphysical effects, 

which may cause problems, due to abrupt changes in properties at cell 

boundaries, These problems ana to some extent reduced by the 

interpolation procedure In conjunction with the exercising of some care 

in selecticnr1 of one-w-ay rays for the interpolation. but in severe cases 

we adopt a more sophisticated triangular-cell discretisation, with 

velocities fixed at the vertices and determined elsewhere by linear 

interpolations over each celL Thus velocity is continuous at cell 

boundaries and the 'e:Hects of division into cells are reduced (but still 

apparent due to gradient discontinuities)" 

3. Inversion: Prelimill'E!lries 

We may formulate the forward-,,modelling process by the equation 

d g(s) , 

g being the vector functional generating the travel times for the 

velocity model s. Specifically 

r s de 
JR. 

l 

. th . 
1 raypath, where R1 denotes the integration to running over the 

itself dependent upon s. In the case of the square-cell 

parameterisation the integration becomes a sum ; 

IJ, 2 . . s. 
lJ J 
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where !! . . is the length of the element of the in the .th ray J 
:lJ 

ceiL and s. is the velocity in the cell. Since depends on 
J 

s. , the problem is non-linear (and in fact the form of the dependence 
J 

means tl:lat g is only once differentiable) but it may be locally 

linearized. In particular we approximate the equation 

d g( 

where d Is the set of observed times, by expanding g(s) to first 

order about some starting model 

g(s) 

s as 
0 

2 Is-s I ) 
0 

where G .. = Bg./Bs. 
lJ 1 J 

is a component of the Frechet derivative of 

This gives the linear system 

(1) 

so 

where Gt is some suitable generalised inverse or damped least squares 

inverse of G. [Note that in the square-cell case it can be shown, 

using Fermat's principle, that Gij = '\r] 

Unfortunately G quickly becomes very large as the size of the 

model increases, and so for this application direct inversion is 

impractical (as well as inaccurate if the non-linearity is significant 

and s 0 is not close to s). We therefore favour a minimisation 
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aproach a.nd, following rrru1.y authors (e.g. Tarantola and Valette 

[4]. consider a least square statistic in which "data" and "model" are 

placed on an equal footing. In particular we seek to minimize the 

statistic 

s 1 T -1 - (x-x ) C (x-x ) 
2 0 X 0 

over the parameter vector x (~). Here Cx is an a priori covariance 

matrix of the form 

c 
X 

[
cdd 
c sd 

~ds ] 
ss 

Cdd is the expected covariance natrix for the observed travel times; 

C58 is that for the velocity parameters. reflecting the scale length of 

expected variations. As there appears to be little justification for 

assuming cds c!d) to be non-zero, these blocks are discarded, 

giving the familiar form 

(2) s 1 f T -1 T -1 } 
2- )(d-d) cdd (d-d )+(s-s ) c (s-s ) 

l 0 0 0 ss 0 

The above formalism also places d • the observed times, and 
0 

s 
0 

the starting or prior model, on &1 equal footing, so that we may ex~ect 

the minimum to locate a compromise between s 0 and the model implied by 

d (just as a generalized inverse would normally compromise between 
0 

apparently inconsistent elements of d0 ) . 

.!Hnimisation of the S statistic given above subject to the 

constraints d = g(s) way be achieved using lagrange multipliers, 

giving 
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{3) 
T -1 

s = s + c G cdd {d -g{s)) . 
0 ss 0 

Typically we simplify by taking Cdd = a~I and Css = a~s where R 
s 

is a "smoothing matrix". Furthermore if, as is generally the case, s 
0 

merely represents a starting model based on vague prejudice rather than 

definite a piori information. we use the following iterative algorithm : 

T s + pR G {d -g{s )) n s o n 

i.e. we update the s0 used in S after each step. This is 

effectively a non-linear generalisation of Landweber iteration so the 

model term in S acts merely to limit the step length in the direction 

given by the solution of the linear problem. In the purely linear case 

when g{s) = Gs • and taking Rs = I {this formalism ran always be 

achieved by appropriate 'coordinate tranformations' if R is 
m 

non-singular). it can be shown that provided 2 M < 2/amax. where a max 

is the largest singular value of G . such an iterative process will 

eventually converge to a solution such as that in Eq.1. above. 

if we write 

d - g{s ) 
0 0 

d - Gs 
0 0 

= I a.u{i) 
i=1 1 

with N the number of data, and the u{i) being the data-space 

Indeed, 

singular vectors of G with corresponding model-space singular vectors 

v{i) and singular values a . • then after n iterations we get 
1 

s = s n o 
2 n (i) {1 - {1-~.) )/a. v 
1 1 



Here p is the rank of G. 

