THE OBLIQUE DERIVATIVE PROBLEM FOR EQUATIONS

OF MONGE-AMPERE TYPE IN TWO DIMENSIONS
John I E Urbas
1. Imtroduction

In this paper we are concerned with the existence of convex
classical solutions of the oblique derivative problem for equations of

Monge—Ampére type,

(1.1) det D2u = f(x,u,Du) in Q ,
(1.2) Dﬁu = ¢(x,u) on 8Q .

Here Q 1is a uniformly convex domain in R2 , f , ¢ are prescribed
functions on  x R x R2 , 31 x R respectively with f positive, and

B is a unit vector field on 80 satisfying
(1.3) Bev >0,

where v 1is the inner unit normal to 3802 . This problem, and in
particular the case [ = v , was recently studied for domains ( C R" ,
n 2 2, by Lions, Trudinger and Urbas [5], who proved a priori
estimates for the derivatives up to second order for convex solutions of
(1.1), (1.2) under suitable regularity and structure hypotheses on

Q,f ., ¢ and B . In particular, the second derivative estimate in
[5] requires B = v , and it does not appear that the method used there
can be modified to work for more general [ . However, if the domain Q

is a ball and fl/n is convex with respect to the gradient variables,



the argument given in [5]., Section 4 can be used to obtain second

derivative bounds for more general fJ .

Here we derive second derivative bounds and existence theorems for
convex solutions of (1.1), (1.2) in two dimensions. This is still an
open problem in higher dimensions, except for the special cases
mentioned above. For the main existence theorem, which is stated below,
we shall assume that Q is a uniformly convex domain in R2 with

C2,1 1.1.5 2 . . . R
boundary dQ € , £ € CT T (RAR™) 1is positive and nondecreasing in
z for all (x.z.p) € GxRAR> , ¢ € Cl’l(BQxR) is nondecreasing in =z

with
(1.4) ¢z(x.z) 2 7

for all (x.z) € 82 x R , for some positive constant 7o and

B e Cl'l(aQ,R2) is a vector field satisfying

(1.5) Bev > o Bl =1 on 80
and
(1.6) [—25iﬁj(x) + ¢z(x,z)6ij]TiTj 2 By

for all (x,z) € 82 x R and all directions T tangential to 30 at
X , where Ko + By are positive constants and & = (61.62) denotes the

tangential gradient operator relative to 80 given by

5i = (Bij - vivj)Dj .
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Without loss of generality we shall assume that [ , ¢ and v have

been extended to be of class Cl'1 on O with (1.4), (1.5), (1.6)
holding near &0 . Furthermore, we assume the structural inequality
(1.7) £(x.N,p) < g(x)/h(p)

for all (x,p) € Q x Rz , where N 1is a constant and g € Ll(Q) ,

1

loc(IR2) are positive functions satisfying

helL

(1.8) Jﬂg < Im2 h.

THEOREM 1.1 Under the above hypotheses on the domain 0 and the
functions f , ¢ , B , the boundory value problem (1.1), (1.2) has a
unique convex solution u € Cz'a(ﬁ) for all a <1 .

If £, ¢ ,pB and 82 are c’ , then the solution u € Cm(ﬁ) , by
virtue of standard linear theory [2]. Two special cases included in
Theorem 1.1 are the standard Monge Ampére equation

2
(1.9) det D"u = f(x) .
and the equation of prescribed Gauss curvature

(1.10) det D%u = K(x)(1+IDul?)?

for which the conditions (1.7), (1.8) take the form
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(1.11) IK(W .

The condition (1.11) is also necessary for the existence of a classical

solution (see [1], [7]).

