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REGULARIZATION APPLIED TO THE RECOVERY OF 

PIECEWISE CONSTANT STURM-LIOUVILLE POTENTIALS 

John Paine 

ABSTRACT 

In a recent paper [3] a method was proposed for solving the inverse Sturm­

Liouville problem by finding a piecewise constant potential whose leading eigen­

values agree with the specified eigenvalues. The numerical evidence presented 

there indicated that the method worked well, but that the recovered solution 

was sensitive to perturbations in the specified eigenvalues. In this note the 

sensitivity of the recovered potential with respect to errors in the eigenvalues 

is investigated and a regularization technique for reducing the influence of such 

errors is proposed. 

1. Introduction 

In this note attention will be restricted to the simplest form of the mverse 

Sturm-Liouville problem: 

Find the function q E [0, 1r] for which 

-u 11 + qu = ..\.u u(O):::::: 0 = u(1r) 

has the specified eigenvalues {.\k};;:1, and which satisfies the sym­

metry condition q( x) = q( 1r - x). 

(1.1) 

It is well known [1] that this problem has a unique solution. More general 

problems, including conditions for existence and uniqueness of solutions, can be 

found in [2]. 

In [3] a method was proposed for approximating the solution of the inverse 

Sturm-Liouville problem by finding a piecewise constant potential which has 
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the first N of the specified eigenvalues as the leading part of its spectrum. With 

the following assumptions and notation 

(1) the N specified eigenvalues satisfy .\1 < A2 < ... < AN 

(2) the function ij is a piecewise constant functions defined on [0, 1r], con­

stant on each of the subinterv-als of the uniform partition with stepsize 

h = 1rj2N. 

(3) Ak(if.) denotes the k th eigenvalue of (1.1) with q replaced by ij 

and with the assumption that all functions used are symmetric about 1r /2, the 

inverse Sturm-Liouville problem posed above is replaced by the simpler problem 

of finding the function for which 

k= l, ... ,N. 

The solution of this problem reduces to that of finding a solution to the non­

linear system : 

=0 

for which the Newton iteration takes the form 

(1.2) 

where q is an N component vector with j th component iii which is the value 

of the j th constant piece of ij, and the (i,j) th element of J(q) is given by 

where u; is the normalized eigenfunction corresponding to the eigenvalue A;(q). 

It should be noted that J ( q) can be readily evaluated because of the simple 

form of the function ij, and so this iteration can be easily implemented. 

When if= 0 the (i, j) element of J: = J(O) is given by 

h sinih . 
J· · = -(1 - -- cos(2zx · 1 )) • 

z,J 7r , ih J- 2 
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Thus J can be written in the form 

J = !:(uvT -DF) 
7r 

where u T = ( 1, 1, ... , 1, 0), v T = ( 1, 1, ... , 1, 1) 

and 

F= 

D = d' {sinh sin2h sinNh} 
zag h ' 2h ' · · · ' N h 

cos 2x 1. 
2 

cos4x.t 
2 

cos2x~ 
2 

cos 2x N-l. 
2 

cos4x N-l. 
2 

cos2(N -1)xl. cos2(N -l)xN_l. 
1r 2 _:zr 2 

-2 2 

Since the matrix D is clearly non-singular and the matrix F is closely related 

in form to a discrete Fourier transform, it is not difficult to establish that F is 

non-singular and also that 

where 
1 

V= 
1 

-1 
-1 

1 -1 
1 

In [3] it was shown that the condition number of the matrix J satisfies 

cond( J) < 3N, thus indicating that errors in the specified eigenvalues would be 

substantially amplified in the recovered solution. Numerical results confirmed 

that this was indeed the case, and also indicated that the errors in the recovered 

solution showed a regular oscillatory behaviour and were highly dependant on 

the error in the largest eigenvalue. used. 

Once again an examination of the structure of J-1 given above provides an 

indication of the reasons for these observed properties of the error. If c denotes 

the vector of errors in the specified eigenvalues, and e the error in the recovered 

potential, then when the specified eigenvalues are close to those of the zero 

potential we have 
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where e.N is the Nth component of e. A simple calculation shows that 

and so the contribution of the eigenvalue errors due to the first term in brackets 

above behaves like N 1 / 2llell2. The second term however contributes a factor of 

the form Nle.NI to the error, and so the last component of the eigenvalue error 

vector (unless it is zero or relatively small) contributes as much as all the other 

components combined to the error in the potential. 

Indeed, an examination of the elements of J-1 shows that the size of the ele­

ments in the first N- 1 columns grows only slowly with N, but the elements of 

the last column are large in magnitude, oscillate in sign and increase proportion­

ately with N. Of course this observation is not highly significant in itself, but 

this structure is at least consistent with results of the numerical experiments 

so far conducted. It is also clear that even if the largest eigenvalue contains 

no error, the recovered potential will still contain errors, but the implication 

of this observed structure is that large errors in the recovered potential will 

tend to be oscillatory (excluding those due to large uniform perturbations of 

the eigenvalues). 

The practical import of these observations is that regularization techniques 

can usefully be applied to improve the recovered potential by moderating the 

oscillation of the solution when such oscillations are most likely to be due to 

the errors in the eigenvalues rather than an inherent property of the required 

potential. 

2. Regularization 

The basic principle of regularization is to modify the objective function to be 

minimized by adding a term which penalizes "rough" solutions. Thus the solu­

tion which minimizes the modified objective function will represent a trade-off 

between accuracy and smoothness. In the context of the inverse problem being 

examined here, perhaps the most natural measure for the roughness of ij is 

The modified objective function which is to be minimized is then 
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where a is a paranieter which is to be chosen to balance the accuracy and 

smoothness requirements. 

