ESTIMATES FOR LINEAR SYSTEMS
 OF OPERATOR EQUATIONS

Alan J. Pryde

1. INTRODUCTION

This is a description of joint work ${ }^{(*)}$ with Alan McIntosh and Werner Ricker of Macquarie University.

Throughout, X and Y denote (complex) Banach spaces. The space of bounded (linear) operators from X to Y, provided with the operator norm, is denoted $L(X, Y)$ and $L(X)=L(X, X)$. The Taylor spectrum of a commuting m-tuple $\underset{\sim}{S}=\left(S_{1}, \ldots, S_{m}\right)$ in $L(X)^{m}$ is denoted $S p(\underset{\sim}{S})$ or $S p\left(S_{1}, \ldots, S_{m}\right)$ or Sp(S, L(X)) (see Taylor [9]).

We consider the following linear system of equations

$$
\begin{equation*}
\sum_{j=1}^{n} A_{i j} Q B_{i j}=U_{i} \quad \text { for } \quad l \leqq i \leqq m \tag{1.1}
\end{equation*}
$$

Here and elsewhere, $\underset{\sim}{A}=\left(A_{i j}\right) \in L(X)^{m n}, \underset{\sim}{B}=\left(B_{i j}\right) \in L(Y)^{m n}, I \leqq i \leqq m$, $1 \leqq j \leqq n$, and $\underset{\sim}{A}, \underset{\sim}{B}$ are commuting mn-tuples. Moreover, $\underset{\sim}{U}=\left(U_{1}, \ldots, U_{m}\right) \in L(Y, X)$ is given and an operator $Q \in L(Y, X)$ satisfying (l.l) is to be determined. We will order mn-tuples such as $\underset{\sim}{A}=\left(A_{i j}\right)$ or $x=\left(x_{i j}\right) \in \mathbb{C}^{m n}, l \leqq i \leqq m, l \leqq j \leqq n$, lexicographically from the left. So, $x=\left(x_{11}, \ldots, x_{l n}, x_{21}, \ldots, x_{2 n}, \ldots, x_{m l}, \ldots, x_{m n}\right)$.

For m > 1 , the system (1.1) is overdetermined and it is readily seen that a necessary condition for the solubility of (1.1) is the following

[^0]compatibility condition
\[

$$
\begin{equation*}
\sum_{j=1}^{n} A_{\ell j} U_{i} B_{\ell j}=\sum_{j=1}^{n} A_{i j} U_{\ell} B_{i j} \text { for } 1 \leqq i, \ell \leqq n \tag{1.2}
\end{equation*}
$$

\]

The operators $T_{i} \in L(L(Y, X))$, defined for $1 \leqq i \leqq m$ by $T_{i}(Q)=$ $\sum_{j=1}^{n} A_{i j} Q_{i j}$, are sometimes called elementary operators. spectral properties of (single) elementary operators, especially on Hilbert space, have been studied by a number of authors. See for example Curto [4] and the references cited there. System (1.1) with $m=1$ is also the subject of McIntosh, Pryde and Ricker [8].

An interesting special case arises when $n=2, A_{i l}=A_{i}, A_{i 2}=-I_{\text {。 }}$ $B_{i 1}=I, B_{i 2}=B_{i}$. Then (1.1) becomes

$$
\begin{equation*}
A_{i} Q-Q B_{i}=U_{i} \text { for } I \leqq i \leqq m \tag{1.3}
\end{equation*}
$$

In this case T_{i} is a generalized derivation.

Under the condition that $\operatorname{Sp}\left(A_{1} \ldots, A_{m}\right) \cap \operatorname{Sp}\left(B_{1} \ldots, B_{m}\right)=\varnothing$, McIntosh and Pryde [5], [6] have shown that the compatibility condition (1.2) is necessary and sufficient for the solvability of (1.3). Moreover, let $\delta=\operatorname{dist}\left(\operatorname{Sp}\left(A_{1}, \ldots, A_{m}\right), \operatorname{Sp}\left(B_{1}, \ldots, B_{m}\right)\right)$ be positive and suppose $\underset{\sim}{A}$ and $\underset{\sim}{B}$ consist of generalized scalar operators with real spectra. Recall that an operator $S \in L(X)$ is generalized scalar with real spectrum if and only if there exist $S \geqq 0$ and $M \geqq 1$ such that $\|\exp (i \lambda S)\| \leqq M(1+|\lambda|)^{S}$ for all $\lambda \in \mathbb{R}$ (Colojoarǎ and Foias, [3]). So there exist constants $s, t \geqq 0$ and $M, N \geqq 1$ such that $\left\|\exp \left(i \sum_{\ell=1}^{m} \xi_{\ell} A_{\ell}\right)\right\| \leqq M(1+|\xi|)^{s},\left\|\exp \left(i \sum_{\ell=1}^{m} \xi_{\ell} B_{\ell}\right)\right\| \leqq N(1+|\xi|)^{t}$ for all $\left(\xi_{1}, \ldots, \xi_{l}\right) \in \mathbb{R}^{m}$. It is proved in $[6]$ that there exists a constant $c=c(m, s+t)$ such that any solution Q of (l.3) satisfies
(1.4) $\|Q\| \leqq C M N \delta^{-1} \max \left(1, \delta^{-S}\right) \max \left(1, \delta^{-t}\right)\|\underset{\sim}{U}\|$
where $\|\underset{\sim}{U}\|=\left(\sum_{i=1}^{m}\left\|U_{i}\right\|^{2}\right)^{\frac{3}{2}}$.

Our original motivation for studying system (1.3) was that it arises in the study of perturbation of spectral subspaces of commuting m-tuples of, say, normal operators on a Hilbert space. For these applications, see [5].

