ESTIMATES FOR LINEAR SYSTEMS OF OPERATOR EQUATIONS

Alan J. Pryde

1. INTRODUCTION

This is a description of joint work ^(*) with Alan McIntosh and Werner Ricker of Macquarie University.

Throughout, X and Y denote (complex) Banach spaces. The space of bounded (linear) operators from X to Y, provided with the operator norm, is denoted L(X,Y) and L(X) = L(X,X). The Taylor spectrum of a commuting m-tuple $\underset{\sim}{S} = (S_1, \ldots, S_m)$ in $L(X)^m$ is denoted $Sp(\underset{\sim}{S})$ or $Sp(S_1, \ldots, S_m)$ or Sp(S,L(X)) (see Taylor [9]).

We consider the following linear system of equations

(1.1)
$$\sum_{j=1}^{n} A_{ij}QB_{ij} = U_{i} \text{ for } 1 \leq i \leq m$$

Here and elsewhere, $A = (A_{ij}) \in L(X)^{mn}$, $B = (B_{ij}) \in L(Y)^{mn}$, $1 \le i \le m$, $1 \le j \le n$, and A, B are commuting mn-tuples. Moreover, $U = (U_1, \dots, U_m) \in L(Y, X)$ is given and an operator $Q \in L(Y, X)$ satisfying (1.1) is to be determined. We will order mn-tuples such as $A = (A_{ij})$ or $x = (x_{ij}) \in \mathbb{C}^{mn}$, $1 \le i \le m$, $1 \le j \le n$, lexicographically from the left. So, $x = (x_{11}, \dots, x_{1n}, x_{21}, \dots, x_{2n}, \dots, x_{m1}, \dots, x_{mn})$.

For m > 1, the system (l.l) is overdetermined and it is readily seen that a necessary condition for the solubility of (l.l) is the following

^(*) The continuing support of the Centre for Mathematical Analysis, Canberra, is gratefully acknowledged.

compatibility condition

(1.2)
$$\sum_{j=1}^{n} A_{\ell j} U_{i} B_{\ell j} = \sum_{j=1}^{n} A_{i j} U_{\ell} B_{i j} \text{ for } 1 \leq i, \ell \leq n.$$

The operators $T_i \in L(L(Y,X))$, defined for $1 \leq i \leq m$ by $T_i(Q) = \sum_{j=1}^n A_{ij}QB_{ij}$, are sometimes called elementary operators. Spectral properties of (single) elementary operators, especially on Hilbert space, have been studied by a number of authors. See for example Curto [4] and the references cited there. System (1.1) with m = 1 is also the subject of McIntosh, Pryde and Ricker [8].

An interesting special case arises when n = 2, $A_{i1} = A_i$, $A_{i2} = -I$, $B_{i1} = I$, $B_{i2} = B_i$. Then (1.1) becomes

(1.3)
$$A_i Q - Q B_i = U_i$$
 for $1 \leq i \leq m$.

In this case T_i is a generalized derivation.

Under the condition that $\operatorname{Sp}(A_1, \ldots, A_m) \cap \operatorname{Sp}(B_1, \ldots, B_m) = \emptyset$, McIntosh and Pryde [5], [6] have shown that the compatibility condition (1.2) is necessary and sufficient for the solvability of (1.3). Moreover, let $\delta = \operatorname{dist}(\operatorname{Sp}(A_1, \ldots, A_m), \operatorname{Sp}(B_1, \ldots, B_m))$ be positive and suppose A and B consist of generalized scalar operators with real spectra. Recall that an operator $S \in L(X)$ is generalized scalar with real spectrum if and only if there exist $s \ge 0$ and $M \ge 1$ such that $\|\exp(i\lambda S)\| \le M(1+|\lambda|)^S$ for all $\lambda \in \mathbb{R}$ (Colojoarǎ and Foias, [3]). So there exist constants $s, t \ge 0$ and $M, N \ge 1$ such that $\|\exp(i\sum_{k=1}^{m} \xi_k A_k)\| \le M(1+|\xi|)^S$, $\|\exp(i\sum_{k=1}^{m} \xi_k B_k)\| \le N(1+|\xi|)^t$ for all $(\xi_1, \ldots, \xi_k) \in \mathbb{R}^m$. It is proved in [6] that there exists a constant c = c(m, s+t) such that any solution Q of (1.3) satisfies

(1.4) $\|Q\| \leq \text{cMN}\delta^{-1} \max(1, \delta^{-S}) \max(1, \delta^{-t}) \|U\|$

where $\|\underline{U}\| = (\sum_{i=1}^{m} \|\underline{U}_{i}\|^{2})^{\frac{1}{2}}$.

Our original motivation for studying system (1.3) was that it arises in the study of perturbation of spectral subspaces of commuting m-tuples of, say, normal operators on a Hilbert space. For these applications, see [5].

