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REGULARITY AND SINGULARITY FOR ENERGY MINIMIZING MAPS 

R. t1. Hardt * 

1. INTRODUCTION 

We will consider the occurrence of singularities in a class of 
boundary-value mapping problems. Suppose M is an m dimensional 
smooth compact Riemannian manifold with boundary and N is a smooth 
comJ)act Riemannian manifold without boundary. Via an isometric 
embedding. we view N as a Riemannian submanifold of IRk . We will 
consider the following type of problem: 

Given a smootll tp : aM -+ N • find a least energy u : M -+ N w1t11 u I aM = tp. 

While various general energy functionals may be treated, we will mainly 
discuss. for 1 < p < oo • the ordinary p-energy 

Here, the most important case is p = 2 where critical points are 
17armonic maps. In local coordinates x1,x2 , • • • .xm on M. the 
expression I'Vu !P should be interpreted as 

l~o:.B ~i.j (aui/exo:)go:.B (euj/ex8)]P12 and the volume element dM as 

(det g)!1 dx where g = 9o:$ = [go:,B t 1 is the matrix representing the 
metric of M in these coordinates. Since only the topology and geometry 
of N will be relevant for our discussion of regularity and singularity, we 
will, for simplicity of notations, assume that M Is an open subset of 
IRm wlt/7 tl7e standard Euclidean metric. 

* Research pert1e11y supported by the Net1one1 Sc1ence Foundet1on 
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2. SINGULARITIES BY TOPOLOGICAL OBSTRUCTION. 

Topological obstructions may be relevant for the existence o1· 
regularity of least maps. Perhaps simplest example concerns 
the case maps tile unit ball IBm in !Rm to the sphere 5i 11H = 81Bm. 
Here an elementary topological condition is 

( ;.<) there exf...,ts a map u : [im ~ ;sm-1 
onl._1-1 u I a!W' IJas degree 0 . 

For p 2. rn , (~) that there exists no function u :iBm -v s;m-l o; 
flmte p-energ!J whose trace u I a!W' has nonzero degree. 

Jn fact, for p > m , a finite energy u would be essentially continuous by 
Sobolev embedding while p = m , one could suitably approximate u by 
a continuous map to contradict ( * ). Thus for p ;: m , the least energy 
boundary-value problem iT1ay be meaningless. 

On the other hand, if 1 < p < m , t~1en there is such a finite p-energy 
extension given, for example, by the r1omogeneous-degree-0 extension, 
w(x) = tp()</lx I) . In fact, using spherical polar c:oOi'dinates, 

In t11is case, the boundary-value problem is meaningful, but (*) implies 
that a t:''Oiut!on vdl! necessari(t; be discontinuous on JBrn If the given tp 
has nonzero degree (e.g. tp = identity). 

ln general. if there exists some finite p-energy extension of tp , 
t~1en one easily obtains the existence of a solution of the least p-energy 
boundary value problem by methods using the weak compactness, 
lower semi-continuity, and trace theory in the space L1·P (M.IRk) [KJF] of 
functions of finite p-energy. Of relevance here is the fact that any 
sequence weakly convergent in L1·D Is strongly convergent in L0·D = LD . 
In particular, a weakly convergent sequence in 

L1·P (!'1 = L1·P ,!RI:::) n { u : u(x) t: N a.e, in M } 
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has limit in , and we may minimize in tr1e class 

the sense L 1·P traces)) . 

3. SINGULARITIES WITHOUT TOPOLOGICAL OBSTRUCTION. 

ln 
degree 0 

example a smooth map <fl : sm~1 .., 

there is a definite between the two numbers 

In particular the energy minimizer must have a singularity even though 
there is no topological restriction in the sense that there does exist some 
continuous finite-energy extension of IJ) . The gap may be made 

large choice (p . To explain the idea this 
construction we describe an analogous problem where 1 < p 2 = rn , 
N = $ 1, and M is a region in the plane shaped a barbell a thin 
handle of length L . The boundary data lfl is given by a unit vectorfield 
on aM as shown. 

0 L 

As a map from aM to s 1 , <P degree o . By considering a comparison 
function that is approximately constant on the handle and homogeneous of 
degree 0 on each end, we readily check that 
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On the other hand, suppose that v E nc0([8m, ~m-l) . Then, fot' all 
0 < A.< L • v I 8M, has degree o where M>, is the subregion of M 
indicated above. Then the restriction of v to the ver-tical slice S:;, must 
almost cover ~ 1 because v I oM"~~= 'fl I SMA~~ almost covers § 1 . 