In this paper we attempt to obtain estimates similar to (1.4) for the more general system (l.l). To do this it will, at times, be necessary to assume that $\underset{\sim}{A}=\left(A_{i j}\right)$ and $\underset{\sim}{B}=\left(B_{i j}\right)$ are commuting mn-tuples of generalized scalar operators with real spectra. So, there exist $s_{i j} t_{i j} \geqq 0$ and $M_{i j}{ }^{\prime} N_{i j} \geqq l$ for $l \leqq i \leqq m, l \leqq j \leqq n$ such that
(I.5) $\quad\left\|\exp \left(i \lambda A_{\ell j}\right)\right\| \leqq M_{\ell j}(I+|\lambda|)^{S_{\ell j}},\left\|\exp \left(i \lambda B_{\ell j}\right)\right\| \leqq N_{\ell j}(I+|\lambda|)^{t_{\ell j}}$ for all $\lambda \in \mathbb{R}, 1 \leq \ell \leq m$ and $1 \leq j \leq n$.

It follows from (l.5) that $\underset{\sim}{T}=\left(T_{1}, \ldots, T_{m}\right)$ is also a commuting tuple of generalized scalar operators with real spectra ; that is, there exist $u \geqq 0$, $P \geqq 1$ such that
(1.6) $\quad \| \exp (i<\xi, \mathbb{\sim}\rangle) \| \leqq P(l+|\xi|)^{u}$ for all $\xi \in \mathbb{R}^{m}$ where $\langle\xi, \underset{\sim}{T}\rangle=\sum_{j=1}^{m} \xi_{j} T_{j}$. By McIntosh and Pryde [6, Theorem ll.l] any solution Q of (1.1) satisfies (1.7) $\|Q\| \leqq c P \delta^{-1} \max \left(1, \delta^{-u}\right)\|\underset{\sim}{U}\|$
where $c=c(m, u)$ and $\delta=\operatorname{dist}(0, S p(\underset{\sim}{T}))>0$.

However, we are in general unable to find a relationship between (u, P) and ($\left.s_{i j}, t_{i j}, M_{i j}, N_{i j}\right)$. In McIntosh, Pryde and Ricker [8] it is shown that we can take $u=\sum_{i, j}\left(s_{i j}+t_{i j}\right)$ when X, Y are finite dimensional. In the infinite dimensional case, if $X=Y$, it follows from Albrecht [l] that $u \leqq \sum_{i, j}\left(s_{i j}+t_{i j}+2\right)$. In a private communication, M. Hladnik has given an
explicit example $\left(X=Y=\ell_{2}\right)$ where $u>\sum_{i, j}^{L_{, j}}\left(s_{i j}+t_{i j}\right)$.
In this paper we seek estimates for solutions Q of (1.1) in terms of the parameters $\left(s_{i j}, t_{i j}, M_{i j}, N_{i j}\right)$ and not in terms of (u, P).

Note that, given (1.5), $\underset{\sim}{A}$ and $\underset{\sim}{B}$ satisfy
(1.8) $\quad\|\exp (i\langle\xi, \underset{\sim}{A}\rangle)\| \leqq M(1+|\xi|)^{s},\|\exp (i\langle\xi, \underset{\sim}{B}\rangle)\| \leqq N(1+|\xi|)^{t}$
for certain constants $s, t \geqq 0$ and $M_{0} N \geqq l$ and all $\xi \in \mathbb{R}^{\mathrm{mn}}$.
In fact, since $\exp (i\langle\xi, \underset{\sim}{A}\rangle)=\pi \exp \left(i \xi_{l j}{ }^{A} \ell j\right)$, with a similar expression for
 $N=\prod_{i, j} N_{i j}$.

2. EXISTENCE, UNIQUENESS THEOREM

Let $L_{i j}{ }^{\prime} R_{i j} \in L(L(Y, X))$ for $l \leqq i \leqq m, l \leqq j \leqq n$ be defined by $L_{i j}(Q)=A_{i j} Q$ and $R_{i j}(Q)=Q B_{i j}$. Let $\underset{\sim}{L}=\left(L_{i j}\right)$ and $\underset{\sim}{R}=\left(R_{i j}\right)$ so that $(\underset{\sim}{I}, \underset{\sim}{R})$ is a commuting $2 m n-t u p l e$.

Define $\psi: \mathbb{C}^{2 m n} \rightarrow \mathbb{C}^{m}$ by $\psi=\left(\psi_{1}, \ldots, \psi_{m}\right)$ where $\psi_{i}(x, y)=\sum_{j=1}^{n} x_{i j} y_{i j}$
$x, y \in \mathbb{C}^{m n}$ and we make the identification $\mathbb{C}^{2 m n}=\mathbb{C}^{m n} \times \mathbb{C}^{m n}$. If $\underset{\sim}{T}=\left(T_{1} \ldots . T_{m}\right)$ then
(2.1) $\underset{\sim}{T}=\psi(\underset{\sim}{L}, \underset{\sim}{R})$.

In the next proposition, and in section 3, we will assume that $\underset{\sim}{A}=\left(A_{\ell j}\right), \underset{\sim}{B}=\left(B_{\ell j}\right)$ are of the form
$A_{\ell j}=A_{\ell j l}+i A_{\ell j 2} \cdot B_{\ell j}=B_{\ell j 1}+i B_{\ell j 2}$ where ($A_{\ell j k}$). ($\mathrm{B}_{\ell j k}$) for $1 \leqq \ell \leqq m, l \leqq j \leqq n$, $1 \leqq k \leqq 2$ are commuting $2 m n$-tuples in $L(X)^{2 m n}, L(Y)^{2 m n}$ respectively and all $A_{\ell j k} B_{\ell j k}$ have real spectra.

If $\underset{\sim}{A}, \underset{\sim}{B}$ satisfy (2.2) they are called strongly commuting, and the tuples $\pi(\underset{\sim}{A})=\left({ }_{\ell j k}\right), \pi(\underset{\sim}{B})=\left(B_{\ell j k}\right)$ are referred to as partitions of $\underset{\sim}{A}, \underset{\sim}{B} . \quad$ If X, Y are finite dimensional, then any commuting tuples are strongly commuting. If X, Y are Hilbert and $\underset{\sim}{A} \underset{\sim}{B}$ are commuting tuples of normal operators, then $\underset{\sim}{A}, \underset{\sim}{B}$ are strongly commuting. Other examples may be found in McIntosh, Pryde and Ricker [7].

