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ON ISOMORPHISMS OF ALGEBRAS OF OPERATORS

Michael Cowling

The starting point of the investigations described here is

Pontryagin duality. If G 1is a locally compact abelian group, and G

ig its character group, i.e. the group Hom(G,T), then G =G, and

G > & is a contravariant functor on the category LCAG of locally
compact abelian groups, with morphisms being continuous homomorphisms,
This theorem, together with its analytic versions, concerning the Fourier
transformation, inspired substantial research on geﬁeral locally compact
abel}an groups, and at the same time begged the question of what
analogues hold for other groups. It is generally accepted that the right
answer to this question involves the continuous unitary representations
of G, as the natural analogue of Hom(G,T), but the structures
involved are more complicated.

To describe some further developments, a number of group algebras

and spaces should be described. For a general locally compact group, G
denotes the space of continuous irreducible unitary representations =

of G on a Hilbert space, HR, modulo unitary equivalence. If G is

abelian, this coincides with the space & described before, but the fact

that G is a group is lost unless one considers tensor producte of

representations (corresponding to multiplication of characters), which is
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unpleasant in the non-abelian situation, since in general the tensor
product of two irreducible representations is not irreducible, Some kind
of (generalised) function space on G is needed. The standard spaces

include:
(a) (Li(G),+,*), where the convolution product * is given by

£xg(x) = S dy £(y) gty 1x)

fhere dy is a left-invariant Haar measure on GJ]: (L1(G);+,*) is
a Banach algebra which is commutative if and only if G is:

(b) (M(G),+,%), the space of bounded measures on G, with *
appropriately defined:

(c) (VN(G),+,¥), the von Neumann algebra of G, obtained by taking the

weak closure of Ll(G) or M(G) in £(L2(G)), where £ in L1(G)

acts on LZ(G) by the left regular representation, A:
(A(£)h)(x) = f*h(x).

These algebras incorporate the group multiplication in the
convolution product. Other algebras, which are always commutative, are
defined using representations of G:

(d) (A(G),+,.) is the function algebra (with pointwise operations)
congisting of all coefficient functions of the regular
representation A:

u € A(G) = ux) = A xh,k> Vi € G

for some appropriate h,k in LZ(G).

(e) (B(G),+,.) is the function algebra of all coefficient functions of
all unitary representations:

u ¢ B(G) = u(x) = n(x)€,n> Vx ¢ G
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for some unitary representation =& (not necessarily irreducible)
and vectors €,n in Hﬂ.

All these spaces can be naturally normed, e.q.

lulB = inf{l§linl: u = <”RE, MY,

It is obvious that B(G) is a Banach algebra (+ and . correspond to
sums and tensor products of unitary representations), but the proof that
A(G) is an algebra involves some non-trivial operator theory. For a
locally compact abelian group, G, we have some correspondences under
the Fourier transformation:

Ll e a® A - L@

M(G) €= B(G) B(G) €=  M(G)

VWN(G) > L7,
One can prove that VN(G) is always the dual space of A(G), which in
the gbelian case boils down to the familiar duality:
L@ = al@n®.
This duality preserves the Banach space structure, but multiplication is

lost.
In the first half of this century, duality for compact groups was

developed (Peter-Weyl theorem: Tannaka-Krein duality). In this half

century, we have:

1
WENDEL 'S THEOREM (1952): (L (G),+,%) determines 6,

Note that (VN(G),+,*) does not determine G: for example,

VN(Z2 x 12) = £ ({1,2,3,4}) = VN(Z4).



14

In the 1960°'s, it was observed that (VN(G)+,*:C), where ¢ stands for
co-multiplication, does determine G. Knowing the co-multiplication c
is equivalent to knowing the pointwise multiplication in the predual
A(G); according to P, Eymard (1964), G "is" the Gelfand spectrum of
A(G), i.e. the set of (continuoug) multiplicative linear functionals on
A(G), so G 1is a subspace of VN(G), which gets its multiplication from
convolution in VN(G),

M. Walter (1974) showed that (A(G),+,°) determines G, as does
(B(G),+,°). The idea is that A is a special ideal in B, and that
Aut(A(G),+,°) = Aut(G) x G, Walter picks out the elements of G as the
translations in Aut(A(G),+,°)). This result seems to have satisfied
many mathematicians, though some gluttons for punishment (French,
Luukainen and Price (1982), McMullen (1984), ...) have continued working
on duality.

We now come to the main part of this discussion. One of the most

pervasive puns in mathematics was perpetrated by M.M. Day (1957) when he

called a group amenable if there existed an invariant mean on L"), In
the 1960's much work was done on amenability, and the following

characterisation emerged:

G is amenable if and only if A(G) has an approximate identity,

i.e. there exists a net (ua) in A(G) with
'ua|A bounded
Uy > 1 uniformly on compacta

(equivalently, uy > v in A(G) for all v in A(G)):

for example, compact and solvable groups are amenable. These ideas

filtered into Banach algebras and von Neumann algebras in the 1970°s,
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The next idea was discovered by D.A. Kazhdan (1967), and called "Property

T". He showed that some non-amenable groups have the trivial

representation isolated in &. The constants are a direct summand in
B(G), and this property is equivalent to saying that there is no
approximate identity in B(G) - C: it is a strong form of non-
amenability.

