
2, INTEGRATING GAUGES 

An integration theory involves two constructions, namely that of the space of 

integrable function and that of the integral. These two constructions are often carried 

out simultaneously. However, having in mind the generalizations pursued here, it is 

desirable to keep them at least conceptually separated. In this chapter, spaces of 

integrable functions are introduced; integrals will be dealt with in the next one. 

We start with a family of functions, K, defined on a space n, which contains 

the zero-function but is not necessarily a vector space, and a non-negative real valued 

functional, p, on K, called a gauge, such that p(O)::: O. Then we introduce the 

vector space C::: C(p,K) of functions, f, on n which can be expressed in the form 

00 

(*) f(w)::: L CJ.(w) , 
j=l J J 

for all wEn subject to certain exceptions, where c. are numbers and f. functions 
J J 

belonging to K, j::: 1,2, ... , such that 

00 

(~) Lie .1 p(f.) < 00 • 
j=l J J 

The equality (*) is not required to hold for those points wEn for which 

00 

L I cJ.(w) I =00, 
j=l J J 

even if the sum on the right in (*) exists as the limit of the sequence of partial sums; 

the values of f at such points are arbitrary. For the seminorm, q(f), of such a 

function f we take the infimum of the numbers U). The space C is complete in this 

seminorm and the linear hull of K is dense in it. Of course, to avoid the obvious 

pathology that the seminorm of some functions f E K with p(f) > 0 collapses to 0, 

some conditions have to be imposed on the gauge p. Accordingly, the gauge p is 

called integrating if q(f) = p(f) , for every function f E K • 

If K is the family of characteristic functions of sets from a a-algebra, say, and 

p is a measure on it, then this construction gives us precisely the family of functions 
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integrable with respect to p and the corresponding seminorm of convergence in mean. 

Similarly, if JC is a vector lattice and p(f) = l( [f [), for every f E K, where & is a 

Daniell integral on K, then 1: is the family of all t-integrable functions. Other 

choices of lC and p lead to other classical and less classical spaces some of which will 

be described in the next chapter. 

A. Let lC be a nontrivial family of functions on a space n. Section 

lD.) A non-negative real valued functional p on JC such that p(O) = 0 will be called 

a gauge on K. Good examples of gauges to keep in mind, in what follows, are 

seminorms on vector spaces of functions and non-negative or 

sub-additive, set functions on quash-jngs of sets. (Recall that we identify sets with 

their characteristic functions.) 

The following definition can be viewed as the abstract core the construction 

of the space of integrable functions and its L l-seminorm from a given elementary 

measure or content. 

Let p be a gauge on the family of functions lC. A function f on n will be 

called integrable with respect to p, or, briefly, p-integrable, if there exist numbers 

c. and functions !. E J(, J = 
J J 

(A.l) 

and 

(A.2) 

for every WEn for which 

(A.3) 

such that 

00 

L [c.[p(J.) < 00 

j=l J J 

00 

f(w) = L cJ.(w) 
j=l J J 

00 

L [CJ.(w) [ < 00. 

pI J J 

The family of all (individual) functions integrable with respect to p is denoted 

by £(p,JC) . 

For any function f E £(p,lC) , let 
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()() 

qp(f) = Inf 1: I c.lp(f.) , 
j=l J J 

where the infimum is taken over all choices of the numbers c. and the functions 
J 

f. E JC, j = 1,2, ... , satisfying condition (A.I), such that the equality (A.2) holds for 
J 

every wEn for which the inequality (A.3) does. 

Clearly, £(p,JC) is a vector space such that sim(JC) c £(p,JC). (See Section ID.) 

Also, it is not difficult to see that qp is a semi norm on £(p,JC); it is called the 

seminorm generated by the gauge p. Consequently, we can speak of qp-Cauchyand 

qp -convergent sequences of functions from C(p,JC) . 

The p-equivalence class of a function f E £(p,K) , consisting of all functions 

9 E C(p,JC) such that qp(f-g) = 0, is denoted by [flp' The set {[flp: f E C(p,JC)} of 

all p-equivalence classes of functions from C(p,lC) is denoted by L(p,JC). Then 

L(p,lC) is a normed space with respect to the linear operations induced by those of 

£(p,lC) and the norm induced by the semi norm qp' This norm is still denoted by qp' 

It is sometimes useful, even necessary, to indicate the domain, lC, of the gauge 

p not only in the symbol of the space [(p,JC) but also in the symbol for its seminorm. 

Then, instead of q , we write more precisely q lC' In fact, it is customary not to p p, 
distinguish in the notation between a gauge p on lC and its restriction to a nontrivial 

subfamily, ], of lC. But then [(p,]) C [(p,X) and qp,x(f)::s qpjf) for every 

f E £(p,J). What is more, the inclusion may be strict and, for some functions 

f E l(p,J) , the inequality may be strict too. 