In this paper we attempt to obtain estimates similar to (1.4) for the more general system (1.1). To do this it will, at times, be necessary to assume that $A_{\sim} = (A_{ij})$ and $B_{\sim} = (B_{ij})$ are commuting mn-tuples of generalized scalar operators with real spectra. So, there exist s_{ij} , $t_{ij} \ge 0$ and M_{ij} , $N_{ij} \ge 1$ for $1 \le i \le m$, $1 \le j \le n$ such that

$$(1.5) \quad \|\exp(i\lambda A_{\ell j})\| \leq M_{\ell j} (1+|\lambda|)^{S_{\ell j}}, \|\exp(i\lambda B_{\ell j})\| \leq N_{\ell j} (1+|\lambda|)^{T_{\ell j}}$$

for all $\lambda \in \mathbb{R}, 1 \leq \ell \leq m$ and $1 \leq j \leq n$.

It follows from (1.5) that $T = (T_1, \dots, T_m)$ is also a commuting tuple of generalized scalar operators with real spectra ; that is, there exist $u \ge 0$, $P \ge 1$ such that

(1.6) $\|\exp(i<\xi,T>)\| \leq P(1+|\xi|)^{u}$ for all $\xi \in \mathbb{R}^{m}$ where $\langle \xi,T> = \sum_{j=1}^{m} \xi_{j}T_{j}$. By McIntosh and Pryde [6, Theorem 11.1] any solution Q of (1.1) satisfies (1.7) $\|Q\| \leq cP\delta^{-1} \max(1,\delta^{-u}) \|U\|$

- ~

where c = c(m, u) and $\delta = dist(0, Sp(T)) > 0$.

However, we are in general unable to find a relationship between (u,P)and $(s_{ij},t_{ij},M_{ij},N_{ij})$. In McIntosh, Pryde and Ricker [8] it is shown that we can take $u = \sum_{i,j} (s_{ij}+t_{ij})$ when X, Y are finite dimensional. In the infinite dimensional case, if X = Y, it follows from Albrecht [1] that $u \leq \sum_{i,j} (s_{ij}+t_{ij}+2)$. In a private communication, M. Hladnik has given an explicit example $(X = Y = l_2)$ where $u > \sum_{i,j} (s_{ij}+t_{ij})$.

In this paper we seek estimates for solutions Q of (l.l) in terms of the parameters $(s_{ij},t_{ij},M_{ij},N_{ij})$ and not in terms of (u,P).

Note that, given (1.5), A and B satisfy

$$(1.8) \quad \|\exp(i < \xi, A>)\| \leq M(1+|\xi|)^{S}, \ \|\exp(i < \xi, B>)\| \leq N(1+|\xi|)^{C}$$

2. EXISTENCE, UNIQUENESS THEOREM

Let L_{ij} , $R_{ij} \in L(L(Y,X))$ for $l \leq i \leq m$, $l \leq j \leq n$ be defined by $L_{ij}(Q) = A_{ij}Q$ and $R_{ij}(Q) = QB_{ij}$. Let $L = (L_{ij})$ and $R = (R_{ij})$ so that (L,R) is a commuting 2mn-tuple.

Define $\psi : \mathbb{C}^{2mn} \to \mathbb{C}^m$ by $\psi = (\psi_1, \dots, \psi_m)$ where $\psi_i(x, y) = \sum_{j=1}^n x_{ij} y_{ij}$ for $x, y \in \mathbb{C}^{mn}$ and we make the identification $\mathbb{C}^{2mn} = \mathbb{C}^{mn} \times \mathbb{C}^{mn}$. If $\sum_{j=1}^m \mathbb{C}^m = \mathbb{C}^{mn} \times \mathbb{C}^m$ then

(2.1) $T = \psi(L, R)$.

In the next proposition, and in section 3, we will assume that $A = (A_{lj}), B = (B_{lj})$ are of the form

If $A_{, B}$ satisfy (2.2) they are called strongly commuting, and the tuples $\pi(A) = (A_{kjk}), \pi(B) = (B_{kjk})$ are referred to as partitions of A, B. If X, Y are finite dimensional, then any commuting tuples are strongly commuting. If X, Y are Hilbert and A, B are commuting tuples of normal operators, then A, B are strongly commuting. Other examples may be found in McIntosh, Pryde and Ricker [7].

PROPOSITION 2.3 Suppose one of the following conditions is satisfied

- a) m = n = 1,
- b) $X = Y_{r}$
- c) X, Y are Hilbert spaces, or
- d) A, B are strongly commuting.

Then $Sp(L) \subset Sp(A)$ and $Sp(R) \subset Sp(B)$.

Proof. Define l : L(X) + L(L(Y,X)) and r : L(Y) + L(L(Y,X)) by l(A)(Q) = AQ and r(B)(Q) = QB. It is easy to check that $Sp(l(A)) \subset Sp(A)$ and $Sp(r(B)) \subset Sp(B)$, proving the result for a).

