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SOME BASIC SEQUENCES AND THEIR MOMENT OPERATORS
Rodney Nillsen*

1. INTRODUCTION

A well known result in Fourier analysis (see [3, p.107], for example) says that if
the Fourier series of a continuous function on the circle group is lacunary, then the series
converges uniformly to the function. Equivalently, if (a(n)) is a lacunary sequence of
positive integers (that is, a(n + 1)a(n)™! > v > 1, for all n and some 7), then the sequence
1, et gmia(l)t | gia(2)t g—~ia(2t g basic in C(0,2r).

On the other hand, Gurarii and Macaev ([5]) proved some analogues of this result
for power sequences in C([0,1]) and L?(0,1). Letting 1 < p < co and letting (a(n)) be a
given increasing sequence of positive numbers, they proved that («(n)) is lacunary if and
only if (a(n)'/Pt2(")~1/7) is basic in L?(0, 1), in which case this basic sequence is equivalent
to the standard basis in ¢#. They also proved that («(r)) is lacunary if and only if (z(™)
is basic in C([0, 1]).

In [4], Edwards has considered, in a dual form, a related problem concerning
sequences of measures on a compact Hausdorff space K. If (u,) is a weak* convergent
sequence of measures on K which satsifies a one term recurrence relation, he gives
conditions which ensure that {( [, fdun) : f € C(K)} = c. This result is closely related to
the problem of finding conditions for (1,) to be a basic sequence of measures on K.

The present paper presents some analogues of the preceding results which are
derived by considering a general problem in Banach spaces. Throughout, X will denote
a given Banach space with dual X*, (b,) will denote a given sequence of scalars, a = (vp)

will denote a given sequence of vectors in X and r = (z,) will denote the sequence in X

* This work is dedicated to Professor Igor Kluvének, for whose encouragement and

intellectual stimulation the author has been greatly indebted.
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given by the recurrence relation
(1.1) Zp —bpzn_1 =v,, for n>1, where =zo=0.

The general problem considered is to find conditions which ensure that if o is basic then
r is basic, and also to find when o and = are equivalent bases. If (z,) is a sequence in
X, the moment operator A of (z,) is defined on X* by (Az*)(n) = 2*(2,), for n € IN and
z* € X*. Whether (2,) is basic can often be expressed in terms of the range of 4 ([2,7]).
These results are discussed in section 2.

In section 3, basic sequences in a space LP(S,S,u) are constructed which are of the
form (f|K.), where (K,) is an increasing sequence of sets in S, f is a given S-measurable
function, and f|K, is the function equal to f on K, and O elsewhere. In section 4,
some bases are constructed for some subspaces of L?(IR) consisting of piecewise linear
functions. By taking Fourier transforms in some of these results with p = 2, conditions
are found for weighted sequences of Dirichlet and Fejér kernels in L2(IR) to be basic. The
dual versions of these results give statements about the ranges of the various moment
operators. For example, the following conditions are equivalent, where 1 < p < oo,

p~+¢ 1 =1, and («(n)) is an increasing sequence of positive numbers:
(a(n)) is lacunary,
a(n)
{ <a(n)-<1+”ﬂ> / COR Itl)f(t)dt> fe Lq(lR)} =#, and

{ (a(n)'*’” / Z (—at()‘t) f(t)dt) fe LZ(]R)} =2

Some definitions and notation used throughout the paper now follow. All sequences
(2») in X or elsewhere are understood to be of the form (z,)%2,, unless indicated otherwise.
If (z,) is a sequence in X, [z, : n € IN] denotes the Banach subspace of X generated by
{zn :n € IN}. If X = (2,) is a sequence in X we define

oo
Ay = {d : d is a scalar sequence and Zd"z" converges in X } .

n=1
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Let Sy : Ay — X be given by Sx(d) = i dn2,. If Sy is a bijection from A, onto [z, : n € IN],
A is said to be basic in X and to b1é=:1 basis for [z, : n € IN]. If ¢ and  are two basic
sequences in X, they are said to be equivalent if 4, = 4,.

A sequence A = (z,) in X is basic in X and 4, = # (for some 1 < p < co) if and

only if there are 4, B > 0 such that

(o]
Z dn2n

n=1

Also, ) is basic and A4, = ¢ if and only if an equality of type (1.2) holds with p = oo (see

(12) Aldllp < < Blldll,, forall de 4,.

[11, p.354-355] or [12, p.30] for these facts). In the case where ) is basic in a Hilbert
space, A is said to be Riesz basic if 4, = ¢2. Standard results on bases may be found in
[11] and [12] and used without explicit reference. For convenience rather than necessity,
spaces such as LP(R), £ will be taken to consist of real valued functions and sequences.
The bounded continuous real valued functions on R are denoted by C(R), and Co(IR)
denotes those functions in C(IR) vanishing at infinity. The characteristic function of a set

A is denoted by x(A).

2. GENERAL RESULTS

If the given sequence o = (v,) in X is basic, there is a sequence (f,) in X* which
is biorthogonal to o. That is, f,(vm) =0 if m # n and f,(v,) = 1, for all m,n. If (3,) is a
given sequence of scalars we let 2, — bna1 = vs, a8 in (1.1), and let h, = fo — by far1,

for all n.

LEMMA 2.1.  If o = (vs) is basic in X, then (h,) is a sequence in X* which is
biorthogonal to (z,). Also,
n+1

Zh,-(:c)xg = Z f,'(:t)'ui - fn+1(m)mn+1, for z¢ X, né€ N.
i=1

i=1

Proof. It is straightforward to prove this from (1.1) and the definition of h, (sée also

[4,p.11] and [11,p.29]).
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THEOREM 2.2. Let o = (v,) be a basis for X, let (b,) be a sequence of scalars with
b1 =0, let 7 = (z,) be given by (1.1), and let 1 < p < co. Then the following hold.

@.1) If o is bounded away from O and r is bounded, then r is a basis for X. If o is
bounded and r is a basis for X, then r is bounded.

(2.2) If r is a basis for X which is bounded away from 0, then o is bounded away from
0.

2.3) If A, is £7 or co, 7 is bounded if and only if v is a basis for X.

2.4) If bl < 1 and o is bounded, then A, = (¢ (respectively c,) if and only if v is a
basis for X and A, = ¢* (respectively c,).

