2. INTEGRATING GAUGES

An integration theory involves two constructions, namely that of the space of
integrable function and that of the integral. These two constructions are often carried
out simultaneously. However, having in mind the generalizations pursued here, it is
desirable to keep them at least conceptually separated. In this chapter, spaces of
integrable functions are introduced; integrals will be dealt with in the next one.

We start with a family of functions, X, defined on a space {2, which contains
the zero-function but is not necessarily a vector space, and a non-negative real valued
functional, p, on K, called a gauge, such that p(0) =0. Then we introduce the

vector space £ = L(p,X) of functions, f, on  which can be expressed in the form

(*) flw) =} ef(w),

1

for all we ! subject to certain exceptions, where ¢, are numbers and f], functions

belonging to £, j=1,2,..., such that

0

(%) Y lelolf) <o

=1
The equality (*) is not required to hold for those points w € §) for which

e ]

Z |cjf].(w)‘ =,

i=1
even if the sum on the right in (*) exists as the limit of the sequence of partial sums;
the values of f at such points are arbitrary. For the seminorm, ¢(f), of such a
function f we take the infimum of the numbers (¥) . The épace L is complete in this
seminorm and the linear hull of X is dense in it. Of course, to avoid the obvious
pathology that the seminorm of some functions fe€ X with p(f) >0 collapses to 0,
some conditions have to be imposed on the gauge p. Accordingly, the gauge p is
called integrating if ¢(f) = p(f) , for every function fe K.

If I is the family of characteristic functions of sets from a o¢-algebra, say, and

p is a measure on it, then this construction gives us precisely the family of functions

50
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integrable with respect to p and the corresponding seminorm of convergence in mean.
Similarly, if £ is a vector lattice and p(f) = «(|f|), for every fe X, where ¢ isa
Daniell integral on £, then £ is the family of all (-integrable functions. Other
choices of ¥ and p lead to other classical and less classical spaces some of which will

be described in the next chapter.

A. Let X be a nontrivial family of functions on a space Q. (See Section
1D.) A non-negative real valued functional p on X such that p(0) =0 will be called
a gauge on K. Good examples of gauges to keep in mind, in what follows, are
seminorms on vector spaces of functions and (finite) non-negative additive, or just
sub-additive, set functions on quasirings of sets. (Recall that we identify sets with
their characteristic functions.)

The following definition can be viewed as the abstract core of the construction
of the space of integrable functions and its I'-seminorm from a given elementary
measure or content.

Let p be a gauge on the family of functions £. A function f on @ will be
called integrable with respect to p, or, briefly, p-integrable, if there exist numbers

¢ and functions fj ek, j=1,2,..., such that

(A.1) f le10(F) < w
=1
and
(A2) flw)= § (o
=1
for every w e © for which
(A.3) L lef ()l <o

p=
The family of all (individual) functions integrable with respect to p is denoted
by L(p,X) .
For any function fe L(p,X) , let



2A 52 2.1

g0 =t § 1lolf)

where the infimum is taken over all choices of the numbers ¢ and the functions
f; eX, j=1,2,.., satisfying condition (A.1), such that the equality (A.2) holds for
every w € §) for which the inequality (A.3) does.

Clearly, L(p,X) is a vector space such that sim(X) ¢ L(p,X) . (See Section 1D.)
Also, it is not difficult to see that ¢ , is a seminorm on L(p,X); it is called the
seminorm generated by the gauge p. Consequently, we can speak of qp—Cauchy and
q p~convergent sequences of functions from L{p,X) .

The p-equivalence class of a function fé€ L(p,X), consisting of all functions
g€ L(p,X) such that qp(f-g) =0, is denoted by [f]p . The set {[ﬂp :feLllpX)} of
all p-equivalence classes of functions from L(p,£) is denoted by L(p,X). Then
L(p,X) is a normed space with respect to the linear operations induced by those of
L(p,X) and the norm induced by the seminorm ¢ - This nofm is still denoted by qp .

It is sometimes useful, even necessary, to indicate the domain, £, of the gauge
p not only in the symbol of the space L(p,X) but also in the symbol for its seminorm.
Then, instead of ¢ ) we write more precisely quC. In fact, it is customary not to
distinguish in the notation between a gauge p on X and its restriction to a nontrivial
subfamily, J, of X. But then £L(p,J) c L(p,f) and qp,IC( f) < " j( f) {for every
feLlp,J). What is more, the inclusion may be strict and, for some functions

fe L(p,J), the inequality may be strict too.

PROPOSITION 2.1. Let fi € L(p,k), j=1,2,.., be functions such that
0
(A.4) L 4f) <a

and let f be a function on Q such that

(A5) CEDRI®
j:

for every we Q2 for which

(A.6) RUCIEES
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Then fe L(p,X) and

(A7) lin qp[f.— ) fJ -0,

N300 j=

Proof. For every j=1,2,..., let cj be numbers and f,-kEIC functions, £=1,2,...,

k
such that
L ealolly) < gl1) + 27
and
SCEERAE

for every w € ) such that

,_;m kgl Loy lolfy) < j:§+l Q) +2" <o
and
- 7)——:1 fj (W= FEH kgl jkf"k(w)

Therefore, the function

belongs to L(p,X) and

G- 2 1)< X g2

j=n+l

for every n=0,1,2,... .