PROPOSITION 2.3 Suppose one of the following conditions is satisfied
a) $m=n=1$,
b) $X=Y$,
c) X, y are Hilbert spaces, or
d) $\underset{\sim}{A}, \underset{\sim}{B}$ are strongly commuting.

Then $\operatorname{Sp}(\underset{\sim}{\mathrm{L}}) \subset \mathrm{Sp}(\underset{\sim}{\mathrm{A}})$ and $\mathrm{Sp}(\underset{\sim}{\mathrm{R}}) \subset \mathrm{Sp}(\underset{\sim}{\mathrm{B}})$.

Proof. Define $\ell: L(X) \rightarrow L(L(Y, X))$ and $r: L(Y) \rightarrow L(L(Y, X))$ by $\ell(A)(Q)=A Q$ and $r(B)(Q)=Q B$. It is easy to check that $S p(\ell(A)) \subset \operatorname{Sp}(A)$ and $\mathrm{Sp}(\mathrm{r}(\mathrm{B})) \subset \mathrm{Sp}(\mathrm{B})$, proving the result for a).

If $X=Y$ or if X, Y are Hilbert spaces, then ℓ and r are isometries onto (closed) unital subalgebras of $L(L(Y, X))$. Further ℓ is a homomorphism and r an order-reversing-homomorphism. Hence $\operatorname{Sp}(\underset{\sim}{\mathrm{A}}) \subset \operatorname{Sp}(\ell(\underset{\sim}{\mathrm{A}}), \mathrm{L}(\mathrm{L}(\mathrm{Y}, \mathrm{X})))=\operatorname{Sp}(\underset{\sim}{\mathrm{L}})$ and $\operatorname{Sp}(\underset{\sim}{B}) \subset \operatorname{Sp}(\mathrm{r}(\underset{\sim}{B}) ; \mathrm{L}(\mathrm{L}(\mathrm{Y}, \mathrm{X})))=\operatorname{Sp}(\underset{\sim}{R})$, proving the result for b), c).

Suppose $\underset{\sim}{A}, \underset{\sim}{B}$ are strongly commuting with partitions $\pi(\underset{\sim}{A}), \pi(\underset{\sim}{B})$.
Since $\operatorname{Sp}(\pi(\underset{\sim}{A})) \subset \mathbb{R}^{2 \mathrm{mn}}$, by [7, Theorem 1] $\operatorname{Sp}(\pi(\underset{\sim}{\mathrm{A}}))=\gamma(\pi(\underset{\sim}{\mathrm{A}}))=$
$\left\{\lambda \in \mathbb{R}^{2 m n}: 0 \in \operatorname{Sp}\left(\sum\left(A_{i j k}-\lambda_{i j k}\right)^{2}\right)\right\}$. Define $p: \mathbb{C}^{2 m n} \rightarrow \mathbb{C}^{m n}$ by $p(x)=y$,
where $x=\left(x_{\ell j k}\right), y=\left(y_{\ell j}\right), y_{\ell j}=x_{\ell j 1}+i x_{\ell j 2}$. Then

$$
\operatorname{Sp}(\underset{\sim}{A})=p(\operatorname{Sp}(\pi(\underset{\sim}{A})))
$$

(by Taylor's spectral mapping theorem [10])

$$
\begin{aligned}
& =p(\gamma(\pi(\underset{\sim}{A}))) \\
& \supset p(\gamma(\ell(\pi(\underset{\sim}{A}))))
\end{aligned}
$$

(by the result proved above for a))

$$
=p(\operatorname{Sp}(\ell(\pi \underset{\sim}{\mathrm{~A}}))))
$$

(since $\operatorname{Sp}(\ell(\pi(A))) \subset \mathbb{R}^{2 m n}$)

$$
=S p(\underset{\sim}{L}) .
$$

Similarly, $\mathrm{Sp}(\underset{\sim}{\mathrm{B}}) \mathrm{J} \mathrm{Sp}(\underset{\sim}{\mathrm{R}})$.

PROPOSITION 2.4 Suppose one of the conditions 2.3a) - d) is satisfied. Then $\operatorname{Sp}(\underset{\sim}{T}) \subset \psi(\operatorname{Sp}(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{B}))$.

Proof. By (2.1), Taylor's spectral mapping theorem and Proposition 2.3,

$$
\begin{aligned}
\operatorname{Sp}(\underset{\sim}{T}) & =\operatorname{Sp}(\psi(\underset{\sim}{\mathrm{L}}, \underset{\sim}{\mathrm{R}})) \\
& =\psi(\operatorname{Sp}(\underset{\sim}{\mathrm{L}}, \underset{\sim}{R})) \\
& \subset \psi(\operatorname{Sp}(\underset{\sim}{\mathrm{L}}) \times \operatorname{Sp}(\underset{\sim}{\mathrm{R}})) \\
& \subset \psi(\operatorname{Sp}(\underset{\sim}{\mathrm{A}}) \times \operatorname{Sp}(\underset{\sim}{\mathrm{B}})) .
\end{aligned}
$$

THEOREM 2.5 Suppose one of the conditions 2.3a)-d) is satisfied and $0 \notin \psi(\operatorname{Sp}(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{\mathrm{B}}))$. Then system (1.1) has a solution $Q \in \mathrm{~L}(\mathrm{Y}, \mathrm{X})$ if and only if the compatibility conditions (1.2) are satisfied. Moreover, when a solution exists it is unique.

Proof. We have observed already that the compatibility conditions are necessary for solubility of (1.1). Conversely, if $0 \notin \psi(\operatorname{Sp}(\underset{\sim}{\mathrm{~A}}) \times \mathrm{Sp}(\underset{\sim}{\mathrm{B}}))$ then by Proposition 2.4 and the definition of the Taylor spectrum, the Koszul complex for $\underset{\sim}{T}$ is exact. In particular, $Q \mapsto\left(T_{1}(Q) \ldots, T_{m}(Q)\right)$ is an injection from $L(X, Y)$ into $L(Y, X)^{m}$ whose range is precisely those $\underset{\sim}{U}$ satisfying (1.2).