If X = Y or if X, Y are Hilbert spaces, then ℓ and r are isometries onto (closed) unital subalgebras of L(L(Y,X)). Further ℓ is a homomorphism and r an order-reversing-homomorphism. Hence $Sp(\underline{A}) \subset Sp(\ell(\underline{A}), L(L(Y,X))) = Sp(\underline{L})$ and $Sp(\underline{B}) \subset Sp(r(\underline{B}), L(L(Y,X))) = Sp(\underline{R})$, proving the result for b), c).

Suppose A, B are strongly commuting with partitions $\pi(A)$, $\pi(B)$. Since $\operatorname{Sp}(\pi(A)) \subset \mathbb{R}^{2mn}$, by [7, Theorem 1] $\operatorname{Sp}(\pi(A)) = \gamma(\pi(A)) = \gamma(\pi(A)) = \{\lambda \in \mathbb{R}^{2mn} : 0 \in \operatorname{Sp}(\Sigma(A_{ijk}^{-\lambda}_{ijk})^2)\}$. Define $p : \mathbb{C}^{2mn} + \mathbb{C}^{mn}$ by $p(x) = \gamma$, where $x = (x_{kjk})$, $y = (y_{kj})$, $y_{kj} = x_{kj1} + ix_{kj2}$. Then

 $Sp(A) = p(Sp(\pi(A)))$

(by Taylor's spectral mapping theorem [10])

 $= p(\gamma(\pi(A)))$

 $\supset p(\gamma(\ell(\pi(A)))))$

(by the result proved above for a))

=
$$p(Sp(\ell(\pi(A))))$$

(since $Sp(\ell(\pi(A))) \subset \mathbb{R}^{2mn}$)

= Sp(L).

Similarly, Sp(B) \supset Sp(R).

PROPOSITION 2.4 Suppose one of the conditions 2.3a) - d) is satisfied. Then $Sp(T) \subset \psi(Sp(A) \times Sp(B))$.

Proof. By (2.1), Taylor's spectral mapping theorem and Proposition 2.3,

 $Sp(\underline{T}) = Sp(\psi(\underline{L},\underline{R}))$ $= \psi(Sp(\underline{L},\underline{R}))$ $\subset \psi(Sp(\underline{L}) \times Sp(\underline{R}))$ $\subset \psi(Sp(A) \times Sp(B)).$

THEOREM 2.5 Suppose one of the conditions 2.3a) – d) is satisfied and $0 \notin \psi(Sp(A) \times Sp(B))$. Then system (1.1) has a solution $Q \in L(Y,X)$ if and only if the compatibility conditions (1.2) are satisfied. Moreover, when a solution exists it is unique.

Proof. We have observed already that the compatibility conditions are necessary for solubility of (1.1). Conversely, if $0 \notin \psi(\operatorname{Sp}(\underline{A}) \times \operatorname{Sp}(\underline{B}))$ then by Proposition 2.4 and the definition of the Taylor spectrum, the Koszul complex for \underline{T} is exact. In particular, $Q \mapsto (T_1(Q), \ldots, T_m(Q))$ is an injection from L(X,Y) into $L(Y,X)^m$ whose range is precisely those \underbrace{U}_{\sim} satisfying (1.2).

3. ESTIMATES FOR THE SOLUTION : REAL SPECTRA

In order to prove estimates for the solution of (1.1) we must place restrictions on A, B. Throughout this section, we assume $0 \not\in \psi(\operatorname{Sp}(A) \times \operatorname{Sp}(B))$ and moreover that A, B are commuting mn-tuples of generalized scalar operators with real spectra. In particular we assume that condition (1.8) is satisfied.

It follows that (L,R) is a commuting 2mn-tuple of generalized scalar operators with real spectra. In particular, if K = MN and r = s + t, then

(3.1)
$$\|\exp(i < (\xi, \eta), (L, \mathbb{R}) > \| \le K (1+|(\xi, \eta)|)^{\perp}$$

for all $\xi, \eta \in \mathbb{R}^{mn}$.

Let k be a positive integer and r any non-negative real. We denote by $L_1^{v}(r, \mathbb{R}^k)$ the space of inverse Fourier transforms g of complex-valued functions h for which $(1+|\xi|)^r h \in L_1(\mathbb{R}^k)$. In particular, $g(x) = h^{v}(x) = (2\pi)^{-k} \int_{\mathbb{R}^k} \exp(i < \xi, x >) h(\xi) d\xi$. The norm $||g|| = (2\pi)^{-k} \int_{\mathbb{R}^k} (1+|\xi|)^r |h(\xi)| d\xi$ makes $L_1^{v}(r, \mathbb{R}^k)$ a Banach algebra with respect to pointwise multiplication. For the details, see McIntosh and Pryde [6].