The proof of Theorem 1.1 depends on the method of continuity (see
[2]. Theorem 17.28) which requires the a priori estimation of solutions
in the Holder space Cz’a(ﬁ) for some a > 0 . The conditions (1.4),

(1.7), (1.8) and

(1.12) Bev >0

enable us to prove a bound

(1.13) suplul { C,
Q

(see [5]. Theorem 2.1), while (1.5), (1.13) and the convexity of u

imply a gradient bound

(1.14) suplDul < C ,
Q

{see [5]. Theorem 2.2).
Once the second derivatives are bounded, the equation is uniformly
elliptic, so we can apply the theory developed in [3]., [4] to deduce a

second derivative Holder estimate

(1.15) [0%ul,.q < C
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for some a > O . As noted in [3], the estimate (1.15) can be proved
much more easily in two dimensions than in higher dimensions, and in the
two variable case (1.15) is in fact valid under our somewhat weaker

regularity hypotheses.

The estimation of the second derivatives is carried out in the
following section. Some parts of our argument are similar to that of
[5]., but for completeness we include all the details.

Unless otherwise stated, our notation follows the book [2].

2. Second Derivative Bounds

As a preliminary to our main result, we first consider the special

case of (1.1), (1.2) when f(x,z,p) = f(x) .

THEOREM 2.1 let Q be a 02'1 uniformly convex domain in IR2 and

u € C4(Q) n Cz(ﬁ) a convex solution of

(2.1) det D2u = £(x) in Q.
(2.2) DBu = ¢(x,u) on 80 ,

where f € Cl’l((_)) is positive, ¢ € cl'l(an x R) is nondecreasing in
z, and B € cl’l(an . IR2) is a vector field satisfying (1.5) and

(1.6) . Then we have

(2.3) suplDzul <C,
0



where C depends only on p. . g, , lul, o . llog £l o
(0] 1 1:Q 1,1:Q

and 0 , where M = suplul .

loly 1ia0x(mm) © "Pli1;00 -

PROOF We start with some preliminary identities. Writing the equation

(2.1) in the form
(2.4) F(Dzu) = log det %y = g(x)

and using the notation

ij.kl, . &°F

Fid(r) = 25_ (r) . F (t) = 575

ij ij% k1
we have
Fij - uij
(2.5)
pli Kl _ _pikpdl _ ik g1
where [ulJ] is the inverse matrix of D2u . Since u 1is convex, F
is a concave function of D2u . Furthermore, we have Dﬁqu 2 0 for any

direction ~« , so it is sufficient to bound quu from above. To do

this we consider the function v on @ x S1 defined by

2
v{x.v) = quu(x) + Klx|® ,



177

where K 1is a positive constant to be chosen. Using the concavity of

F , we compute

Flip. v = Fidp . u+ axFls, |
ij ijvy ij
_ ijkl
(2.6) = -F DijﬂuDklvu +D g+ 2KT
2 2k - C ,
where
(2.7) J = trace [Fij] > 2f_1/2 = 2.2 -

Fixing K sufficiently large we therefore obtain FlJDijv 20 in Q,

so by the maximum principle, v attains its maximum on 3dQ .
We now proceed to estimate the second derivatives on 380 .

Computing the tangential gradient of the boundary condition (2.2) on

dQ , we obtain
Dyu 8fy + By 8Du = B¢ ,

so that if 7T is any direction tangential to 6Q at any point

y € 80 , we have
(2.8) DT u(y) = Tiéi¢ - Ti(ﬁiﬁk)Dku .
and hence,

(2.9) ID_,_Bu(y)l <C.



Next we bound Dv u on 380 . Since we shall also need this for

B

thebgeneral case f = f(x,z,p) . we carry out the argument for the
boundary value problem (1.1}, (1.2). Taking the logarithm of the
equation (1.1), and differentiating in the k-th coordinate direction,

we obtain
(2.10) FijDijku =g g, Du + g, Dy -
Using (2.5) and (2.10) we therefore obtain, for

h = Bkau - o(x,u) ,

ij _
F Dijh = Bkgxk + ngkau + gpiDih

(2.11) - gpkau Di Bk + gpiDigp
ij _pij
+ 2DiBi + F (DiJ.Bk)Dku F Dij‘p .
so that
v y i
(2.12) IF Dijh gp'Dth < C(1+7) < CT .