Kazhdan’s applications of this idea were to the structure of
lattices in simple Lie groups, i.e, large (cocompact or of cofinite
volume) discrete subgroupe T©' of groups like SL(n,R). He shows that
if the rank of G 1is at least 2 (i.e. n > 3 for SL(n,R)), then
r/lr ¢ T'l is finite. His ideas led to Margulis’ Field’s medal winning
work on rigidity of lattices in simple Lie groups. Recently, A. Connes
has defined property T for arbitrary von Neumann algebras.

I now want to describe some joint work with U. Haagerup. We use the

Banach algebra HO(A(G)) of completely bounded multipliers of the Banach

, the functions v on G with the
property that for any u ¢ A(G), u.v ¢ A(G), and some extra stability
properties, It is known that, if M(A(G)) is the space of multipliers of
A(G), then

B(G) C MO(A(G)) C M(A(G)),

with equality for amenable G only (V. Logert, (1984)) and it is
likely that all inequalities are strict if G is not amenable. We
define

AG = inf{suDa'“a'MOA tu, ¢ HOA fTCc(G), Uy 2 1 unif. on compacta}.

We can compute A. for some groups: for G amenable, AG =1, and for

G

non-amenable G,



16

G = S0(n,1) (M2) AG =1 not T De Canniére and Haagerup (1985)
G = SUM,1) (n2) AG =1 not T Cowling (1983)

G = Sp(n,1) (n32) AG = 2n-1 T Cowling and Haagerup (1986)

G = SL(n,R) (n23) AG = 4w T Haagerup (1986)

Haagerup (1986) defines A _, similarly for an arbitrary von Neumann

ot
algebra 01, and by using ideas from Kazhdan’'s paper. he shows that, if T
is a lattice in a simple Lie group G, ‘then Ar = Ag, and further he
shows that if Ol = VN(I'), Aot= AF' Then A 1is8 a possibly-Property-T-
related index which distinguishes certain von Neumann algebras (VN(T)'s)

of type II1 which, up to now, were not known to be different. In

particular we have the following result.

THEOREM (Cowling and Haagerup (1986)): 7he von Neumann algebras of

lattices 7’n SL(2,R) and Sp(n,1) (m2) are all distinct,

The last development I want to mention is current research, If G
is a connected simple Lie group, non-compact, then I showed (1979) that

B(G) =C ¢ BO(G), where BO(G) = B(G) N CO(G)’

and that, if G is not locally isomorphic to S0(n.1) or SU(n.1),

there exists an index NG so that

NG
By(6) ~ C AG).

R. Howe (1980) showed that, for G = Sp(n,R), NG = 2n, and what we know

about general simple groups indicates that, probably
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N. ~ rank(G)

G

(N/tr ¢ [a,bl, a,b ¢ R+). I am presently trying, on one hand, to push
these results to lattices and from there to von Neumann algebras: on the
other hand, it seemes possible that one can show

MOA(G) =Ce (MOA(G) r‘CO(G))

N
and that A NCyE) & CaE):

one should then identify A(G) in MOA(G), and pass to von Neumann

algebras, (Actually, some parts of this programme already work).
Last, but not least, let ue ask: what is an invariant? Is the

“cohomology functor” or the "nth Betti number"” the “"invariant"? Is one

entitled to call A. or NG an invariant? Or is there a new theory for

G

which AG and NG are the tips of the iceberg?

-A few words about the proofs of these results will be in order. For
a simple group G, there is always a maximal compact subgroup K, and
harmonic analysis of K-bi-invariant functions is easier. For example,

we set

CC(K\G/K) = {f ¢ CC(G) s f(kxk’) = £(x) Vx e G Vk, k' ¢ K¥;
then there exists an approximate identity in MO(A(G))fWCc(G) if and

only if there exists one in HO(A(G))’WCC(K\G/K): also, if
.(BO(G)‘WC(K\G/K))n CA(G) then we know that BD(G)2n C A(G). Harmonic

analysis of K-bi-invariant functions is easier. For instance, L1(G) is
not commutative, but Ll(K\G/K) ig, for #, Finally, ¥ gets easier for

Ll(K\G/K), as follows.
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The "Iwasawa decomposition” expresses G asg ANK = SK, say, where

S = AN is solvable, If f ¢ CC(K\G/K), then f£|g determines f£: the
left-K-invariance means that fls is constant on certain algebraic sets
in S. Further, we may write Haar measure on G as

dx = dsdk,
where ds is left-invariant Haar measure on S, and dk is the Haar

measure of K., For & in S, k in K, and £, £’ in CC(K\G/K),

£E®£7(sk) = £ % £7(0)

i

S £(x) £'(x 1a) dx

Sg Iy £s7K) £ (k" 1s"1s) dkds

]s) ds

IS f(s") £°(s’

fls * f’IS(s):

convolution on the smaller group S holds all the secrets,

For calculating NO(G) normg, we use the following result:

PROPOSITION: JFf £ ¢ C(K\G/K), then £ is in MO(A(G)) £
and only If £ ¢ M(A(G)) J1F and only If fIS 7s In B(S): the

norms also corncide.

Finally, the problems related to passing to I' are closely related
to the problem of harmonic analysis on trees and graphs which have been
described recently, by A. Figa-Talamanca and M.A, Picardello (1983), et

al..
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