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FOURIER TRANSFORM OF SURFACE CARRIED MEASURES.

M G Cowling
and
G Mavceri

This note, which reports on results from [3], is concerned with
estimates of the decay of the Fourier transform of measures supported
on hypersurfaces of vanishining curvature. Let S be a hypersurface in

R™! with Gaussian curvature K and area measure dS. Let weCC“’(S). we

are seeking estimates of the Fourier transform 6?1 of the finite Borel

measure du=wdS or, more generally, of the measures dua= [KI%® w dS,

for a20. Such estimates are important in a number of problems, such as
counting lattice points inside dilates of S, proving a priori
inequalities for maximal averages of functions over dilates and
translates of S [2] [10], and in the study of certain operators related
to hyperbolic differential operators [8].

The problem of estimating 311 has a long history. The one
dimensional case, i.e. when S is a curve in IRQ, has been investigated by
van der Corput for number theoretical reasons. More recently estimates
for higher dimensional hypersurfaces have been given by Hiwaka [5], Herz
[4], Littman [7], Randol [9] and Svensson [12] . If the Gaussian curvature
of S dees not vanish on the support of w, the method of stationary phase

[6] applied to the oscillatory integral
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é‘mgs): fexp(ig<x,3>) w(x) dS
S

0>0, 131=1, yields the estimate

~ o a2 - : | -1/2
(0 du(e®) ~ Cp > explip<x;,3>) Wlx)) Kix)

RJ'T(X_])

as p— oo, Where the sum is extended over the finite set of points X; in
the support of w, such that & isnormal to the tangent hyperplane T(xj)

to S at xj. Thus the estimate
,\ -—
(2) [du(p9)1<C o™ ™2

as p — o= holds uniformly in &, 131=1. However if the curvature of S
vanishes at some point in the support of w then, in general, a\u(g.‘))
decays slower than p™?2 as p— e in some direction 3, 191=1. The
asymptotic expansion (1) suggests that in these cases the optimal decay
in (2) could be recovered by multiplying the measure du by a suitable
power of the curvature. Thus one seeks minimal conditions on the

surface S and o which guarantee that the measure dua%lKI“ du

satisfies the estimate
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|G, (9)15C ™2

as p — oo, Uniformly for & in the unit sphere of R ™! A first result in
this direction has been obtained by the authors [1] [2], who proved that
611“.2 has optimal decaywhen S, is one of the surfaces in R3 obtained by
revolving around the z axis the curve of equation x%+z%=1, abzx1.
Later Sogge and Stein [10] proved that for any smooth hypersurface S in
R+ éﬁzn has optimal decay. Thisresult canbe improved for certain
convex hypersurfaces. Let S be a smooth convex hypersurface in R

Wwe shall say that S isof finite type if at every point x of S every
tangent Tine to S at x makes a contact of finite order with S.

THEQREM L& S e a smoolht convex Aypérsuriace of 1inite type n R

Leto, be the integer part of (n+3)/2. 7hen 3 N, Salisfies the estimale
|G, (9)1<C ™2
unirormly with respect to $ in R ™ 191=1.

Sketch of the proof. Fix 9 in R™' 191=1. Then it is well known (see
for instance [7] ) that one needs only to examine the contribution to

A
du (ed) coming from a small neighborhood of the points where & is
normal to S. Let X, be one such point. After a rotation and a translation

we can assume that x, coincides with the origin and that in a
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neighborhood of X, S is the graph of a smooth convex function fy: R"—+R
such that f4(0)=0, Vf3(0)=0. Moreover since the function fy depends

continuously on & all the estimates will be uniform in & and we shall
forget the dependence on & altogether. Thus matters reduce to
estimating an oscillatory integral of the form

3 )= [ explioftn) det(r(x)* w () ox
[Rn
where weC .~ (R"). Introducing polar coordinates in R", we can write

I(p) as an average of one-dimensional oscillatory integrals

+o0
I(p)= f dmf explipg(t,0)) ¢*(tw) t" 1 ult,w) dt
Sn ! 0

where o(t,0)=(t,0), ¢(tw)=det(f"(tw), for (t,w)inR, xS, _,. Moreover

the functions t — ¢(t,0), t — y(t,0), t — u(t,w) satisfy the following

assumption, uniformly in w.

Assumption A. There exist 22, €20 and constants CO,M such that for
every p21
i) e yecr ! yeC?
i1) ¢ is convex, ¢(0)=¢'(0)=0 and max{ I¢W(0)I: 2¢icq}ee
i) 0<y(D<Chp(t)  for O<tgl

N Y PR ET PR
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v) o ut)=1 if 0<t<1/3, ulti<0 if 2/3<t<t,

Thus the estimate of the oscillatory integral (3) follows from the
following van Der Corput type lemma.

LEMMA  Lel Kk be an inleger 2. 7There exists py=py(Q,K) such that i7

@, g, U S3Lisiy Assumption A for p2p, men the one aimensionai

oscillatory integral
1
I ()= ‘}' explipp(t)) ¢**1(t) ut) t !4t
0

Sal1sries the estimate
IL(e)1< Co™ .

Full details shall appear in [3].
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