The most important implication of this proposition is, of course, that the space

LpX) is qp-complete so that L(p,X) is a Banach space.
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B. Let K be a nontrivial family of functions on a space € and let p be a
gaugeon L.

A function f on @ is said to be p-null if fe€ L(p,X) and qp(f) =0. A set
X issald to be p-null if its characteristic function is p-null. The family of all
p-null sets is denoted by 2 I We shall use the customary jargon related to null sets.
So, for example, we refer to a p-null set by saying that p-almost all points of
belong to its complement.

The next proposition says, among other things, that Zp is a o-ideal in the

space ). (See Section 1D.)

PROPOSITION 2.2. A function | is p-null if and only if the set {we Q: f(w) # 0}
18 p-null.

If the function [ is p-null, then there exist numbers ¢ and functions fj exr,
J=1,2,..., satisfying condition (A.1), such that

®

(B.1) ]21 lef (W)l =
for every we Q) for which f(w)#0.

Conversely, if there exist functions fj € L(pX), j=1,2,.., salisfying condilion

(A.4), such that
00
(B2) Y1) =
-
for every we Q for which f(w)# 0, then the function f is p-null
If X; , J=12,..., are p-null sets and

00
Xcu

X,
=1 7

then the set X too is p-null.

Proof. Let X be a p-null set. Then, by the definition of £(p,X) and ¢ ) for every

k=1,2,..., there exist numbers ¢, and functions f, € X, n=1,2,.., such that
kn kn

2 -k
ngl ley, lo(fy,) < 2

and
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°z°1 e fo (@) 21,

n=

for every we X. Then

LY lelolh) <o

and

(W) =w

g
~18

| clcnf kn

1 n=1

1

for every we X. So there exist numbers ¢ and functions f,' er, j=12,..,
satisfying condition (A.1), such that (B.1) holds for every we X.

Let function ¢ be p-null. Let f be the characteristic function of the set
{w: g(w)#0} . Then the function sz Jjg is p-null and ¢ p(fj) =0, for every
j=1,2,.... Hence, condition (A.4) is satisfied and the equality (A.5) holds for every
we Q for which the inequality (A.6) does. Therefore, by Proposition 2.1, f€ £L(p,k)
and ¢ p( fl=0.

Let f be a function such that the set {w: f(w) # 0} is p-null. Let f1 be the
characteristic function of this set and let sz jfl , for every j=1,23,... Then
q p( fj) =0, forevery j=1,2,..., and so, condition (A.4) is satisfied. Furthermore, the
equality (A.5) holds for every we ) for which the inequality (A.6) does. So, by
Proposition 2.1, f€ L(p,X) and qp( fl=0.

‘Now, let f be a function on Q and let fj € L(pX), j=12,.., be functions
satisfying condition (A.4), such that the equality (B.2) holds for every we Q for
which f(w) # 0. Then, for every n=1,2,...,

) (f)+ y (-f) < o
gnqﬂ j ]Z_:nqp o
and
f@) =T flw) e § A =0
=n =n

for every we Q for which

CEDRE IR

=n =n
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Then, by Proposition 2.1, f€ £L(p,X) and ¢ p( f) =0 sothat f is p-null.

C. The following theorem is the Beppo Levi theorem stated in terms of

absolute summability rather than monotone convergence.

THEOREM 2.3. A function { on Q belongs to L(p,X) if and only if there exist
numbers ¢ and functions f], ek, j=1,2,.., satisfying condition (A.1), such that the
equality (A.2) holds for p-almost every we .

Let f], € L(p,X), j=1,2,.., be functions satisfying condition (A.4). Then the

inequality (A.6) holds for p-almost every we Q. If, moreover, [ is a function on
such that the equality (A.5) holds for p-almost every we Q, then fe L(p,X) and the
equality (A.7) holds.

Proof. It is a direct consequence of Proposition 2.1 and Proposition 2.2.

In the terminology of N. Aronszajn and K.T. Smith, [1], the following theorem
says that £(p,X) is a complete normed functional space, in fact, it is a functional

completion of sim(X) .

THEOREM 2.4. A function f on 0 belongs to L(p,X) if and only if there exists a

q ) Cauchy sequence of functions hn € sim(X), n=1,2,.., suchthat

(C.1) flw) = lim hn(w)

n—00

for p-almost every we Q.

Every qp—Cauchy sequence of functions gneﬁ(p,IC) , n=12,.., has a

o
n=1"’

[ed]

is convergent
n=1 g

subsequence, {hn} such that the sequence of numbers {hn(w)}
for p-almost every we Q. Moreover, if {hn}‘:::l is such a subsequence of {gn}‘:;’=1
and | is a function on $ such that the equality (C.1) holds for p-almost every

weq, then fe L(pX) and

(C.2) lim qp(f—gn) =0.

n—00
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Proof. If the sequence, { gn}‘::l , of functions from L(p,X) is qp—Cauchy, we can
select a subsequence {I‘Ln}";’:1 such that

(C.S) Z p ]+1 j < .