PROPOSITION 2.1. Let!. E £(p,lC) , j = 1,2, ... , be functions such that 
J 

(AA) 

and let f be a function on n such that 

()() 

(A.5) f(w) = 1: !.(w) 
;=1 J 

for every WEn for which 

00 

(A.6) 1 I!.(w) I < ()(). 
;=1 J 
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Then 1 E £(p,JC) and 

(A.7) lim q [I ~ f 1.J = 0 . 
n-)oo P pi J 

Proof. For every j = 1,2, ... , let cjk be numbers and fjk E K functions, k = 1,2, ... , 

such that 

and 

00 

f.(w) == I c·,j·k(w) 
J k==l J'" J 

for every wEn such that 

00 

I I c.lr/w) I < 00. 
k=l J' J. 

Then, for any n = 0,1,2, ... , 

and 

n 00 00 

f(w) - I f.(w)::: L L c·lk(w) 
j=l J j=n+l k=1 J J 

for every WEn for which 

00 00 

L L Ic.j)w)1 < 00. 

j=n+l k=1 J J 

Therefore, the function 

n 

f - L !. 
j=l J 

belongs to £(p,K) and 

for every n = 0,1,2, .... 

The most important implication of this proposition is, of course, that the space 

£(p,JC) is qp -complete so that L(p,JC) is a Banach space. 
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B. Let JC be a nontrivial family of functions on a space n and let p be a 

gauge on JC • 

A function f on n is said to be p-null if f E C(p,lC) and q/f) = O. A set 

Xc n is said to be p-null if its characteristic function is p-null. The family of all 

p-null sets is denoted by Zp' We shall use the customary jargon related to null sets. 

So, for example, we refer to a p-null set by saying that p-almost all points of n 
belong to its complement. 

The next proposition says, among other things, that Zp is a a-ideal in the 

space n. (See Section ID.l 

PROPOSITION 2.2. A function f is p- null if and only if the set {w En: f( w) f O} 

is p-null. 

If the function f is p- null, then there exist numbers c. and functions f. E lC , 
J J 

j = 1,2, ... , satisfying condition (A.I), such that 

00 

(B.l) L IcJ.(w)J =00 

j=l J J 

for every WEn which f( w) :f 0 . 

Conversely, if there exist functions f. E C(p,lC), j = 1,2, ... , satisfying condition 
J 

(A.4), such that 

00 

(B.2) L I f.( w) I = 00 

p=l J 

for every WEn for which f(w) f 0, then the function f is p-null. 

If X., j = 1,2, ... , are p-null sets and 
J 

00 

Xc U X, 
j=l J 

then the set X too is p-null. 

Proof. Let X be a p-null set. Then, by the definition of C(p,K) and qp' for every 

k = 1,2, ... , there exist numbers ckn and functions fkn E K, n = 1,2, ... , such that 

and 



2.2 55 2B 

for every w E X ° Then 

and 

for every wE X ° So there exist numbers Co and functions t. E J(, j = 1,2'000) 
J J 

satisfying condition (Aol), such that (Rl) holds for every wE X ° 

Let function 9 be p-nulL Let f be the characteristic function of the set 

{w: g(w) f O} ° Then the function f/" jg is p-null and qpU) = 0, for every 

j = 1,2'00> ° Hence, condition (AA) is satisfied and the equality (A05) holds for every 

wEn for which the inequality (A,6) does. Therefore, by Proposition 201, f E C(p,K) 

and qp(f) = 0 , 

Let f be a function such that the set {w: f( w) if, O} is p-nulL Let f 1 be the 

characteristic function of this set and let Ij = jfl , for every j = 1,2,3,000' Then 

(jp(f.) = 0, for every j = 1,2'00" and so, condition (A.4) is satisfied. Furthermore, the 
- J 

equality (A.5) holds for every wEn for which the inequality (A.6) does. So, by 

Proposition 2.1, f E C(p,K) and qp(f) = 0 . 

Now, let f be a function on n and let /. E C(p,K), j = 1,2, ... , be functions 
J 

satisfying condition (A.4), such that the equality (R2) holds for every wEn for 

which f{w) =F 0 ° Then, for every n = 1,2, ... , 

00 00 

L q (f.) + L q (-f.) < 00 

pn P 1 ;='11 P J 

and 

00 00 

f(w) = I f.(w) + L (-f.(w)) = 0 
j='II J j=n J 

for every wEn for which 

00 00 

1: 1 f.( w) 1 + L 1-1.( w) 1 < 00 • 

j=n J j='II J 
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Then, by Proposition 2.1, f E £(p,lC) and qp(f) = 0 so that f is p-null. 

C. The following theorem is the Beppo Levi theorem stated in terms of 

absolute summability rather than monotone convergence. 

THEOREM 2.3. A function f on n belongs to C(p,lC) if and only if there exist 

numbers c. and functions f. E JC, j = 1,2, ... , satisfying condition (A.I), such that the 
J J 

equality (A.2) holds for p-almost every WEn. 