This, along with Holder's inequality, gives a lower bound for the energy of 
the slice: 

By Fubini's U1eorem, JMI\7v1P dx L c L _, oo as L "* oo 

4. PARTIAL REGULARITY THEORY. 

Having seen tr1at singularities in solutions are often unavoidable, we 
now discuss estimations on the their size. First we give a brief summary 
of what is known. 

In case p = 2, and there is some restriction on N (e.g. negatively 
curved or lying in a coordinate neighborhood) there are several interesting 
early works, e.g. [ES]. [Hal. [HKW]. For discussion of these and many other 
works, we refer to the excellent surveys of S. Hildebrandt[Hi] and J. Jost 
[J 1]. [J2] . In case p > 2 and N lies in a coordinate neighborl'wod, the 
work of N. Fusco and J. Hutchinson [FH] and of M. Giaquinta and G. Modica 
[GM] implies, among other things. the partial C1·o: regularity of an energy 
minimizer, for some 0 < 0< < 1 . 

With no restriction on N and p = 2 , the fundamental work of R. 
Schoen and K. Uhlenbeck [SUd (See also [GG].[SU2J.[JM].[SU3] ) showed 
that tr1e interior singular set of an energy minimizer has Hausdorff 
dimension at most m- 3 . The study of liquid crystals leads to 
consideration of a more general energy functional with quadratic growth 
for mappings from 3 dimensional spatial domains to ::02 . For these 
minimizers. R Hardt. D. Kinderlehrer. and F. H. Lin [HKLd showed that the 
singular set had 1 dimensional Hausdorff measure zero. For p > 2 and 
more general energy functionals with p-power growth, S. Luckhaus 
[L 1UL2] established the C1·« regularity of minimizers away from a 



singular set of dimension m- p . ln the independent [HL 2t p-energy 
minimizers, for any 1 < p < oo, were shown to be C1·o: regular away from 
an interior singular set of dimension at most m-[p]-1 . For more general 

with p-power growth, arguments in lead to the (not 
necessarily optimal) dimension estimate m-p-e for some positive £ . 

Next we will sketch some of the arguments used in [HKL 1], [HL 2l. and 
[HKL2]. The part ia I regularity proof goes in two steps: 

Step L Partial Holder continuity 
Step ll. Locally Holder continuity implies higher regularity 

For Step ll, one may localize in M to reduce the case that N is a 
graph, {(y. f(y)) : y E 0 } for some open 0 c IR~"~ and smooth f : 0 -? IRI<-n . 

Then we may write a minimizer u as u(x) = (u(x), f( u(x))) . hence. 
V'u = (\i'u, V'f o\i'u) • and examine the functional minimized by u . For 
p = 2 , u satisfies an elliptic system of diagonal type to which standard 

regularity theory [G, VII, 3] applies. For p ;.: 2 , more argument is required 
and the highest regularity that can be expected is C1·o: for some o < 0< < 1 
(although there may be a partial higher regularity result ). For p > 2 , the 
corresponding problem with N replaced by IRn was first treated in the 
work of K. UhlenDeck [Ul. To obtain Step ll in [HL21 for all p witr1 
1 < p < 2 • we combine arguments of E. DiBenedetto [Dl and P. Tolksdorff [T]. 

For Step I an important notion is that of the normalized ener{/...11 

Note the appropriateness of the factor rp-m ; for a homogeneous degree 0 
function u . 1Er.o (u) is independent of r . The use of normalized energy 
in [HL2). as previoiusly in [SUd and [HKL 1 J. is motivated by 

MORREY'S LEMMA.[M, 3.5.2] If c > 0. 0 < 0< < I . and lEr,a (u) 5 c r po: for all 
balls !Br(a) c IB = rs,(o) I tl7en u I~ E co.o: . 

While we wish to show such uniform power decay. we can at least get the 
normalized energy arbitrarily small by taking a sufficiently small bail 
centered about most points in the domain by the following: 
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DENSITY LEMMA. For function u E L 1·P (M, N) , the ener_t1f:l density 
B(a)"" lim supr.!.o!Er.a(u) equals 0 atallpoints aEM~Su lo.rsr.1.rneset Su 

having m- p dimensional Hausdorfl measure zerr..J. 

This follows, as in [SU 1, 2.71. from an elementary covering argument. In 
case u is a p-energy minimizer, Holder continuity off of Su novv follows 
by iteration and scaling from the: 

REGULARITY LEMMA There exists a pos!live number e < 1 so that ;f 
u E L 1·D (!B,N) /sap-energy minimizer with IE 1•0 (u) < e , then 
IEe.o(u) < ~IE,,o(u). 