Then Theorem 2.3, applied to the functions fj such that f =h, and fj 1= hj 41 hj

for j=1,2,..., implies that the sequence {hn(w)}°:= is convergent for p-almost every

1
we.

Now, if {A }>_  is a subsequence of {g }*_  such that the sequence {h }*_
is convergent for p-almost every we {1, we can achieve, by passing to a subsequence
of {h } , if necessary, that (C.3) holds. Then, if (C.1) holds for p-almost every

we, by Theorem 2.3, f€ L(p,k) and

lin ¢ (f-h,) =
100
Because {hn}‘:z: is a subsequence of the A -Cauchy sequence { g, } (C.2) holds.

COROLLARY 2.5. Let J bea qp—complete vector space, containing every p-null
function, such that X ¢ JC L(p,X) . Then J=L(p,k) .

D. Theorems 2.3 and 2.4 demonstrate the usefulness of the space £L(p,X)
and its seminorm 7 . But this usefulness could be limited by the fact that, in general,
we can only say that ¢ p( f) < plf), forevery fe Xk, and the inequality may be sharp

for some f even if X is a vector space and p is a seminorm on it.
EXAMPLE 2.6. Let Q=(0,1], 9={(u9:0< u< v< 1}, L=sim(d) and

p(f) =1lim [f(5)] ,

=0+

for every fe€X. Then every function on £ belongs to L(p,f) and ¢ p( fi=0 for
every fe L(p)k).

So, of particular interest are the gauges singled out in the following definition.
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We shall call the gauge p integrating if qp(]’) = p(f) for every function f
belonging to its domain, X .

Obviously, if a gauge on a vector space is integrating, then it is a seminorm. A
seminorm which is an integrating gauge will of course be called an integrating

seminorm.

PROPOSITION 2.7. The gauge p is integrating if and only if

[

o) < 3 lelolf)

=1

for any function fe X, numbers ¢ and functions f; ek, j=12,..., such that the
equality (A.2) holds for every we Q for which the inequality (A.3) does.

Let p be an integrating gauge and let J be a nontrivial subfamily of its domain,
X . Then the restriction, o, of p to J is an integrating gauge, L(0,J) C L(p,X) and
(1) = q,(f) , for every fe L(0,]).

If p is any gauge on a nontrivial family of functions, X, then the functional

1

9% is an integrating seminorm on L(p,X) such that L( qp,t(p,IC)) =L(p,X) and q, (f) =
P
qp(f) , forevery fe L(p)k) .

Proof. The first statement is a direct consequence of the definitions and the second one

follows from it. The third statement is a corollary to Proposition 2.1.

PROPOSITION 2.8. Let X be a vector space of functions on & and let p be a

seminorm on K. Then p is integrating if and only if
n
(D.1) 1imp[2 f.] =0
N300 §=1 ]

for any functions fj ek, j=12,.., satisfying the inequality

(D.2) Lol <w,

=1
such that
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o

(D.2) L f(w)=0
=17

for every we Q for which the inequality (A.6) holds.

Proof. By Proposition 2.1, the stated condition is necessary for p to be integrating.
Conversely, assume that (D.1) holds for any functions f; e, j=12,.., satisfying
(D.2) such that (D.3) holds for every we€ Q for which (A.6) does. Let fe X and let
€ > 0. Then there exist functions fj ek, j=12,.., such that (A.5) holds for every
we Q for which (A.6) does and

Then, by the assumption,

00

lin p{f— 721 f]_] 0.

Hence

7=1 =1

<ol g)res ) or)ee

for a sufficiently large n. Consequently, p(f) < qp( f) +2¢.

PROPOSITION 2.9. The semihorm p on a vector space K is integrating if and only
if
(D.4) lim p(gn) =0

n—00

for every p-Cauchy sequence {gn}";=1 of functions from K such that

(D.5) lim gn(w) =0

n—00

for p-almost every we §).

Proof. Assume that (D.4) holds for every p-Cauchy sequence { gn}(’;’:1 of functions
from K which converges p-almost everywhere to 0. Let fj ek, j=12,., be
functions satisfying condition (D.2) such that the equality (D.3) holds for every we (2
for which the inequality (A.6) does. Let |
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(D.6) 9:2f»

. ‘
=17

for every n=1,2,.... Then, by Proposition 2.2, the equality (D.5) holds for p-almost
every w€ ). Hence, by the assumption, (D.4) holds, which means that (D.3) does.
S0, by Proposition 2.8, the seminorm p is integrating.