(2.5) Let ||l < 1, let A, be either & or c; and let A,B > 0 be chosen so that (1.2)

holds for o. Then for all d € A,,

AL+ [[elloa) "Il <

< B (1~ [1blleo) ™" ldllp,

Z dpty,
1
where, if A, = co, ||d||c IS taken in place of ||d||,.

Proof. As o is a basis for X, z = i fa(z)v,, for all z € X. Assume that o is bounded
away from 0. Then Jim fn(z) =0, };; z € X. Hence, if r is bounded, we deduce from
Lemma 2.1 that « = i ha(z)z,, for all z € X, and it follows that r is a basis for X. This
proves half of (2.1).n=1

Now let ¢ be bounded and = be a basis for X. Because (h,) is biorthogonal to 7,

there is K > 0 so that [|z,||.||ks]| < K for all n. Thus,
llzall < Kllhall™ < Klvall-lin(va)] ™t < Kllvall,

so that = is bounded. This proves the rest of (2.1).
If ~ is a basis for X bounded away from 0, choose K as above and observe that,

using Lemma 2.1,
lonll = l|€n = bazn—1ll > |ha(za = baza—1)|{|hall ™" > ||Rall ™! > K74 |2n]|-

Hence o is bounded away from 0. This proves (2.2).
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If A, is £° or ¢, an inequality of type (1.2) holds, so o is bounded and also bounded
away from 0 Hence (2.3) is a consequence of (2.1).

If ||b]|c < 1 and o is bounded, use (1.1) to obtain

n=1
llznll < llvall + ; [1Bllas lloll,
< (1= [Blloo) ™ sup{||vall : n € IN}.

Hence 7 is bounded. Now let A, be & (respectively, c). It follows from (2.3) that r is
a basis for X so that
(2.6) z= i( Fa(2) = bap1 Fap1(2)) Tn = f:l fa(z)va,  for zeX.
Hence, (S;toS,)(d) = (I — SM)(d), for d € A,, where S, M are the operators given by
Sd = (dny1), Md = (bnd,) and I is the identity. SM maps ¢ into ¢ (respectively ¢, into ¢o)
and ||SM|| < ||b]l < 1. Hence I - SM is a bounded invertible operator on # (respectively
- co) and A, = (I — SM)A, = ¢. This proves half of (2.4). For the other half, let r be
a basis with A, = ¢ (respectively ¢;). Then 7 is bounded away from 0. By (2.3), ¢ is
bounded away from 0, so A, C ¢o. It is easy to see that I — SM is injective on ¢,. Thus,
as # = A, = (I - SM)A,, we deduce that A, = ¢¢ (respectively, ¢,). This proves (2.4).

To prove (2.5), observe that ||[I — SM|| <1+ ||b|le and ||(I = SM)~*|| < (1 — ||b]|eo) L.
Then (1.2) and (2.6) give
i ((I - SM)d), z,

n=1

Alldll, <

< B|\d|lp, for deA4,.
Replacing d by (I — SM)~1(d) now gives (2.5).

COROLLARY 2.3. Let o = (v,) be a bounded basis for X which is also bounded away

from 0. Let (d,) be a sequence of non-zero scalars, let y, = zdj'vj and let X = (d;1y,).
j=1

Then the following conditions are equivalent: (i) X is basic in X, (ii) X is bounded, and

(iii) (dy}1n) is bounded. If there is 6 < 1 so that |d;_,d;*| < 6 for all j > 2, then conditions

(i) to (iii) do hold, and A, = ¢ (respectively c,) if and only if A\ = ¢ (respectively c,).
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Proof. If z, = d;lyn, by = do-1d;?, by =0 then z, — byza—1 = vn, all n. The equivalence
of (i), (ii) now follows from (2.1). As d; 'y, —d;'y.—1 = v, and ¢ is bounded, (ii) and (iii)
are equivalent. If ||b|l < 1, (2,) is bounded and the remaining statements follow from

(2.3) and (2.4).

REMARK. The equivalence of (i), (i) and (iii) is known ([11, p.29]) and may be
regarded as the special case of (2.1) which arises when it is assumed that in the recurrence

relation (1.1), b, # 0 for all n.

THEOREM 2.4. Let X be reflexive, let o = (vo) be a basis for X with ||vi|| = 1 and
llvall < 1 for n > 2. Let o' = (||lva]|"tvn) and assume that A!, = ¢, for some 1 < p < co. For
n>1 let b, = (1~ ||va||P)/? and let v = (z,) be the sequence in X given by (1.1). Let (fn),
(hn) be the sequences in X* which are biorthogonal to o, T respectively, as described in

Lemma 2.1. Then the following conditions are equivalent.

(2.7) [hn :n € IN] = X*,
(2.8) [[ti=0, forall reN, and
Jj=r
(2.9) D llvsllP = oo
j=1

Proof. By reflexivity, (2.7) holds if and only if z € X and h,(2) = 0 for all n implies
=0 Letz= idn”vn”_lvn; where d € ¢, be such that h,(z) = 0 for all n. Then
oul=2dn = b alloms |~ for all .

If b, = 0 for an infinite number of », we deduce that d = 0. In this case (2.7) to
(2.9) hold.

On the other hand suppose that there is ¢ so that b, = 0 and b, # 0 for n > ¢. Then
dj=0forl1<j<qg—1and dp = |jval|-||vg||" (bnbr-1...be41)"1d, for n > ¢q. Hence

[ee]
Z ldn|? = 1dg[P|lvg |77 nlirl;lo(bnbn—l bggn) 7P
n=g+1
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As d e 7, either d = 0 or ﬁ b, # 0. Hence (2.8) implies (2.7). The converse argument
may be used to show tha’;=i(1f+z2.8) fails, there is =z € X, = # 0 so that h,(z) = 0 for all n.
Hence (2.7) implies (2.8).

Thus, (2.7) and (2.8) are equivalent, and the latter is equivalent to (2.9) by a

standard result on infinite products ([9, p.292]).

