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INTEGRATION OF LIE ALGEBRAS
Derek W. Robinson

1. Introduction

The principal question we wish to address can be informally phrased as

follows:

When ts a Lie algebra of closed operators on a Banach space the
di fferential of a continuous representation of the corresponding
Lie group?

An answer, expressed equally informally, can be given as follows:

Whenever an associated heat equation has o unique solution

satis fying certain smoothness conditions.

The answer immediately raises a second question:

What are the minimal smoothness requirements?
The best response currently known to this latter problem is as follows:

For general group represeniations C -conditions are sufficient but
in special cases less is required, e.g. for unitary representations on
Hilbert space Cq-conditions suffice.

In order to pose these questions more precisely and to explain the
answers more accurately we first introduce a number of formal definitions.
Subsequently we outline the general strategies usually adopted to tackle such
integrability problems. Finally we describe the various special techniques

developed to solve the problems and survey various recent results in this area.
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2. General Formalism

In this section we first formulate the integrability problem in detail.

Second we discuss the general approaches to its solution.

Let B be a Banach space and V a collection of closed linear operators
acting on B. Further let B (V) denote the intersection of the domain of all
monomials of order n in elements of V and B_ (V) the intersection of the
B, (V). If B is one of the usual function spaces over R" and V consists of the
operators of partial differentiation then B (V) corresponds to the subspace of
n-times differentiable functions. Hence we refer to B (V) as the C -elements

and the family of spaces as the C_-structure.

Next we define a representation of the Lie algebra g on the Banach
space B as a collection of closed operators V = {V(x); x € g} indexed by the

elements of g with the two properties:
1. Density
B, (V) is norm-dense in 8,
2. Structure relations
V(x+y)a = V(x)a + V(y)a
(ad V(x))(V(y))a = V((ad x)(y))a
for all x,y € g and a € B,(V).

There are a number of possible variants of this definition in which both
conditions are weakened. For example one could assume B (V) is dense for
some n € 2,00> and the structure relations hold on B (V). Alternatively one
could assume the structure relations on a dense subspace D C BOO(V) which‘ is
invariant under the action of the V(x), x € g. But for simplicity we adopt ihe

foregoing definition. Nevertheless the weaker variations are conmmonly used
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and the precise formulation of many of the subsequent results is sensitive to
these variations. This must be borne in mind when making comparisons with

the literature.

Note that the C_-elements B_(V) of (8,9,V) form a Banach space with

respect to the norm

Ha”n = SUPg<m<n Pm(a)

where the seminorms p_  are defined recursively, with the aid of a basis

Xy5---s%q of g, by py(a) = ||af| and
Pmlad) = SUP1<i<d Pm-1(V(x)a) .

If (B,G,U) denotes a continuous representation of the connected Lie
group G then for each x € g, the Lie algebra of G, t € R = U(exp{tx}) is a
continuous one-parameter group. Let dU(x) denote the generator of this
group then the collection dU = {dU(x); x € g} forms a representation of ¢ in
the foregoing sense. We refer to (B,9,dU) as the differential of (B,G,U). Now

we can give a precise formulation of the question posed in the introduction.

The representation (B,g,V) is defined to be integrable if there exists a
continuous representation (B8,G,U) of the simply connected Lie group G which
has g as its Lie algebra such that V(x) = dU(x) for each x € g. The problem
is to find simple, useful, and general, criteria for integrability. As a
preliminary we describe some conditions which are necessary and others that

are sufficient for integrability.

Let xy,...,xq denote a basis of g. Then integrability of (B,9,V) requires
that each V(x;) generates a continuous one-parameter group. But then it
follows from the Feller-Miyadera-Phillips theorem on generation of one-
parameter groups that each V(x;) must satisfy appropriate dissipativity

conditions. Hence we define V to be weakly conservatire \f there exists a basis
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Xpye-iXg 0f g,an M > 1, and an w > 0, such that
(I + €V(x))"al| > M(1-|e|w)™ [[al]

for all a € B (V), n > 1, and all ¢ € <-w,w> and i =1,...,d. Moreover, V is

defined to be conservative if there exists a basis x,...,x4 of g such that

NI+ eVix;)all 2 llall

for all a € Bj(V), and all ¢ € R and i=1,..,d. The latter condition is

necessary for (B,g,V) to integrate to an isometric representation of G.

