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THE OBLIQUE DERIVATIVE PROBLEM FOR EQUATIONS 

OF MONGE-AMPERE TYPE IN TWO DIMENSIONS 

John I E Urbas 

1. Introduction 

In this paper we are concerned with the existence of convex 

classical solutions of the oblique derivative problem for equations of 

Monge-Ampere type, 

(1.1) 

(1.2) 

det D2u = f(x,u,Du) in 0 , 

D~u = ~(x,u) on an . 

Here is a uniformly convex domain in 2 m . r , ~ are prescribed 

functions on Q X ffi X ffi2 , 80 X ffi respectively With f positive, and 

~ is a unit vector field on an satisfying 

(1.3) ~·v > 0 , 

where v is the inner unit normal to an This problem, and in 

particular the case ~ = v , was recently studied for domains n c ffin 

n ~ 2 , by Lions, Trudinger and Urbas [5], who proved a priori 

estimates for the derivatives up to second order for convex solutions of 

(1.1), (1.2) under suitable regularity and structure hypotheses on 

n ' f • ~ and ~ In particular, the second derivative estimate in 

[5] requires ~ v , and it does not appear that the method used there 

can be modified to work for more general ~ However, if the domain Q 

is a ball and fl/n is convex with respect to the gradient variables, 
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the argument given in [5], Section 4 can be used to obtain second 

derivative bounds for more general p . 

Here we derive second derivative bounds and existence theorems for 

convex solutions of (1.1), (1.2) in two dimensions. This is still an 

open problem in higher dimensions, except :for the special cases 

mentioned above. For the main existence theorem, ~rhich is stated below, 
<) 

we shall assume that 0 is a uniformly convex domain in m~ with 

boundary an € '1 :f E 

z for all - 2 1 1 (x,z,p) € oxmxm . ~ € c ' (80xffi) is nondecreasing in z 

with 

(1. 

for all (x,z) € 80 X ffi , for some positiVe Constant ~O , and 

R € ,l(an.m2) • f' ld • f ~ u.m ls a vector 1e sat1s ying 

(1.5) f3•v l §.10 , 1/31 1 on an 

and 

(1.6) 

for all (x,z) € 80 X ffi and all directions T tangential to an at 

x , where ~O . ~l are positive constants and 5 = (o1 ,o2 ) denotes the 

tangential gradient operator relative to an given by 
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Without loss of generality -wre sr.all asStmle tl:->.at /3 ' <p and v have 

been extended to be of class Cl, 1 on 0 with (1.4). (1.5). (L6) 

holding near an . Furthermore, we assume the structural inequality 

(1. 7) f{x,N,p) ~ g(x)/h(p) 

2 1 for all (x,p) € n X m ' where N is a constant a.!d g € L (n) . 

hE Li0 c(m2) are positive functions satisfying 

(1.8) 

1'IJ.EOREH 1.1 Under the above hypotheses on the domain 0 and the 

functions f , <p , ~ , the boundary value problem (1.1), (1.2) has a 

unique convex solution u € ~'a(O) for aU. a < 1 . 

If f , <p , ~ and an are C00 
ro -

then the solution u € C (0) 

virtue of standard linear theory [2]. Two special cases included in 

Theorem 1.1 are the standard Monge Ampere equation 

(1.9) 

and the equation of prescribed Gauss curvature 

(1.10) 2 2 2 det D u = K(x)(l+IDul ) . 

for which the conditions (1.7}, (1.8) take the form 

by 
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(1.11) 

The condition (1.11) is also necessary for the existence of a classical 

solution (see [1], [7]). 