COROLLARY 2.5. Let H be a Hilbert space, let (z,) be a normalized sequence in
H, and let (b,) be a scalar sequence such that b; = 0 and the projection of w, into
[z; 11 < j<n=1]is equal to byz,_1 for all n > 2. Let vy = z; and v, =z, — byxn-y for
n > 2. Then (z,) is basic in H if and only if (v,) is bounded away from Q, in which case
(zn) is Riesz basic. The subspaces [t, :n € IN] and [|[v.]|"2vn — bnst|[vnaa||"20ng1 i n € IN]

of H are equal if and only if 3 ||v,||* = co.

n=1
Proof. Let X = [z, :n € IN]. Then (v,) is an orthogonal basis for H, and
1 = ||za]|? = |ba|? +||va]|>. Hence (v,) is bounded away from O if and only if ||5|| < 1. The
first statement now follows from Theorem 2.2. The rest follows from Theorem 2.4 with
p=2.

The following result concerns the relationship between a sequence in X and its
associated moment operator. The result is essentially known (see [2], [7, Theorem 1]

and [12, p.169], for similar results) and is included for completeness.

THEOREM 2.6. Let o = (z,) be a sequence in X, let M = [z, : n € N] and for z* € X*
let Sz* = (z*(2n)). Then the following hold.

(2.10) If S(X*) is equal to £ for some 1 < r < oo (respectively o), then S is bounded
from X* onto & (respectively, co).

2.11) Ifi<p<ooand p~l+4q ! =1, then S(X*) = &1 (respectively ¢*) if and only if o is
a basic sequence in X which is equivalent to the standard basis in ¢ (respectively cy).

(2.12) If ¢ is a basic sequence in X which is equivalent to the standard basis in £*,
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then S(X*) = £,
(2.13) If M is complemented in X and r is a projection from X onto M, the restriction

of S to =*(M*) is a bijection onto S(X*).

Proof. (2.10) follows from the closed graph theorem.
Now let 1 < p < oo and S(X*) = #. Define T on M* by Tu = (u(z,)). Then
T(M*) = £ and T is a bounded bijection from M* to ¢/. Hence T* is a bounded bijection

fee]
from ¢ to M**. If d € ¢ and p € M* we have (T*d)(g) = Y _ dap(zn), and it is easy to

n=1

see that this series converges uniformly on the unit ball in M*. It follows that Z dpzp

n=1

converges in M and that 7*d = idnzn, for d € ¢¢. As T* is a bounded bijection onto
M**, it follows that M = M** an'é:tlhat o 18 a basic sequence with 4, = ¢, When p = oo
and ¢ = 1, apply a similar argument to prove that 7* is a bounded bijection from ¢, onto
M and that T*d = i dnzn, for d € ¢y — then o is basic with 4, = ¢o. This proves part of
(2.11). =

Conversely, if o is basic and 4, = ¢ for some 1 < p < o0, let S,d = idnzn, for

n=1

de¢r. Then Si(X*) =4. As S =S, this proves (2.12) and the rest of (2.11). The proof

of (2.13) is straightforward.

3. BASES AND RESTRICTIONS

In this section, (S, S, 1) will denote a given measure space, K = (K,) will denote an
increasing sequence of sets in § such that u(K,+1 — K,) > 0 for all n, and f will denote
a given S-measurable scalar valued function on S§. It will be assumed that 1 < p < oo is
given and that, for all n, fx(K,— K,-1) is a non-zero element of L?(S, S, u), where Ko = 0
when n = 1. We let R(f,p,K) denote all functions ¢ in L?(S,8,u) such that ¢ = 0 on

[

S— U K, and on each set K, — K,_1, the restriction of ¢ is a multiple of the restriction of
n=1

f. Then R(f,p, K) is a Banach subspace of L?(S,S,p) and it is clear that (fx (K, — Kn—1))

is a basis for R(f,p, K). This section is concerned with when (fx(X,)) is also a basis for
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R(f,p,K). Let, forne NN,

(3.1) n = XKD x(Kn),  fo=0,
ba = | A (Ko 1 Fx(Kn-v)],,  and

vn = || x| FX(Kn = K1),
It is immediate from (3.1) that

(3.2) fo—bafae1 = v, for nelN.

THEOREM 3.1. Let r = (f,) and consider the following conditions.
There is 6 > 0 such that for all n € N,
(B3) | fx(Kn = Ka-1)], > 8]l fx(Kn)],»
(3.4)  r is a basis for R(f,p,K), and
(3.5)  there is v > 1 such that for all ne NN, [|fx(Kn)|]p > 7|]fx(K,,_1)||p.
Then if 1 < p < o0, (3.3) and (3.4) are equivalent. If 1 < p < o0, (3.3), (3.4) and (3.5) are
equivalent and imply that A, = . If p = oo and (3.5) holds, (3.3) and (3.4) also hold

and A, = cg.

Proof. (3.1) shows that b, = 0 and it follows from (3.2) that Theorem 2.2 applies. Also r
is bounded, by (3.1). Now if (3.3) holds, (v,) is bounded away from O and (3.4) follows
from (2.1). Conversely, if (3.4) holds, (3.3) is a consequence of (2.2).

When 1 < p < o, it is easy to prove that (3.3) and (3.5) are equivalent. As (3.5)
means that ||b||c, < 1, it follows from (2.4) that A, = ¢,

When p = co, (3.5) implies that || fx (K. )lleo = [|Fx(Kn — Kn-1)|leo $0 that (3.3) holds.
(3.5) also implies that ||v,||o = 1 and that ||p||c < 1, s0 that 4, = ¢, (Where ¢ = (v,)) and
A, = ¢g by (2.4). This completes the proof.

If (a(n)) is a strictly increasing sequence of positive numbers let

(3.6) v(a) = inf{a(n + Da(n) ™ :ne N} and ¢(e) =sup{a(n + L)a(n)™' : n € N}
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We allow the possibility that ¢(«) = oo, in which case #(a)~! = 0. Clearly, () > 1.

COROLLARY 3.2. Let (a(n)) be a strictly increasing sequence of positive real numbers

and let 1 < p < oo. Then v(«) > 1 if and only if there are C,D > 0 such that

r 1/p r d » r r i/p
c (Z |dn|P> < (Z (a(i) = a(i=1) lZ ;(—f—f)—l,— ) <D (Z Idn]”) :
n=1 j=1 n=j n=1

for all scalars dy,ds,...,d, and r € N. In this case we may take

a) — 1)HP a)l/? »
- (Zgail/pl—i 1 and b= 7(1()1/)13 -1 (1~ w(a)—l)l/ ’

Proof. Apply Theorem 3.1 to LP(R) with f = 1 and K,, = (0,a(n)). Then f, = a(n)~/?x(0, «(n))

. 1/p
> |
n=j a(n)l/P .