Let f. E C(p,lC) , j = 1,2, ... , be functions satisfying condition (AA). Then the 
J 

inequality (A.6) holds for p-almost every WEn. If, moreover, f is a function on n 

such that the equality (A.5) holds for p-almost every WEn, then f E C(p,JC) and the 

equality (A. 7) holds. 

Proof. It is a direct consequence of Proposition 2.1 and Proposition 2.2. 

In the terminology of N. Aronszajn and K.T. Smith, [1], the following theorem 

says that C(p,JC) is a complete normed functional space, in fact, it is a functional 

completion of sim(JC) . 

THEOREM 2.4. A function f on n belongs to C(p,K) if and only if there exists a 

qp - Cauchy sequence of functions h n E sim(K), n = 1,2, ... , such that 

(C.1) 

for p-almost every wEn. 

f{w) == lim h (w) 
n 

n-lOO 

Every qp-Cauchy sequence of functions gn E C(p,JC) , n == 1,2, ... , has a 

subsequence, {hn}:=l' such that the sequence of numbers {hn(w)}:=l is convergent 

for p-almost every WEn. Moreover, if {hn}:=l is such a subsequence of {gn}:=l 

and f is a function on n such that the equality (C.l) holds for p-almost every 

WEn, then f E C(p,JC) and 

(C.2) lim q (f-g ) = 0 . 
n->oo p n 
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Proof. If the sequence, {gn} :=1' of functions from C(p,K) is qp -Cauchy, we can 

select a subsequence {h) :=1 such that 

(C.3) 

Then Theorem 2.3, applied to the functions f. such that fl = hI and f. 1 = h. 1 - h. 
J - r l- J+ - J 

for j = 1,2, ... , implies that the sequence {hn(w)}:=l is convergent for p-almost every 

wE fL 

Now, if {hn}:=l is a subsequence of {gn}:=l such that the sequence {hr):=l 

is convergent for p-almost every WEn, we can achieve, by passing to a subsequence 

of {hn}:=l' if necessary, that (C.3) holds. Then, if (C.l) holds for p-almost every 

wEn, by Theorem f E £(p,K) and 

lim ({ (f-h ) = 0 . 
n-loo .p n 

Because {hn}:=l is a subsequence of the qp -Cauchy sequence {gn}:=l' (C.2) holds. 

COROLLARY 2}:i. Let J be a qp - complete vector space, containing every p- null 

function, such that lC c J c £(p,K). Then J = £(p,K) . 

D. Theorems 2.3 and 2.4 demonstrate the usefulness of the space £(p,K) 

and its seminorm qp' But this usefulness could be limited by the fact that, in general, 

we can only say that qpU)::::: p(f), for every f E K, and the inequality may be sharp 

for some f even if K is a vector space and p is a semi norm on it. 

EXAMPLE 2.6. Let n = (0,1] , Q = {(u,v] : 0::::: us: v::::: I} , K = sim(Q) and 

p(f) = lim I f(t) I , 
HO+ 

for every f E K. Then every function on n belongs to £(p,t) and qp(f) = 0 for 

every f E C(p,K) . 

So, of particular interest are the gauges singled out in the following definition. 
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We shall call the gauge p integrating if qp(f) = p(f) for every function f 

belonging to its domain, JC. 

Obviously, if a gauge on a vector space is integrating, then it is a se]J1jnorm. A 

seminorm which is an integrating gauge will of course be called an integrating 

seminorm. 

PROPOSITION 2.7. The gauge p is integrating if and only if 

00 

p(f):s I I c.lp(f.) 
j=l J J 

for any r'1I.'nN'UI'n f E JC, numbers c. and functions f E JC, j = 1,2, ... , such that the 
J J 

(A.2) holds for every wEn which the inequality (A.3) does. 

Let p be an integrating gauge and let J be a nontrivial subfamily of its domain, 

JC. Then the restriction, (J", p to J is an integrating gauge, £( (J,J) C and 

every f E £( (J,J) . 

If p is any gauge on a nontrivial family functions, K, then the functional 

qp is an integrating seminorm on £(p,JC) such that £( q ,£(p,K)) = £(p,K) and q (f) = 
p ~ 

qp(f) , for every f E £(p,K) . 

Proof. The first statement is a direct consequence of the definitions and the second one 

follows from it. The third statement is a corollary to Proposition 2.1. 

PROPOSITION 2.8. Let K be a vector space of functions on n and let p be a 

seminorm on K. Then p is integrating if and only if 

(D.1) lim P [f I.] = 0 
n-lOO j=l J 

for any functions I. E K, j = 1,2, ... , satisfying the inequality 
J 

00 

(D.2) I p(fJ < 00 , 

j=l J 

such that 
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00 

(D.2) L f(w) = 0 
j=l J 

for every WEn for which the (A.6) holds. 

Proof. By Proposition 2.1, the stated condition is necessary for p to be integrating. 