Conversely, assume that the seminorm p is integrating. Assume that { gn}‘:::l
is a p-Cauchy sequence of functions from X such that (D.5) holds for p-almost every
we Q. To prove (D.4), it suffices to show that p(hn) -0, as n-w, for a
subsequence {'\hn}";l’:1 of the sequence {gn}~°n°=1 . Therefore, assume that, if f1 =g
and f], =9,- 91> for j=2,3,..., then (D.2) holds. Because (D.5) holds for p-almost
every we ), we have (D.3) for p-almost every we€ Q. Then, by Theorem 2.3,

. . n
lim p(g,) = lim p[z f]] =0.
700 noo =1
PROPOSITION 2.10. Let p be a gauge on a nontrivial family of functions, X . For

every € sim(X), let

o =inf § lelali),

=1

where the infimum is taken over all expressions of the function { in the form

n
f: 721 C,’lff
with arbitrary n=1,2,..., numbers , and functions fj €er, j=1,2,...,n.
Then L{o,sim(K)) = L(p,X) and qU(f) = qp(f) , Jorevery [€L)osim(K)). The

equality o(f) = ¢ ,o( f) holds for every fesim(X) if and only if the seminorm o is
integrating.

Proof. Obviously, L(p,X) c L(o,sim(k)) and qa( l<yq p( f), for every fe L(pk).
On the other hand, ¢ p( 1) S o(f), for every fesim(X) and, therefore,

L{o,sim(X)) c £ qp,sim(lC)) c L qp,[(p,IC)) . Because, by  Proposition 2.7,
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Lg,LpK)) = LipK) , we have L(osim(£)) € L(pX) and ¢,(f) < ¢,(f), for every
fe Llosim(K)) .

Now, because 7,=4 )
seminorm ¢ is integrating. Conversely, if ¢ is integrating, then qa(f) =o(f), for

if of) = qp(f) , for every fesim(K), then the

every fe€sim(X) and, hence, o(f) = qp(f) , for every fe sim(K) .

EXAMPLES 2.11. (i) Let X be a vector space of bounded functions on a
space . Let p(f) =sup{|flw)|:weQ}, for every feX. Then p is an
integrating seminorm on £ .

(ii) Let -w< a<b<o and Q=[qab]. Let [ be the space of all functions
on [a,b] of bounded variation and let p(f) = [f(a)| + var(f) , for every fe K. Then

p is an integrating seminorm on £ .

E. It can be easily deduced from the general theory of measure and integral
that (positive) measures are integrating gauges. However, we wish to show that the
classical measure and integration theory is an instance of the theory presented here.
Therefore, we prove first that a measure is an integrating gauge. Actually, we prove
two slightly more general results. It is convenient to start with a re-statement of
Stone's condition, [62], for a positive linear functional to be a Daniell integral.

Let £ be a vector space consisting of real valued functions on a space Q. A
real valued linear functional, ¢, on K is said to be positive if «f) >0, for every
function fe X such that flw) >0 for every we Q.

In this definition, it is not assumed that X is a vector lattice (see Section 1D),

but, in the following proposition, such an assumption is made.

PROPOSITION 2.12. Let £ be a vector lattice of real valued functions on Q0 and let
¢ be a positive linear functional on K. Let p(f) = «(|f]), forevery fek.

Then p is a seminorm on K which is integrating if and only if

(B1) A< § dif))
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for any functions fe€ X and fj ek, j=1,2,.., such that

(E.2) 1w <} 1f(w)]

for every we Q.

Proof. - If this condition is satisfied then, by Proposition 2.7, the seminorm p is
integrating.

Conversely, let us assume that the seminorm p is integrating. Let fe X and
fj ek, j=1,2,.., be functions such that the inequality (E.2) holds for every we Q.
Using the fact that X is a vector lattice, we construct inductively functions g; ex

such that Igjl < Ifjl , j=12,..., and
for every we Q for which

Then

0

W =ns § ag)= T dighs T aifn,
= = j

=1 =1

because p is integrating.

The following proposition says slightly more than that a non-negative
o-additive set function is an integrating gauge, even if we do not assume that its
domain is rich. If we wanted to prove merely that a non-negative o¢-additive set
function on a quasiring (see Section 1D) is an integrating gauge, then the proof could

be slightly simplified. (See Example 4.28(i) in Section 4G.)

PROPOSITION 2.13. Let ¢ be a nonnegative real valued additive set function on a
quasiring of sets @ in a space . Then ¢ zs an integrating gauge on @ if and only if
it is o-additive. Moreover, if « is o-additive and p(f) = (|f]), for every
fesim(d), then p is an integrating seminorm on sim(Q) , L(p,sim(Q)) = £(:,9) and

0,(N) = ¢(f) for every feL(10) .
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Proof. If + is not o-additive, then, obviously, ¢ is not an integrating gauge. So, let
us assume that ¢ is o-additive. Let X =sim(g) and let p(f) = «(|f]) for every
fe k. If we show that the seminorm p is integrating, it will follow, by Proposition
2.7, that ¢ is an integrating gauge. To do that, by Proposition 2.12, it suffices to
show that (E.1) holds for any functions f€ X and f], ek, j=1,2,..., such that (E.2)
holds for every we . But this follows from a result of F. Riesz ([59], Lemma A and
Lemma B in no. 16). For completeness we include the proof,

Let m be a positive integer, dj > 0 numbers and Y] € g pair-wise disjoint

sets, j=1,2,...,m, such that

m
[fl =j§1 QY.