3. ESTIMATES FOR THE SOLUTION : REAL SPECTRA

```
In order to prove estimates for the solution of (l.1) we must place restrictions on \(\underset{\sim}{A}, \underset{\sim}{B}\). Throughout this section, we assume \(0 \notin \psi(S p(\underset{\sim}{A}) \times S p(\underset{\sim}{B}))\) and moreover that \(\underset{\sim}{A}, \underset{\sim}{B}\) are commuting mn-tuples of generalized scalar operators with real spectra. In particular we assume that condition (1.8) is satisfied.
```

It follows that $(\underset{\sim}{L}, \underset{\sim}{R})$ is a commuting $2 m n$-tuple of generalized scalar operators with real spectra. In particular, if $K=M N$ and $r=s+t$, then
(3.1) $\quad \| \exp \left(i<(\xi, \eta), \quad(\underset{\sim}{L}, \underset{\sim}{R})>\| \leqq K(I+|(\xi, \eta)|)^{r}\right.$ for all $\xi, n \in \mathbb{R}^{m n}$.

Let k be a positive integer and r any non-negative real. We denote by $L_{l}^{v}\left(r, \mathbb{R}^{k}\right)$ the space of inverse Fourier transforms g of complex-valued functions h for which $(1+|\xi|)^{r} h \in L_{I}\left(\mathbb{R}^{k}\right)$. In particular,

 respect to pointwise multiplication. For the details, see McIntosh and Pryde [6].

In view of condition (3.1), it follows that $(\underset{\sim}{L}, \underset{\sim}{R})$ has a functional calculus based on $L_{I}^{V}\left(r, \mathbb{R}^{2 m n}\right)$. In fact there is a continuous homomorphism (3.2) $\Phi: L_{I}^{V}\left(r, \mathbb{R}^{2 m n}\right) \rightarrow L(L(Y, X))$ defined by

$$
\Phi(g)=(2 \pi)^{-2 m n} \int_{\mathbb{R}} 2 m n \exp (i<(\xi, \eta), \quad \underset{\sim}{(L, R)>)} \hat{\sim}(\xi, \eta) d \xi d \eta
$$

If $p: \mathbb{R}^{2 m n} \rightarrow \mathbb{C}$ is a polynomial and $\theta \in C_{C}^{\infty}\left(\mathbb{R}^{2 m n}\right)$ is l on a
neighbourhood of $S p(\underset{\sim}{L}, \underset{\sim}{R})$ then $\theta p \in L_{1}^{v}\left(R, \mathbb{R}^{2 m n}\right)$ and (3.3) $\Phi(\theta p)=p(\underset{\sim}{L}, \underset{\sim}{\sim})$.

From condition (3.1) it follows readily that
(3.4). $\|\Phi(g)\| \leqq K\|g\|$ for all $g \in L_{1}^{v}\left(r, \mathbb{R}^{2 m n}\right)$.

Since $0 \notin \psi(\operatorname{Sp}(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{B}))$ and $\operatorname{Sp}(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{B})$ is compact, $|\psi|^{-2} \psi_{i}$ is C^{∞} on a neighbourhood of $\operatorname{Sp}(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{B})$ for $1 \leqq i \leqq m$. So there exists $g=\left(g_{1}, \ldots, g_{m}\right)$ such that
(3.5) $g \in L_{1}^{v}\left(r, \mathbb{R}^{2 m n}\right)^{m}$ and $g=|\psi|^{-2} \psi$ on a neighbourhood of $\operatorname{Sp}(\underset{\sim}{\mathrm{A}}) \times \mathrm{Sp}(\underset{\sim}{\mathrm{B}})$.

With $\|g\|=\left(\sum_{i=1}^{m}\left\|g_{i}\right\|^{2}\right)^{\frac{3}{2}}$ define
(3.6) $c(m, n, r, \operatorname{Sp}(\underset{\sim}{A}), \operatorname{Sp}(\underset{\sim}{B}))=\inf \{\|g\|: g$ satisfies (3.5)\}.

THEOREM 3.7 Let $\underset{\sim}{A}, \underset{\sim}{B}$ be commuting mn-tuples of generalized scalar operators with real spectra such that $0 \notin \psi(\mathrm{Sp}(\underset{\sim}{\mathrm{A}}) \times \mathrm{Sp}(\underset{\sim}{\mathrm{B}}))$. In particular, suppose condition (3.1) is satisfied. If Q is a solution of system (1.1) in $L(Y, X)$ then
$\|Q\| \leqq K c(m, n, r, S p(\underset{\sim}{A}), S P(\underset{\sim}{B}))\|\underset{\sim}{U}\|$.

Proof. Let Φ be the functional calculus homomorphism (3.2) and g any function satisfying (3.5). Let $P=\sum_{\ell=1}^{m} \Phi\left(g_{\ell}\right) U_{\ell}$. If $\theta \in C_{C}^{\infty}\left(\mathbb{R}^{2 m n}\right)$ is 1 on a neighbourhood of $S p(\underset{\sim}{L}, \underset{\sim}{R})$, then for $1 \leqq i \leqq m$,

$$
\begin{aligned}
T_{i}(P) & =T_{i}\left(\sum_{\ell=1}^{m} \Phi\left(g_{\ell}\right) U_{\ell}\right) \\
& =\sum_{\ell=1}^{m} \Phi\left(g_{\ell}\right) T_{i}\left(U_{\ell}\right)
\end{aligned}
$$

$$
=\sum_{\ell=1}^{m} \Phi\left(g_{\ell}\right) T_{\ell}\left(U_{i}\right)
$$

(using the compatibility condition (1.2))

$$
=\sum_{\ell=1}^{m} \Phi\left(g_{\ell}\right) \Phi\left(\theta \psi_{\ell}\right) U_{i}
$$

(by (2.1) and (3.3))

$$
\begin{aligned}
& =\Phi\left(\sum_{\ell=1}^{m} g_{\ell} \theta \psi_{\ell}\right) U_{i} \\
& =\Phi(\theta) U_{i}
\end{aligned}
$$

(by (3.5) and proposition 2.2)

$$
=U_{i}
$$

(by (3.3)). Hence $P=Q$ and by (3.4),

$$
\begin{aligned}
\|Q\| & =\left\|\sum_{\ell=1}^{m} \Phi\left(g_{\ell}\right) U_{i}\right\| \\
& \leqq K \sum_{\ell=1}^{m}\left\|g_{\ell}\right\|\left\|U_{\ell}\right\| \\
& \leqq K\|g\| \| U_{\sim}^{m}
\end{aligned}
$$

from which the result follows.