Conversely, assume that (D.l) holds for any functions t. EX, j = 1,2, ... , satisfying 
J 

(D.2) such that (D.3) holds for every wEn for which (A.6) does. Let fElt and let 

f > O. Then there exist functions f. EX, j = 1,2, ... , such that (A.5) holds for every 
J 

wEn for which (A.6) does and 

00 

1: p(f) < q (f) + t . 
pI J P 

Then, by the assumption, 

lim p[f- f f.] =0. 
j=l J n-loo 

Hence 

p(f) :::; P [f r] + (.:::; f p(f J -{- (: 
pI J j==l J 

for a sufficiently large n. Consequently, p(f):::; q p (f) + 2 f . 

PROPOSITION 2.9. The seminorm p on a vector space X is integrating if and only 

if 

(D.4) lim p(g ) == 0 
n 

n-loo 

for every p-Cauchy sequence {gn}~==l of functions from K such that 

(D.5) 

/01" p-almost every WEn. 

lim 9 (w) = 0 
n 

n-loo 

Proof. Assume that (D.4) holds for every p-Cauchy sequence {gn}~=l of functions 

from J( which converges p-almost everywhere to O. Let !. E J(, j = 1,2,."" be 
J 

functions satisfying condition (D.2) such that the equality (D.3) holds for every wEn 

for which the inequality (A.6) does. Let 
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(D.6) 

60 

n 

gn::: L fJ., 
j=l 

2.10 

for every n =: 1,2, .... Then, Proposition 2.2, the equality (D.5) holds for p-almost 

every wEn. Hence, the assumption, (DA) holds, which means that (D.3) does. 

So, by Proposition 2.8, the semi norm p is integrating. 

Conversely, assume that the seminorm p is integrating. Assume that {gn}~=l 

is a p-Cauchy sequence of functions from JC such that (D.5) holds for p-almost every 

To prove (D.4), it suffices to show that p(h ) ---) 0 , 
n 

as for a 

subsequence {hn}~=l of the sequence {gn}~=l· Therefore, assume that, if f1 ::: gl 

and f. = g. - g. 1 ' for j =: 2,3, ... , then (D.2) holds. Because (D.5) holds for p-almost 
J J r 

every WEn, we have (D.3) for p-almost every 1.1) En. Then, by Theorem 2.3, 

lim p(gn) ::: lim p[ f f.] =: 0 . 
n---)oo n---)oo j= 1 J 

PROPOSITION 2.10. Let p be a gauge on a nontrivial family of functions, JC. For 

every f E sim(,t) , let 

n 

0"( f) == inf j~l I cj I p(fj) , 

VJhere the is taken over all expressions the function f in the form 

n 
f=: L cJ. 

pI } J 

VJith arbitrary n = numbers c. and functions!. E JC, j = 1,2, ... ,n. 
J J 

Then £( (J,sim(JC)) = £(p,JC) and q (f) ::: q (f) , every f E £) O",sim(JC)). The a p 
equality (J(f) = qp(f) holds for every f E sim(JC) if and only if the seminorm (J is 

integrating. 

Proof. Obviously, £(p,K) C £( (J,sim(JC)) and q)fl:s qp(f) , for every f E £(p,JC) . 

On the other hand, qp(f) :S (J(f) , for every f E sim(JC) and, therefore, 

£( O",sim(JC)) C £( qp,sim(JC)) C C( qp'C(p,JC)) . Because, by Proposition 207, 



2.12 61 2E 

£( qp'£(p,JC)) = , we have C( u,sim(K)) c £(p,JC) and qpU):::: qO"U), for every 

f E £( u,sim(K)) . 

because qu = qp' if u(f) = qp(f), for every f E sim(K), then the 

seminorm 17 is integrating. Conversely, if (J is integrating, then quU) = O"(f), for 

every f E sim(K) and, hence, (J(f) = q/f) , for every f E sim(K) . 

EXAMPLES 2.11. (i) Let K be a vector space of bounded functions on a 

space fl. Let = sup{lf(w) I :wEfl}, for every fEK. Then p is an 

integrating seminorm on K. 

(iil Let -00 < a < b < 00 and n = [a,b]. Let K be the space of all functions 

on [a,b] of bounded variation and let p(f) = I f( a) I + , for every f E K. Then 

p is an integrating seminorm on K. 

E. It can be easily deduced from the general theory of measure and integral 

that (positive) measures are integrating gauges. However, we wish to show that the 

classical measure and integration theory is an instance of the theory presented here. 

Therefore, we prove f1rst that a measure is an integrating gauge. Actually, we prove 

two slightly more general results. It is convenient to start with a re-statement of 

Stone's condition, [62], for a positive linear functional to be a Daniell integral. 

Let K be a vector space consisting of real valued functions 011 a space n. A 

real valued linear functional, t, on K is said to be positive if l(f) :::: 0, for every 

function f E K such that f( w) :::: 0 for every wEn. 

In this definition, it is not assumed that K is a vector lattice (see Section ID), 

but, in the following proposition, such an assumption is made. 

PROPOSITION 2.12. Let K be a vector lattice of real valued functions on fl and let 

t be a positive linear functional on K. Let p(f) = t( I fl ) , for every f E K . 