Let Y be the union of the sets Y] and d the largest of the numbers dj,

j=12,...om. Let ¢ >0 and,

n

9,= jgl T

Z ={weY:g(w) > If(w)] - e},

for every n=1,2,... Then 4 Y\Zn) -0, as mn-owo, because the sets Y\Zn
decrease monotonically to @ , they belong to the ring generated by ¢ and the

extension of ¢ to this ring is ¢-additive. Furthermore,

dg,) 2 dYg)=uZg)+U(Y\Z)g,) 2 dZ (1f] - €)) + d(Y\Z )(g,-1f1)) =

=UZ \f1) - el Z)) + U(Y\Z)g ) - (Y/Z)I]]) 2

> l1f1) - alZ) - 20(Y\Z)I11) = d1f]) - e Y) - 20 Y\Z,)

for every n=1,2,.... Therefore,
m o
Y 17 D) =1indg) 2 d1f]) - V),
=1 7 100

and (E.1) follows.

Now, by Proposition 2.7, £(s,8) C L{p,X) and qp(f) < qb(f) . On the other

hand, £ c£(:,9) and p(f) = qL(f) , for every fe kX, because, obviously, qé(f) < o(f)
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and, since the seminorm p is integrating, p(f) = qp(f) < qL(f) . So,if feL(pk), let
fj €L, j=1,2,.., be functions, satisfying condition (D.2), such that the equality (A.5)
holds for every we Q for which the inequality (A.6) does. Then, by Proposition 2.1,

feL(1,9) and

® [« Y]
¢N= ¥ glf)=1 o)
=1 7=
Consequently, qL( fl<q p(f) .
F. In this section, we present some methods of producing new integrating

gauges if some are already given.

PROPOSITION 2.14. Let X be a nonirivial family of functions on a space ). Let

P be a collection of integrating gauges on X such that

o(f) =sup{p(f) : p€P} < w,
for every feX. Then o is an integrating gauge on X .

Proof. Let feX and ¢ >0. Let pe P be a gauge such that of) - € < p(f) . Then
[e9)
L lelolf),

=1

oA =< =g < § Ieialf) s

for any numbers ¢ and functions fj ek, j=1,2,.., such that

% U(f]) < 0,

=1

and (A.5) holds for every we Q for which (A.6) does. Hence, o(f) < qa(f) , which

means that o is integrating.

EXAMPLE 2.15. Let 3 be any space. Let W be a real valued function on © such
that W(w) >0, forevery wefl. Let 1< p< . If JCQ is a finite set, let

1
piN=[ 3 Mol "



if 1< p<w, and

p f) = max{ M) |f(w)| : we T},

if p=w, for any scalar valued function f on . Let X be the family of all

functions f on € such that

pf) =sup p(f) < @,

where the supremum is taken over all finite subsets, J, of . By Proposition 2.14,
p is an integrating gauge on £ .

It is straightforward that £ is a vector space and that p is a seminorm on £ .
Actually, p is a norm because the only p-null set is the empty set. Then it is not
difficult to ascertain that £ is p-complete. Hence, by Corollary 2.5, L(p,X) =X and
qp =p. Of, course, X is the classical weighted ¥ space on  with the weight W
and p in its norm;

1/p
o =] Wlf?) ",
wefd

for 1< p< o, and p(f) = sup{ Mw)|f(w)| : we Q} for p=w, f€X.

PROPOSITION 2.16 Let £ be a vector space of scalar valued functions on a space §2
and let o be an integrating seminorm on L. Let K be a vector subspace of £ and let
p be a seminorm on K such that
(i) o(f) < p(f) forevery fek:
(it) - every o-null function [ is p-null, belongs to X and p(f)=0; and
(iii) the space K is p-complete.

Then L(p,X) =X and q,=p, 80 that the seminorm p is integrating.

Proof. Let { gn}‘:;’=1 be a p-Cauchy sequence of functions from X such that (D.5)

holds for p-almost every we Q. Let f€ X be a function, existing by (iii), such that

lim p(f-g,) =0 .

N0
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The requirement (i) implies that every p-null function is ¢-null. Hence, (D.5) holds
for o-almost every we€ Q. Furthermore, by (i) the sequence {gn}‘);:1 is o-Cauchy.
Hence, by Theorem 2.4, the function f is o-null. Therefore, by (ii), p(f)=0.
Consequently, the equality (D.4) holds and, by Proposition 2.9, the seminorm p is

integrating. By Corollary 2.5, £L(p,X) =X and so, ¢ =P

PROPOSITION 2.17. Let L be a vector space of scalar valued functions on a space
Q andlet o be an integrating seminorm on L such that L(o,L)=L. Let X bea
vector subspace of L, let E be a Banach space and let u: K- E be a closed linear
map. Let

p(f) = o(f) + 1)
for every fek.

Then p is an integrating seminorm on X and L(pX) =X .

Proof. Let fj ek, j=1,2,.., be functions satisfying condition (D.2) and let f be a
function on € such that the equality (A.5) holds for each we ) for which the
inequality (A.6) does. Then

[eY]

) a(fj) < w and i

[(f)] < .
5=1 j=1 7

Let the functions 9, be given by (D.6) for every n=1,2,.. . Then, by Proposition 2.1,
fel and of 9,- /)= 0, as n-w. Furthermore, there exists an element z of F
such that |u(gn)—x| -+ 0. Therefore, feX and u(f) =z, because the map p is
closed. But then p(gn—f) -0, as n-w. Consequently, by Proposition 2.8, the
seminorm p is integrating and, by the definition of p-integrable functions,

Lip k) =K.