Thus, an inequality of the above type is equivalent to saying that r = (f,) is basic in

and (3.5) holds if and only if v(«) > 1. Now observe that

Y dnfa
n=1

= (Z(a(i) —o(j—1))

i=1

LP(R) with A, = ¢ (see (1.2)). The estimates for C,D are consequences of applying
(2.5) with o = (a(n)"¥?x ((a(n — 1),a(n)))), 7 as above and b, = a(n — 1)}/?a(n)~/?. This

completes the proof.

PROPOSITION 3.3. Let (H,<,>) be a Hilbert space, let (e,) be a Riesz basis for H, let
(cn) be a sequence of scalars and let (a(n)) be a strictly increasing sequence of positive
integers. Then the following conditions are equivalent.

(3.7) There is n > 0 such that for all n € N,

a(n) - a(n)
> el S gl =
j=1 j=a(n—-1)+1

a(n)
(3.8) The sequence (Z cje]-> is basic in H.

j=1
(G9)  If we let
Ea(i) (k)

=1 D=1 CrCs < €r,€5 >

(S 1er)” (T2 k)"

a;j ;=
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then there are A, B > 0 such that for all scalar sequences (d,) of finite support,

ad =
> ajdids

Jrk=1

Alld3 < < Bljd|l3.

When the above conditions hold,
o(n) 2 om)
> lel > cie
j=1 j=1

Proof. Apply Theorem 3.1 to ¢2(IN), with f = (¢,) and K, = {1,2,...,a(n)}. Then (3.7)

is Riesz basic in H.

—-1/2
is equivalent to (3.3) with p=2. Let Jd = (2 |d,-|2) (Z djej) , for de 2. Then J
j=1

j=1
o) \ 7TV (e

is an isomorphism from ¢2(IN) onto H such that J(fx(&,)) = | > lej|* > cjej |-
j=1 j=1

Hence the equivalence of (3.7) and (3.8) is a consequence of the equivalence of (3.3)
and (3.4). Condition (3.9) is equivalent to saying that (J(fx(X,))) is Riesz basic in H.

This observation and Theorem 3.1 give the remaining conclusions.

REMARKS. 1. An alternative proof of Proposition 3.3 may be based upon Corollary
2.5.

2. If (e,) is an orthonormal basis for H# and ¢, = 1 for all n, then
aj = minimum (a(j)"2a())72,  a(k)2a(i)™?).
In this case the inequality (3.9) is the same as the one in Corollary 3.2 with p = 2.

COROLLARY 3.4. Let (a(n)) be an increasing sequence of positive integers. For

n € IN, let D,(t) = sin(n + )t/sin £t, for t € (0,27). Then y(e) > 1 if and only if (D))

is basic in L*(0,27), in which case (a(n)~2Dqy,y) is Riesz basic. If f-€ L*(0,2r), then

(Da(ny * f) is not basic in L*(0,27). If v(e) > 1, a function f € L*(0,2r) has a unique

expression in L*(0,2x) of the form idﬂa(")—l/ 2Du(ny, @ € £2, if and only if the Fourier
n=1

transform of f is constant on the set {—a(1),...,a(1)} and also upon each set of the form

{=a(n),...,—a(n=1)=1}U{a(n-1)+1,...,a(n)}, for n > 2.
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Proof. Apply Proposition 3.3 with H = L2(0,27), ¢, =1 for all n, e; =1 and

en(t) = PVt 4 e=ir=1¢ for n > 2. Then (3.7), (3.8) imply that y(«) > 1 if and only if
(Dany) is basic in L2(R). Dy, * f is the nth partial sum of the Fourier series of 7, and
(Da(ny * f) is thus not basic by Corollary 2.3. Finally, observe that the Fourier transform

of f is constant on {—a(1),...,«(1)} and upon each set
{=a(n),...,—a(n=-1)=1}U{a(n-1)+1,...,a(n)}
if and only if f € [Dy(ny : » € N]. This completes the proof.

REMARKS. A consequence of Corollary 3.6 is that there exist basic sequences (Dq(n))

in L?(0,27) such that for no f € L%(0,2w) is (Dy(ny * ) basic in L?(0, 2x).

COROLLARY 3.5. Ler («(n)) be an increasing sequence of positive real numbers.
For p e R, let D,]3R(t) = sinftft, for t € R. Then y(a) > 1 if and only if (Dl%l)) is
basic in L>(R), in which case (a(n)‘l/le%l)) is Riesz basic. If v(a) > 1, a function

f € L*(R) has a unique expansion in L*(R) of the form Zdna(n)—llzD]R de 2, if

a(n)?
n=1

and only if the Fourier transform of f is constant on each subset of R of the form

(—a(n), —a(n ~ D]U[a(n ~ 1), a(n).
Proof. This is similar to Corollary 3.4.

PROPOSITION 3.6. Let 1 < p < oo, let (a(n)) be a strictly increasing sequence of
positive integers, let a;; = a(i)"Y? for 1 < j < a(i), and let a;; = 0 if j > a(i). Let A denote
the operator obtained by multiplying by (a;;). Then A is a bounded operaror from
onto £ (where p~! + ¢! = 1) if and only if v(«) > 1. In this case, the restriction of A
to the subspace of & consisting of those sequences which are constant on each interval

{a(n—1)+1,...,a(n)} in N is a bounded invertible operator on £.

Proof. Let a, denote the nth row of A. Then by Theorem 3.1, o = (a,) is basic in ¢ if

and only if v(«) > 1, in which case 4, = #. By (2.10), (2.11) and (2.12), A is bounded
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from ¢ onto £¢. If 1 < p < co and A(#) = £, then (2.11) implies ¢ is basic and thus
y(e) > 1. If p=1 and A(¢*) = ¢, we have for d € ¢,
a(n) a(n+1)
(Ad)(n) - (A)(n+1) =a(n+ 1) (a(n + Da(n) ™' =1) | Y di | —atn+ 1) [ D di],
i=1 i=a(n)+1

so that
[(Ad)(n) = (Ad)(n + 1)| < [|d]leo2(1 — e(n)a(n + 1)71).