Then p is a seminorm on JC which is integrating if and only if 

(E.I) 
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jor any functions f E K and 1. E lC, j = 1,2, ... , such that 
J 

00 

(E.2) If(w)l:::; L I!.(w) 1 
j=l J 

for every wEn. 

2.13 

Proo[ If this condition is satisfied then, by Proposition 2.7, the seminorm p is 

integrating. 

Conversely, let us assume that the semi norm p is integrating. Let f E lC and 

f. E K, j = 1,2, ... , be functions such that the inequality (E.2) holds for every WEn. 
J 

Using the fact that lC is a vector lattice, we construct inductively functions g. E K 
J 

such that I g.1 :::; If.I , j =: 1,2, ... , and 
J J 

00 

f(w) = 1: g.(w) 
j=l J 

for every wEn for which 

00 

I Ig.(w)1 < 00. 

j=l J 

Then 

00 00 00 

t{ I f 1 ) = p(f):::; L p( 9 J = L l( I g.I):::; L t( I f.l) , 
j=l J j=l J j=l J 

because p is integrating. 

The following proposition says slightly more than that a non-negative 

IJ-additive set function is an integrating gauge, even if we do not assume that its 

domain is rich. If we wanted to prove merely that a non-negative a-additive set 

function on a quasiring (see Section ID) is an integrating gauge, then the proof could 

be slightly simplified. (See Example 4.28(i) in Section 4G.) 

PROPOSITION 2.13. Let t be a nonnegative real valued additive set function on a 

quasiring of sets Q in a space n. Then t is an integrating gauge on Q if and only if 

it is IJ-additive. Moreover, if is IJ-additive and p(f) = t( I II), for every 

IE sim(Q), then p is an integrating seminorm on sim(Q), C(p,sim(Q)) = C( l,Q) and 

qp(f) = qP) for every f E C(L,Q) . 
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Proot If l is not J-additive, then, obviously, i is not an integrating gauge. So, let 

us assume that l is O"-additive. Let lC = sim(Q) and let p(f) = t( I II) for every 

f E lC. If we show that the seminorm p is integrating, it will follow, by Proposition 

2.'7, that L is an integrating gauge. To do that, by Proposition 2.12, it suffices to 

show that (E.1) holds for any functions I E Ie and f. E lC, j = 1 
J 

, such that (E.2) 

holds for every WEn. But this follows from a result of F. Riesz ([59], Lemma A and 

Lemma B in no. 16). For completeness we include the prooL 

Let Tn be a positive integer, d > 0 numbers and Y. E Q pair-wise disjoint 
j - J 

sets, j = 1,2, ... ,m, such that 

m 

III = L 
j= 1 

Let Y be the union of the sets Y and d the largest of the numbers d. , 
j J 

j = 1,2, ... ,m. Let f. > 0 and, 

Z = {w E Y: 9 ((JJ) > I f( w) I - f} , 
n n 

for every n = 1,2, .... Then t( Y\Z ) --J 0, as 
n 

n --J 00, because the sets Y\Z n 

decrease monotonically to 0 , they belong to the ring generated by Q and the 

extension of t to this ring is O"-additive. Furthermore, 

t(g) 2: t(Yg) = t(Z g) + t((Y\Z)g) 2: t(Z (III - E)) + t((Y\Z )(g -Ifill = 
n n nn n n n n n 

= i( Z I f I ) - a( Z ) + l( ( Y\ Z ) 9 ) - i( ( Y / Z ) I t I) 2: 
n n n n n 

2: i( I f I ) - fi( Z ) - 2t( ( Y\ Z ) I f I) 2: t( I t I ) - fir y) - 2 di( Y\ Z ) , n n n 

for every n = 1,2, .... Therefore, 

00 

L t(If.I) = liml(g) 2: tU/I) - H(Y), 
j=l J n""oo n 

and (E.1) follows. 

Now, by Proposition 2.7, £(t,Q) c £(p,lC) and qp(f):S q/f). On the other 

hand, K C £(L,Q) and p(f) = qP), for every f E K, because, obviously, q/f):s p(f) 
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and, since the seminorm p is integrating, p(f) =: qp(f) :::: q/f), So, if f E £(p,K) , let 

f. E JC, j =: 1,2, ... , be functions, satisfying condition (D.2), such that the equality (A.5) 
J 

holds for every WEn for which the inequality (A,6) does. Then, by Proposition 2.1, 

f E £( t,Q) and 

F. In this section, we present some methods of producing new integrating 

gauges if some are already given. 

PROPOSITION 2.14. Let JC be a nontrivial family of functions on a space n. Let 

P be a collection integrating gauges on ,'{ such that 

(J(f) == sup{p(f) : pEP} < 00 , 

for every f E JC. Then (J is an integrating gauge on K. 