The factor 
. 2,n, 1 1-p.:Y., i· a. 

1 1 
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is a damped approximation to the 

factor l/u. appearing in the generalised inverse G1 ; it prevents 
1 

exc;::;ssive noise arnplification in srrall-a components" After a reasonable 

number of iterations with a sensible choice of 1-1 (left open by the 

uncertainty of the solution is similar in form to th.e darnped 

least squares inverse of t·-!arquardt [2]. Thus the number of iterations 

directly parameterises the tr·ade-off between resolution and pcctrameter 

variance e.g. Backus and Gilbert [1]). 

Of coun>e l.n our ncn-linear problem this result will TlOt carry over 

quantitatively, but we nJay expect tl:m.t i.f the non-linearIty is mild 

erH:Jugh t:hen the behaviour is qualitatively similar~ The1reforre we l1ave 

BJ..'1 in:~veiL"'sion seherne ~~J.d.ch i.s computationall:sv facile m.td. as rohtJ.st as we 

choose to make t, Tests on synthetic data show that is :is successful 

i:n dealing d.l the J_:'l:rohlem ur:tder consideration~ i.e. the imaging of 

vertical.ly-;rar:i["tng velocity fields above a reflector of known shape 2md 

posttion, and will also give some idea of lateral variattons if a 

sufficiently wide range of offsets is used. A stmiLlar aigori thm also 

succeeds with the complei'IIent::cn·y problem of ascertaining ref lector depth 

and shape beneath a }mown velocity field despite the increased 

non·-linearity and enJ-JB.nced rilffects of the non-differentiability 

mentioned ea1· Her. The reflector is characterised by depth points w:i th 

a 25m. horizontal se]:.."laration i.e. bet,·ifee:n each column of cells in the 

square-cell veloei model) joined by s c:raight line segments; the spline 

inte1·polation is relied upon to smooth out the effects of the gradient 

discont:i.nui tf,ss of this discretisation. 
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4. Inversion: Full Problem 

Unfortunately naive application of the above inverse scheme to the 

problem of simultaneous recovery of the velocity field and the 

depth/shape of the underlying reflector proves less successful even 

after we have attempted to deal with the problem of having two sorts of 

parameters which are dimensionally inhomogeneous by dividing each type 

by a reference value. (This renders all parameters dimensionless and of 

roughly equal amplitude if we choose actual reference values and is the 

simplest, but not necessarily the best, way of dealing with what I shall 

refer to as the "unit problem" in further discusions below.) In fact we 

observe in a typical attempted rconstruction that the correct systematic 

variation of the velocity field is only recovered above roughly half-way 

up the model, the recovery point is higher at the ends and deeper in the 

middle, and the range of variation is generally somewhat reduced. Below 

half-way there appears to be little or no recovery of the velicity field 

at all. Furthermore the estimated reflector position corresponds to the 

best data fit obtainable with the reconstructed velicity field, i.e. the 

estimated reflector attempts to compensate for failings in the estimated 

velocity field. 

The reason for this appears to be that velocities can only be 

determined for'those cells transversed by rays whose reflection pointR 

are fairly widely spread over the reflector, and thus that are not 

sensitive to the local behaviour of the interface. On the other hand a 

cell near the reflector will typically be transversed by rays which only 

meet a small region of the reflector in the neighbourhood of the cell, 

with the result that errors in a reflector depth point may be more or 

less cancelled by appropriate errors in the estimates of velocity in 
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cells immediately above it. To put this another way, the fact that 

similar changes in the model-generated data g(s) can be produced by 

ch..anges in either the velocity or depth parameters raises the 

possibility that in the parameter space the set of minima for S is not 

a single point but a connected region. In the linearization this 

nonuniqueness manifests as the appearance of nearly zero singular values 

that represent local depth/velocity field trade-offs. The resultant 

indeterminancy is more serious than that encountered in problems that 

estimate the velocity field alone since the usual methods of dealing 

with it (choice of starting model, smoothing, etc.) do not resolve it. 

Also the actual effect on the solution model of incorrect estimation of 

such a component is more significant than the effects induced by such 

errors during modelling of the velocity field alone; the latter usually 

consist only of high frequency noise or "edge effects". 