In view of condition (3.1), it follows that (L, \mathbb{R}) has a functional calculus based on $L_1^v(r, \mathbb{R}^{2mn})$. In fact there is a continuous homomorphism

$$(3.2) \quad \Phi : L_{l}^{\vee}(r, \mathbb{R}^{2mn}) \rightarrow L(L(Y,X))$$

defined by

$$\Phi(g) = (2\pi)^{-2mn} \int_{\mathbb{IR}^{2mn}} \exp(i < (\xi, \eta), (L, R) >) \hat{g}(\xi, \eta) d\xi d\eta.$$

If $p: \mathbb{R}^{2mn} \to \mathbb{C}$ is a polynomial and $\theta \in C_{c}^{\infty}(\mathbb{R}^{2mn})$ is 1 on a

41

neighbourhood of Sp(L,R) then $\theta p \in L_1^{\vee}(R, \mathbb{R}^{2mn})$ and

$$(3.3) \quad \Phi(\theta p) = p(L,R).$$

From condition (3.1) it follows readily that

$$(3.4) || \phi(g) || \leq K ||g|| \text{ for all } g \in L_1^{\vee}(r, \mathbb{R}^{2mn}).$$

Since $0 \notin \psi(\operatorname{Sp}(\underline{A}) \times \operatorname{Sp}(\underline{B}))$ and $\operatorname{Sp}(\underline{A}) \times \operatorname{Sp}(\underline{B})$ is compact, $|\psi|^{-2}\psi_{\underline{i}}$ is C^{∞} on a neighbourhood of $\operatorname{Sp}(\underline{A}) \times \operatorname{Sp}(\underline{B})$ for $\underline{1} \leq \underline{i} \leq \underline{m}$. So there exists $g = (g_1, \ldots, g_m)$ such that

(3.5)
$$g \in L_1^{\vee}(r, \mathbb{R}^{2mn})^m$$
 and $g = |\psi|^{-2}\psi$ on a neighbourhood of $Sp(A) \times Sp(B)$.

With
$$||g|| = (\sum_{i=1}^{m} ||g_i||^2)^{\frac{1}{2}}$$
 define

(3.6) $c(m,n,r,Sp(A), Sp(B)) = \inf\{||g|| : g \text{ satisfies } (3.5)\}.$

THEOREM 3.7 Let \underline{A} , \underline{B} be commuting mn-tuples of generalized scalar operators with real spectra such that $0 \notin \psi(Sp(\underline{A}) \times Sp(\underline{B}))$. In particular, suppose condition (3.1) is satisfied. If Q is a solution of system (1.1) in L(Y, X) then

 $\|Q\| \leq K c(m,n,r,Sp(A), Sp(B)) \|U\|.$

Proof. Let ϕ be the functional calculus homomorphism (3.2) and g any function satisfying (3.5). Let $P = \sum_{\substack{k=1 \\ k=1}}^{m} \phi(g_k) U_k$. If $\theta \in C_c^{\infty}(\mathbb{R}^{2mn})$ is 1 on a neighbourhood of Sp(L,R), then for $1 \leq i \leq m$,

$$T_{i}(P) = T_{i}\left(\sum_{\ell=1}^{m} \phi(g_{\ell})U_{\ell}\right)$$
$$= \sum_{\ell=1}^{m} \phi(g_{\ell})T_{i}(U_{\ell})$$

$$= \sum_{\substack{k=1\\ k=1}}^{m} \Phi(g_{k}) T_{k}(U_{i})$$

(using the compatibility condition (1.2))

$$= \sum_{\substack{k=1}}^{m} \Phi(g_{k}) \Phi(\theta\psi_{k}) U_{i}$$

(by (2.1) and (3.3))

$$= \phi \left(\sum_{k=1}^{m} g_{k} \theta \psi_{k} \right) U_{i}$$
$$= \phi \left(\theta \right) U_{i}$$

(by (3.5) and proposition 2.2)

(by (3.3)). Hence P = Q and by (3.4),

$$\| \delta \| = \| \sum_{m=1}^{\kappa} \Phi(a^{\ell}) \| \| \| \|$$

from which the result follows.

4. ESTIMATES FOR THE SOLUTION : COMPLEX SPECTRA

A more general result for operators with complex spectra can also be obtained. Again we assume that $0 \not\in \psi(\operatorname{Sp}(A) \times \operatorname{Sp}(B))$. In addition we assume that A, B are strongly commuting mn-tuples whose partitions $\pi(A) = (A_{kjk})$ and $\pi(B) = (B_{kjk})$ consist of generalized scalar operators (with real spectra).