Proof. Let f E JC and t > O. Let pEP be a gauge such that cr(f) - ( < p(f). Then 

00 00 

(J(f)-f<p(f)==qp(f):::: L Ic.lp(f.):s L Ic.lcr(f.), 
1'=1 J J pI J J 

for any numbers c. and functions f. E JC, j == 1,2, ... , such that 
J J 

00 

L cr(f.) < 00 , 

j=l J 

and (A.5) holds for every wEn for which (A.6) does. Hence, a(f):s qaW , which 

means that (J is integrating, 

EXAMPLE 2.15. Let n be any space. Let W be a real valued function on n such 

that W(w) > 0, for every wEn. Let 1:s p:S 00. If J en is a finite set, let 
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if 1 ~ P < 00, and 

p if) == maxi w) I f( w) I : w E J} , 

if p == 00, for any scalar valued function f on n 0 Let 1C be the family of all 

functions f on n such that 

== sup p if) < 00 , 

where the supremum is taken over all finite subsets, J, of n. By Proposition 2.14, 

P is an integrating gauge on lC. 

It is straightforward that lC is a vector space and that p is a seminorm on lC. 

Actually, p is a norm because the only p-null set is the empty set. Then it is not 

difficult to ascertain that lC is p-complete. Hence, by Corollary 205, £(p,lC) == lC and 

qp == p. Of, course, lC is the classical weighted lP space on n with the weight W 

and p in its norm; 

[ ]1/ P 
p(f) == L W(w)lf(w)I P , 

cuEn 

for l~p<oo, and p(f)==sup{W(w)lf(w)1 :WEn} for p==oo, fElC. 

PROPOSITION 2.16 Let £ be a vector space of scalar valued functions on a space n 

and let (J be an integrating seminorm on £ 0 Let lC be a vector subspace of £ and let 

p be a seminorm on lC such that 

(i) (J(f) ~ p(f) for every f E lC : 

(ii) every (J-null function f is p-null, belongs to lC and pU) == 0; and 

(iii) the space lC is p-complete. 

Then £(,o,lC) == lC and q,o == p, so that the seminorm p is integrating. 

Proof. Let {gn}~==l be a p-Cauchy sequence of functions from lC such that (D.5) 

holds for p-almost every WEn. Let f E lC be a function, existing by (iiil, such that 

lim p(f-gn) == 0 . 
n-ioo 
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The requirement implies that every p-null function is a-null. Hence, (D.5) holds 

for a-almost every wEn. Furthermore, by (i) the sequence {gn} :=1 is a-Cauchy. 

Hence, by Theorem 2.4, the function f is cr-null. Therefore, by (ii), p(f)::: 0 . 

Consequently, the equality (DA) holds and, by Proposition 2.9, the seminorm p is 

integrating. By Corollary 2.15, £(p,tl::: x: and so, ::: p . 

PROPOSITION 2.17. Let £ be a vector space of scalar valued functions on a space 

51 and let cr be an integrating seminorm on £ such that £( 0',£) ::: £. Let lC be a 

vector subspace of £, let E be a Banach space and let jJ: x: -j E be a closed linear 

map. Let 

p (f) ::: a(f) + I jJ(f) I 

for every f E K . 

Then p is an integrating seminorm on lC and £(p,K) ::: x: . 

Proof. Let f. EX:, j::: 1,2, ... , be functions satisfying condition and let t be a 
J 

function on 51 such that the equality (A.5) holds for each WEn for which the 

inequality (A.6) does. Then 

00 00 

I < co and L I ,u(f .11 < 00 • 

j=1 j=l J 

Let the functions 9 be given by (D.6) for every n = 1,2, ... Then, by Proposition 2.1, 
n 

f E £ and cr(g -f) -j 0, as n -j co. Furthermore, there exists an element x of E 
n 

such that I jJ(g )-xi -j O. Therefore, f E IC and jJ(f) = x, because the map jJ IS 
n 

closed. But then -f) -j 0, as n -j co. Consequently, by Proposition 2.8, the 

seminorm p is integrating and, by the definition of p-integrable functions, 

= JC • 

G. The space £(p"t) is not necessarily a vector lattice. (See Section ID.) 

EXAMPLE 2.18. Let IC be the family of all functions continuous in the closed unit 

disc, 51::: { y): x2 + l :s I}, and harmonic in its interior. Let p(f) = sup{ 1 I( w) I : 

WE on}, for every f E JC. Then the seminorm p is integrating and £(p,lC)::: lC, but 
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the space K is of course not a vector lattice. 

We are going to give a sufficient condition for to be a vector lattice. 

The formulation of the following definition and propositions is slightly more general; it 

allows also for complex valued functions to belong to K and £(p,lC) . 

A gauge, p, on a nontrivial faraily of functions, K, will be called monotonic 

if p(f) :; p(g) for any functions f E K and gEl such that I II :; I gl . 

The 8eminorm p in Example 2.18 is obviously monotonic. 

PROPOSITION 2.19. Let l be a vector space of scalar valued functions on a space 

n. Let p be an integrating seminorrn on l. Assume that I II E £(p,l) , for every 

IE lC , and that q/ III-I gl) :; p(f-g) , for every f E K and 9 E JC. Then 

I fl E £(p,JC) , for every f E £(p,K) and qp( I fl-I gl) :; qp(f-g) , every IE £(p,K) 

and g E £(p,JC) . 

