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REGULARITY AND SINGULARITY FOR ENERGY MINIMIZING MAPS
R. 1. Hardt =

1. INTRODUCTION

We will consider the occurrence of singularities in a class of
boundary-value mapping problems. Suppose M is an m dimensional
smooth compact Riemannian manifold with boundary and N is a smooth
compact Riemannian manifold without boundary. Via an isometric
embedding, we view N as a Riemannian submanifold of R* . We will
consider the following type of problem:

Given a smooth 9 = 8M = N , find & least energy u: M= N with u|aM = ¢.

while various general energy functionals may be treated, we will mainly
discuss, for 1< p < o, the ordinary p-energy

JMIVUIde .

Here, the most important case is p = 2 where critical points are
harmonic maps. In local coordinates Xq,%, * <+ %y, on M, the
expression [VulP should be interpreted as

: . /
[Sep 55 (Bu'/0x, g8 (Bui/axg)]" 2 and the volume element dM as

(det g)2dx where g=gqg =[g“ I is the matrix representing the
metric of M in these coordinates. Since only the topology and geometry
of N will be relevant for our discussion of regularity and singularity, we
will, for simplicity of notations, assume that M /s an gpen subset of
R™ with the stanagard Fuclicean metric.

* Resesrchpartially supportedby the Nationsl Science Foundation
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2. SINGULARITIES BY TOPOLOGICAL OBSTRUCTION.

Topological obstructions may be relevant for the existence or
regularity of least energy maps. Perhaps the simplest example concerns
the case of maps from the unit ball B™ in R™ to the sphere §™! = gB™.
Here an elementary topological condition is

(%) there exists & continuous map u = B™ » ™
i and only if u| 88" has degree O .

For p 2m, (%) /mplies that there exists no function u: B™ » §™1 o;
finite p-energy whose trace u ] 8™ f1as nonzero gegree .

In fact, for p >m, a finite energy u would be essentially continuous by
Sobolev embedding while for p = m , one could suitably approximate u by
a continuous map to contradict (). Thus for p 2 m, the least energy
boundary-value problem may be meaningless.

On the other hand, if 1 <p <m, then there is such a finite p-energy
extension given, for example, by the homogeneous-degree-0 extension,
w(x) = @(x/1x}) . In fact, using spherical polar coordinates,

1
JBm!VwI"dx = Jsm" Jor"’ [(Vign®IPr™tdrde = (m-p)™ Iam-i [VignP1Pd8 < o0,

In this case, the boundary-value problem is meaningful, but (%) implies
that @ solution will necessarily be discontinvous on B™ if the given ¢
ras nonzero degree (e.q. ¢ = identity).

In general, if there exists some finite p-energy extension of ¢,
then one easily obtains the ex/sience of a solution of the least p-energy
boundary value problem by direct methods using the weak compactness,
lower semi-continuity, and trace theory in the space L (M,R¥) [KJF] of
functions of finite p-energy. Of relevance here is the fact that any
sequence weakly convergent in L is strongly convergent in LOP =LP .
In particular, a weakly convergent sequence in

L MN) = LY (MR n{u: ux) eN ae. in M}
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has limit in L" (M,N) , and we may minimize in the class

Yo =L (MN)N{u: u|8M = ¢ (in the sense of L" traces)]) .

5. SINGULARITIES WITHOUT TOPOLOGICAL OBSTRUCTION.

In [HL,] is a specific example of a smooth map @ : §™1 - §M1 of
degree O for which there is a definite gz between the two numbers

inf{JBleulzdx PUEUg) < inf{JBmIVvlzdx : v eUyNCOB™, 5™ )},

In particular the energy minimizer must have a singularity even though
there is no topological restriction in the sense that there does exist some
continuous finite-energy extension of ¢ . The gap may be made
arbitrarily large by suitable choice of ¢ . To explain the idea of this
construction we will describe an analogous problem where 1<p<2=m,
N=8' and M isa region in the plane shaped like a barbell with a thin
handle of length L . The boundary data ¢ is given by a unit vectorfield
on 8M as shown.

As amap from 8M to $', ¢ has degree 0. By considering a comparison
function that is approximately constant on the handle and homogeneous of
degree 0 on each end, we readily check that

inf{IBmIVul"dx : ue‘u,} < 4m(2-p)! +1 .
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On the other hand, suppose that v e UyNC(B™,5™") . Then, for all
0<A<L, v|8My has degree O where M, is the subregion of M
indicated above. Then the restriction of v to the vertical slice S, must
almost cover $'because v |8My~S,=¢ | 8My~S, almost covers §'.
This, along with Holder’s inequality, gives a lower bound for the energy of
the slice:

P .
.ISXIVvlpdg 2 Jsxlav/aulpdg > el Js)‘lav/agldg] X C .