1

Consequently, by [2], Corollary 14.5, we obtain

suplDuhI £C,
aQ

and therefore
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(2.13) sup|D _-ul < C .
an P

Combining the estimates (2.9) and (2.13) we obtain

(2.14) sup ID—:BU(X)I <C.
XEAN

7681

We note that {2.14) holds in the more general case f = f(x,z.p).

To complete the estimation of the second derivatives we need to use
_fhe fact that v attains its maximum on 80 . Let us therefore assume
that v attains its maximum at a point Xq € 80 and a direction
£ € S1 . Let n € S1 be a direction normal to § . We may suppose
that at Xo We have

E°» 20 and 7°v 2 0 .

Furthermore, if we now take § ., 13 as the coordinate directions, the

Hessian D2u is diagonal at X, with maximum eigenvalue D§§u , and

the equation (2.1) takes the form

2
(2.15) Dggu D u = (Dpu)” = £ .

Let a , b be constants, a2 + b2 =1 , such that at xo ,

(2.16) v = bf + an

and let
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(2.17) T=af - by,

so that T is tangential to 80 at X - Since €°v , °v 2 0 at

Xq » We see that a,b > 0 . Let c¢,d be constants with 02 + d2 =1,
so that at X
(2.18) B=cE+dn.

=0,

We then have, since Dfnu (xo)

Dﬁﬁu(xo) = c2D§§u(xo) + dznm“(xo)
2 c2D§§u(xo) .

so by (2.14), fou(xo) is bounded provided 02 is bounded away from
zero. We therefore need only consider the case that |[cl| is small, say
el € B for a suitably chosen positive constant c

0 -

Since v(x.f) attains its maximum at Xy » We bave

(2.19) D&.ﬁu(xo) <C
and
(2.20) fofu(xo) <C.

The main step now is to show that these two inequalities imply

(2.21) y<c.

D-r-rﬁu (xo
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provided DEEu(xO)

sufficiently small. This is where we use the two dimensionality. The

is sufficiently large, and |cl| = IE-B(XO)I is
required bound for D§§u(xo) then follows from (2.21}).

To prove (2.21) we first differentiate (2.1) in the directions
€ . m . Noting that Dfnu(xo) = 0 , we obtain at Xg -

_ f

(2.22) D. u = D,...u
B’ " Dggh T () EEF

and

(2.23) D u==21—-—% _p _u.

Furthermore, at x. we also have

0

D gu = a2D§§Bu - 2abD. ou + b2DTmﬁu i

Making use of (2.16), (2.17). (2.18), (2.22) and (2.23), we then obtain

at XO .
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. = - - 2abdD
(2.24) DTTBu a2D Y 2abcD§§ u - 2a e
+ bch u+b2dD_ u
Em ™

a2D u = 2abcD

i}

EEn"

(2abd-b> OIF -5— —— Dggeu }
EE (D§§ u)

+
u‘[\?
ﬂ.-

h’!

'ﬂ'! Hw

o~

U

=y
c:
S

N
ry
Lyl
3
e

+

[%gc (‘D‘;j)‘i] Deggn

J—ﬂ-[bzcn £ + b2dD_f — 2abdD f] )
3

+

DE £ n 3

Next, using (2.16), (2.18) and (1.5), we obtain

Bev=n0bc+ad) Ho o

so that

ad 2 py = be 2 pyy - lel 2 py/2
provided
(2.25) lel ¢ By/2 -

Assuming henceforth that (2.25) is satisfied, we obtain, since

a2, (1 ,2nd a0,

(2.26) B2 $ad <1,
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and therefore also

abc

(2.27) 0 < 3 < /.10/2
and
(2.28) 0<abd <1.
Next we have

2

2_ % _zabe  Ho Mo el
2 d 4 2 i
D D 0
so that if we further assume
(2.29) lel < e, = u3/32
: =70 T 7O

and

8if|

2 0:;0
(2.30) (fou(xo)) 2 5 ,
Ho
then
2 ;12

(2.31) 0¢a®- I ey,
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Using the estimates (2.19), (2.20), (2.27), (2.28), (2.30) and (2.31) in