Proof. It is a matter of routine application of Theorem 2.4, say. 

PROPOSITION 2.20. Let K be a vector space of scalar valued functions on a space 

n such that I II E lC for every f E lC. Let p be a monotonic integrating seminorm on 

lC. Then III E C(p,JC) , for every f E C(p,t) and the seminorm qp is monotonic. 

Proof. The monotonicity of p implies that p( 111) = p(f), for every IE lC . 

Moreover, p(lfl-lgl)=p(llll-lgll):; p(l/-gl)=p(f-g) , for every lEt and gElC" 

Hence, the assumptions of Proposition 2019 are satisfied and so, I II E £(p,K) , for 

every f E C(p,lC). Then it is again a matter of routine to deduce that 1 II) = qp(f) , 

for every IE £(p,JC) . 

Now, let f E C(p,JC) and 9 E £(p,JC) be functions such that I II :; I gl· Let 

{In} :=1 and {gn} :=1 be p-Cauchy sequences of functions from lC, converging 

p-almost everywhere to the functions I and g, respectively. Let h = 
n 

H/+g-llf 1-1911), forevery n=1,2,.0 .. Then Ih-h I::; II-f 1 + 19-9 I, for nn n n nm nm nm 

any integers n::: 1 and m::: 1, so that the sequence {hn}:=l is p-Cauchyo 

Moreover, the sequence {hn}:=l converges p-almost everywhere to the function III . 
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Because p(h ) S p(g ) for every n::; 1,2, ... , by Theorem 2.4, 
n n 

q (f) = q (Ifll::; lim p(hn ) Slim p(gn)::; q (g). 
p p n-+oo n-+oo p 

PROPOSITION 2.21. Let lC be a vector space of scalar valued functions on a space 

n such that I fl E X for every f E lC. Let p be a monotonic integrating seminorm on 

X such that £(p,K) = K. Assume that each p- bounded monotonic sequence of real 

valued functions from lC is p- Cauchy. 

(i) Let {f n} ~=1 be a p- bounded monotonic sequence of real valued functions 

Irom X. Then the sequence {In (w)} ~=1 is convergent lor p- almost every wEn. If, 

moreover, f is a j1mction on n such that 

(G.I) f(w) ::; lim I (w) 
n 

n-+oo 

lor p-almost every WEn, then f E X and 

(G.2) lim p(f-f ) ::; 0 . 
n 

n-+oo 

(ii) Let g E K be a real valued function and f n E lC, n = 1,2, ... , arbitrary 

functions such that I In I S g f01° eveTY n::; 1,2,... and the sequence {fn(w)}~=l is 

convergent for p-almosi every wEn. Let f be a function on n such that (G.I) 

holds for p-almost every WEn. Then f E K and (G.2) holds. 

Proof. 0) By Theorem 2.4, the flequence {f n} ~=l has a p-almost everywhere 

convergent subsequence. Hence, because of its monotonicity, the sequence {jn(w)}~=l 

converges for p-almost every wEn. By Theorem 2.4, if f is a function on n such 

that (G.I) holds for p-almost every WEn, then f E K and (G.2) holds. 

(ii) Let the function f , n::; 1,2, ... , be real valued. Let 
n 

gn(W) = lim(sup{!.(w): nS js m}), hn(w) = lim(inf{f.(w): nS js m}), 
rn-+oo J rn-+oo J 

for every n = 1 .. and wEn. Because the semi norm p is monotonic, by (i) we 

have gn E JC and hn E JC, for every n = 1,2,.... Also, the sequences {gn}~=l' 
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{hn}:=l and {gn-hn}:=l are monotonic and p-bounded, hn(w)::; f(w) ::; gn(CLJ) for 

every n = 1,2, ... and p-almost every WED and 

lim h (w) = f( w) = lim g (w) 
n n 

n-loo n-loo 

for p-almost every wEn. Therefore, by (i), f E K and p(g -11, ) -l 0, as n -l 00 • 
n n 

Because p(f-h ) ::; p(g -h ) and p(f -h ) ::; p(g -h ) , for every n = 1.2, ... , we have 
'n nn nn nn' I 

(G.2). 

EXAMPLE 2.22. Let 0=[0,1], K=C([O,l]) and p(f)=sup{lf(w)I:WED}, for 

every f E K. Then p is a monotonic integrating norm on K such that £(p,K) = K . 

However, not every p-bounded monotonic sequence of real valued functions from K is 

p-Cauchy. 

If the space K and the seminorm p satisfy the assumptions of Proposition 

2.21, we say that they have the Lebesgue property. 

H. Let B be a set of integrating gauges; each gauge j3 E B is defined on a 

nontrivial family, Kj3' of functions on a space rtj3' The spaces Dj3' j3 E B, are 

assumed to be pair-wise disjoint. 

Let J be a vector lattice or real valued functions on Band O! a monotonic 

integrating seminorm on J. 