83

We define operators L_{ljk} , $R_{ljk} \in L(L(Y,X))$ by $L_{ljk}(Q) = A_{ljk}Q$,

43

$$\begin{split} & R_{\textit{k}jk}\left(Q\right) = QB_{\textit{k}jk} \quad \text{and set} \quad L_{\textit{k}}^{\left(k\right)} = \left(L_{\textit{k}jk}\right), \; R_{\textit{k}}^{\left(k\right)} = \left(R_{\textit{k}jk}\right), \; 1 \leq \textit{k} \leq \textit{m}, \\ & 1 \leq j \leq n, \; 1 \leq k \leq 2. \quad \text{Then} \quad \left(L_{\textit{k}}^{\left(1\right)}, L_{\textit{k}}^{\left(2\right)}, R_{\textit{k}}^{\left(1\right)}, R_{\textit{k}}^{\left(2\right)}\right) \; \text{ is a commuting 4mn-tuple of generalized scalar operators with real spectra. Hence there exist} \quad r \geq 0, \; K \geq 1 \; \text{ such that} \end{split}$$

$$(4.1) \quad \left\| \exp\left(i \sum_{\ell,j,k} (\xi_{\ell j k} L_{\ell j k} + \eta_{\ell j k} R_{\ell j k}) \right) \right\| \leq K (1 + |(\xi, \eta)|)^{r}$$

for all $\xi = (\xi_{\ell j k}), \ \eta = (\eta_{\ell j k}) \in \mathbb{R}^{2mn}.$

Moreover,

$$T_{\ell} = \sum_{j} L_{\ell j} R_{\ell j}$$
$$= \sum_{j} (L_{\ell j l} R_{\ell j l} - L_{\ell j 2} R_{\ell j 2}) + i (L_{\ell j 2} R_{\ell j l} + L_{\ell j l} R_{\ell j 2}).$$

Hence

$$(4.2) \quad T_{\ell} = \phi_{\ell} (\underline{L}^{(1)}, \underline{L}^{(2)}, \underline{R}^{(1)}, \underline{R}^{(2)})$$
where $\phi_{\ell} : \mathbb{R}^{4mn} \neq \mathbb{C}$ is defined by
 $\phi_{\ell} (\underline{x}^{(1)}, \underline{x}^{(2)}, \underline{y}^{(1)}, \underline{y}^{(2)})$

$$= \sum_{\ell} (\underline{x}_{\ell j l} \underline{y}_{\ell j l} - \underline{x}_{\ell j 2} \underline{y}_{\ell j 2}) + i (\underline{x}_{\ell j 2} \underline{y}_{\ell j l} + \underline{x}_{\ell j l} \underline{y}_{\ell j 2})$$

$$= \psi_{\ell} (\underline{x}^{(1)} + i \underline{x}^{(2)}, \underline{y}^{(1)} + i \underline{y}^{(2)})$$

for $x^{(k)} = (x_{\ell jk}), y^{(k)} = (y_{\ell jk}) \in \mathbb{R}^{mn}$. Let $\phi = (\phi_{\ell}) : \mathbb{R}^{4mn} \to \mathbb{C}^{m}$, let $\phi_{\ell}^{\#} = \tilde{\phi}_{\ell}$ the complex conjugate of ϕ_{ℓ} , and define $T_{\ell}^{\#} = \phi_{\ell}^{\#}(L_{\ell}^{(1)}, L_{\ell}^{(2)}, \mathbb{R}^{(1)}, \mathbb{R}^{(2)})$.

LEMMA 4.3 If the compatibility conditions (1.2) are satisfied for \underbrace{U}_{\sim} then the solution Q of (1.1) is

$$Q = \left(\sum_{\mathfrak{L}} T_{\mathfrak{L}}^{\sharp} T_{\mathfrak{L}} \right)^{-1} \left(\sum_{\mathfrak{L}} T_{\mathfrak{L}}^{\sharp} U_{\mathfrak{L}} \right) \,.$$

Proof. By (1.2), assuming that $\sum_{k} T_{k}^{\#} T_{k}$ is invertible,

$$T_{i}(Q) = \left(\sum_{\ell} T_{\ell}^{\sharp} T_{\ell}\right)^{-1} \left(\sum_{\ell} T_{\ell}^{\sharp} T_{i} U_{\ell}\right)$$
$$= \left(\sum_{\ell} T_{\ell}^{\sharp} T_{\ell}\right)^{-1} \left(\sum_{\ell} T_{\ell}^{\sharp} T_{\ell} U_{i}\right)$$
$$= U_{i}.$$

To prove that $\sum_{\ell} T_{\ell}^{\sharp} T_{\ell}$ is invertible, we note that $\sum_{\ell} T_{\ell}^{\sharp} T_{\ell} = \sum_{\ell} (\psi_{\ell}^{\sharp} \psi_{\ell}) (\sum_{\ell}^{(1)}, \sum_{\ell}^{(2)}, \mathbb{R}^{(1)}, \mathbb{R}^{(2)})$. Since $\sum_{\ell} \phi_{\ell}^{\sharp} \phi_{\ell} : \mathbb{R}^{4mn} \to \mathbb{R}$ is a polynomial, it follows from Taylor's spectral mapping theorem [10] and Proposition 2.3 that

$$S_{P}\left(\sum_{k}^{T} T_{k}^{\#} T_{k}\right) = \sum_{k}^{r} \left(\phi_{k}^{\#} \phi_{k}\right) \left(S_{P}\left(\sum^{(1)},\sum^{(2)},\sum^{(1)},\sum^{(1)},\sum^{(2)}\right)\right)$$
$$= \sum_{k}^{r} |\psi_{k}|^{2} \left(S_{P}\left(\sum^{(1)}+i\sum^{(2)},\sum^{(1)},\sum^{(1)}+i\sum^{(2)}\right)\right)$$
$$= |\psi|^{2} \left(S_{P}\left(\sum^{(1)},\sum^{(1)}\right)$$
$$\subset \{|\psi(x,y)|^{2} : x \in S_{P}(\lambda), y \in S_{P}(E)\}.$$

