FOURIER TRANSFORM OF SURFACE CARRIED MEASURES.

M. G. Cowling and G. Mauceri

This note, which reports on results from [3], is concerned with estimates of the decay of the Fourier transform of measures supported on hypersurfaces of vanishining curvature. Let S be a hypersurface in \mathbb{R}^{n+1} with Gaussian curvature K and area measure dS. Let $w\in C_c^\infty(S)$. We are seeking estimates of the Fourier transform $\widehat{d\mu}$ of the finite Borel measure $d\mu=wdS$ or, more generally, of the measures $d\mu_\alpha=IKI^\alpha$ w dS, for $\alpha \ge 0$. Such estimates are important in a number of problems, such as counting lattice points inside dilates of S, proving a priori inequalities for maximal averages of functions over dilates and translates of S [2] [10], and in the study of certain operators related to hyperbolic differential operators [8].

The problem of estimating $\widehat{d\mu}$ has a long history. The one dimensional case, i.e. when S is a curve in \mathbb{R}^2 , has been investigated by van der Corput for number theoretical reasons. More recently estimates for higher dimensional hypersurfaces have been given by Hlwaka [5], Herz [4], Littman [7], Randol [9] and Svensson [12] . If the Gaussian curvature of S does not vanish on the support of w, the method of stationary phase [6] applied to the oscillatory integral

$$\hat{d\mu}(\varrho\vartheta) = \int \exp(i\varrho \langle x, \vartheta \rangle) w(x) dS$$

 $\rho > 0$, 191 = 1, yields the estimate

(1)
$$\widehat{d\mu}(\varrho\vartheta) \sim C \varrho^{-n/2} \sum_{\vartheta \perp T(x_j)} \exp(i\varrho \langle x_j, \vartheta \rangle) w(x_j) K(x_j)^{-1/2}$$

as $\varrho \to \infty$, where the sum is extended over the finite set of points x_j in the support of w, such that ϑ is normal to the tangent hyperplane $T(x_j)$ to S at x_i . Thus the estimate

(2)
$$|\hat{d\mu}(\varrho\vartheta)| \le C \varrho^{-n/2}$$

as $\varrho \to \infty$ holds uniformly in ϑ , $|\vartheta|=1$. However if the curvature of S vanishes at some point in the support of withen, in general, $\widehat{d\mu}(\varrho\vartheta)$ decays slower than $\varrho^{-n/2}$ as $\varrho \to \infty$ in some direction ϑ , $|\vartheta|=1$. The asymptotic expansion (1) suggests that in these cases the optimal decay in (2) could be recovered by multiplying the measure $d\mu$ by a suitable power of the curvature. Thus one seeks minimal conditions on the surface S and α which guarantee that the measure $d\mu_{\alpha}=|K|^{\alpha}d\mu$ satisfies the estimate

$$|\widehat{d\mu}_{\alpha}(\varrho\vartheta)| \le C \varrho^{-n/2}$$

as $\varrho \to \infty$, uniformly for ϑ in the unit sphere of \mathbb{R}^{n+1} . A first result in this direction has been obtained by the authors [1] [2], who proved that $\widehat{d\mu}_{1/2}$ has optimal decay when S, is one of the surfaces in \mathbb{R}^3 obtained by revolving around the z axis the curve of equation $x^{2a}+z^{2b}=1$, $a,b \ge 1$. Later Sogge and Stein [10] proved that for any smooth hypersurface S in \mathbb{R}^{n+1} $\widehat{d\mu}_{2n}$ has optimal decay. This result can be improved for certain convex hypersurfaces. Let S be a smooth convex hypersurface in \mathbb{R}^{n+1} .

We shall say that S is of **finite type** if at every point x of S every tangent line to S at x makes a contact of finite order with S.

THEOREM Let S be a smooth convex hypersurface of finite type in \mathbb{R}^{n+1} . Let α be the integer part of (n+3)/2. Then $\widehat{d\mu}_{\alpha}$ satisfies the estimate

$$|\widehat{d\mu}_{\alpha}(\varrho\vartheta)| \le C \varrho^{-n/2}$$

uniformly with respect to ϑ in \mathbb{R}^{n+1} , $|\vartheta| = 1$.