4. ESTIMATES FOR THE SOLUTION : COMPLEX SPECTRA

A more general result for operators with complex spectra can also be obtained. Again we assume that $0 \notin \psi(S p(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{B}))$. In addition we assume that $\underset{\sim}{A}, \underset{\sim}{B}$ are strongly commuting mn-tuples whose partitions $\pi(\underset{\sim}{A})=\left(A_{\ell j k}\right)$ and $\pi \underset{\sim}{(B)}=\left(B_{\ell j k}\right)$ consist of generalized scalar operators (with real spectra).

We define operators $L_{\ell j k}, R_{\ell j k} \in L(L(Y, X))$ by $L_{\ell j k}(Q)=A_{\ell j k} Q_{\ell}$
$R_{\ell j k}(\ell)=Q_{\ell j k}$ and set ${\underset{\sim}{L}}^{(k)}=\left(L_{\ell j k}\right) \cdot{\underset{\sim}{R}}^{(k)}=\left(R_{\ell j k}\right), l \leqq \ell \leqq m_{\ell}$ $I \leqq j \leqq n, l \leqq k \leqq 2$. Then $\left({\underset{\sim}{L}}^{(1)}{\underset{\sim}{L}}^{(2)} \underset{\sim}{R}{ }^{(1)}, \underset{\sim}{R}{ }^{(2)}\right.$) is a commuting $4 m n-$ tuple of generalized scalar operators with real spectra. Hence there exist $\quad r \geqq 0$, $K \geqq 1$ such that
(4.1) $\quad\left\|\exp \left(i \sum_{\ell, j, k}\left(\xi_{\ell j k}{ }_{\ell}{ }_{\ell j k}+\eta_{\ell j k}{ }_{\ell \ell j k}\right)\right)\right\| \leqq K(1+|(\xi, \eta)|)^{r}$

$$
\text { for all } \xi=\left(\xi_{\ell j k}\right), n=\left(\eta_{\ell j k}\right) \in \mathbb{R}^{2 m n}
$$

Moreover,

$$
\begin{aligned}
T_{\ell} & =\sum_{j} L_{\ell j} R_{\ell j} \\
& =\sum_{j}\left(L_{\ell j 1} R_{\ell j 1}-L_{\ell j 2} R_{\ell j 2}\right)+i\left(L_{\ell j 2} R_{\ell j 1}+L_{\ell j 1} R_{\ell j 2}\right) .
\end{aligned}
$$

Hence

$$
\text { (4.2) } \left.\quad T_{\ell}=\phi_{\ell}{\underset{\sim}{(L)}}^{(1)} \cdot{\underset{\sim}{L}}^{(2)} \cdot \underset{\sim}{R}{ }^{(1)} \cdot{\underset{\sim}{R}}^{(2)}\right)
$$

where $\phi_{\ell}: \mathbb{R}^{4 \mathrm{mn}} \rightarrow \mathbb{C}$ is defined by

$$
\begin{aligned}
& \phi_{\ell}\left(X^{(1)}, X^{(2)}, Y^{(1)}, Y^{(2)}\right)
\end{aligned}
$$

for $x^{(k)}=\left(x_{\ell j k}\right), y^{(k)}=\left(y_{\ell j k}\right) \in \mathbb{R}^{\mathrm{mn}}$.
Let $\phi=\left(\phi_{\ell}\right): \mathbb{R}^{4 \mathrm{mn}} \rightarrow \mathbb{C}^{\mathrm{m}}$, let $\phi_{\ell}^{\#}=\bar{\phi}_{\ell}$ the complex conjugate of ϕ_{ℓ}, and define $\left.T_{\ell}^{\#}=\phi_{\ell}^{\#}{\underset{\sim}{L}}_{(1)}^{(L)}{\underset{\sim}{(2)}}^{(2)}{\underset{\sim}{R}}^{(1)},{\underset{\sim}{R}}^{(2)}\right)$.

LEMMA 4.3 If the compatibility conditions (1.2) are satisfied for $\underset{\sim}{U}$ then the solution Q of (1.1) is

$$
Q=\left(\sum_{l} \mathrm{~T}_{l}^{\#} \mathrm{~T}_{\ell}\right)^{-1}\left(\sum_{l} \mathrm{~T}_{l}^{\#} \mathrm{U}_{l}\right) .
$$

Proof. By (1.2), assuming that $\sum_{l} T_{l}^{\#} T_{l}$ is invertible,

$$
\begin{aligned}
& T_{i}(Q)=\underset{\ell}{\left(\Gamma_{\ell}^{\#} T_{\ell}\right)^{-1}} \underset{\ell}{\left.\sum_{\ell} T_{l}^{\#} T_{i} U_{\ell}\right)} \\
& =\underset{\ell}{\left.\sum_{l}^{\Gamma}{ }^{\#} T_{l}\right)^{-1}\left(\underset{\ell}{\Gamma} \mathrm{~T}^{\#} \mathrm{~T}_{\ell} \mathrm{U}_{i}\right)} \\
& =U_{i} .
\end{aligned}
$$