Since $0 \notin \psi(\operatorname{Sp}(\underline{A}) \times \operatorname{Sp}(\underline{B}))$, $\sum_{\ell} T_{\ell}^{\sharp} T_{\ell}$ is invertible.

Now $|\phi|^{-2}\phi_{1}^{\#}$ is C^{∞} in a neighbourhood of $\operatorname{Sp}(\underline{L}^{(1)}, \underline{L}^{(2)}, \underline{R}^{(1)}, \underline{R}^{(2)})$. So there exists a function g such that

(4.4) $g \in L_1^{\vee}(r, \mathbb{R}^{4mn})^m$ and $g = |\phi|^{-2}\phi_i^{\#}$ on a neighbourhood of $\operatorname{Sp}(L_1^{(1)}, L_2^{(2)}, \mathbb{R}^{(1)}, \mathbb{R}^{(2)})$.

Analogously to (3.6) we define

(4.5) $c(m,n,r,Sp(A),Sp(B)) = \inf\{||g|| : g \text{ satisfies } (4.4)\}.$

For g satisfying (4.4) and Q any solution of (1.1), we conclude from Lemma 4.3 that $Q = \sum_{k} \Phi(g_{k}) U_{k}$. Hence : **THEOREM 4.6** Let \underline{A} , \underline{B} be strongly commuting mn-tuples of generalized scalar operators such that $0 \notin \psi(Sp(\underline{A}) \times Sp(\underline{B}))$ and condition (4.1) is satisfied. If \underline{Q} is a solution of system (1.1) in $L(\underline{Y},\underline{X})$ then

 $\|Q\| \leq K c(m,n,r,Sp(A),Sp(B)) \|U\|.$

5. UNIVERSAL ESTIMATES

The estimate (1.7) for system (1.3) reduces to

(5.1)
$$\|Q\| \leq c(m) \delta^{-1} \|U\|$$

in the case where A, B are, say, commuting m-tuples of self-adjoint operators on Hilbert spaces, c(m) being a universal constant with respect to such tuples.

In this section we attempt to improve the estimate of Theorem 3.7 by obtaining a more general constant.

Let Ω be the unit sphere $\{x \in \mathbb{R}^{mn} : |x| = 1\}$. If K_1, K_2 are compact subsets of Ω we define

(5.2)
$$\delta(K_1, K_2) = \inf\{|\psi(x, y)| : x \in K_1, y \in K_2\}.$$

If $\alpha \ge 0$ and V is any subset of Ω we define

(5.3) $\Gamma_{\alpha}(V) = \{tx : t \in \mathbb{R}, |t| \ge \alpha, x \in V\}.$

As in previous sections, we will consider mn-tuples A, B of operators with real spectra, such that $0 \not \not \in \psi(\operatorname{Sp}(A) \times \operatorname{Sp}(B))$. In addition we will take compact subsets K_1 , K_2 of Ω such that

(5.4) Sp(A)
$$\subset$$
 $\Gamma_0(K_1)$, Sp(B) \subset $\Gamma_0(K_2)$ and $\delta(K_1, K_2) > 0$.

For example, we could take $K_1 = \{ |x|^{-1}x : x \in Sp(\underline{A}) \}$ and $K_2 = \{ |x|^{-1}x : x \in Sp(\underline{B}) \}$, in which case $\delta(K_1, K_2) > 0$ follows from the condition $0 \notin \psi(Sp(\underline{A}) \times Sp(\underline{B}))$.

LEMMA 5.5 If K_1, K_2 are compact subsets of Ω with $\delta(K_1, K_2) > 0$, there exists $g \in C(\mathbb{R}^{2mn})^m$ such that $g \in L_1^{\vee}(r, \mathbb{R}^{2mn})$ for all $r \ge 0$ and $g = |\psi|^{-2}\psi$ in a neighbourhood of $\Gamma_1(K_1) \times \Gamma_1(K_2)$.

Proof. Let $\delta = \delta(K_1, K_2)$. Since ψ is continuous, there exist open neighbourhoods U_1, U_2 in Ω of K_1, K_2 respectively, such that $|\psi(x, y)| > \frac{1}{2}\delta$ on $U_1 \times U_2$. Choose open neighbourhoods V_1, V_2 in Ω of K_1, K_2 whose closures are contained in U_1, U_2 respectively.