Hence, if A(£°) = £, v(a)> 1.
Now let M, denote the subspace of ¢ consisting of those sequences which are
constant on each interval [e(n — 1) + 1, a(n)]. Then if
a(k)
(d)n = (a(k) — a(k - 1))~ > 4,
i=a(k—1)+1
ford € £ and n € [a(k—1)+1, a(k)], then = is a projection from ¢ onto M, and =* (M) = M,.

By (2.13) the restriction of A to M, is a bounded invertible operator onto #, as required.

REMARK. Proposition 3.6 should perhaps be compared with the result ([1] and [6,
p-239]) that if p > 1, the Cestro operator is bounded on ¢, and with a recent result ([8])

on the partial invertibility of the Cesiro operator.

PROPOSITION 3.7. Let 1 < p < oo, let (a(n)) be a strictly increasing sequence of
positive integers and let

a(n)

(AF)(n) = a(n)~1/? ] fdt,  for neN and feLi(R),

—a(n)
where p~! + ¢~ = 1. Then v(a) > 1 if and only if A is a bounded operator from L{(IR)
onto ¢4. In this case the restriction of A to the subspace of LY(R) consisting of those
Sfunctions which are constant on each set [-a(n), —a(n — 1)]U [a(n — 1), a(n)] is a bounded
invertible operator onto {1,

Proof. This is similar to Proposition 3.6.
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THEOREM 3.8. Letl<p<oco,p t4+¢ =1 andforneNN let

-1/q
Wy = (/ |f|pa',u) x(Kn — Kn_1)(sign HIFPL, and
Ko—Kn_1
-1
hn = </ lflpdﬂ) X(I{n bt I{n—l)(sign f)[flp—l
Kp—Kn_y

-1
- (/ lfl”du> x(Kn41 — Kq)(sign £)|FP~.
Kpp1—Kn

Then [w, :n € N] = [h, : n € N] in LU(S,8, ) if and only i]‘nllngo [1fx(Kp)llp = oo.

Proof. Let X = [v, :n € IN] in L?(S, S, ). As the v, have disjoint supports,

o’ = (||vall; 'vs) is a basis for X and A, = ¢. It is easy to check that w, € L!(S, S, p), that
[lwa]lg = 1 and that /5 vpwndp = |jon||,. It follows that (|un||; wn) is a sequence in L4(S, S, i)
which is biorthogonal to (v,). Also, X* is isometrically isomorphic to [w, : n € IN] in
L1(S,S, ) under T, where T = i A(vn)|lvall; *wn, for X € X*. From (3.1) it follows that
bn = (1 |vall5)!/?, and, as X isn:elﬂexive and (3.2) holds, we may apply Theorem 2.4.
The result now follows from the equivalence of (2.7) and (2.8) by observing that, in the
present context, (2.7) means that [w, : n € IN] equals [h, : n € IN] and (2.8) means that

Jim | fx(Kn)llp = oo This completes the proof.

4. BASES IN SPACES OF PIECEWISE LINEAR FUNCTIONS

Let o = («(n)) denote a given strictly increasing sequence of positive numbers and
let v(«) be defined as in (3.6). If 1 < p < 00, PLC(p, ) Will denote the piecewise linear,
even functions in L?(IR) which are linear on each interval [a(n — 1), a(n)), continuous on

oo

|J (=a(n), a(n)), and zero off this union. Let PLCo(c0,a) = PLC(c0,&) N Co(IR). Then
n=1

for 1 < p < oo, PLC(p,) is a Banach subspace of LP(IR). Also, PLCy(c0,«) is a Banach

subspace of Cy(IR). Let
f(t) = maximum/(0,1 — |¢[), for teR,
and for n € IN and ¢t € R let

(4.1) gn(t) = 2P (p4+ 1) Pa(n) VP f(a(n)~2(t), if 1<p<oo, and
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9n(t) = fla(n)™),  if p=oo.

Then, for 1 < p < o0, gn € PLC(p,«) and ||ga]l, = 1. We also let, forne N and t € R,

42) 80 = oo, for a(n-1) <Hl < a(o)
4H)=0, if H<a(n=1) or I>afn)
s =H=Ce for a(n-1) < <o),
@0 =0, if lf<a(n—1) or [f|>a(n), and

zn = 272 (p+ 1) a(n) V(g1 + 6n).

Let ¢y = 0 and «(0) = a(-1) = 0. Note that g,,z, depend upon p. The function z, is a
type of Schauder hat function used in discussing bases of C([0,1]) (see [10, section 2.3]).
Expressions of the from a!/?, (p+1)V/?, etc., will be taken to be 1 when p = co. The main

result in this section is the following.

THEOREM 4.1. Let 1< p< oo, let (g,) be given by (4.1) and v = (z,) be given by (4.2).
Then v is a basis for PLC(p,c) and #CA,. Also, if we consider the conditions

4.3) Ay = £,

44  vx)>1,

4.5) (gn) is a basis for PLC(p, ), and

(4.6)  (a(n)~3/21=%sin? 2-'a(n)t) is basic in L*(RR),

then (4.4), (4.5) and (4.6) are equivalent, (4.4) implies (4.3), and if (a(n) — a(n —1)) is
increasing then (4.3) and (4.4) are equivalent. When conditions (4.4) to (4.6) hold, (g,)
is equivalent to the standard basis in , and the sequence in (4.6) (which is a sequence
of weighted Fejér kernels in L2(IR)) is Riesz basic in L*(R).

The case p = co is covered by

THEOREM 4.2. Let p = oo, let (g,) be given by (4.1) and let v = (z,) be given by (4.2).
Then v is a basis for PLCy(co,a) and A, = cy. Also, v(a) > 1 if and only if (g,) is a basis

for PLCy(c0, @).
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A function f € PLC(oo,) if and only if there exists a (necessarily unique) d € £

oo

So that the series Z dnz, converges uniformly to f on each compact subset of R.
n=1
The proofs of Theorems 4.1 and 4.2 require some preliminary results and observa-

tions. Let 1 < p < co be given. We define

ra(t) = a(n) —a(n—1), for [ <a(n-1),

ra(t) = a(n) = ¢, for a(n-1)<[i|<a(n), and

() =0, for |t > a(n).
Also, let

(4.7) wy, = 27 YP(p+ )Y a(n) VP (a(n) — a(n — 1)) tr,.

From (4.2) and (4.7) we now have

(4.8) énll = lIdhlls = 212 (p + )77 (a(n) — a(n — 1))1/7,
(4.9) llzally = (1 = a(n — 2)a(n)™*)"/?,  and
(4.10) l[wall = (14 pa(n = Da(n)™})"/7.