(2.24), we then obtain (2.21) as required.
Finally, we need to show that (2.21) implies a bound for

D§§u(xo) . Computing the second tangential derivatives of the boundary

condition (2.2), we obtain
(2.32) Dyus, 5.6 + 5,58 Du+ 5606 Du+pbsbsDu=b50.

and hence at Xg »

(2.33) D"r-rﬁu 2 - 2(6iﬁk)Djku-riTj + (bivj)'ri'ervBu

+ ‘pzDijuTiTj -C.
Using (2.13), (2.21) and (1.6) in {2.33) we then obtain
(2.34) D_r_ru(xo) <C.
Now writing
£ =ar+ BB(xo) .
we have
lal , Ibl < C

by virtue of the obliqueness condition (1.5), and hence, using (2.14)

and (2.34),
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(2.35) Degu = 2%D_u+ 2ED_gu + b2DB[3u <c
at Xq - We therefore deduce a bound for sup v , from which we obtain
1
QxS

(2.3). The proof of Theorem 2.1 is therefore complete.

Combining the estimates (1.13), (1.14), (1.15) and (2.3) we obtain

a global estimate

(2.36) laly 4.0 < C

for convex solutions u € C4(Q) n C3(§) of the boundary value problem

(2.1), (2.2), where « € (0,1) and C depend on f , ¢ , B, @ and

Ty where
(2.37) - > 7
for some positive constant o - Using the method of continuity [2],

Theorem 17.28, and a standard approximation argument to overcome the
requirement u € C4(Q) n CB(ﬁ) in Theorem 2.1, we can then infer the

following special case of Theorem 1.1.

THEOREM 2.2 Let Q be a 02’1 uniformly convex domain in R2 s

fe Cl’l(ﬁ) a positive function, ¢ € cl'l(anxm) satisfy (1.4) and
B € cl’l(ao,mz) satisfy (1.5) and (1.6). Then the classical boundary
value problem (2.1), (2.2) has a unique convex solution u € C2’a(§)

for all a <1
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The arbitrariness of the Holder exponent o follows from standard
linear theory [2]. We shall make use of Theorem 2.2 in the derivation

of the second derivative bound in the general case.

THEOREM 2.3 Let Q be a 02’1 uniformly convex domain in le and

u € C4(Q) n CB(ﬁ) a convex solution of the boundary value problem
(1.1), (1.2), vhere f € Cl’l(ﬁlelez) is a positive function such that

g = log f satisfies
(2.38) lg(x.,u.Du) | + IDg(x,u.Du)| + ID%g(x.u.Du)l < p .

¢ € Cl'1B0xR) satisfies (1.4), and B € C''1(80,R%) satisfies (1.5)

and (1.6). Then we have

(2.39) suplD?ul < C ,
Q

where C depends only on w , Bo « By o 7 lul

0’ 1:0
Iq)ll,l;BQx(—M,M) . lml,l;é‘ﬂ and Q , where M = svéplul .

PROOF Let w € 02’1(5) be a uniformly convex defining function for Q

,ie., w<O0 in @, w=0 on 82, IDwl #0 on 80, and
6I < D"w ¢ 61
for some positive constants 6 , 86 . From (2.38),

f(x,u,Du) 2 50 =eH .
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Now, by Theorem 2.2, for each p € (0,1) there is a unique convex

function V¢ = wp € Cz(ﬁ) solving the boundary value problem

(2.40) det D%y = 6,/2 in Q.

(2.41) DB¢ = o(x,y+pw) - pDBw on &0 ,

and using Theorems 2.1 and 2.2 of [5]. and Theorem 2.1, we obtain

(2.42) sup Iy |

<A
pe(0,1) P 2:0

for some positive constant A . From (2.42) and the fact that 60 >0,

we also have
(2.43) D™y 2> Al

for some positive constant A , independent of p € (0,1). Letting

¥ =¥ + pw , we obtain
det D < det D2y + C(pA + p2) .
so fixing p > 0 sufficiently small, we have
det D) < 5, in Q.