Let $p \in C_{C}^{\infty}(\mathbb{R})$ and $q_{h} \in C^{\infty}(\Omega)$ for h = 1, 2 be even functions satisfying p(t) = 1 for $|t| \leq \frac{1}{2}$, p(t) = 0 for $|t| \geq 1$; $q_{h}(\omega) = 1$ for $\omega \in V_{h}, q_{h}(\omega) = 0$ for $\omega \notin U_{h}$; and $p(t), q_{h}(\omega) \in [0,1]$ for all $t \in \mathbb{R}$, $\omega \in \Omega$.

For integers k and h = 1, 2 let $\phi_k \in C_c^{\infty}(\mathbb{R}^{mn})$ and $\eta_h \in C^{\infty}(\mathbb{R}^{mn} \setminus \{0\})$ be defined by $\phi_k(x) = p(2^{-k}|x|)$ and $\eta_h(x) = q_h(|x|^{-1}x)$. For integers k, k let $\mu_{k,k} \in C_c^{\infty}(\mathbb{R}^{2mn})$ be defined by $\mu_{k,k}(x,y) = [\phi_k(x) - \phi_{k-1}(x)][\phi_k(y) - \phi_{k-1}(y)]\eta_1(x)\eta_2(y)$.

Then $|\mu_{k,\ell}(x,y)| \leq 1$ for all $x, y \in \mathbb{R}^{mn}$ and $\mu_{k,\ell}$ has support in the set $\{(x,y) \in \Gamma_0(U_1) \times \Gamma_0(U_2) : 2^{k-2} \leq |x| \leq 2^k, 2^{\ell-2} \leq |y| \leq 2^\ell\}$. Moreover, for K, L positive integers,

 $\begin{array}{ccc} K & L \\ \sum & \sum \\ k=0 & \ell=0 \end{array} \mu_{k,\ell}(x,y) = (\phi_K - \phi_{-1})(x) (\phi_L - \phi_{-1})(y) \eta_1(x) \eta_2(y) \\ \\ \text{which is identically l on the set} \end{array}$

$$\{ (x, y) \in \Gamma_0(V_1) \times \Gamma_0(V_2) : \frac{1}{2} \leq |x| \leq 2^{K-1}, \frac{1}{2} \leq |y| \leq 2^{L-1} \}.$$

For $l \leq j \leq m$ and k,l integers, let $G_{k,l,j} \in C_c^\infty(\ {\rm I\!R}^{2mn})$ be defined by

$$G_{k,\ell,j}(x,y) = |\psi(x,y)|^{-2} \psi_{j}(x,y) \quad \mu_{k,\ell}(x,y) = 2^{-k-\ell} G_{j}(2^{-k}x, 2^{-\ell}y)$$

where $G_j = G_{0,0,j}$. Then $|G_{k,\ell,j}(x,y)| \leq 2^{5-k-\ell}\delta^{-1}$ because $|\psi(x,y)| = |x| |y| |\psi(|x|^{-1}x,|y|^{-1}y)| \geq 2^{-5}\delta$ on the support of $\mu_{0,0}$. Hence $\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} G_{k,\ell,j}(x,y)$ converges uniformly on \mathbb{R}^{2mn} . If $g_j(x,y)$ denotes the limit, then $g = (g_1, \dots, g_m) \in C(\mathbb{R}^{2mn})^m$ and $g = |\psi|^{-2}\psi$ on $\Gamma_{l_2}(V_1) \times \Gamma_{l_2}(V_2)$ a neighbourhood of $\Gamma_1(K_1) \times \Gamma_1(K_2)$. Further, $\sum_{k,\ell} G_{k,\ell,j}$ converges to g_j in $S'(\mathbb{R}^{2mn})$ the Schwartz space of tempered distributions. Taking Fourier transforms we conclude that $\sum_{k,\ell} G_{k,\ell,j}$ converges to \hat{g}_j in $S'(\mathbb{R}^{2mn})$. Now

$$\begin{split} \|\hat{G}_{k,\ell},j\|_{L_{1}}(r,\mathbb{R}^{2mn}) &= \int_{\mathbb{R}^{2mn}} (1+|\xi|)^{r} |\hat{G}_{k,\ell},j(\xi)| d\xi \\ &= 2^{-k-\ell} \int (1+|\xi|)^{r} |2^{2mn}(k+\ell) \hat{G}_{j}(2^{k}\xi',2^{\ell}\xi'')| d\xi \\ &= 2^{-k-\ell} \int (1+|\xi|)^{r} |2^{2mn}(k+\ell) \hat{G}_{j}(\mu',\mu'')| d\mu \\ &\leq 2^{-k-\ell} \int (1+|\mu|)^{r} |\hat{G}_{j}(\mu)| d\mu \\ &\leq 2^{-k-\ell} \int (1+|\mu|)^{r} |\hat{G}_{j}(\mu)| d\mu \\ &= 2^{-k-\ell} \|\hat{G}_{j}\|_{L_{1}}(r,\mathbb{R}^{2mn}) \\ e \quad \xi = (\xi',\xi'') \in \mathbb{R}^{mn} \times \mathbb{R}^{mn} = \mathbb{R}^{2mn} \text{ and } k, \ell, r \geq 0. \quad \text{Also} \end{split}$$