The method of dealing with this indeterminacy problem which we 

propose is to run the inversion in several stages. In the first stage 

the parameterisation is one large cell with a straight reflector defined 

by its depth at each end. At each successive stage the parameterisation 

is made finer (with cell sides decreased by a factor typically in the 

range 2-4). until the original cell size is reached or until no further 

significant improvement in fitting the data is obtained. This approach 

offers the hope that, even if there are near zero singular components in 

the final model linearization, the previous, better-determined, stages 

will at least have produced good starting models. Thus we define 

progressively expanding subspaces of the final-parameterisation model 

space within which the inversions are sought. 
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However we now run up against the chief problem of descent methods: 

their slow convergence rates. Previously, in the velocity-only problem, 

we were not bothered by this since: 

(a) Although it is slow in terms of numbers of interations in achieving 

(near-)complete convergence, as each iteration is itself so cheap it is 

still quicker than dtrect inversion in achieving a reasonable level of 

convergence for large problems. 

(b) Its failure to recover small singular components quickly is 

perceived as an advantage considering the likely effects of noise an.d 

non-linearity on such components. 

However, in the velocity/depth problem the data misfit in early ru1d 

intermediate stages is likely to be more strongly affected by 

misparameterisation than by noise and so we look for the ma.,'l:imum rate of 

convergence that is reasonably possible. TI1.erefore we seek something 

quicker than our basic descent scheme which retains, as far as possible, 

its advantages (stability and overall computational facility), The 

result is the following family of subspace search methods. 

Suppose that s is the vector of velocity parameters and b is 

the vector of reflector parameters, so that 

is the full vector of model parameters. We first consider a local 

quadratic approximation SQ to S expanded about IIi 
0 
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v2s(m ). Straightforward minimisation of 
0 

Hom -e 

yielding the standard least squares inverse. 

In the expru::tding subspace algorithm we restrict om to an 

n-dimensional parameter subspace defined by the n vectors, 

where n << M the number of model parameters. Thus 

(i) 
a . 

Minimisation of SQ is now carried out with respect to the 

.th l . (i) •. writing A forthematrixwhose 1 coumn:~.sa , p.e . 

and a for th.e vector whose 

component is a. 
J 

we get 

where 

. th 
J 

, and 

Le. a "projected" set of equation.s. This has the adva.ntage that the 

rnatrix ATHA is much smaller and, H the a(i} are well-chosen, 

better-condit:!.oned than H:. The system of a(i) suggested by Shilling 

[3] seems as good as, if not better thru1, any other 
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1. 

2. i ~ 1. 

where the 13i are normalizing constants. If n = 1 then this method 

reduces to steepest descent. If n is chosen so that n ) 1 iterative 

application of this higher-order approximation scheme results in more 

rapid (in terms of both number of iteration and CPU time) convergence 

towards an acceptable solution. 

We now redefine our statistic S , simplifying slightly and 

allowing for both a priori lmowledge and further step-length lind tat ion, 

as: 

s 

where llllc is the current model and, !lll0 the a priori one. Now 

controls damping via the a priori information and is a.n addi tion..al 

step-length restraint. We have temporarily neglected the possibility of 

smoothing since: (a) it would not really be appropriate for the larger 

cells in all but the last one or two stages, and (b) it requires 

for strict implementation. (To avoid inversion of Rm we could apply 

ad hoc smoothing near the end of each step.) Now 

9(m) 

H(m) 
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Unfortunately V•GT is non-existent in rrany places (since G 

varies discontinuously irrespective of the parameterisation), at""ld even 

when it does exist it is well-nigh impossible to calculate exactly. 

Therefore we have approximated those parts of it that we can estimate 

and discarded the rest. Note th..at discarding it altogether would amount 

to merely using the linear approximation to g(m). 

In developing ou:r subspace approach we have temporarily ignored the 

problem of choice of units mentioned above, i.e. that the direction of 

e is dependent upon the effective choice of relative unit magnitudes of 

the two types of parameter : 

[~] 
so if we change units as follows b' 

j 
~bj then in the new 

units 

G'(s',b') 

so that in general 9' is not colinear with e. Similarly 

H 

so the relative magnitudes of the blocks will vary with unit choice, and 

therefore the recommended step. However, since the various possible 



130 

B's all lie in a plane defined by the model vectors 

and Tig [~] ' 

the problem is solved for the descent method by connecting it into a 

two-dimensional search in this plane, using these as the search vectors. 

The result finds the minimum of SQ in this plane, i.e. effectively 

chooses units so that the contours of SQ in this plane are circular 

and the descent direction points to the minimum. Similarly we may 

conduct a unit-independent second order search by adding four directions 

corresponding to H9 : 

(appropriately 
orthonormalised) 

The scheme outlined above has shown considerable potential for 

improvement over the fixed-cell descent scheme in synthetic tests, but 

the solution shows some dependence on the actual configuration of the 

cells in the intermediate stages, which is clearly undesirable. Work is 

in progress to attempt to overcome or avoid this problem: one possible 

idea is to use some kind of variable scale-length smoothing, but as yet 

no tests have been carried out on this. 
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