This may be proven by arguing by contradiction or "blowing-up". Here, as 
in similar situations in geometric measure theory and elliptic systems, a 
key problem is controlling the "blow-up sequence" whose convergence is 
initially only known to be weak in a Sobolev norm. The extra ingredient is 
a "caccioppoli-type" inequality which in this context follows from the: 

COMPARISON LEMMA. There exi<>ts positive constants c. c. so that for any 

0 < A< oo and any \j) : 8!B ~ N with J ao/'V tan o/ IdS < e . there exists a 

funct /on w : IB ~ N w;th w I 818 = 'P and 

This was first proven for p = 2 in [SU 1• 4.3] and generalized for p "'2 in 
[HL2l and lL2l . 

All of the discussion so far carries over to more general funct ionals 
having p-power growth. For a minimizer u of the ordinary p-energy, one 
has the additional 

MONOTONIC!TY PROPERTY. [r,a (u) ~ IEs,a (u) whenever 0 < r < s < dist(a, oM). 

Using tllis along with a discussion of homogeneous minimizers and an 
induction argument of H. Federer [ft one may, as in [SUd, show that the 
singular set Su has not only m- p dimensional measure 0 . but even 
Hausdorff dimension m- [p ]- 1 . Here Su = 0 in case m < [p J + 1 and is 
finite in case m = [p] + 1 . Using tr1e exampies of singularities discussed 
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in one can easily show that the dimension estimate is 

5. DENSITY 

ln [HL 2] it was observed that 

tf N is sirnp/.._4' -1 connected(i.e. = o), 

then one may delete the :5m:tl!ne::ss IdS < £, t/7(! 

Comparison Lemma. 

The proof this is different the construction 
[SU 1, 4.3] and involves choosing projections from a generically-situated 
complex in the manner of [FFJ or [W]. The idea is easily described in case 
N = Sin . One first verifies that the IRn•l -valued harmonic extension h of 
tp satisfies the inequality in the conclusion the Compar-ison Lemma. 
course, h probably does not have in Sin . To correct we take 
w = h where TI8 : IR0' 1 ~ sn is an appropriate retraction and 
a E IB!/z . To see that a suitable a can be found, one uses Fubini's theorem 

to obtain an estimate 

Next we examine some easy consequences t~1e new Comparison 
Lemma. We assume u t: L1·D (M. is a p-energy minimizer and 1Br(a) c M. 

(1) 1Er;2,a (u) s :A.IEr,a(u) + C:A.-P where C dependson!yon m,N, andp. 

(2) 1Er/2,a (u) s (1 + C)[IEr,a (u)]Pf1+p 

(3) El(a) S ( 1 + C)1+D 2m-p . 

(4) 'i7u E L~oc for some q > p and dim(Su) < m-p. 

To verify (1) we use Fubini's Theorem to choose s with 
that 

< s < r so 
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apply the new Comparison Lemma with <P(x) = u(sx) 0 and note that u llBs 
is minimizing and that N is bounded. Inequality (2) follows from (1) by 

taking A. = [ [r,a (u)}-1 il•D . To obtain (3) we iterate (2) to see that 

and then let j-!' oo. For (4) one may combine (2) with an appropriate 
"boundary-Sobolev" inequality to get a reverse Holder-type inequality and 
then argue in a marmer similar to [G, §5] (See [HKL2] for details). 

6. NATURE OF THE SINGULAR SET. 

The best results on the behavior near singularities are known for 

ordinary energy J M I'Vu 12 dx when m = dim M = 3 . Here by [SUd and the 

study of asymptotics by L. Simon in [Sd. there exists, for any singularity 
a of an energy minimizer u 0 a smooth harmonic map v: $ 2 ... N such that 

lf, moreover N = ~2 • tr1en R. Gulliver and B. White [GW] have verified that 
an easier asymptotics result [52] is applicable so that nds convergence is 
as fast as a positive power of r . They also find a real analytic N and a 
minimizer u : tB3 _. N for which positive power decay to the tangent map 
fails. 

Harmonic maps from $ 2 to $ 2 are classified by rational functions 
of z or z [J2, 1.5]. By the general bound (3) above, a homogeneous 
degree 0 extension of such a map will not be minimizing if the degree of 
this map is too large. Recently H. Brezis, J. ~1. Coron, and E. Lieb [BCL] have 
shown that any such homogeneous minimizer is. in fact, of degree 1 and is 
precisely in the form g(x/lxl) for some rotation g E 10(3) . 

In general, there are many open problems on the nature of the singular 
set of an energy minimizing map. One would like to extend some of the 
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above results to handle m > 3 or p ""' 2 or more general energy 
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