By the mean value theorem, the function u - ¢y satisfies an elliptic

differential inequality

ij = .
a Dij(u Y) 20 in Q,
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and by (1.2), (1.4) and (2.41)
Dﬁ(u-@) = v(u-y) on 80

for some function ~ 2 7o - We therefore deduce from the maximum

principle that u -y < 0 in Q , and hence also that Dﬁ(u-\T/) <0 on
80 . Thus

(2.44) Dﬁ(\p—u) 2 —pDﬁw 2 op 6n a0

for some positive constant o .

We now consider the function v on 0 x S1 given by
v(x,7) = ea(‘P_u)D u ,
Y

where € C2 (@) is the unique convex solution of the boundary value
problem (2.40), (2.41) with p € (0,1) fixed as above, and a is a
positive constant to be chosen. As before, we need to bound v from
above. Let us first assume that v attains its maximum at a point

Xg € () and a direction § € S1 . Differentiating v = v(°,§) ., we

obtain
D.v D, ..u

(2.45) Ao 8 L op (vu)
v D§§u i

and
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D..v D, vD v D..
(2.46) _‘1,3_ - 2 _ﬁlguf_ _EL_KL + aD; (\P—u)
v §§ (fou)

Using (2.5) we therefore obtain

~a(y-u) i 1] 1 i)
(2.47) e F Dijv > F Dijffu ngu F Difquj§§u
+ aDEEuFijD..(T—u) 1
ij
2 Dgeg + F i, b ST i
+ aMngu 2aD§§u

by virtue of (2.43). Next, since Dv(xo) =0, we have at x,

fog = ff + 2gE ,g.u + 2g§P §u tg, (D u)
* 2g,piDguligt * BpypiDipiD
+ gZD§§u + gPiDiffu
2 .2
-C(1+[D%ul®]) - agPiDi(\p—u)ngu

[\

> —c(1+10%ul?] - CaD

. . 2 s
Furthermore, by a rotation of coordinates we can assume that D™u is in

u .

. t x
u SO a 0

diagonal form at X o with maximum eigenvalue D we

39
have

1 ij ik_j1
= F7YD _uD, < FFUFY D, . ubD
Degu iEEjEET ° 136 kIE"

Next, since we are in the two variable case, we have

(2.48) g =
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by virtue of (2.38). Using these estimates in (2.47), we therefore
obtain at xo .

0 a)\e-“(ngu)z - c(1+I0%ul?) - CaDcu

from which a bound for fou(xo) follows by choosing «a sufficiently

large. An upper bound for v(xo) then follows.

We now consider the case that v attains its maximum at a point

Xq € 90 and a direction § € S1 . Assuming as before that § » v 2 O

at Xy - We have
va(x ,E) £ 0, Dﬁv(x .€) <0,

from which we obtain

2.49 D < - D < CD
(2.49) geg® < 7 Dpl¥uDgen < Dgeu
and
2.50 D < —aD D -aopD
(2.50) gep® ¢ ~eDp¥u)Dggu < eopDegu
at X, . by virtue of (2.44). Since fou is the maximum eigenvalue of
D2u at Xg for any direction <« , we have at X o
Df
¥

1
D§§ul - fou lf'r+sz'ru * fP'iDi'vu £cC.



191

We therefore deduce, in the same way as in Theorem 2.1, and using the

notation introduced there, that at X

r 2
(2.51) 2 b7t 2abc

-r-rBu < la™- (D—~—§Eu)2 - g ]foﬁu
2

L+ [2abe” 2abdf}D u+C
S RPRG) 333
133
(2 b 2abc]

 lo° - == - 2

T o 0 Peep"

+ C1 [1 + 02D§§u + ]-)-;EG-]

by virtue of (2.49), since the coefficient of D...u is nonnegative and

1333
bounded, assuming that (2.25) is satisfied. Assuming now that

(2.52) lel < w64
and
(2.53) @.ux))2 > u = 16
egt (X)) 2 Mg = =5~
Ko

we obtain

u2 2 #2

0., 2 b 2abc 0
(2.54) gat - =5 -EE 1+,

2
(fou)

and hence, assuming further that
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3 2
(2.55) lel ¢ o = min{’;—g . g—cq;aap]llz} .

we finally obtain, upon using (2.50) in (2.51),
(2.56) DTTBu(xo) C.