The sequences (g,) and (w,) also satisfy the following recurrence relations.

(4.11) gn — a(n — DHPo(n)=C+Pg = (1 — a(n - 1)a(n)"Yw,, and

(4.12) wy, — a(n — DMPa(n) " YPw,_ = 2,, forall nelN.

LEMMA 4.3. Ler1<p<oo and let Cp, =inf{(1+¢)" (1 +*+1): 0 <t < 1}. Then for all
a,b e R,

CLPMP(p 4 1) 1P(a(n) — a(n — 1)Y/? maximum (|al, |b])

< llagh, + béallp < 27 (p + 1)7 VP (a(n) — a(n — 1))'/? maximum (lal, |b]).

Proof. The right hand inequality follows easily from (4.8). For the left hand inequality,
note that |jag, + b¢n||, is symmetric in a,b. If ab > 0 and |a| > |b],

1- |b/a|P+1> Ve

s+ Bl = 247+ )77 (a(r) = o - 1) rlo] (LT

> 21/p(p+ 1)—1/P(a(n) — a(n — 1))1/P|a|-
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If a = b, then
llagr, + bénllp = 27 (a(n) — a(n — 1)"/7|a].
If ab < 0 and |a| > |b], then

+1\ 1/p
llag), + bdall, = 2/2(p+ 1)7Y?(a(n) — a(n — 1))*/?|al (%> ’
> C/P2YP(p 4 1)~ 1P (a(n) — a(n — 1)) /?a.

Lemma 4.3 now follows from these observations.

LEMMA 4.4, Ler 1< p< co and let (d,) be a sequence of scalars. Then the following

conditions are equivalent.

(4.13) > dnz, converges in  PLC(p,a),
n=1
(4.14)
2-P(p 4 1)H/P <Z (dn+1a(n+ 1)~Yrg! +d,.a(n)“1/P¢,,)) converges in LP(R), and
n=1
oo ) ld,,]" |dn+1|p
(4.15) ;(a(n) — a(n — 1))maximum (%)-, m) < 00.

When these conditions hold, the sums of the series in (4.13), (4.14) are equal. If d € ¢,

0 00
then Zd,,zn converges in PLC(p,«). If y(e) > 1, Zd"z" converges in PLC(p,«) if and

n=1 n=1

only if d € &, and in this case,

(4.16) C/P(1 = (e)™)/?|ld||, < < 2l|d|fp-

4

©0
PILE
n=1

Proof. First observe that

j=1 j=1

n n—1
Y dizj =27 (p+ )M/ { (E (dj4r0(i+1)7V74; + dja(j)‘l’%)) + dna(n)"“’qsn} .

Now let (4.15) hold. Then by (4.8), nling3 dna(n)~Y?¢, = 0. Also, by Lemma 4.3,

0

>

Ji=1

P

dip1a(j+1)"YPh + dja(s)" VP g;

4

[ee)

an -t a(n) — a(n — 1)) max ldnlP |dns1l?
<Pt (p+1) (Z(() ( 1))v (a(n),_a(nﬂ)))’

j=1
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and we deduce that the series in (4.13) and (4.14) converge and have equal sums.

Now let (4.13) hold. Then lim dnz, = 0 and it follows from (4.2) that
Jim dne(n)~?¢, = 0. From the initial observation in the proof, we now see that (4.14)
holds and that the series in (4.13), (4.14) have equal sums.

Let (4.14) hold. Then

fee]

2

n=1

< ©0.

(dnsran + 17128, + dra(n) 24, )|

P

Applying Lemma 4.3 shows that (4.15) then holds. This proves the equivalence of (4.13)
to (4.15).

If d € ¢, (4.15) holds and hence (4.13) holds.

Now let y(a) > 1. Then if idnzn converges, we deduce from Lemma 4.3 and

n=1

(4.14) that
Cp2(p+ 1) (1= ()™ ) |ldI5 < Cp2(p+ 1)} (Z (1 - a(n—1)a(n)™) Idni”> )

<o07 (Etew ey (45 285).

> (d,.+1a(n + 1)~y 4 dna(n)—l/qu,,)

n=1

<

P

2p+1)"

Hence d € ¢ and the left hand side of (4.16) holds.

Ifde e,

< 2/|dllp,

as ||zl < 1 by (4.9), and the z,, have disjoint supports, as do the z3,—;. This proves the

right hand side of (4.16).

LEMMA 4.5. Let1< p< oco. Then a function is in PLC(p, ) if and only if it is the sum

of a convergent series in LF(IR) which is of the form Z(angbn + Gny10h).

n=1
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Proof. The condition is clearly sufficient. For necessity, observe that if f € PLC(p, ),
there are an,b, so that f = a, ¢, + b, ¢, on [a(n —1),a(n)]. As f is continuous, we must

have b, = a,41. This completes the proof.

Proof of Theorem 4.1. Let 1< p< oo and let f € PLC(p,«). By Lemma 4.5 choose a

sequence (an) 5O that f = > (andn + ans14,) in LP(R). Let d, = 2Y/7(p+ 1)~ Y7o (n)/?ay.

n=1

Then by Lemma 4.4, f = Zd,,z,,, where this series converges in LP(R). Also, if

n=1
idnz,, =0, then dyz, + dpp12n41 = 0 ON [a(n — 1), a(n)]. AS 2,,2z,41 are independent
:;11 [e(n - 1), a(n)] we deduce that d, = d,41 = 0, hence d = 0. This proves that v = (2,) is
a basis for PLC(p,«). Lemma 4.4 implies that & C 4,.