The proof of Theorem 1.1 depends on the method of continuity (see 

[2], Theorem 17.28) which requires the a priori estimation of solutions 

in the Holder space c2•a(O) for some a> 0 . The conditions (1.4), 

(1.7), (1.8) and 

( 1. 12) 

enable us to prove a bound 

(1.13) suplul S: C , 
0 

(see [5], Theorem 2.1), while (1.5), (1.13) and the convexity of u 

imply a gradient bound 

(1.14) 

(see [5], Theorem 2.2). 

supiDul S: C , 
0 

Once the second derivatives are bounded, the equation is uniformly 

elliptic, so we can apply the theory developed in [3], [4] to deduce a 

second derivative ffolder estimate 

(1.15) 
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for some a ) 0 . As noted in [3], the estimate (1.15) can be proved 

much more easily in two dimensions than in higher dimensions, &1d in the 

two variable case (1.15) is in fact valid under our somewhat weaker 

regularity hypotheses. 

The estimation of the second derivatives is carried out in the 

following section. Some parts of our argument are similar to that of 

[5], but for completeness we include all the details. 

Unless otherwise stated, our notation follows the book [2]. 

As a preliminary to our main result, we first consider the special 

case of (1.1), (1.2) when f(x,z,p) = f(x) . 

TI-IEOR:EJI! 2.1 Let 0 be a J2· 1 uniformLy convex domain in rn2 cmd 

u E c4 (n) n c3(n} a convex solution of 

(2.1) 

(2.2) 

2 
det D u = f(x) in 0 , 

D~u = ~(x,u) on an , 

Where f € Cl,l(n) . ·t· ~ Cl'l(~ IR) . ru:l • . " ts post tve, ~ ~ uu x ts no ecreastng tn 

z . is a vector fieLd satisfying (1.5) and 

(1.6) . Then we have 

(2.3) supiD2ul ~ C 
0 
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where C depends only on ~O ; ~1 , lui 1;0 • llog fi 1. 1;0 • 

1~1 1 , 1 ;80x(-M,M) • 1~1 1 . 1 : 80 and 0 , where M = s~plul 

PROOF We start with some preliminary identities. Writing the equation 

{2.1) in the form 

(2.4) 2 log det D u = g{x) 

and using the notation 

i · BF · · kl 
F J{r) = Br. _{r) , F1J' (r) 

1J = arijarkl • 

we have 

(2.5) 

where [uij] is the inverse matrix of n2u . Since u is convex, F 

is a concave function of n2u . Furthermore, we have D~~u ~ 0 for any 

direction ~ , so it is sufficient to bound D u from above. 
~~ 

this we consider the function v on 0 x s1 defined by 

2 
v{x.~) = D u(x) + Klxl , 

~~ 

To do 
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where K is a positive constant to be chosen. Using the concavity of 

F , we compute 

(2.6) 

where 

(2.7) 

Fixing K sufficiently large we therefore obtain in 0 , 

so by the maximum principle, v attains its maximum on an . 

We now proceed to estimate the second derivatives on an . 

Computing the tangential gradient of the boundary condition (2.2) on 

an . we obtain 

SO that if T is any direction tangential to a0 at any point 

y € an . we have 

and hence, 

(2.9) 
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Next we bound Since we shall also need this for 

the general case f = f(x,z,p) , we carry out the argument for the 

boundary value problem (1.1), (1. Taking the logarithm of the 

equation (1.1), and differentiating in the k-th coordinate direction, 

we obtain 

(2.10) 

Using 5) and (2.10) we therefore obtain, for 

(2.11) 

so that 

(2.12) 

Consequently, by [2], Corollary 14.5, we obtain 

and therefore 

suplD hi 5: C 
an v 



(2.13) 
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sup!D Ru! ~ C 
BQ Vp 

Combining the estimates (2.9) and (2.13) we obtain 

(2.14) sup !D~pu(x)l ~ C 
x€00 

"l·ES1 

We note that (2.14) holds in the more general case f f(x,z,p). 

To complete the estimation of the second derivatives we need to use 

the fact that v attains its maximum on an . Let us therefore assume 

that v attains its maximum at a point xo € an and a direction 

f € s1 . Let ~ E s1 be a direction normal to E . We may suppose 

that at x0 we have 

Furthermore, if we now take f , ~ as the coordinate directions, the 

is diagonal at x0 with maximum eigenvalue DEfu , and 

the equation (2.1) takes the form 

(2.15) f . 