To prove that $\sum_{l}^{T_{l}^{\#}} \mathrm{~T}_{\ell}$ is invertible, we note that
 polynomial, it follows from Taylor's spectral mapping theorem [10] and Proposition 2.3 that

$$
\begin{aligned}
& \operatorname{Sp}\left(\sum_{\ell}^{\Gamma} \mathrm{T}_{l}^{\#} \mathrm{~T}_{\ell}\right)=\sum_{\ell}^{\sum_{l}}\left(\phi_{\ell}^{\#} \phi_{\ell}\right)\left(\operatorname{Sp}\left(\underset{\sim}{L}{ }^{(1)} \cdot{\underset{\sim}{L}}^{(2)} \cdot \underset{\sim}{R}(1) \cdot{\underset{\sim}{R}}^{(2)}\right)\right) \\
& =\sum_{\ell}\left|\psi_{\ell}\right|^{2}\left(S p\left(\underset{\sim}{L}(1)+\underset{\sim}{\operatorname{L}}{ }^{(2)}{\underset{\sim}{R}}^{(1)}+\underset{\sim}{\operatorname{R}}{ }^{(2)}\right)\right) \\
& =|\psi|^{2}(\operatorname{Sp}(\underset{\sim}{L}, \underset{\sim}{R})) \\
& \subset\left\{|\psi(x, y)|^{2}: x \in \operatorname{sp}(\underset{\sim}{(A)}, y \in \operatorname{Sp}(\underset{\sim}{B})\} .\right.
\end{aligned}
$$

Since $0 \notin \psi(\operatorname{Sp}(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{B})), \int_{T^{\#}}^{\#} T \ell$ is invertible.

$$
\text { Now }|\phi|^{-2} \phi_{i}^{\#} \text { is } C^{\infty} \text { in a neighbourhood of } S p\left({\underset{\sim}{L}}^{(1)},{\underset{\sim}{L}}^{(2)},{\underset{\sim}{R}}^{(1)},{\underset{\sim}{R}}^{(2)}\right) \text {. }
$$

So there exists a function g such that
(4.4) $g \in L_{1}^{V}\left(r, \mathbb{R}^{4 m n}\right)^{m}$ and $g=|\phi|^{-2} \phi_{i}^{\#}$ on a neighbourhood of $\operatorname{Sp}\left({\underset{\sim}{L}}^{(1)},{\underset{\sim}{L}}^{(2)},{\underset{\sim}{R}}^{(1)} \cdot{\underset{\sim}{R}}^{(2)}\right)$.

Analogously to (3.6) we define

$$
\begin{equation*}
c(m, n, r, \operatorname{Sp}(\underset{\sim}{A}), \operatorname{Sp}(\underset{\sim}{B}))=\inf \{\|g\|: g \text { satisfies (4.4)\}. } \tag{4.5}
\end{equation*}
$$

For g satisfying (4.4) and Q any solution of (1.1), we conclude from Lemma 4.3 that $Q=\sum_{\ell} \Phi\left(g_{l}\right) U_{l}$. Hence :

THEOREM 4.6 Let $\underset{\sim}{A}, \underset{\sim}{B}$ be strongly commuting mn-tuples of generalized scalar operators such that $0 \notin \psi(\mathrm{Sp}(\underset{\sim}{\mathrm{A}}) \times \operatorname{Sp}(\underset{\sim}{\mathrm{B}}))$ and condition (4.1) is satisfied. If 2 is a solution of system (1.1) in $\mathrm{L}(\mathrm{Y}, \mathrm{X})$ then
$\|Q\| \leqq K C(m, n, r, \operatorname{Sp}(\underset{\sim}{A}), \operatorname{Sp}(\underset{\sim}{B}))\|\underset{\sim}{U}\|$.

5. UNIVERSAL ESTIMATES

The estimate (1.7) for system (1.3) reduces to
(5.1) $\quad\|Q\| \leqq c(m) \delta^{-1}\|\underset{\sim}{U}\|$
in the case where $\underset{\sim}{A}, \underset{\sim}{B}$ are, say, commuting m-tuples of self-adjoint operators on Hilbert spaces, $c(m)$ being a universal constant with respect to such tuples.

In this section we attempt to improve the estimate of Theorem 3.7 by obtaining a more general constant.

Let Ω be the unit sphere $\left\{x \in \mathbb{R}^{m n}:|x|=1\right\}$. If K_{1}, K_{2} are compact subsets of Ω we define

$$
\begin{equation*}
\delta\left(K_{1}, K_{2}\right)=\inf \left\{|\psi(x, y)|: x \in K_{1}, y \in K_{2}\right\} \tag{5.2}
\end{equation*}
$$

If $\alpha \geqq 0$ and V is any subset of Ω we define
(5.3) $\quad \Gamma_{\alpha}(V)=\{t x: t \in \mathbb{R},|t| \geqq \alpha, x \in V\}$.

As in previous sections, we will consider mn-tuples $\underset{\sim}{A}, \underset{\sim}{B}$ of operators with real spectra, such that $0 \notin \psi(\operatorname{Sp} \underset{\sim}{(A)} \times \operatorname{Sp}(\underset{\sim}{B}))$. In addition we will take compact subsets K_{1}, K_{2} of Ω such that
(5.4) $\operatorname{Sp}(A) \subset \Gamma_{0}\left(K_{1}\right), \operatorname{Sp}(\underset{\sim}{B}) \subset \Gamma_{0}\left(K_{2}\right)$ and $\delta\left(K_{1}, K_{2}\right)>0$.

For example, we could take $K_{1}=\left\{|x|^{-1} x: x \in \operatorname{Sp}(\underset{\sim}{A})\right\}$ and $K_{2}=\left\{|x|^{-1} x: x \in \operatorname{Sp}(\underset{\sim}{B})\right\}$, in which case $\delta\left(K_{1}, K_{2}\right)>0$ follows from the condition $0 \notin \psi(\operatorname{Sp}(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{B}))$.

LEMMA 5.5 If $\mathrm{K}_{1}, \mathrm{~K}_{2}$ are compact subsets of Ω with $\delta\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)>0$, there exists $g \in C\left(\mathbb{R}^{2 m n}\right)^{m}$ such that $g \in L_{\mathbb{l}}^{v}\left(r, \mathbb{R}^{2 m n}\right)$ for all $r \geq 0$ and $g=|\psi|^{-2} \psi$ in a neighbourhood of $\Gamma_{1}\left(K_{1}\right) \times \Gamma_{1}\left(K_{2}\right)$.