Sketch of the proof. Fix ϑ in \mathbb{R}^{n+1} , $|\vartheta|=1$. Then it is well known (see for instance [7]) that one needs only to examine the contribution to $d\mu_{\alpha}(\varrho\vartheta)$ coming from a small neighborhood of the points where ϑ is normal to S. Let x_0 be one such point. After a rotation and a translation we can assume that x_0 coincides with the origin and that in a

neighborhood of x_0 S is the graph of a smooth convex function $f_{\vartheta} \colon \mathbb{R}^n \to \mathbb{R}$ such that $f_{\vartheta}(0) = 0$, $\nabla f_{\vartheta}(0) = 0$. Moreover since the function f_{ϑ} depends continuously on ϑ all the estimates will be uniform in ϑ and we shall forget the dependence on ϑ altogether. Thus matters reduce to estimating an oscillatory integral of the form

(3)
$$I(\varrho) = \int_{\mathbb{R}^n} \exp(i\varrho f(x)) \ \det(f''(x))^{\alpha} \ w_1(x) \ dx$$

where $w \in C_c^{\infty}(\mathbb{R}^n)$. Introducing polar coordinates in \mathbb{R}^n , we can write $I(\varrho)$ as an average of one-dimensional oscillatory integrals

$$I(\varrho) = \int_{S_{n-1}}^{\infty} d\omega \int_{0}^{+\infty} \exp(i\varrho \phi(t,\omega)) \ \psi^{\alpha}(t,\omega) \ t^{n-1} \ u(t,\omega) \ dt$$

where $\varphi(t,\omega)=f(t,\omega)$, $\psi(t,\omega)=\det(f''(t\omega), \text{ for } (t,\omega) \text{ in } \mathbb{R}_+\times S_{n-1}$. Moreover the functions $t\to \varphi(t,\omega), t\to \psi(t,\omega), t\to u(t,\omega)$ satisfy the following assumption, uniformly in ω .

Assumption A. There exist $\,q {\scriptstyle \, 2} 2, \, \epsilon {\scriptstyle \, >} 0$ and constants C_0, M such that for every $\,p {\scriptstyle \, >} \, 1$

- i) $\varphi \in C^{p+1}$, $\psi \in C^{p-1}$, $u \in C^p$
- ii) φ is convex, $\varphi(0) = \varphi'(0) = 0$ and $\max\{ |\varphi^{(i)}(0)| : 2 \le i \le q \} \ge \epsilon$
- iii) $0 \le \psi(t) \le C_0 \varphi''(t)$ for $0 \le t \le 1$
- iv) $\|\varphi\|_{(p+1)} + \|\psi\|_{(p-1)} \le M$

v) u(t)=1 if $0 \le t \le 1/3$, $u(t) \le 0$ if $2/3 \le t \le 1$.

Thus the estimate of the oscillatory integral (3) follows from the following van Der Corput type lemma.

LEMMA Let k be an integer ≥ 1 . There exists $p_0 = p_0(q,k)$ such that if ϕ , ψ , u satisfy Assumption A for $p\ge p_0$ then the one dimensional oscillatory integral

$$I_k(\varrho) = \int_0^1 \exp(i\varrho \varphi(t)) \ \psi^{k+1}(t) \ u(t) \ t^{2k-1} dt$$

satisfies the estimate

$$|I_k(\varrho)| \le C \varrho^{-k}$$

Full details shall appear in [3].

REFERENCES

- [1] M. Cowling, *On Littlewood-Paley-Stein theory* Rend. Circ. Mat. Palermo Suppl. 1 (1981), 21–55.
- [2] M. Cowling and G. Mauceri, *Inequalities for some maximal functions*: II, Trans. Amer. Math. Soc. 296 (1986), 341–365.
- [3] M. Cowling and G. Mauceri, *Oscillatory integrals and Fourier transforms of surface carried measures*, to appear.

- [4] C. S. Herz, *Fourier transforms related to convex sets*, Ann. of Math. 75 (1962), 81-92.
- [5] E. Hlawka, *Uber Integrale auf konvexen Korper.I*, Monatsh. Math. 54(1950), 1–36.
- [6] L. Hörmander, *The analysis of linear Partial Differential Operators.* I, Grundlehren der Math. Wissenschaften, Springer Verlag 1983.
- [7] W. Littman, Fourier transform of surface carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770.
- [8] B. Marshall, Estimates for Solutions of Wave Equations with Vanishing Curvature, Can. J. Math. 37 (1985), 1176–1200.
- [9] B. Randol, On the asymptotic behaviour of the Fourier transform of the indicator function of a convex set, Trans.

 Amer. Math. Soc. 139 (19697, 279–285.
- [10] C. D. Sogge and E. M. Stein, *Averages of functions over hypersurfaces in* \mathbb{R}^n , Invent. Math. 82 (1985), 543–556.
- [11] E. M. Stein, *Oscillatory integrals in Fourier Analysis*, in Beijing Lectures in Analysis, Annals of Math. Study, Princeton University Press 1985.
- [12] I. Svensson, Estimates for the Fourier transform of the characteristic function of a convex set, Arkiv för Math. 9 (1971), 11-22.

School of Mathematics University of New South Wales Kensington NSW 2033 Australia

Instituto di Matematica Universita di Genova Via LB. Alberti 4 16132 Genova Italy