G. The space L(p,X) is not necessarily a vector lattice. (See Section 1D.)

EXAMPLE 2.18. Let I be the family of all functions continuous in the closed unit
dise, Q={(zy) : 2+ y2 < 1}, and harmonic in its interior. Let p(f) = sup{|f(w)] :

we I}, for every fe X . Then the seminorm p is integrating and L{(p,X) =X, but
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the space [ is of course not a vector lattice.

We are going to give a sufficient condition for L(p,X) to be a vector lattice.
The formulation of the following definition and propositions is slightly more general; it
allows also for complex valued functions to belong to £ and L{(p,X) .

A gauge, p, on a nontrivial family of functions, £, will be called monotonic
if p(f) < plg) for any functions fe £ and g€ X such that |f] < |g] .

The seminorm p in Example 2.18 is obviously monotonic.

PROPOSITION 2.19. Let X be a vector space of scalar valued functions on a space
Q. Let p be an integrating seminorm on K. Assume that |f| € L(p)X), for every
feX, and that qp(|f|—|g|) < o(f-g), for every fek and gek. Then

[l € Lip)X), for every [e L(p,k) and qp(lfl—lgl) < qp(f-g), for every f € L(p,X)
and g€ L(p,K) .

Proof. It is a matter of routine application of Theorem 2.4, say.

PROPOSITION 2.20. Let £ be a vector space of scalar valued functions on a space
Q such that |f| € X forevery fe€X. Let p be a monotonic integrating seminorm on

K. Then |f| € L(pX), for every [€ L(p,X) and the seminorm A is monotonic.

Proof. = The monotonicity of p implies that p(|f])=p(f), for every fek.
Moreover, p(|f[-1g]) = p(lIfl-19lD) < p(|f-g]) = p(f-g) , for every fek and geX.
Hence, the assumptions of Proposition 2.19 are satisfied and so, |f| € £L(p,X), for

0,

every fe L(p,X). Then it is again a matter of routine to deduce that qp( lfl)=1¢ ,

for every fe L(p,k) .
Now, let fe L(p,X) and ge€ L(p,X) be functions such that |f] < |g| . Let
{fn}"::1 and {gn}C’;’:1 be p-Cauchy sequences of functions from X, converging

p-almost everywhere to the functions f and ¢, respectively. Let hn =

15, +g,-lf,1-1g Il , forevery m=12,... Then |h -h | < |f-f | +lg-g |, for
any integers n >1 and m >1, so that the sequence {Izn}";’:1 is. p-Cauchy.

Moreover, the sequence {Izn}°:=1 converges p-almost everywhere to the function |f] .
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Because p(h ) < plg ) for every n=1,2,..., by Theorem 2.4,

)= q,(1f1) = Limpl(h,) < Linp(g,) = q,(g) -

n—00 n—-00 P

P

PROPOSITION 2.21. Let X be a vector space of scalar valued functions on « space
Q such that |f| € X forevery feX. Let p be a monotonic integrating seminorm on
L such that L(p,k)=X. Assume that each p-bounded monotonic sequence of real
valued functions from X is p-Cauchy.

(i) Let {f }°°_1 be a p-bounded monotonic sequence of real valued functions
from K. Then the sequence {f e o1 s convergent for p-almost every we Q. If,
moreover, f is a function on §1 such that

(G.1) flw) = 1im § (w)

N0

for p-almost every we Q, then fe€X and

(G.2) Lin (1) =
100
(i1) Let g€k be a real valued function and fn er, n=1,2,..., arbitrary

functions such that ]fn] < g for every n=12,... and the sequence {fn(a))}o;l’:1 is
convergent for p-almost every we€ . Let | be a function on Q such that (G.1)

holds for p-almost every we Q. Then fe X and (G.2) holds.

Proof. (i) By Theorem 2.4, the sequence { fn}‘z:l has a p-almost everywhere
convergent subsequence. Hence, because of its monotonicity, the sequence { fn( w)}";’:1
converges for p-almost every we . By Theorem 2.4, if f is a function on £ such
that (G.1) holds for p-almost every we £, then fe X and (G.2) holds.

(ii) Let the function fn , n=12,.., bereal valued. Let

gn(w) = 1im(sup{fj(w) :n< j< m}), hn(w) = lim(inf{fj(w) :n< j< m})

M0 m—oo )

for every n=1,2,... and we€ Q. Because the seminorm p is monotonic, by (i) we

have g €l and h €L, for every n=12,... Also, the sequences {gn}iz1 ,
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{hn}‘;’:l and {gn—hn}‘zzl are monotonic and p-bounded, h (w) < flw) < g (w) for
every n=1,2,... and p-almost every we Q) and

lim hn(w) = flw) = 1im gn(w)

=00 n—00

for p-almost every we . Therefore, by (i), feX and p( gn—hn) -0, a8 n-w.
Because p(f—hn) < p(gn—hn) and p(f -h )< plg -h ), for every n=12,.., we have
(G.2).