Although it is necessary for integrability that each V(x;) generates a
one-parameter group this is not generally sufficient; the family of groups
generated by the V(x;) do not automatically give a group representation. The
general approach to integrability has been to consider the problem in two

stages:

First, establish conditions which ensure the V(x;) generate
p. 4
one-parameter groups V ',

x.
Second, find conditions which guarantee that the V ! patch
together to give a group representation.

Successful accomplishment of the second stage requires smoothness of the
X-
action of the groups V ' with respect to the C-structure of the representation

(B,g,V). The simplest result of this nature is the following:

Proposition 2.1. Assume each V(x), x € g, generates a strongly
continuous one-parameter group V*. The following conditions are equivalent

for each n = 1,2,...
1.  (B,g,V) is iniegrable.

2. For each x € g, one has V*B_ = B and V* restricted to B is



259

|I+|l,-continuous.

Stronger versions of this proposition can be proved which only involve

X
assumptions on the groups V ! associated with a basis of g. Alternatively the
result can be used to establish an integrability result based on the analytic

structure of the representation.

The analytic elements of an operator H on B are defined as the set of
a € N5 D(H") such that
n

t
z 0 ||[H"a|| < oo

n>1 "

for some t > 0. The analytic elements form a subspace of B denoted by Bw(H).
Similarly the analytic elements of the representation (B,9,V) are defined to be
the subspace of B (V) of a € B_ (V) such that

n

t
> T lall, < o

n>1"
for some t > 0.

A basic result on one-parameter groups states that an operator H on 8
generates a strongly continuous group if, and only if, H is weakly conservative
and B (H) is norm-dense. This result has a direct analogue for representation

of Lie algebras.

Theorem 2.2. The following conditions are equivalent:
1 (B,g,V) is integrable,
2. a. V 1s weakly conservative,

b. B (V) is norm-dense.
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Although these results are useful as intermediate devices they are
impractical in applications as they involve verification of conditions for a
generating family of one-parameter subgroups. The striking feature of
integration theory alluded to in the introduction is that one only needs

information on one semigroup, the heat semigroup.

3. The Heat Semigroup

Let x,,...,xq be a basis of g and define the corresponding Laplacian A in
the representation (B,9,V) by D(4) = n?zl D(V(xi)2) and

d
A=-) V(x)?.

i=1

If the representation is the differential of a group representation (B,G,U) then
A is closable and its closure A generates a strongly continuous one-parameter
semigroup S which we refer to as a heat semigroup. This semigroup gives the

unique continuous solution a, = S,a of the “heat equation”
da [0t + Aa, =0, a;=a,

on B. Moreover it has a representation

St = L dg Pt,(g) U(g)

where dg denotes left-invariant Haar measure and the heat kernel p is a
positive solution of a heat equation on LI(G). Analytic properties of the heat
kernel are reflected in the semigroup S which is holomorphic in the open right

half-plane and also maps B into the analytic elements of (8,9,dU), i.e.

S,8C B, (a1
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for all t > 0. More specifically there exist k,/ > 0 such that
Ieelly, < k] /2
foralla € B,n=1,2,..,and t € <0,1>.

In fact these last bounds can be deduced from the n=1 bound if one
knows in advance that S, B C B_ (dU) for t > 0. More generally the following

conclusion holds.