Proof. Let $\delta=\delta\left(K_{1}, K_{2}\right)$. Since ψ is continuous, there exist open neighbourhoods U_{1}, U_{2} in Ω of K_{1}, K_{2} respectively, such that $|\psi(x, y)|>\frac{1}{2} \delta$ on $U_{1} \times U_{2}$. Choose open neighbourhoods V_{1}, V_{2} in Ω of K_{1}, K_{2} whose closures are contained in U_{1}, U_{2} respectively.

Let $p \in C_{C}^{\infty}(\mathbb{R})$ and $q_{h} \in C^{\infty}(\Omega)$ for $h=1,2$ be even functions satisfying $p(t)=1$ for $|t| \leqq \frac{1}{2}, p(t)=0$ for $|t| \geqq 1 ; q_{h}(\omega)=1$ for $\omega \in V_{h}, q_{h}(\omega)=0$ for $\omega \notin U_{h}$; and $p(t), q_{h}(\omega) \in[0,1]$ for all $t \in \mathbb{R}$, $\omega \in \Omega$.

For integers k and $h=1,2$ let $\phi_{k} \in C_{C}^{\infty}\left(\mathbb{R}^{m n}\right)$ and
$\eta_{h} \in C^{\infty}\left(\mathbb{R}^{m n} \backslash\{0\}\right)$ be defined by $\phi_{k}(x)=p\left(2^{-k}|x|\right)$ and $\eta_{h}(x)=$ $q_{h}\left(|x|^{-1} x\right)$. For integers k, \& let $\mu_{k, \ell} \in C_{C}^{\infty}\left(\mathbb{R}^{2 m n}\right)$ be defined by $\mu_{k, \ell}(x, y)=\left[\phi_{k}(x)-\phi_{k-1}(x)\right]\left[\phi_{\ell}(y)-\phi_{\ell-1}(y)\right] \eta_{1}(x) \eta_{2}(y)$.

Then $\left|\mu_{k, \ell}(x, y)\right| \leqq 1$ for all $x, y \in \mathbb{R}^{m n}$ and $\mu_{k, \ell}$ has support in the set $\left\{(x, y) \in \Gamma_{0}\left(U_{1}\right) \times \Gamma_{0}\left(U_{2}\right): 2^{k-2} \leqq|x| \leqq 2^{k}, 2^{\ell-2} \leqq|y| \leqq 2^{\ell}\right\}$ 。 Moreover, for K, L positive integers,
$\sum_{k=0}^{K} \sum_{\ell=0}^{L} \mu_{k, \ell}(x, y)=\left(\phi_{K}-\phi_{-1}\right)(x)\left(\phi_{L}-\phi_{-1}\right)(y) \eta_{1}(x) \eta_{2}(y)$
which is identically 1 on the set

$$
\left\{(x, y) \in \Gamma_{0}\left(V_{1}\right) \times \Gamma_{0}\left(V_{2}\right): \frac{1}{2} \leqq|x| \leqq 2^{K-1}, \frac{1}{2} \leqq|y| \leqq 2^{L-1}\right\} .
$$

For $l \leqq j \leqq m$ and k, l integers, let $G_{k, \ell, j} \in C_{C}^{\infty}\left(\mathbb{R}^{2 m n}\right)$ be defined by

$$
G_{k, l, j}(x, y)=|\psi(x, y)|^{-2} \psi_{j}(x, y) \mu_{k, l}(x, y)=2^{-k-l} G_{j}\left(2^{-k} x, 2^{-l} y\right)
$$

where $G_{j}=G_{0,0, j}$ Then $\left|G_{k, \ell, j}(x, y)\right| \leqq 2^{5-k-\ell \delta_{\delta}^{-1}}$ because $|\psi(x, y)|=|x| \quad|y| \quad\left|\psi\left(|x|^{-1} x,|y|^{-1} y\right)\right| \geqq 2^{-5} \delta$ on the support of $\mu_{0,0}$. Hence $\sum_{k=0}^{\infty} \sum_{\ell=0}^{\infty} G_{k, \ell, j}(x, y)$ converges uniformly on $\mathbb{R}^{2 m n}$. If $g_{j}(x, y)$ denotes the limit, then $g=\left(g_{1} \ldots g_{m}\right) \in C\left(\mathbb{R}^{2 m n}\right)^{m}$ and $g=|\psi|^{-2} \psi$ on $\Gamma_{\frac{1}{2}}\left(V_{1}\right) \times \Gamma_{\frac{1}{2}}\left(V_{2}\right)$ a neighbourhood of $\Gamma_{1}\left(K_{1}\right) \times \Gamma_{1}\left(K_{2}\right)$. Further, $\sum_{k, \ell} G_{k, l, j}$ converges to g_{j} in $S^{\prime}\left(\mathbb{R}^{2 m n}\right)$ the Schwartz space of tempered distributions. Taking Fourier transforms we conclude that $\sum_{k, \ell}^{\sum} \hat{G}_{k, l, j}$ converges to \hat{g}_{j} in $S^{\prime}\left(\mathbb{R}^{2 m n}\right)$. Now

$$
\begin{aligned}
\left\|\hat{G}_{k, \ell, j}\right\|_{L_{I}\left(r, \mathbb{R}^{2 m n}\right)} & =\int_{\mathbb{R}} 2 m n(1+|\xi|)^{r}\left|\hat{G}_{k, \ell, j}(\xi)\right| d \xi \\
& =2^{-k-\ell} \int(1+|\xi|)^{r}\left|2^{2 m n(k+\ell)} \hat{G}_{j}\left(2^{k_{\xi}^{\prime}}, 2^{\ell \xi^{\prime \prime}}\right)\right| d \xi \\
& =2^{-k-\ell \int\left(1+\left|\left(2^{-k} \mu^{\prime}, 2^{-\ell} \mu^{\prime \prime}\right)\right|\right)^{r}\left|\hat{G}_{j}\left(\mu^{\prime}, \mu^{\prime \prime}\right)\right| d \mu} \\
& \leqq 2^{-k-\ell} \int(1+|\mu|)^{r}\left|\hat{G}_{j}(\mu)\right| d \mu \\
& =2^{-k-\ell}\left\|\hat{G}_{j}\right\|_{L_{I}\left(r, \mathbb{R}^{2 m n}\right)}
\end{aligned}
$$