Let a , b be constants, a 2 + b2 = 1 , such that at x0 , 

(2.16) v = bE + a~ 

and let 
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(2.17) 

so that ·r is tangential to an at x0 . Since f•v , wv ~ 0 at 

, we see that a,b 2 0 Let c,d be constants with c2 + d2 = 1 

so that at x0 , 

(2. f3 = cf + dT! • 

n1313u(x0 ) c~ffu(~) + d~1711u(~) 
2 c2uffu(x0 } 

is bounded away from 

zero. We therefore need only consider the case that lei is small, say 

lei ~ c0 for a suitably chosen positive constant c0 

Since v(x,f) attains its maximum at x0 , we have 

and 

(2.20) 

The main step now is to show that these two inequalities imply 

(2.21) 
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is 

sufficiently swall. This is where we use the two dimensiov~lity. The 

required bound for Dffu(x0} then follows from (2.21). 

To prove (2.21) we first differentiate (2.1) in the directions 

(2.22) 

and 

(2.23) 

Furthermore, at x0 we also have 

Making use of (2. 16), (2.17), (2. 18), (2.22) and (2.23), we then obtain 
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(2,24) 

Next, using 16)' lB) and (1.5), we obtain 

p • v = be + ad i ~O , 

so that 

provided 

(2.25) 

Assuming henceforth that (2.25) is satisfied, we obtain, since 

a2 ,d2 ~ 1 , and a ~ 0 , 

(2.26) 
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and therefore also 

(2.27) 

and 

(2.28) O~abd~l. 

Next we have 

2 a -

so that if we further assume 

(2.29) 

and 

(2.30) 

then 

(2.31) 2 
0 ~a -
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Using the estimates (2.19), (2.20), (2.27}, (2.28}, (2.30) and (2.31) in 

(2.24), we then obtain 21) as required. 

Finally, we need to show that (2.21) implies a bound for 

Dffu(x0 ) . Computing the second tangential derivatives of the boundary 

condition (2.2), we obtain 

and hence at x0 , 

(2.33) DTTPu l - 2(oi~k)DjkuTiTj + (oivj)r1rjDv~u 

+ ~ZDijUTiTj - C . 

Using (2.13), (2.21) and (1.6) in (2.33} we then obtain 

.34) 

Now writing 

we have 

by virtue of the obliqueness condition (1.5), and hence, using (2.14} 

and (2.34). 



185 

(2.35) 

at We therefore deduce a bound for sup v • from ·which we obtain 

flxS:1 

3). The proof of Theorem 2.1 is therefore complete. 

Combining the estimates (1.13}, (1.14), (1.15) and (2.3) we obtain 

a global estimate 

(2.36) 

for convex solutions u E c4(n} n 2(n) of the boundary value problem 

(2.1), (2.2), where a € (0,1) and C depend on f , ~ , ~ , Q and 

, where 

(2.37) 

for some positive constant ~0 . Using the method of continuity [2], 

Theorem 17.28, and a standard approximation argument to overcome the 

requirement u E c4 (!1) n 2(n) in Theorem 2.1, we can then infer the 

following speciai case of Theorem 1.1. 

1HEOREN 2.2 Let !1 be a c2· 1 uniformly convex domain in m2 , 

f E cL 1(n) a positive function, 'P € cl. 1(anx!R) satisfy (1.4} and 

{3 E cl. 1(BO,!R2 ) satisfy (1.5) and (1.6). Then the dassical boundary 

vaLue probLem (2.1), (2.2) has a unique convex solution u E c2·a(O) 

for all a ( 1 . 
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The arbitrariness of the Holder exponent a follows from standard 

linear theory [2]. We shaH make use of Theorem 2.2 in the derivation 

of the second derivative bound in the general case. 