Proposition 3.1. Let A denote the Laplacian corresponding to the
basis x{,...,xq of g in the representation (B, g, V). Assume that

1. A is closable and its closure A generates a strongly continuous

semigroup S,
2. SBCB(V), t>0,
3. there is @ ¢ > 0 such that
IS,ally < cllal] £1/2
foralla € Bandt € <0,1>.
It follows that there exist k! > 0 such that
18,2ll, < ki flal] /2

for all a € B, n = 1,2,..., and t € <0,1>. Consequently S is holomorphic
S,B C B, (V) fort >0, and B (V) is norm-dense.

The idea behind the proof is very simple. If M, ., is a monomial of
order n+1 in the V(x;) and M, , ; = V(x;) M, then
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Mp 152 = V(x;) SyeMpS(payee + Vx)(ad Mp)(S)e) 812
= V(x;) Sy, My S(1.y)e2

A
+ /0 du V(xi) Sp.t (ad A)(Mn) S(z_/\_”)ta )

But (ad A)(M_) is a polynomial of order n+1 in the V(x;) and hence one

readily obtains integral inequalities of the form
ISgallnss < ey 2 1181 x2lln

A
1/2 -1/2
4+ ktl/ [0 dp p / ”S(Z-/\-p)ta”n+1'

The proof then follows by “solving” these inequalities for small t with the

special choice A = (n+1)2, i.e. with X2 = 4.
Holomorphy of S is a consequence of the estimates
l|asall < d|S;ally < dki? |lall £

for a€ B and t € <0,1>. The bounds of the proposition also imply
immediately that StB - Bw(V) for t > 0 and strong continuity of S implies
norm-density of B_(V).

Combination of this last observation with Theorem 2.2 and the
comments at the beginning of the section gives the first heat semigroup

integration theorem.

Theorem 3.2. The following conditions are equivalent:

1.  (B,g,V) is integrable.
2.  a. Vis weakly conservative,

b. the Laplacian associated with same -basis of g 1< closable and
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its closure generates a strongly continuous semigroup S,
c. S;BC B (V), t>0,

d. there is a ¢ > 0 such that
lIS;ally < cllal] £1/2
foralla € Bandt € <0,1>.

The drawback with this integrability criterion is Condition 2¢ which in
principle requires the verification of an infinite number of conditions. The
next two sections will be devoted to the discussion of methods of weakening
this condition but before passing to this topic we comment on the crucial

estimate contained in Condition 2d.

Since the resolvent of A is obtained by Laplace transformation of S
bounds such as Condition 2d can be converted into bounds on the resolvent
and these establish that the V(xi) are A-relatively bounded. But conversely if
S is holomorphic, ie. if ||AS,]| < ct'! for small t > 0 then these relative
bounds can be converted into bounds on ||S;a||;. In particular one has the

following characterization.

Proposition 3.3. If S, = exp{-tA} is holomorphic then the following
conditions are equivalent:
1. there is a ¢ > 0 such that
IS;ally < cllal] €1/
foralla € Band t € <0,1>.

2. there are c',e! > 0 such that

l|(I+€2)La]|, < |lal| /2
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forall a € B and ¢ € <0,¢>.

3. there 1s a c > 0 such that

llally < €llAal + " e [lal]

for all a € D(A) and € € <0,1>.

4. ||-||;-estimates

Theorem 3.2 established integrability from smoothness properties of a
heat semigroup S. Two types of smoothness were required, a range condition
S8 C B, and a bound on ||S||;. This bound is equivalent, by Proposition
3.3, to the bounds

llally < € ll4all + et |lall

for a € D(A) and € € <0,1>. Next we argue that additional bounds which we-
refer to as |||[,-estimates allow one to weaken the range condition. The

|I-||o-estimates state that D(A) C By and
llally < k(]l4al| + [lall)

for some k > 0 and all a € D(A). Note that since B, C D(A) and for all
a € B, it follows from the ||-||,-estimates that By, = D(A) and A is closed.