A bound for DTTu(xo) , and then also for fou(xo) . follows exactly as
before, as does the case l|c| > g - We have therefore bounded

sup v , from which the second derivative bound (2.39) follows, so the
ﬁxS1
proof of Theorem 2.3 is complete.

Once we have bounded the second derivatives, the estimate (1.15)
follows from the results of [3], so using the method of continuity and a
standard approximation argument to overcome the requirement u € C4(Q) n

03(5) in Theorem 2.3, we deduce Theorem 1.1.

We note that the proofs of Theorems 2.1 and 2.3 carry over to
solutions u € W?;Z(Q) N Ca(ﬁ) by virtue of the Aleksandrov maximum
principles [2], Theorems 9.1, 9.6. Standard linear elliptic theory [2]
ensures that under our hypotheses, convex solutioﬁs u € Cz’a(ﬁ) .

@ € (0.1) , are in fact in W;:2(0) N %@ n 2 0(@) for all
pe, 6<C1. ‘

An examination of the proof of Theorem 2.1 shows that it is

sufficient to assume that f is nonnegative, provided we also have

172 1,1

f € C**(1) . The proof needs to be modified only slightly. We now

write the equation (2.1) in the form
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(2.57) F(D%) = (det DP)'/2 = g(x) .

and observing that F 1is still concave, and
T = trace[F 9] 3 1,

we deduce that v =D u + lel2 attains its maximum on 80 for K
sufficiently large. The arguments leading to (2.14) proceed as before
with the equation written in the form (2.57), while for the final part
of the argument we require only f € Cl(ﬁ) . By a straightforward
approximation argument we can then deduce the following existence

result.

THEOREM 2.4 Let Q be a 02’1 uniformly convex domain in IR2 , f a

172

nonnegative function with f € Cl'l(ﬁ) ., ¢ € Cl’l(aﬂxIR) satisfy

(1.4) and B € c*1(a0,R%) satisfy (1.5) and (1.6). Then the boundary

1,1(5) )

value problem (2.1), (2.2) has a unique convex solution u € C
The Dirichlet and Neumann problems for degenerate Monge-Ampére
equations, and other fully nonlinear degenerate elliptic equations, have

been treated recently by Trudinger [6] in the case that the domain @

is a ball.

REMARKS (i) The two dimensionality is used crucially in deriving the
estimate (2.21). We have also used the two dimensionality in (2.48),

but this could have been avoided by using in place of v the function

a IDu|2+a (y~u)
1 2

w=e D u
v
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for suitable constants oy . 0y . and modifying the proof only slightly.

(ii) Minor modifications of our arguments yield second

derivative bounds for oblique derivative problems of the form

det[D2u - o(x,u)] = f(x,u,Du) in O,

Dﬁu

o(x.u) on 80 ,

where o € Cl'l(ﬁle) is a symmetric matrix valued function with

o, 20,0, f, ¢, B satisfy the hypotheses of Theorem 2.3, and the
solution u satisfies D2u 2 o(x,u) . Conditions on f , ¢ , B and o
ensuring a maximum modulus estimate for solutions of this problem are

given in [5], Section 4.

(iii) As in [5], Theorem 4.4, we can prove the existence of a

limit solution as e - 0 for asymptotic problems of the form

2 .
det[D u_ - ea(x)uelj = f(x,Due) in Q,
DBue = e'v(x)ue + ¢o(x) on 80,

vhere o € Cl'l(ﬁ) , f € Cl'l(ﬁle2) is positive, 7 , ¢ € Cl’1

(a0) ,
1,1 2 sops R

B € C7(80,R”) satisfies (1.5), (1.6), and either o 2 gy in Q or

T2 19 on 80 for positive constants 9 + o+ and e is a positive

parameter which we allow to go to zero.
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