If v(e) > 1, Lemma 4.4 shows that 4, = 2. If (a(n) — a(n — 1)) is increasing, then
(4.15) is equivalent to having i(l —a(n—1)a(n) H|d. P < co. Together with Lemma 4.4,
this implies that if (a(n) — a(nn—: 11)) is increasing, then y(a) > 1 if and only if 4, = ¢,

Let y(«) > 1. The recurrence relation (4.12) shows that we may apply Theorem 2.2
with o = (2,), 7 = (w,) and b, = (a(n — 1)a(n)"1)/?. We see from (4.9) that o is bounded
away from 0, and from (4.10) that r is bounded, so we deduce from (2.1) that 7 = (w,)
is a basis for PLC(p,a). As ||blle = 7(a)~V/? < 1, (2.4) implies that A, = ¢,

Now as y(a) > 1, (1 - a(n—1e(n) Nw,) is also a basis for PLC(p,a) which
is equivalent to the standard basis for . The recurrence relation (4.11) shows that
Theorem 2.2 may be applied again, with ¢ = ((1 — a(n— Da(n)") w,), 7 = (g,) and
by = (a(n — D)a(n)~1)1+1/?, Then r is bounded, ¢ is bounded away from O and
[[blloe = ¥(a)~(+1/P) < 1, Tt follows from (2.1) and (2.4) that (g,) is a basis for PLC(p,a)
which is equivalent to the standard basis in 2. This proves that (4.4) implies (4.5).

Conversely, let (g,) be a basis for PLC(p, ). As |jgall, =1, (2.2) and (4.11) imply
that ((1 - o(n — D)a(n) Y)w,) is bounded away from 0. As (4.10) shows that (w,) is
bounded, we deduce that y(e) > 1. Thus, (4.5) implies (4.4).

If p = 2, observe that the Fourier transform of ¢, in L2(RR) is a multiple, independent



265

of n, of a(n)~3/% ((sin a(n)t/2)/t)*. The equivalence of (4.5) and (4.6) is thus a consequence
of Plancherel’s theorem. If (g,) is basic in L2(IR), we have seen that it is Riesz basic, so
in this case Plancherel’s theorem also implies that the sequence in (4.6) is Riesz basic in

L%*(R). This completes the proof of Theorem 4.1.

REMARK. If we let a(2n) = 2" and «(2n +1) = 2" +1, it can be shown that (4.15) holds
if and only if d € ¢¢. By Lemma 4.4, 4, = ¢¢. Thus y(a) = 1 but A, = ¢, so (4.3) does

not, in general, imply (4.4).
COROLLARY 4.6. If m,ne N let

am,n(a)=(%)m(3-@), if m<n, and

am,n(a):(f‘—(ﬁ)m (3~f‘ﬁ>, if n<m.

o(m)
Then v(«) > 1 if and only if there are A, B > 0 such that for all scalar sequences (d,,) of

finite support,
(o)

A||d||§ < Z dmdnama(a) < Blld“%

mn=1

Proof. Let p=2. Then (amn(a))3X -, is the Gram matrix of (g,), except for a constant
factor. The inequality is thus equivalent to saying that (g,) is Riesz basic in L2(R) (see

[12, p.32]). The result now follows from Theorem 4.1.

COROLLARY 4.7. Let y(a) > 1. Then a function h € L*(R) has an expansion as a
convergent series in L*(IR) of the form Za(n)'alzdnt"zsinz 27 a(n)t, for d € £2, if and

n=1

only if the Fourier transform of h is in PLC(2, ).

Proof. Observe that the Fourier transform & of & is in PLC(2, @) if and only if

h € [§n : n € IN], where g, is given by (4.1) with p=2. Now apply Theorem 4.1.

Proof of Theorem 4.2. Let p = co. Note that ||z,||c = 1 and that z, is supported by

[a(n — 2),a(n)]. Hence Z:al,,z,1 converges in PLCy(oo, @) if and only if d € . It also

n=1
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follows that f € PLC(oo,a) if and only if there is d € ¢~ so that idnzn converges
uniformly to f on compact subsets of R. It is easy to prove that v =n?z1n) is a basis for
PLCo(c0, ) by analogy with the case 1 < p < co in Theorem 4.1.

If y(e) > 1, we apply (2.1) of Theorem 2.2 twice, using the recurrence relations
(4.11) and (4.12) witﬁ p = oo. This is similar to the case 1 < p < co in Theorem 4.1, and
we deduce in a similar way that (g,) is a basis for PLCy(o0, @).

Conversely, if (g,) is a basis for PLCy(c0, @), then (||gns1 — galleo) 18 bounded away
from 0. As

”gn+1 - gn”oo = |gn+1 (a(n))‘ = (1 - a(n)a(n + 1)-—1)7

we deduce that y(a) > 1. This proves Theorem 4.2.

PROPOSITION 4.8. If v(e) > 1, there is a projection my from Co(R) onto PLCo(co, )
such that «}(PLCy(co,a)*) = PLC(1,a).
If1<p< oo, pt+q7t =1 and v(e) > 1, there is a projection =, from L?(R) onto

PLC(p, ) such that =5 (PLC(p,a)*) = PLC(g, a).
Proof. Letl<p<oo,p~t+¢t=1and y(a)>1. We let
2, = 27M9(g + 1) 9a(n) (¢, + ¢n).

By (4.9), ||z4]lq < 1. Also, 2/, is supported by F, U —F,, where F, = [a(n —2), a(n)]. Hence,

for f € L?(R),

(4.17) ’ /]R f(t)z;,(t)dt‘ < | Fx(Fau —F,,)Hp, for neNN.

Now let A; =0,

_ , _ e+t )YP(g+ )Y fa(n =D\ (1 a(n-2)
An_/]Rzn(t)zn_l(t)dt_ 5 ( ) ) (1 a(n_l)), for n>2,

[ s (= @EDTP@E DY a(n—2)
Bn - /]R n(t) n(t)dt_ 3 (1 a(n)

AN _ DY+ DY a(n) \VU( a(n-1)
C‘,,_/Rz,,(t)zn+1(t)dt— . (a(n+1)) (1 "o ) for n>1.

), for n>1, and
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As v(e) > 1, (B;7') is bounded. If f € LP(R), we now let

~(f) = f‘; 57t ( fo 10t 2

From (4.16) and (4.17) we see that the series of =f converges in LP(IR) and that

lw(H)lle < 24 7211(B7 ool 11l

Hence = is bounded from L#(R) into PLC(p,«). We will now show that = is invertible

on PLC(p,a). If f € PLC(p,«), as (z,) is a basis for PLC(p,«) by Theorem 4.1, there is

(o]
de e sothat f =) dnz,. Then

n=1

[ee]
(4.18) 7(f) = (Ans1B7 dns1 +dn + By Cardn_1) 20, where, do=0,
=1
noo
=D ((I+5)d), =,

=1

where I is the identity operator on ¢, and
(Sd)n = Any1By dny1 + BiCrorday, for de .