This is once again a non-linear problem for which the objective function Eisa 

continuously differentiable function of ij and so E will be minimized at if* if 

where 

1 -1 
-1 2 -1 

-1 
-1 1 

If the current estimate of the solution is ijv, then the Newton iteration for finding 

a solution to this system can readily be shown to be 

If this iteration converges, the regularized problem can thus be solved in much 

the same way as the original problem, the only extra expense being the calcu­

lation of JT(qv)J(ijv) and JT(qv)f(ijv). 

3. Numerical Experiments 

Once again the obvious potential to use to investigate the effectiveness of the 

regularization technique is the Mathieu potential 6 cos 2x. The error in there­

covered potential using the first sixteen exact eigenvalues is displayed in Figure 1 

along with the error when the kth exact eigenvalue is perturbed by .1(-1)k. 

Also displayed in Figure 1 is the error in the recovered potential using regular­

ization with a 2 = .001. The large oscillatory error caused by the perturbations 

of the eigenvalues has obviously been greatly reduced by the regularization, 

though the error is still substantially greater than when the exact eigenvalues 

are used. 
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Figure l. Errors in reconstructed Mathieu potential using sixteen 
eigenvalues. Exact eigenvalues : --·- , perturbed eigenvalues 
: · · · · · · · , regularized solution : ------ . 
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Figure 2. Dependance of the maximum error in regularized solu­

tion on the regularization parameter a 2 . 

·'"'" 

In Figure 2 the behaviour of the max1mum error m the recovered potential 

as a function of the regularizing parameter a 2 is displayed for the eigenvalue 
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perturbations defined above. The dependence of the maximum error on the 

regularization parameter is essentially as expected. The minimum is achieved 

near a 2 = .001, and the error is reasonably flat there and only increases slowly 

as a 2 increases, so it would appear that the use of the optimal a 2 is not critical. 
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Figure 3. Scatter plot of maximum errors in standard and regular­

ized solutions using fifty sets of randomly perturbed eigenvalues. 
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The form of perturbation used above is of course rather structured and so the 

errors in the recovered potential are not necessarily representative of the effects 

due to the random eigenvalue errors expected in practice. To investigate the 

effectiveness of the regularized method in more realistic circumstances, the stan­

dard and regularized solutions were computed using the first sixteen eigenvalues 

of the Mathieu potential with random perturbations uniformly distributed in 

the interval [-.1, .1]. The values of the maximum error in each of the two solu­

tions over fifty trials are displayed as a scatter plot in Figure 3. Of particular 

note here is the large variation of the error in the standard solution compared 

with its regularized counterpart, As a point of reference the maximum error 

for the two solutions using the exact eigenvalues is also marked on the figure. 

It can be seen that the error in the regularized solution is almost independent 

of the eigenvalue perturbation, thus indicating that the potential advantages of 

regularization outweigh any possible loss of accuracy in the recovered solution 

unless it is known that the eigenvalues are very accurate. 
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Figure 4. Dependance of the ratio of the maximum error in the 
standard solution to that of the regularized solution on the rela­
tive size of the perturbation in the largest eigenvalue used. 

To further investigate the effectiveness of regularization, the ratio of the max­

imum error for the two recovered solutions is displayed in Figure 4. Here the 

horizontal axis is taken to be the relative contribution of the last component in 

the error vector so that the dependence of the error on this component can also 

be illustrated. 

These results show that there is a strong correlation between the error in the 

largest eigenvalue and the size of the error in the standard solution. The regu­

larization process therefore appears to be fairly effective in removing such errors 

without also diminishing the accuracy of the solution too greatly. However when 

the error in the last eigenvalue is relatively small, the regularization process can 

adversely affect the accuracy of the recovered solution. Figures 5 and 6 display 

the error in the standard and regularized solutions for the perturbed problems 

which gave the smallest (0.37 in Figure 5) and largest (2.61 in Figure 6) ratios 

of the maximum errors. The errors in the regularized solutions are very similar 

in both cases, whereas the errors for the standard solutions are quite different, 

thus confirming the lack of sensitivity of the regularized solution to the errors 

in the specified eigenvalues. 
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Figure 5. Errors in the standard : ·······,and regularized : ----­
- solutions for the random perturbation which gave the smallest 

ratio of maximum errors. 
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Figure 6. Errors in the standard : ·······,and regularized : ---­

-- solutions for the random perturbation which gave the largest 

ratio of maximum errors. 

1.600 

1.1300 



115 

" 

1.000 

\ ~ J~fo 

·-, r-f ~~?~\;::,~-. .. ,/ ·.,:-:" :,.'776 :;,Pf{ 
-·Ltmo ! ! \j 

i l 
il 
•I .,. ~! 

- 3 .C!l]li) o'-:---'---_=,.=.--'---_C::4~!:;;-o---'---_;:::6A:::-.---'---_.::;!o:;:-o---'---,;-,o~o~""o--"--::-,_=:::m:::-~--"---::-i.4'"'~::::-o--"--,~.GtuJ 

Figure 7. Errors in the piecewise constant approximation of the 
almost singular potential (3.1) using sixteen eigenvi3Jues. Exact 
eigenvalues : --- , perturbed eigenvalues : 0 
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As a final illustration of this method Figure 7 displays the errors in the potentials 

constructed using the first sixteen eigenvalues of the potential 

((x + .1)(7r + .1- x))-2 (3.1) 

using the standard method with exact and perturbed eigenvalues, and for the 

regularized method with 01 2 = .001 for the perturbed eigenvalues. The influence 

of the perturbations of the eigenvalues in this case is almost identical to that for 

the Mathieu potential. Once again the oscillations in the regularized solution 

have been substantially reduced, but the error near x = 0 has been increased 

marginally rather than reduced. This effect is to be expected as the origin is 

close to a singularity of the potential and so the solution is varying rapidly 

there. 
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