THEOREM 2.3 Let n be a d2· 1 "' unifonnl.y convex domain in lR"' and 

u € n C3(o) a convex solution of the boW".dary ual.ue probLem 

(1.1). (L2). ut!.ere f E 
1 - 2 ' (OxlRxlR ) is a positive function such that 

g = log f satisfies 

(2.38) lg(x,u,Du)i + !Dg(x,u,Du)l + ID2g(x,u,Du)l ~ ~, 

and ( 1 . Then !De have 

(2.39) sup!D2u! ~ C , 
n 

where C depends only on M , Mo , Ml , ~0 , lull;O , 

l~ll,l;anx(-M,M) , IPI 1,l;OO and 0 , where M = suplul 
0 

PROOF Let w € ~· 1 (0) be a uniformly convex definix~ function for n 

• i.e., w < 0 in 0, w = 0 on an. !Dwl ¢0 on an' and 

for some positive constants e , 8 . From (2.38), 
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Now, by 1'heorem 2.2, for each p E (0,1) there is a unique convex 

function ~ = ~ € c2(o) solving the boundary value problem 
p 

(2.40) 

(2.41) 

and using 1heorems 2.1 and 2.2 of [5], and Theorem 2.1, we obtain 

(2.42) sup I~ I ~ A 
p€(0,1) p2;0 

for some positive constant A . From (2.42) and the fact that o0 > 0 , 

we also have 

(2.43) 

for some positive constant A. , independent of p E (0,1). Letting 

~ = ~ + pw , we obtain 

2- 2 2 det D ~ ~ det D ~ + C(pA + p ) , 

so fixing p > 0 sufficiently small, we have 

2-det D ~ s o0 in 0 . 

By the mean value theorem, the function u - ~ satisfies an elliptic 

differential inequality 
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and by (1.2}, (1.4) and (2.41) 

for some function ~ L ~0 We therefore deduce from the maximum 

principle that u- :j; ~ 0 in 0 , and hence also that 

an . Thus 

for some pos:i.tive constant a . 

We now consider the function v 

v(x, 

- 1 on (! x S given by 

on 

where ~ € c2(n) is the unique convex solution of the boundary value 

problem (2.40), (2.41) with p € (0,1) fixed as above, and a is a 

positive consta.'lt to be chosen. As before, we need to bound v from 

above. Let us first assume that v attains its maximum at a point 

x0 € 0 and a direction f € s1 . Differentiating v = v(•,f) , we 

obtain 

(2.45) 

and 
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{2.46) 

Using {2.5) we therefore obtain 

{2.47) 

by virtue of {2.43). Next, since Dv{x0) = 0 , we have at x0 

2 
Dffg = gff + 2gfzDfu + 2gfPiDifu + gzz{Dfu) 

+ 2gzPiDfuDifu + gPiPjDifuDjfu 

+ gzDffu + gPiDiffu 
2 2 

~ -c{l+ID ul I) - agPiDi(>/1-u)Dffu 

2 2 
~ -c{l+ID ul I - canffu 

Furthermore, by a rotation of coordinates we can assume that D2u is in 

diagonal form at x0 , with maximum eigenvalue Dffu , so at x0 we 

have 

Next, since we are in the two variable case, we have 

(2.48) 
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by virtue of (2.38). Using these estimates in (2.47), we therefore 

obtain at x0 , 

from which a bound for Dffu(x0) follows by choosing a sufficiently 

large. An upper bound for v(x0) then follows. 

We now consider the case that v attains its maximum at a point 

x0 € 80 and a direction f € s1 . Assuming as before that f • v ~ 0 

at x0 , we have 

from which we obtain 

(2.49) 

and 

(2.50) 

at x0 , by virtue of {2.44). Since Dffu is the maximum eigenvalue of 

D2u at f d · ha x0 , or any irect1on ~ , we ve at x0 , 

I DD~f I = D_L If +f D u + fp.D. ul ~ c . 
ffu ffu ~ z ~ 1 1~ 



191 

We therefore deduce, in the same way as in Theorem 2.1, and using the 

notation introduced there, that at x0 , 

{2.51) 

by virtue of (2.49), since the coefficient of Dfffu is nonnegative and 

bounded, assuming that (2.25) is satisfied. Assuming now that 

{2.52) 

and 

(2.53) 

we obtain 

(2.54) 

and hence, assuming further that 
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3 2 

(2.55) -~ ~ ]m} lei ~ c0 = m1nl64 . Lscl aap • 

we finally obtain, upon using (2.50) in (2.51), 

(2.56) 

A bound for DTTu(~) , and then also for Dffu(x0) , follows exactly as 

before, as does the case lei ~ c0 ·~ We have therefore bounded 

sup v , from which the second derivative bound (2.39) follows, so the 

oxs1 

proof of Theorem 2.3 is complete. 