By Fubini’'s theorem, JMIVvlpdx 2CL 2o 35 Lo,

4. PARTIAL REGULARITY THEORY.

Having seen that singularities in solutions are often unavoidable, we
now discuss estimations on the their size. First we give a brief summary
of what is known.

Incase p =2, and there is some restriction on N (e.g. negatively
curved or lying in a coordinate neighborhood) there are several interesting
early works, e.g. [ES], [Ha],[HKW]. For discussion of these and many other
works, we refer to the excellent surveys of S. Hildebrandt[Hi] and J. Jost
[Ji], [J2) . Incase p>2and N lies in a coordinate neighborhood, the
work of N. Fusco and J. Hutchinson [FH] and of M. Giaquinta and G.Modica
[GM] implies, among other things, the partial C" regularity of an energy
minimizer, for some 0<ox<1 .

With no restriction on N and p =2, the fundamental work of R.
Schoen and K. Uhlenbeck [SU,] (See also [GG],[SU,],[JM],[SUs] ) showed
that the interior singular set of an energy minimizer has Hausdorff
dimension at most m-3 . The study of liquid crystals leads to
consideration of a more general energy functional with quadratic growth
for mappings from 3 dimensional spatial domains to %2 . For these
minimizers, R. Hardt, D. Kinderlehrer, and F. H. Lin [HKL,] showed that the
singular set had 1 dimensional Hausdorff measure zero. For p > 2 and
more general energy functionals with p-power growth, S. Luckhaus
[Lq].[L;] established the C" regularity of minimizers away from a
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singular set of dimension m-p . In the independent work [HL,], p-energy
minimizers, for any 1< p < e, were shown to be C' regular away from
an interior singuiar set of dimension at most m-[p]-1 . For more general
functionals with p-power growth, arguments in [HKL,] lead to the (not
necessarily optimal) dimension estimate m-p-¢ for some positive ¢ .

Next we will sketch some of the arguments used in [HKL,], [HL,], and
[HKL,]. The partial regularity proof goes in two steps:

Step 1. Partial Holder continuity
Step Il. Locally Holder continuity implies higher regularity .

For Step 11, one may localize in M to reduce to the case that N is a
graph, {ly.f(y) :yeQ} for some open Q € R" and smooth f: Q- R,
Then we may write a minimizer u as u(x) = (U(x), f(U(x))) , hence,

Vu = (V1,VfoVU) , and examine the functional minimized by U . For
p=2, U satisfies an elliptic system of diagonal type to which standard
regularity theory [G, VII, 3] applies. For p # 2, more argument is required
and the highest regularity that can be expected is C" for some 0< <1
(although there may be a partial higher regularity result ). For p > 2, the
corresponding problem with N replaced by R" was first treated in the
work of K. Unlenbeck [U]. To obtain Step 11 in [HL,] for all p with

1<¢p <2, we combine arguments of E. DiBenedetto [D] and P. Tolksdorff [T].

For Step | an important notion is that of the normalized energy
By (u) =rPm JB (e) IVulPdx for B,(a) CR™ and uel (B,(a).,N} .
r

Note the appropriateness of the factor r®™ ; for a homogeneous degree‘ 0
function u, Erq (u) is independent of r. The use of normalized energy
in [HL,], as previoiusly in [SU4] and [HKL,], is motivated by

MORREY’S LEMMA.IM,3.5.2] /7 ¢>0,0¢x< 1, and E, (W) < crP® for all
balls Be(a) CB=B0), then u|B, € Co* .

while we wish to show such uniform power decay, we can at least get the
normalized energy arbitrarily small by taking a sufficiently small ball
centered about most points in the domain by the following:
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DENSITY LEMMA. For any function ue L™ (MN) | the energy density
®(a) = lim sup,.,gre () equalis O at all points aeM~S, for some set S,
having m-p dimensions! Hausdortt measure Zero.

This follows, as in [SU;,2.7], from an elementary covering argument. In
case U is a p-energy minimizer, Holder continuity off of Sy now follows
by iteration and scaling from the:

REGULARITY LEMMA. 7here exists 3 positive number © <1 so that if
“uelY (B,N) /5 g p-energy minimizer with €. (U) < 6, then
Ego(u) < 3E;0 (u) .