It shouid be emphasized that the ||-||,-estimates differ in one important
respect from all bounds considered previously. They are not necessarily true
for representations of g obtained by differentiating a group representation. In
particular they fail for the group RY of translations acting on CO(Rd) and the

Laplacian defined with respect to the usual Cartesian basis. Nevertheless the
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||:]|,-estimates are true for translations on Lp(Rd) if p € <1,00>, for unitary
representation on Hilbert space, and they are “almost true” for general group
representations in a sense we explain in the following section. Hence the

subsequent discussion has a greater applicability than appears at first sight.

Proposition 4.1. Let A denote a Laplacian associated with a
representation (B,g,V) and assume A satisfies ||||,-estimates. Further

assume
1. A generates a strongly continuous semigroup S,

2. S,BCB,(V), t>0.

It follows that

Bo(V) = N> D(A")

and consequently ¢ f S 1s holomorphic then
S;BC B_(V), t>0.

The second statement of the proposition is the one of most interest for
the integration problem. It follows from the first statement because

holomorphy of S implies that
S, C B,(4) C Boo(4) =Ny 5, D(A”).

The proof of the first statement is straightforward but rather long.

There are two ideas.

First let V,=V(x;) and note that if a € D(A2) then since
S,a € B4(V) C Bs(V) one has

AV Sa ViS,da+ Py(V)S,a

t
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where P,(V) = (ad A)(V;) is a second-order polynomial in the V;. It then
follows in the limit t — 0 by a closure argument, using the ||-||,-estimates,
that V;D(A?%) C D(A) and

AVIa = Vl Aa + P2(V)a .

Consequently another application of the ||-||,-estimates gives D(A?) ¢ Bs(V)

and a bound

2
llalls < kg Y lla™al|.
m=0
Similarly
AV{V; S,a = V;V; 8, 4a + Pg(V) S;a

and one concludes with ‘the help of the previous argument that

V;V;D(4%) C D(4) and hence D(4%) C B,(V).
Now one uses the second idea.

Define R = (I+€A)! where ¢ > 0 is small enough that the resolvent
exists. Then D(A%) = R38. But

3, _ p2 2
V.R3a = R2V,Ra - (ad R)%(V;)Ra + 2R(ad R)(V;)Ra.
Now, however,
(ad R)2(V,)Ra = eR(ad R)(ad V,)(4)R%a
because R%a € D(A?) C B,(V) C Bg(V). Therefore

(ad R)?(V,)Ra = eR(ad R)(P,(V))R%a
= -eR%(ad A)(P4(V))R%a

= -2R?P4(V)R%a
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where we now use R%a € D(43) € D(A?%) C B,(V) C Bg(V). Similarly
R(ad R)(V;)Ra = €R?(P,(V))R%a

and one concludes that there is a b € B such that
V;R%a = R%.

Consequently ViD(A?’) c D(Az) and then by the previous argument
D(4%) C B¢(V).

Next repeating this argument with V, replaced by Vivj and using the
fact that D(4%) C By(V) one concludes that V;V,D(4%) C D(A®). Therefore
D(A3) C Bg(V).

This argument extends to higher powers and one successively deduces
that D(A") C B, ;(V) and D(A") C B, (V). In fact it is easiest to proceed

by induction but we will not give any further details.

It should be emphasized that in the above proof it is not essential to
assume that B__(V) is norm-dense. It follows of course from strong continuity
of S and the condition S,8 C B,(V) that B,(V) must be norm-dense. Thus
norm-density of B__ (V) is a consequence of density of B,(V), the assumption

of the theorem, and the structure relations of (8,9,V).

Straightforward combination of Theorem 3.2 and Proposition 4.1 gives
an integrability criterion for systems with a Laplacian satisfying
||-]|-estimates. A different criterion follows by noting that weak
conservativeness and ||-||y-estimates imply Condition 3 of Proposition 3.3. For

example, if V is conservative
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e[Vix)all < [I(I-eV(x;))all + [lall

13-€*V(x;))all + lall

IA

IA

E[IV(x;)?al| + 2llal]

IA

k]| dal| + (2+ked)]lal

for all a €B, = D(A). Therefore one has the following.
Theorem 4.2. Let A denote a Laplacian associated with a
representation (B,g,V) and assume A satis fies ||+||y-estimates.