EXAMPLE 2.22. Let Q=[0,1], £=C([0,1]) and p(f) = sup{|f(w)| : we Q}, for
every fe€X. Then p is a monotonic integrating norm on X such that L(p,f) =X.
However, not every p-bounded monotonic sequence of real valued functions from £ is

p-Cauchy.

If the space X and the seminorm p satisfy the assumptions of Proposition

2.21, we say that they have the Lebesgue property.

H. Let B be a set of integrating gauges; each gauge F€ B is defined on a
nontrivial family, £ 8 of functions on a space 3 The spaces 8 BeB, are
assumed to be pair-wise disjoint.

Let J be a vector lattice or real valued functions on B and « a monotonic
integrating seminorm on J .

Let

Q= U Q,.
BeBﬂ

Let X be the family of all functions f on £ such that, for every g€ B, the
restriction, fﬁ=f|Qﬂ, of f to Q,B belongs to ICﬂ and the function p; on B, such
that ¢ f(ﬂ) = B(f /3) for every € B, belongsto J.

Let

o) = ol

forevery fe k.
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PROPOSITION 2.23. The functional p is an integrating gauge on X .

Proof. Let fe X and let ¢ be numbers and fj ex functions, j=1,2,..., such that

[¢9] Q0

) |Cj|ﬂ(fj) =y IC].Ia(cpfj) <

=1 =1

and the equality (A.2) holds for each wé€ @ for which the inequality (A.3) does. By

Proposition 2.7,

o) = Blig) < gl FACGRNED) Ic],lcpfj(ﬂ)

=1

for each § € B, because these gauges are integrating. Let

'Cwa

|IM8

for every € B such that

®

721 Ic].lwfj(ﬂ) <,

and let ¥(8) = ¢ f( B3), for every € B such that

<Y

j):jllcwf(ﬁ) © .

Then 9e L(w,J) and 0 < cpf < . Therefore, by Proposition 2.19,

0 o

plf) = ale) =gy fa) < g (¥) < § lelalo )= T lelplf) .

=1 i =l
S0, by Proposition 2.7, the gauge p is integrating.
In practice, the most useful choice of J is perhaps the space [ 1(B) , or the

space [®(B), with its natural norm (Example 2.15 with weight W(8) =1 for each
feB).
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J. The basic way of showing that a positive additive set function is in fact
o-additive is to exploit compactness and regularity of some sort or another, that is, to
use the Alexandrov theorem or some of its generalizations. (See Section 1F.) In this
section a similar means for showing that a gauge is integrating is presented.

Let @ be a qﬁasiring of sets in a space Q. (See Section 1D.) Let p be a
gaugeon g.

Let us call the gauge p very sub-additive if the inequality

X< 3 eplx)
=1

holds for any set X e @, any n=1,2,.., and any sets Xj € 2 and numbers ¢ >0,

j=12,...,n, such that

n

X(w) < le chj( w)

for every we Q.
The use of the adverb "very" in this definition is dictated by a certain caution:

it is a warning that a gauge may rather unexpectedly fail to be very sub-additive.

EXAMPLE 2.24. Let Q=R> and let g be the family of all intervals
X=(u1,1)1]><(u2,1)2] with U < v and U, < v, . Let f=2(0,3]x(0,3] - 3(1,2]x(1,2] and

uX) = ijcu ,

for every X € @, where ¢ is the two-dimensional Lebesgue measure. The gauge p,
defined by
p(X) = sup{|(XnZ)| : Z€ g}

for every X e @, is not very sub-additive. In fact, the interval X =(0,3]x(0,3] is

equal to the union of the intervals X = (1,2]x(0,3] , X, = (0,3]x(1,2] , X, = (0,1]x(0,1],

X, = (23x(0,1], X, =(23]x(23] and X = (0,1x(2,3], but p(X)=15, p(X))=
=2.

p(X)) =3 and p(X,) = p(X,) = p(X) = p(X,)
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The property of being very sub-additive is rather advantageous though, because
it allows us to use the following property of regularity to prove that a gauge is
integrating.

Assuming that € is a topological space, the gauge p is said to be regular if,

for every set X € @ and ¢ >0, thereis

(i) an open set UDX and a set Ye@ such that UcCY and
p(Y) - p(X) < €; and
(ii) a compact set KCX and a set Z€¢ such that Zc K and

oX) - p(2) < e

PROPOSITION 2.25. A very sub-additive and regular gauge on a quasiring of sets in

a topological space is integrating.

Proof. Let @ be a quasiring of sets in a topological space Q. Let p be a very
sub-additive and regular gauge on @.

Let Xe€@ and, for every j=1,2,..., let Xje @ be a set and ¢ a number

such that
[ee]
(J.1) Xw) =} cX(w)
=
for every we 2 for which
Qo0
(J.2) YolelX(w) < w.
F=T A
Our aim is to show that
0
(J.3) pX) < ) lelp(X) .
=1

Let 0<e<1. Let K be a compact set and Z asetin ¢ such that Zc Kc X
and p(X) - € < p(Z). For every j=1,2,..., let U] be an open set and Y) asetin @
such that X,- C ch Y] and |cj|p( Yj) < Ic],lp(Xj) +€e27. Let n>1 be an integer

such that

L o1e) (o) 2 (1-02w)
=1
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for every we . Then

(1-0p20-0) < (1942 = T 1610lY,) <
j:

<y (|lel?(X].) +e270) < % le|P(Xj) +e.
=1 =1

Hence, (J.3) holds and, by Proposition 2.7, the gauge p is integrating.