This may be proven by arguing by contradiction or “blowing-up”. Here, as
in similar situations in geometric measure theory and elliptic systems, a
key problem is controlling the “blow-up sequence” whose convergence is
initially only known to be weak in a Sobolev norm. The extra ingredient is
a “Caccioppoli-type” inequality which in this context follows from the:

COMPARISON LEMMA. 7here exists positive constants c e so that ror any
0<A<o0 andany @ : 8B > N with levtan*{?lds < g, lhere exisis a
fnction w:B-=N with w|8B=¢ and

Jglowirax < af vwdras + ear | ioras .

This was first proven for p=2 in [SU;,4.3] and generalized for p # 2 in
[HLQ] and [Lz] .

All of the discussion so far carries over to more general functionals
having p-power growth. For a minimizer u of the ordinary p-energy, one
has the additional

MONOTONICITY PROPERTY. Eq (U) < Eso(u) wenever 0<r<s<dist(a,aM).

Using this along with a discussion of homogeneous minimizers and an
induction argument of H. Federer [F], one may, as in [SU;], show that the
singular set Sy has not only m-p dimensional measure 0 , but even
Hausdorff dimension m-[pl-1. Here S, =@ incase m<[pl+1 and is
finite in case m= [pl+1 . Using the examples of singularities discussed
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in §2-3, one can easily show that the dimension estimate is optimal.

5. DENSITY BOUNDS.
In [HL,] it was observed that

if N s simply [pl-1 connected (i.e. Tig(N)=TT(N)= -+ =TI,y (N) =0) ,
then one may delete the smaliness hypothesis Jam IVien@1dS < & From the
Comparison Lemma.

The proof of this is different from the inductive construction of
[SUy,4.3] and involves choosing projections from a generically-situated
complex in the manner of [FF] or [W]. The idea is easily described in case
N =8", One first verifies that the R™' -valued harmonic extension h of
¢ satisfies the inequality in the conclusion of the Comparison Lemma. Of
course, h probably does not have image in &". To correct this we take
w = Tl,oh where Tl : R™ ~{a} » §" is an appropriate retraction and
aeB,, . To see that a suitable a can be found, one uses Fubini's theorem

to obtain an estimate
JB%JB[v(naoh)(X)lp dxda < ¢ JBIVh(x)I Pdx .

Next we examine some easy consequences of the new Comparison
Lemma. We assume uelL'™ (M,N) is a p-energy minimizer and B.(a) CM.

(1) Epj.a (W) € AEy g (U) + CA™P were C depends only on m N, and p.

(2 [Er/Z,a (W ¢ (1+ C)[Er,a (U)]p/1+p ’
(3) @(a) ¢ (1+C)*P 2m-p
(4) Vue LS. 7orsome q>p and dim(Sy) <m-p .

To verify (1) we use Fubini's Theorem to choose s with $r<s<r so
that
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JaBs(a)qulpdS < 2r Ir(a}qul"dx :

apply the new Comparison Lemma with @(x) = u(sx) , and note that u | Bs
is minimizing and that N is bounded. Inequality (2) follows from (1) by

taking A = [E,, (u)]-‘ /. To obtain (3) we iterate (2) to see that

Erj2ia(u) < (1+C)“"”Bj[lfr,a(u)]£‘j where B =P/1+p ,

and then let j = o . For (4) one may combine (2) with an appropriate
“boundary-Sobolev” inequality to get a reverse Holder-type inequality and
then argue in a manner similar to [G,§5] (See [HKL,] for details).

6. NATURE OF THE SINGULAR SET.

The best results on the behavior near singularities are known for
ordinary energy IM[VUIZ dx when m = dimM =3 . Here by [SU;] and the

study of asymptotics by L. Simon in [Sy], there exists, for any singularity
a of an energy minimizer u , a smooth harmonic map v :%% - N such that

SUPyep, ()] UX) ~M(x-2)/Ix-al)| » 0 as r->0.

If, moreover N = 82, then R. Gulliver and B. White [GW] have verified that
an easier asymptotics result [S,] is applicable so that this convergence is

as fast as a positive power of r . They also find a real analytic N and a
minimizer u: B>~ N for which positive power decay to the tangent map

fails.

Harmonic maps from &2 to %° are classified by rational functions
of z or Z [Jp,1.5]. By the general bound (3) above, a homogeneous
degree 0 extension of such a map will not be minimizing if the degree of
this map is too large. Recently H. Brezis, J.M.Coron, and E.Lieb [BCL] have
shown that any such homogeneous minimizer is, in fact, of degree 1 and is
precisely in the form g(x/Ix|) for some rotation ge O(3) .

In general, there are many open problems on the nature of the singuiar
set of an energy minimizing map. One would like to extend some of the
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above results to handle m>3 or p# 2 or more general energy
functionals.
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