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FOURIER TRANSFORM OF SURFACE CARRIED MEASURES. 

t1. 6. Cowling 

and 

6. 11auceri 

This note, which reports on results from [3], is concerned with 

estimates of the decay of the Fourier transform of measures supported 

on hypersurfaces of vanishining curvature. Let S be a hypersurface in 

Rn+l with Gaussian curvature K and area measure dS. Let weccoo(S). We 

are seeking estimates of the Fourier transform $ of the finite Borel 

measure d1:1=wdS or, more generally, of the measures d1:1et= IKioc w dS, 

for a.£0. Such estimates are important in a number of problems, such as 

counting lattice points inside dilates of S, proving a priori 

inequalities for maximal averages of functions over dilates and 

translates of s [2] [10), and in the study of certain operators related 

to hyperbolic differential operators [8). 
A 

The problem of estimating d1:1 has a long history. The one 

dimensional case, i.e. when S is a curve in IR2, has been investigated by 

van der Corput for number theoretical reasons. More recently estimates 

for higher dimensional hypersurfaces have been given by Hlwaka [5), Herz 

[ 4], Littman [7], Rando 1 [9] and Svensson [ 12] . If the Gaussian curvature 

of S does not vanish on the support of w, the method of stationary phase 

[6] applied to the oscillatory integral 
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d~-t(Q3-)= j exp(ig<x)7> J w(x) dS 

5 

Q>O, 13-1 = 1, yields the estimate 

( 1 ) exp(Jg<x.,S>) w(x.) K(x.)-1/2 
J J . J 

as Q --. =, where the sum is extended over the finite set of points xj in 

the support of w, such that 3- is normal to the tangent hyperplane T<xj) 

to sat xj Thus the estimate 

(2) 

as Q _, oo holds uniformly in 3-, 13-1=1. However if the curvature of S 
/' 

vanishes at some point in the support of w then, in general, d[J.(gS) 

decays slower than f?-n/2 as Q-+ = in some direction 3-, 13-1 = 1. The 

asymptotic expansion ( 1) suggests that in these cases the optimal decay 

in (2) could be recover·ed by multiplying the measure d[l by a suitable 

power of tr1e curvature. Thus one seeks minimal conditions on the 

surface S and a wl1i ct1 guar·antee that the measure dlloc =I K I OL d11 

satisfies the estimate 



as Q-+ = .. uniform 1~ for S in the unit spr1ere of IR n+ 1. A 

this direction has been obtained by the authors [ 1 J [2], who proved that 

"" d11 112 has optimal deca~ when S, is one of the surfaces in fR3 obtained by 

around the z axis the curve of equation x2a+z20 = 1, a,bL 1. 

Later Sogge and Stein [ 1 0] proved that for any smoott1 hypersurface S in 
n+1 A IR d~-t0,, has optimal decay. This result can be improved for certain 

· k.r1 

convex Let 5 be a smooth convex hypersurface in 

We shall say that 5 is of nnite type if at every point x of S every 

tangent line to 5 at x makes a contact of finite order wiH1 S. 

THEOREM L e! 5 /Jt' a S!!Joat/1 of lim'!e lil 

"" Leta be !!7e integerp,.;1rt ol (n+ 3)/2 Tllen dlloc ::.<JhsYies tile estiJJJ.::te 

un/lormly w!t/7 !t'b";;oect to S ;/7 IR n+l, IS I= 1. 

Sketch of the proof. Fix sin fR n+l, lSI= 1. Then it is well known (see 

for instance [7] ) tl1at one needs only to examine the contribution to 

"' dt-toc(QS) coming from a small neighborhood of the points where S is 

nor-mal to 5. Let x0 be one such point. After· a rotation and a translation 

we can assume that x0 coincides with the origin and tt1at in a 
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neighborhood of x0 S is the graph of a smooU1 convex function f &: JR 11-;·JR 

such tt1at f &(0)=0, 'ilf &(Ol=O Moreover since the function f & depends 

continuousl~ on S all the estimates will be uniform inS and we shall 

forget the dependence on & altogether. Thus matters reduce to 

estimating an oscillatory integral of the form 

(3) Hrl= j exp(igf(xJl det(f"(x))IJ( w 1(x) dx 
IRn 

where WECc00 (1R 11 ). Introducing polar coordinates in IR 11 , we can write 

Hg) as an average of one-dimensional oscillatory integrals 

where ~(t,w)=f(t,w), ~f~(t,w)=det(f"(tw), for (t,w) in IR+ xS11 _ 1. Moreover 

the functions t-+ i.p(t,w), t-+ ~f~(t,w), t-+ u(t,w) satisfy the following 

assumption, uniformly in w. 

Assumption A There exist q22, t:>O and constants C0 ,M such that for 

every p2 1 

i) ~ E [P+ i , 1.jJ E [H, U E (P 

ii) I.P is convex, ~(O)=i.p'(O)=O and max{ I q:/il(Q) I: 2s i sqhc: 

iii) Os'f(t)~C0 <p"(t) for O~ts: 1 

iv) icp lltp+1l + ll~f~ ll(p-Jl:::M 
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V) U(t)= 1 if O~L 1/3, U(thO if 2/3:;t~ 1. 

Thus the estimate of the oscillatory integral (3) follows from trte 

following van Der Corput type lemma. 

LH11"1A Letk f;ean!I'Jteper 21. Tl!t?lt?&J.:'J~c:tsp0 =p0(q,k) s·uclJt!Jdtif 

<p, -y.•, u satt~c;t,y Assumption A tor p2p0 then the one dlirJensJcmai 

oscJ! !a tory JiJte_qral 

I k(Q)= J1
exp(ie,p(t)) \j!k+l (t) u(t) t2k-l dt 

0 

satisfies the estimdte 

Full details shall appear in [3]. 
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