where $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in \mathbb{R}^{m n} \times \mathbb{R}^{m n}=\mathbb{R}^{2 m n}$ and $k, l, r \geqq 0$. Also $\hat{G}_{j} \in S\left(\mathbb{R}^{2 m n}\right) \subset L_{1}\left(r, \mathbb{R}^{2 m n}\right)$ and so $\sum_{k, \ell}^{L_{\ell}\left\|\hat{G}_{k, l, j}\right\|_{L_{1}}\left(r, \mathbb{R}^{2 m n}\right)}<\infty$. Hence $\sum_{k, l}^{L} \hat{G}_{k, l, j}$ converges to \hat{g}_{j} in $L_{l}\left(r, \mathbb{R}^{2 m n}\right)$, proving that $g_{j} \in L_{1}^{v}\left(r, \mathbb{R}^{2 m n}\right)$.

$$
\begin{equation*}
c\left(m, n, x, K_{1}, K_{2}\right)=\inf \left\{\|g\|: g \in L_{1}^{v}\left(x, \mathbb{R}^{2 m n}\right)^{n}, g \text { as in Lemma } 5.5\right\} . \tag{5.6}
\end{equation*}
$$

If $\underset{\sim}{A}$ is a commuting mn-tuple of operators, define
(5.7) $\quad \delta(\underset{\sim}{A})=\inf \{|x|: x \in \operatorname{sp}(\underset{\sim}{A})\}$.

THEOREM 5.8 Let $\underset{\sim}{A}, \underset{\sim}{B}$ be commuting mn-tuples of generalized scalar operators with real spectra such that $0 \notin \psi(S \underset{\sim}{(A)} \times \operatorname{Sp}(\underset{\sim}{B}))$. In particular, suppose condition (1.8) is satisfied. Let $\mathrm{K}_{1}, \mathrm{~K}_{2}$ be compact subsets of Ω satisfying condition (5.4). If Q is a solution of system (1.1) then

$$
\|Q\| \leqq \operatorname{cdMN}\|\underset{\sim}{\mathbb{U}}\|
$$

where $c=c\left(m, n, s+t, K_{1}, K_{2}\right)$
and

$$
d=\delta(\underset{\sim}{A})^{-1} \delta(\underset{\sim}{B})^{-1} \max \left(1, \delta(\underset{\sim}{A})^{-s}\right) \max \left(1, \delta(\underset{\sim}{B})^{-t}\right)
$$

Proof. If $\delta(\underset{\sim}{A})=\delta(\underset{\sim}{B})=1$, let g be as in Lemma 5.5 with $r=s+t$. Then $g=|\psi|^{-2} \psi$ on a neighbourhood of $\operatorname{sp}(\underset{\sim}{A}) \times \operatorname{Sp}(\underset{\sim}{(B)}$, and so, as in the proof of Theorem 3.7, $2=\sum_{\ell=1}^{m} \Phi\left(g_{\ell}\right) U_{\ell}$. Hence $\|Q\| \leqq M N\|g\|\|\underset{\sim}{U}\|$ from which the required estimate follows.

The result for general $\underset{\sim}{A}$, $\underset{\sim}{B}$ follows by applying the part proved already to the tuples $\left.\underset{\sim}{A^{\prime}}=\delta \underset{\sim}{A}\right)^{-1} \underset{\sim}{A}$ and $\underset{\sim}{B^{\prime}}=\delta(\underset{\sim}{B})^{-1} \underset{\sim}{B}$. Note that $\underset{\sim}{A}, \underset{\sim}{B}$ satisfy condition (1.8) with M, N replaced by $M^{0}=M \max \left(1, \delta\left(\underset{\sim}{(A)}{ }^{-S}\right)\right.$, $N^{\prime}=N \max \left(1, \delta\left(\underset{\sim}{(B)}{ }^{-t}\right)\right.$.

Remark 5.9
a) By the methods of section 4, Theorem 5.8 can be generalized to strongly commuting mn-tuples with partitions consisting of generalized scalar operators.
b) The method for constructing the function g in the proof of

Lemma 5.5, using Littlewood-Paley decompositions, follows a similar construction in Bhatia, Davis and McIntosh [2].

REFERENCES

[1] E. Albrecht, Funktionalkalküle in mehreren Veränderlichen für stetige lineare Operatoren auf Banachräumen, Manuscripta Math. 14 (1974), 1-40.
R. Bhatia, Ch. Davis and A. McIntosh, Perturbations of spectral subspaces and solutions of linear operator equations, Linear Algebra and Appl., 52/53 (1983), 45-67.
R. Curto, The spectra of elementary operators, Indiana Univ. Math. J. 32 (1983), 193-197.
[5] A. McIntosh and A. Pryde, The solution of systems of operator equations using Clifford algebras, Proc. Centre for Math. Anal.. Canberra, Vol. 9 (1985), 212-222.
[6] A. McIntosh and A. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J., to appear.
A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting operators, Studia Math. Vol. 88, to appear.
[8] A. McIntosh, A. Pryde and W. Ricker, Estimates for solutions of the operator equation $\sum_{j=1}^{m} A_{j} Q B_{j}=U$, to appear in Proc. XI-th International Conference on Operator Theory, Bucharest, 1986.
[9] J.L. Taylor, A joint spectrum for several commuting operators, J. Functional Anal., 6 (1970), 172-191.
[10] J.L. Taylor, The analytic functional calculus for several commuting operators, Acta Math., 125 (1970), l-38.

Department of Mathematics
Monash University
Clayton, Vic. 3168
Australia

[^0]: ${ }^{(*)}$ The continuing support of the Centre for Mathematical Analysis, Canberra, is gratefully acknowledged.