 $\hat{\mathbf{G}}_{j} \in \mathcal{S}(\mathbb{R}^{2mn}) \subset \mathbf{L}_{1}(\mathbf{r}, \mathbb{R}^{2mn}) \text{ and so } \sum_{k, \ell} \|\hat{\mathbf{G}}_{k, \ell, j}\|_{\mathbf{L}_{1}(\mathbf{r}, \mathbb{R}^{2mn})} < \infty.$ Hence $\sum_{k, \ell} \hat{\mathbf{G}}_{k, \ell, j}$ converges to $\hat{\mathbf{g}}_{j}$ in $\mathbf{L}_{1}(\mathbf{r}, \mathbb{R}^{2mn})$, proving that $\mathbf{g}_{j} \in \mathbf{L}_{1}^{\vee}(\mathbf{r}, \mathbb{R}^{2mn}).$

Analogously to (3.6) and (4.5) we define

wher

(5.6)
$$c(m,n,r,K_1,K_2) = \inf\{||g|| : g \in L_1^{v}(r, \mathbb{R}^{2mn})^n, g \text{ as in Lemma 5.5}\}.$$

If A is a commuting mn-tuple of operators, define

(5.7)
$$\delta(A) = \inf\{|x| : x \in Sp(A)\}.$$

THEOREM 5.8 Let \mathbb{A} , \mathbb{B} be commuting mn-tuples of generalized scalar operators with real spectra such that $0 \notin \psi(\operatorname{Sp}(\mathbb{A}) \times \operatorname{Sp}(\mathbb{B}))$. In particular, suppose condition (1.8) is satisfied. Let K_1, K_2 be compact subsets of Ω satisfying condition (5.4). If Q is a solution of system (1.1) then

 $\|Q\| \leq cdmn \|U\|$

where
$$c = c(m,n,s+t,K_1,K_2)$$

and $d = \delta(\underline{A})^{-1} \delta(\underline{B})^{-1} \max(1,\delta(\underline{A})^{-s}) \max(1,\delta(\underline{B})^{-t})$

Proof. If $\delta(\underline{A}) = \delta(\underline{B}) = 1$, let g be as in Lemma 5.5 with r = s + t. Then $g = |\psi|^{-2}\psi$ on a neighbourhood of $\operatorname{Sp}(\underline{A}) \times \operatorname{Sp}(\underline{B})$, and so, as in the proof of Theorem 3.7, $Q = \sum_{\substack{k=1 \\ k=1}}^{m} \phi(g_k) U_k$. Hence $\|Q\| \leq MN \|g\| \|U\|$ from which the required estimate follows.

The result for general A, B follows by applying the part proved already to the tuples A' = $\delta(A)^{-1}A$ and B' = $\delta(B)^{-1}B$. Note that A, B satisfy condition (1.8) with M, N replaced by M' = M max(1, $\delta(A)^{-S}$), N' = N max(1, $\delta(B)^{-t}$).

Remark 5.9

a) By the methods of section 4, Theorem 5.8 can be generalized to strongly commuting mn-tuples with partitions consisting of generalized scalar operators.

b) The method for constructing the function g in the proof of

Lemma 5.5, using Littlewood-Paley decompositions, follows a similar construction in Bhatia, Davis and McIntosh [2].

REFERENCES

- [1] E. Albrecht, Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen, Manuscripta Math. 14 (1974), 1-40.
- [2] R. Bhatia, Ch. Davis and A. McIntosh, Perturbations of spectral subspaces and solutions of linear operator equations, Linear Algebra and Appl., 52/53 (1983), 45-67.
- [3] I. Colojoară and C. Foiaș, Theory of Generalised Spectral Operators, Mathematics and its Applications Vol. 9, Gordon and Breach, New York, London, Paris, 1968.
- [4] R. Curto, The spectra of elementary operators, Indiana Univ. Math. J. 32 (1983), 193-197.
- [5] A. McIntosh and A. Pryde, The solution of systems of operator equations using Clifford algebras, Proc. Centre for Math. Anal., Canberra, Vol. 9 (1985), 212-222.
- [6] A. McIntosh and A. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J., to appear.
- [7] A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting operators, Studia Math. Vol. 88, to appear.
- [8] A. McIntosh, A. Pryde and W. Ricker, Estimates for solutions of the operator equation $\sum_{j=1}^{m} A_j QB_j = U$, to appear in Proc. XI-th International Conference on Operator Theory, Bucharest, 1986.

- [9] J.L. Taylor, A joint spectrum for several commuting operators,J. Functional Anal., 6 (1970), 172-191.
- [10] J.L. Taylor, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), 1-38.

Department of Mathematics Monash University

Clayton, Vic. 3168

Australia