Once we have bounded the second derivatives, the estimate (1.15) 

follows from the results of [3], so using the method of continuity and a 

standard approximation argument to overcome the requirement u € c4(n) n 

~(0) in Theorem 2.3, we deduce Theorem 1.1. 

We note that the proofs of Theorems 2.1 and 2.3 carry over to 

solutions u € w41•n(O) n ~(0) by virtue of the Aleksandrov maximum oc 

principles [2], Theorems 9.1, 9.6. Standard linear elliptic theory [2] 

ensures that under our hypotheses, convex solutions u € C2·a(O) , 

a € (0,1) , are for all 

p ( m , 6 ( 1 . 

An examination of the proof of Theorem 2.1 shows that it is 

sufficient to assume that f is nonnegative, provided we also have 

f 1/ 2 € c1• 1(0) . The proof needs to be modified only slightly. We now 

write the equation (2.1) in the form 
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(2.57) 
2 1/2 (det D u) = g(x) , 

and observing that F is still concave, and 

we deduce that v = D u + Klx1 2 attains its maximum on an for K 
7'¥ 

sufficiently large. The arguments leading to (2.14) proceed as before 

with the equation written in the form (2.57), while for the final part 

of the argument we require only f € c1(n) . By a straightforward 

approximation argument we can then deduce the following existence 

result. 

~ 2.4 Let 0 be a c2· 1 uniformly convex domain in m2 , f a 

nonnegative function with r 1/ 2 € c1 · 1 (n) . ~ E c1 •1canxm) satisfy 

(1.4) and ~ € c1· 1(an.m2) satisfy (1.5) and (1.6). Then the boundary 

' b' (2 ·) (2 2) '-- , · E cl. 1 (;:;) . vaLue pro Lem .1 , . 1<aS a unique convex SOLUtLon u " 

The Dirichlet and Neumann problems for degenerate Monge-Ampere 

equations, and other fully nonlinear degenerate elliptic equations, have 

been treated recently by Trudinger [6] in the case that the domain 0 

is a ball. 

~ {i) The two dimensionality is used crucially in deriving the 

estimate (2.21). We have also used the two dimensionality in {2.48), 

but this could have been avoided by using in place of v the function 
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for suitable constants a 1 , ~ , and modifying the proof only slightly. 

{ii} Minor modifications of our arguments yield second 

derivative bounds for oblique derivative problems of the form 

det(D2u - a(x,u}] = f(x,u,Du) 

n13u = <P(x,u} 

in 0, 

on 80, 

1 1 -where a € C ' {Oxm} is a symmetric matrix valued function with 

az ~ 0 , 0 , f , 'P , 13 satisfy the hypotheses of Theorem 2.3, and the 

solution u satisfies n2u ~ a(x,u} . Conditions on f , 'P , 13 and a 

ensuring a maximum modulus estimate for solutions of this problem are 

given in [5], Section 4. 

{iii) As in {5], Theorem 4;4, we can prove the existence of a 

limit solution as E. -+ 0 for asymptotic problems of the form 

det(D2uE. - E.U{x}uE.I] = f(x,DuE.} in 0 , 

Dl3uE. = E.~{x)uE. + <P{X} on ao • 

where a € c1•1(fi} • f € c1•1(oxm2} is positive, ~ • <P € c1•1(80) , 

13 € c1•1(ao,m2) satisfies (1.5), (1.6), and either a~ a0 in 0 or 

~ ~ ~0 on 80 for positive constants a0 , ~0 , and E. is a positive 

parameter which we allow to go to zero. 
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