Now,
Ap1 Bt =27 a(n)Pa(n+ 1)7P (a(n) — afn - 1)) (a(n) — a(n - 2))7",
<27y(a)7V?, and
B;'Cho1 =27 a(n — 1)Y%a(n)" Y1 (1 - a(n — 2)a(n — 1)71) (1 — a(n — 2)a(n)"1) 7},
<27 y(a) M
Hence S is bounded on # and ||S|| < 27! (v(e)~? + y()~'/%) < 1, s0 I+ S is invertible on
. By (4.16), PLC(p, @) is isomorphic to £, and we deduce from (4.18) that = is invertible

on PLC(p,«). Denote this inverse by A and let 7, = Aow. Then =, is a projection from

L?(R) onto PLC(p, ).
Now by Theorem 4.1, v = (z,) is a basis for PLC(p,«) and A, = ¢¢. Then (2.11)

shows that {(u(zn) : p € PLC(p,)*} = £2. Hence if p € PLC(p,a)*, (B;'u(z,)) € €2 and the
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series i B! pu(zn)z), converges in PLC(g, o). Itis easy to prove that =*(p) = i B! p(z,,)z:‘,v
for p en ?LC(p, «)*, and it follows that =*(PLC(p, a)*) = PLC(q,«) (here wenh=alve used the
fact that (B,) is bounded above and below and that (2,) is a basis for PLC(¢,«) equivalent
to the standard basis in ¢¢). Finally, as A is invertible on PLC(p, ),
73 (PLC(p,a)") = =" (A" (PLC(p, @)")),

=" (PLC(p,@)"),

= PLC(g, ), from above.
This proves the proposition for 1 < p < co.

When p=1 and ¢ = oo, the proof proceeds on the lines above, except that when

we have =*(p) = i B Yu(z,)2,, this series is taken as converging uniformly on compact
sets, rather than :; 1the L*(IR) norm.

When p = oo and ¢ = 1, the proof is again similar to the preceding. Instead, = is

defined on Cy(R), ¢ is replaced by c,, and Theorem 4.2 is used in place of Theorem 4.1.

REMARKS. 1. If one only wishes to show that PLCy(o0, ) is complemented in Co(IR)
a simpler proof than the one above may be found in [10, p.27] — this proof does not
require y(e) > 1, but it does not give the identity =} (PLCo(c0,)*) = PLC(1, ).

2. Let PL(p,c) denote those (not necessarily continuous) functions in
L?(R) which are even and linear on each interval [a(n — 1), a(n)]. Then it can be proved
that for 1 < p < 0o, PL(p,) is complemented in L?(IR) under a projection = such that
7*(PL(p,@)*) = PL(g,c). This is true without restriction on y(a). Thus, it is not clear
whether the role played in Proposition 4.8 by the condition y(«) > 1 is essential, although

v(a) > 1 is essential for the next result.

PROPOSITION 4.9. Let1<p<ocoandp™+¢'=1. ForgeL{(R)andnecNN let

a(n)
(0)() = a0 [ (o)~ W) o)t
—a(n)
Then v(a) > 1 if and only if A(LY(R)) = &. In this case, the restriction of A to the

subspace PLC(q,a) of L4(R) is a bounded invertible operator onto ¢!,
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Proof. By Theorem 4.1, v() > 1 is equivalent to saying that (g,,) is a basis for PLC(p, )
which is equivalent to the standard basis for #. When 1 < p < oo, we deduce from
(2.11) that this is equivalent to A(L!(IR)) = #. When p=1 and ¢ = oo, 7(e) > 1 implies
that A(L*(R)) = £~ is a consequence of (2.12). Conversely, if v(e) = 1 and g € L*°(R)
let ap = a(n)—2/

—o(n

(compare with the corresponding part of the proof of Proposition 3.6). Hence, if v(a) = 1,

a(n)

(a(n) - |t]) g(t)dt. Then it can be shown that liminf|an41 — an| = 0
) n— o0

A(L*®(R)) ¢ £ and A(L®(IR)) # ¢°. The final statement in the proposition comes from
(2.13) and Proposition 4.8.
There are also discrete versions of the preceding results, some of which are pre-

sented.

THEOREM 4.10. Ler 1< p< oo be given, and let (a(n)) be an increasing sequence of
positive integers. Let hy, € ##(Z) be given by

ha(5) = a(n)" P (a(n) — |jl),  for |j|<a(n), and

ha(3) =0, for il > a(n).
Then v(a) > 1 if and only if (h,) is basic in #(Z). If v(a) > 1 and 1 < p < oo, (hn)
is equivalent to the standard basis in . Also, y(e) > 1 if and only if the sequence

(e(n) =32 sin®(a(n)t/2) sin=? ¢/2) is basic in L*([0,2x]), in which case it is Riesz basic.

Proof. Let PLC(p) denote the closed subspace of LP(RR) consisting of the even, continuous
functions which are linear on [n —1,n] for n € IN. If f € PLC(p), let (Tf)(n) = f(n), for
n € Z. It follows from Lemma 4.3 that T is an isomorphism from PLC(p) into ¢7(Z).
Also, T(g.) = 27Y/2(p + 1)Y/?h,,, for all n. The statements concerning (h,) are thus a
consequence of the equivalence of (4.4) and (4.5), and Theorems 4.1 and 4.2. When
p = 2 the Fourier transform of «(n)3/?h, is the Fejér kernel sin?(a(n)t/2)sin"2¢/2. The

remainder of Theorem 4.10 now follows from Plancherel’s theorem.
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COROLLARY 4.11. Lety(a) > 1. Then a function h € L*([0,2x]) has an expansion
as a convergent series in L*([0,2x]) of the form
> o(n) 7 2d, sin® (a(n)t/2)sin"?t/2,  for de &,
n=1
if and only if the Fourier transform of h is the restriction to Z of some function in

PLC(2,a).
Proof. This is analogous to the proof of Corollary 4.7.

COROLLARY 4.12. Let1<p<ooandp~t+¢ = 1. Let a;5 = a(i)~ O+ (a(i) — j+ 1),
for 1 < j < a(i), and a;; = 0, for j > a(i). Let A denote the operator obtained by
multiplying by the matrix (a;;). Then A is a bounded operator from ¢4 onto € if and only

if y(e) > 1.

Proof. This is similar to the proof of Proposition 4.9.
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