The follounng conditions are equivalent;

1.  (B,g,V) is integrable,
2. a. V is weakly conservative,

b. A generates a strongly continuous holomorphic semigroup,
¢ Np>y D(A") C By(V).

Our next aim is to explain how this result and the strengthened version

of Theorem 3.2, can be proved without ||-||,-estimates.

5. Lipschitz Spaces

Although ||-||y-estimates are not generally true for Laplacians A
associated with a group representation (B,G,U) they are almost true in two

different ways.

First, for each heat semigroup S, = exp{-tA} one has estimates

14U(x)dU(x;) S,all < cyllall 71
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for all a € B and t € <0,1>. Hence by the usual Laplace transformation

arguments this gives bounds
llally < ke 5 lI(T+eA) 44|

for all small €,6 > 0. The fractional power of (I+€A) can be chosen arbitrarily
close to one but not actually equal to one which would be required for
|I-||o-estimates. Unfortunately these weakened ||-||,-estimates have not

appeared useful for integrability problems.

Second, one can consider the representation transported to Lipschitz
spaces, spaces which are close to the original space, and on these spaces one
has ||-||,-estimates. These spaces can be defined directly in terms of the group
representation but the important point is that they coincide with the
Lipschitz spaces corresponding to each heat semigroup. Therefore if one has a
Lie algebra representation for which a heat semigroup S exists one can hope
to construct Lipschitz spaces on which one has representations satisfying
||-]|o-estimates. This is indeed the case if S satisfies certain smoothness
conditions. Information about integrability of these representations can then

be used to obtain information about the original representation.

The Lipschitz spaces B, q that we need are defined for a heat semigroup
S associated with (B,9,V) and two real parameters a € <0,1> and q € [1,00>
by

Byq {2a€BtH /2||(1-8,)a|| € L (dt/t; <0,1>)} .

They form Banach subspaces of B with respect to the norms ||-||, q Where

14 .
el = llll + () T @72 1 )alpe) 7.

In fact these spaces have been defined and analyzed . xtensively for a general
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semigroup S but they are of particular interest in the Lie algebra setting if the
action of S relates the spaces to the C_-structure of (B,g,V).
The key result is the following.

Theorem 5.1. Assume there exists a healt semigroup S such that
SiB C B, (V) for somen > 2 and

lISall; < eyllal] t71/2

forall a € Band t €<0,1>. Then

Ba,q ={ajt g(m-)/2 ”S(;a'”m € Lq(dt/t; <0,1>)}

°

and |||| a,q '8 equivalent to the norms

1 gt
a b+ ”a“a,q;m = (/0 T (t(m-a)/2 ||Sta||m)q) 1/q ’

for m = 1,2,...,n. Moreover ifn > 3 thereisak, q> 0 such that

VIV (5Jally g < g (148l 4 + llally o
foralla € By N Ba,q such that Aa € Ba,q’

It follows diréctly from the definitioh of Ba’q that it is an S-invariant
subspace of B and S restricted to Ba,q is ||| a,q-continuous. Moreover
D(4) ¢ B, , and hence B, (V) C B, qforallm > 2. Thusif SBC B, (V)
with n > 2 then Bn'tl(v) is [|~||a,q—dense in B, .- Therefore if n > 3 one can
define a representation V a,q °f 900 B a,q Y restricting the V(x) to Bg(V) and
then taking their ||| a,q Closures. Alternatively Vo q(¥) is the restriction of
V(x) to those a ¢ Bu’q' such that V(x)a € Ba,q’ One can then define the