K. The first proposition of this section represents a method of producing
new integrating gauges from ones already guaranteed to be integrating. Recall that a
quasiring, @, is said to be rﬁultiplicative if XnYeg for any sets Xe g and
Ye g. (See Section 1D.)

Clearly, a gauge, o, on a quasiring of sets, @, is monotonic if and only if

o(X) < o(Y) for any sets Xe @ and Ye g suchthat Xc Y. (See Section G.)

PROPOSITION 2.26. Let o be an integrating monotonic gauge on a multiplicative
quasiring, @, of sets in a space . Let ¢ be a real valued, continuous, strictly
increasing and concave function on the interval [0,0) such that ¢(0)=0. Let
p(X) = p(o(X)) forevery Xe@.

Then p is an integrating gauge on G .

Proof. Let X €@ be a set, ¢, numbers and X] €9 sets, j=1,2,..., such that the
equality (J.1) holds for every w € §) for which the inequality (J.2) does. Our aim is to
show that (J.3) holds.

Without loss of generality, we will assume that Xj cX, forevery j=1,2,..,
because, if the sets Xj are replaced by X,- N X, then the equality (J.1) remains valid
for every we Q) satisfying (J.2) and p(Xj nx= go(a(Xjﬂ X)) < ga(a(Xj)) =p(X),

7
by the monotonicity of ¢ and o. We will also assume that

[«

(K.1) ) chlp(Xj) <
=1

and that a(Xj) #0, for some j=1,2,...
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Let 5=sup{a(X]_): j=12,..}. By the assumption just made and the
monotonicity of ¢, we have 0< s< o(X). Let k=¢(s)/s. Then ka(Xj) <

of a(Xj)) = p(Xj) , for every j=1,2,..., because the function ¢ is concave. Therefore

[«

t= Z chla(Xj) <Kt i chlp(Xj) <.

7:]_ =

By Proposition 2.7, o X) < t, because the gauge o is integrating, and so, s< ¢.

Consequently, by the monotonicity and concavity of ¢, we have

PN = plolX) < o)< W=k § lelolx) < §

lelp(X).
7=1 =17 !

So, (J.3) holds. But, if (K.1) does not hold, then (J.3) is trivially true. Moreover, if
a(Xj) =0 for every j=1,2,.., then, by Proposition 2.7, ¢(X) =0, because the gauge
o is integrating. Hence, (J.3) holds also in this case, and, by Proposition 2.7, the

gauge p isintegrating.

Typically, a non-negative o-additive set function is used in the role of the
gauge o in Proposition 2.26.

The second proposition of this section says that if p is an integrating gauge on
a quasiring of sets, then the assumptions of Proposition 2.10 are satisfied, that is, the

seminorm, ¢, defined in that proposition is integrating.
PROPOSITION 2.27. Let @ be a quasiring of sets in a space Q0 and let p be an
integrating gauge on @ . Then, for every real valued function fesim(Q) ,

q

() = inf ;"

L !c].lp(Xj.) ,

where the infimum is taken over oll expressions of f in the form

n
f: ]_gl chj 5

with arbitrary n=1,2,..., real numbers ¢, and sets Xj €9, j=12,...,n.
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Proof. Let 7 be the ring of sets generated by @. (See Section 1D.) For every set
YeR, let

oY) =min J, p(X),
1

7':
where the minimum is taken over all expressions of the set Y in the form

n
v= ,)_:1 e%;
=
with arbitrary n=1,2,..., arbitrary choices of e], =1 and sets X], €g, j=1.2,...,n.
Then, for every real valued function fé€ sim(g), there exist unique integers %k > 0
and £ >0, sets YZ_E’IZ, Zje’ll and real numbers ¢, > 0, dj >0, i=1,2,...k,
j=12,.,t, such that Y, nZ = 0, Yy oy, Z]__1 C Zj, for i=2,.,k and

j=2,.,0, and

Now, L{o,sim(g)) = L(p,d) and qa(f) = qp(f) , for every feL(osim(@)). In

fact, gcCsim(g) and p(X)=o0(X), for every Xe Q. On the other hand, if

f], € sim(g) , j=1,2,..., are functions such that

W

2 a(fj) <,

=1
then there exist numbers ¢ and sets X] €9, j=1,2,.., such that

[« © <9

) chlp(Xj) <o, ¥y cX(w=1} f(w)

=1 e
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and also
Q0 0
Y lelX(w) =Y If(w)],
=1 1 7

for every we Q. It follows that ¢ is a seminorm on (real) sim(g) and that L(p,9)
can be identified with the completion of sim(g) in (the norm induced by) o.

Consequently, qp( f) = olf), for every fe sim(Q).