C,,-elements B ol V, q 38 before and it follows automatically that V

m;o.q a,q

_satisfies the.struciure relations of g on 32, aq But there is no obvious reason
177y
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for the Bm;a’q to be ||| a,qdense for m > 3. Nevertheless Theorem 5.1
establishes that A @ the generator of S restricted to Ba o satisfies
b 3
IF*1l9. 6, g-estimates of the type discussed in Section 4. This observation
bt
together with the argument used to prove Proposition 4.1 then allows the

following conclusion:

Corollary 5.2. Adopt the assumptions of Theorem 5.1 with n = 3.
Then

— n
Boosaa = M1 D(4a,q)
and in particular B, , q 'S I, g dense in B, T
Iy ) 3

Thus on the Lipschitz spaces B q One has representations V q of g

b )
which satisfy |[|-||,.,, gestimates. But the conditions on S necessary for this
conclusion, i.e. S,BC B,(V) and ||S||; < clt'1/2, suffice to imply that S is

holomorphic and its restriction to B .q 18 also holomorphic. Therefore.
)

q
S18a,q € Mn>1D(4a,q) = Bogiayq-
Consequently

€ S/2Ba,q € Booja,q € BoolV) -

Thus we have the following conclusions which is independent of the Lipschitz

spaces.

Corollary 5.3. If S,B C B,(V) for t > 0 and ||S;al|; < ¢,|la]| t'1/2 for
all a € Band t € <0,1> then S,B C B__(V) fort > 0.

This conclusion combined with the earlier results, notably Theorem 3.2

and Proposition 3.3, then gives the final general integrability theorem.
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Theorem 5.4. Let (B,g9,V) be a representation for which V is weakly
conservative and let A be a Laplacian associated with the representation.

Then the following conditions are equivalent:

1.  (B,9,V) ts integrable,

2. a. A s closable and its closure generates a strongly continuous

semigroup S,

b. thereis a ¢ > 0 such that
lIS,ally < ¢,llal] /2

forall a € Band t € <0,1>,

3. a. A is closable and its closure A generates a strongly continuous

holomorphic semigroup,
b. N> D(A") C B,(V),
c. thereis acy > 0 such that
llally < € llAall + cqelal]

for all a € D(A) and ¢ € <0,1>.

6. Commutator Theory

The foregoing integration results were derived by analytic element
arguments In this section we briefly describe a completely different method
of approach based on commutator theory. This method has the advantage
that it ealy wses Cy-estimates, but has the disadvantage that it is restricted

o the theorv .f isometric representations, and it requires ii-ll;-estimates.
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The basic commutator result gives a criterion for a conservative

operator to generate an isometric group with a smooth action.

Theorem 6.1. Let S, = exp{-tH} denote a strongly continuous
contraction semigroup on B and let K be a closed conservative operator with

the properties
1.  D(H) C D(K) and for each € € <0,1> there is a ¢, > 0 such that
K]l < el|Ha|| + ¢ [la]l , 2 € D(H)
2. KD(H?) C D(H) and there is a C > 0 such that
lI(ad K)(H)a|| < C(||Hal| + |lall) , = € D(H?).

It follows that K generates a strongly continuous one-parameter group
of isometries T, T,D(H) C D(H) for all t € R, and ||H(T-I)a]| » 0ast — 0
. for all a € D(H).

The idea is to apply this result with K = V(x) and H = A in order to
deduce that each V(x) generates a group, and then to deduce integrability of
(B,g,V) from Proposition 2.1. In order to follow this procedure one must first
verify the assumptions of the theorem and the proposition. The main problem
is to verify Condition 2 of Theorem 6.1. Since (ad V(x))(4) is quadratic in
the V(x;) this requires that A satifies the ||-||,-estimates. These estimates then
imply that B,(V) = D(4) = D(A) and hence the last statement of Theorem
6.1 corresponds to invariance of Bn(V) under the groups generated by the
V(x) and [|-||,-continuity of these groups. Therefore Proposition 2.1 applies
and (B,g,V) is integrable.

Instead of continuing the discussion of the general situation we

illustrate this method for unitary representations on Hilbert space.
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First, an operator on a Hilbert space ¥ is conservative if, and only if, it
is skew-symmetric. Thus we consider a family V = {V(x); x € g} of closed
skew-symmetric operators on ¥. Further we assume that )lz(V) is norm-dense
and the V(x) satisfy the structure relations on ¥,(V). We will not assume
X, (V) is norm-dense but it will be important that ¥s(V) is ||
X5(V), or, alternatively, ¥,(V) is ||||-dense in ¥;(V).

|p-dense in

Second, if A is the positive symmetric Laplacian associated with the

basis x,...,x4 of g then
IV(x)all? < -(a,4,2)
for all a € D(A) and hence one has an estimate
IV(xp)all < elldall + (1/2 €) |lall
for all a € D(A) and € > 0. Moreover if a € ¥3(V) then
V)V )all? < (Vs 2, Aa) + (V(xs)a, (ad A)(V(x;)a)
< IV(x;)%al| - laall + [[V(x;)all - ll(ad A)(V(x;))al] -

Since after use of the structure relations (ad A)(V(xj) is quadratic in the

V(x;) this gives the estimate

IV{x;)V(x)all < ||Aa]| + k supy <5< 4 [IV(x;)all

< (1+€) [|4al| + (2 K2/€) [lal]

for all a € ¥3(V) and € > 0. Hence if ¥3(V) is a core of A then A satisfies a
||-||g-estimate, D(A) = D(4) = Hy(V), and A = A. Alternatively, if Hy(V) is
||-|| -dense in ¥;(V) then the structure relations extend to form relations on
X{(V) x X;(V). But these form relations, together with the nperator relations
on ¥,(V) allow one to make a similar estimate. Thus once again A satisfies a

JI-lip-estimate, A = A,and D(Q) = Hy(V).
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Third, if A is self-adjoint, a € ¥3(V), and b € D(A2) C D(4) C ¥,(V)
then

(4a,V(x)b) - (V(x)2,4b)| = |(Py(V)a,b)]
= |(a,Py(V)b)]
< Kjal| (llab]| + |fbl])
where P,(V) is the quadratic expression in the V(x;) corrésponding to (ad

A)(V(x)), and the final step uses the ||-||,-estimate. Thus if ¥3(V) is a core of
A one concludes that V(x) D(A%) C D(A) and

I(AV(x) - V(x)A)b]| < k'(]lAb]| + [[b][)

for all b € D(A2). Alternatively if Ho(V) is ||-||5-dense in ¥(V) one can use
the commutation relations as form relations on ¥;(V) x ¥;(V) to arrive at
the same conclusion. One simply repeats the above calculation but with

a € D(4) = Hy(V)and b € D(A2). But if A is self-adjoint one has

(a,4a) = Z IV (x;)al|®

for all a € ¥5(V) and hence ||-||;-density of ¥5(V) in ¥;(V) is equivalent to
the property that ¥,(V) is a core of Al/?,

Thus the (essential) self-adjointness of A together with either of the
density assumptions ensures the hypotheses of Theorem 6.1 are fulfilled, and
H = A and K . V(x). Then combination of Theorem 6.1 with Proposition 2.1

establishes the crucial statements of the following theorem.

Theorem 6.2. Let V = {V(x); x € g} denote a family of closed skew-
symmetric perators on the Hilbert space ¥ satisfying the structure

relations «wf the Lie algebra g on the subspace ¥,(V) and let A denote the
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Laplacian associated with some basis of g.
The following conditions are equivalent:

1. (X,9,V) is integrable (to a unitary representation),
2. A is (essentially) self-adjoint and the semigroup S, = exp{-tA}
has the property

SHCH(V), >0,

3.  Ais (essentially) sel f-adjoint and ¥3(V) is a core of A,
4. Ais (essentially) sel f-adjoint and Ho(V) is a core of Al/2,
The above discussion outlines the proof of 3 => 1 and 4 => 1. But the

property S, ¥ C ¥,(V) C D(A) ensures that ¥3(V) is a core of A and one has

°

2 => 3. Moreover, Condition 3 implies |

|g-estimates for A which in turn
imply D(A) = ¥4(V). Since D(A) is a core of A1/2 by general reasoning one
has 3 => 4. Finally it can be verified that the differential of a unitary group

representation satisfies Conditions 2, 3 and 4.

To conclude we note that this last result indicates that the previous
Banach space results might still be improved, with Cg-estimates replacing

C -estimates at least for isometric group representation.

Notes and Remarks

The first general results on integrability of representation of general Lie

algebras were given by Nelson, who also introduced many of the techniques
[Nel' Nelson, E.; Analytic Vectors. Ann. Math. 3 (1959) 572-615.

Nelson’s “paper was preceded, however, by related wurn .ot Rellich aud others
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on representation of the Heisenberg group (see [Nel] Section 9).

Nelson developed the theory of analytic elements and showed by use of
the heat kernel that any continuous representation of a Lie group on Banach
space has a dense set of analytic elements. Then he proved a wide variety of

results for representations of Lie algebras by skew-symmetric operators on

Hilbert space. In particular he established ||- g-estimates of the Laplacian and
integrability criteria in terms of essential self-adjointness of the Laplacian. His
proof used analytic element techniques and was based on a Hilbert space

version of Theorem 2.2.

Subsequently many other authors analyzed properties of analytic
elements, both on Hilbert space and Banach space, with the aim of
elucidation of the differential and integral structure of continuous
representation of Lie groups. Most of this work, to 1982, is covered in the

book by Jgrgensen and Moore.

[JgM] Jgrgensen, P.E.T. and R.T. Moore; Operator Commutation
Relations, Reidel (1984).

In particular this book contains detailed proofs of Proposition 2.1 and its
many variants. But the full Banach space version of Theorem 2.2 appeared
later. It was proved independently by Goodman and Jdrgensen, and by

Rusinek.

[GoJ] Goodman, F.M. and P.E.T. Jdrgensen; Lie algebras of
unbounded derivations, Journ. Func. Anal. 52 (1983) 369-384.

Rus| Rusinek, J.; On the integrability of representations of real Lie
algebras in Banach space, preprint, Warsaw University (1981).

The results described in Sections 3-6 are even more recent and are
ex ra. »d from: a series of preprints by the Department of Mathematics,

Anstitwazs of Avvanced Studies, Australian National University. Canberra.
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[Robl] Robinson, D.W.; The differential and integral strcture of
continuous representations of Lie Groups, Preprint No. 2 (1987), (to
appear in the Journal of Operator Theory).

[Rob2] Robinson, D.W.; Lie groups and Lipschitz spaces, Preprint
No. 16 (1987). '

[Rob3] Robinson, D.W.; Lie algebras, the heat semigroup, and
Lipschitz spaces (to appear).

[BGJR] Bratteli, O., Goodman, F.M., J¢rgensen, P.E.T. and D.W.
Robinson, The heat semigroup and integrability of Lie algebras,
Preprint No. 17 (1987), (to appear in the Journal of Functional
Analysis).

Proposition 3.1 and Theorem 3.2 occur in [BGJR| and the discussion of
Sections 4 and 5 comes from [Rob2| and [Rob3]. Theorem 6.1 is a slight
variant of a result in [Robl] as is the proof of the Hilbert space application

Theorem 6.2.

Finally we note that 3 => 1 and 4 => 1 are essentially reformulations of
Nelson’s Theorem 5 and Corollary 9.1. For example, to derive 4 => 1 from
Nelson’s Corollary 9.1 one defines V(x) as the closure of Nelson’s p(x) on the
domain D. Then the spaces ¥ (V) are determined and D, and hence ¥,(V), is
|||l j-dense in ¥;(V). It is somewhat less evident that D is ||-||;-dense in ¥,(V)
but this follows by uniqueness of self-adjoint extensions if A is essentially self-

adjoint on D.
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