Let 

Let K be the family of all functions f on n such that, for every j3 E B) the 

restriction, f fJ = fin j3' of f to n j3 belongs to K j3 and the function rp f on B, such 

that rp/j3) = fJU fJ) for every fJ E B, belongs to J. 

Let 

for every f E K . 
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PROPOSITION 2,23, The functional P is an integrating gauge on K, 

Proo£' Let f E JC and let c be numbers and f. E JC functions, j = 1 00, such that 
j J 

00 00 
L I c I p(f) = Llc.1 0:( ) < 00 
j=l J J j=l J 

and the equality (A,2) holds for each wEn for which the inequality (A.3) does. By 

Proposition 

for each (3 E B, because these gauges are integrating. Let 

00 
7jJ((3) = L I c.1 'Pf ((3) , 

pI J j 

for every (3 E B such that 

00 
'~1 I ci I 'P f ((3) < 00 , 
J- J 

and let 7jJ((3) = 'P/(3) , for every (3 E B such that 

00 
L Ic.1 ((3)=00. 
pI J 

Then 7jJ E £( o:,J) and O:s 'P/:S 7jJ. Therefore, by Proposition 2.19, 

00 00 
I/J):s L Ic.lo:( 

j=1 J 
) = L Ic.lp(f.)· 

j=l J J 

So, by Proposition 2.7, the gauge p is integrating. 

In practice, the most useful choice of J is perhaps the space [1 (B), or the 

space ZOO(B) , with its natural norm (Example 2,15 with weight W((3) = 1 for each 

(3 E B ) . 
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J. The basic way of showing that a positive additive set function is in fact 

O"-additive is to exploit compactness and regularity of some sort or another, that is, to 

use the Alexandrov theorem or some of its generalizations. (See Section IF.) In this 

section a similar means for showing that a gauge is integrating is presented. 

Let Q be a quasiring of sets in a space n. (See Section ID.) Let p be a 

gauge on Q. 

Let us cail the gauge p very sub-additive if the inequality 

n 
p( Xl:s L C p( X.) 

j=1 J J 

holds for any set X E Q, any n = 1,2, ... , and any sets X. E Q and numbers c > 0 
J j - , 

j = 1,2, ... ,n, such that 

n 
X(w):s L c.X.(w) 

j=l J J 

for every WEn. 

The use of the adverb livery" in this definition is dictated by a certain caution: 

it is a warning that a gauge may rather unexpectedly fail to be very sub-additive. 

EXAMPLE 2.24. Let n = 1R2 and let Q be the family of all intervals 

X= (u1,v1]x(u2,1I2] with U1:s 111 and u2 :s 112 . Let /= 2(O,3jx(O,3j-3(1,2jx(l,2] and 

for every X E Q, where t is the two-dimensional Lebesgue measure. The gauge p, 

defined by 

p(X) = sup{ II1(XnZ) I : Z E Q} 

for every X E Q, is not very sub-additive. In fact, the interval X = (O,3]x(O,3] is 

equal to the union of the intervals Xl = (1,2]x(O,3] , X2 = (O,3]x(I,2] , X3 = (O,l]x(O,I] , 

X4 = (2,3]x(O,1], X5 = (2,3]x{2,3] and X6 = (O,1]x(2,3], but p(X) == 15, p(X1) = 

p(X2) = 3 and p(X3 ) = p(X4 ) = p(X5) = p(X6 ) = 2 . 
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The property of being very sub-additive is rather advantageous though, because 

it allows us to use the following property of regularity to prove that a gauge is 

integrating. 

Assuming that n is a topological space, the gauge p is said to be regular if, 

for every set X E Q and ( > 0 , there is 

(i) an open set U J X and a set Y E Q such that U c Y and 

p( Y) - p( X) < (; and 

(1i) a compact set J( c X and a set Z E Q such that Z c J( and 

p(X) - p(Z) < f . 

PROPOSITION 2.25. A very sub- additive and regular gauge on a quasi ring of sets in 

a topological space is integrating. 

Proof. Let Q be a quasiring of sets in a topological space n. Let p be a very 

sub-additive and regular gauge on Q. 

Let X E Q and, for every i = 1,2, ... , let X. E Q be a set and c. a number 
J J 

such that 

00 

(J.1) X(w) = 1: cX(w) 
i=l J J 

for every WEn for which 

00 

(J.2) 1: 1 c.1 X.( w) < 00 • 

j=l J J 

Our aim is to show that 

00 

(J.3) p(X):s 1: 1 c.lp(X.J . 
j=l J J 

Let 0 < (; < 1. Let ]( be a compact set and Z a set in Q such that Z eKe X 

and p(X) - ( < p(Z). For every j = 1,2, ... , let U. be an open set and Y. a set in Q 
J J 

such that X c c Y. and I c.lp( Y.) < I c.lp(XJ + f2- j . Let n 2: 1 be an integer 
j J J J J J 

such that 

n 
L I c.1 Y(w) 2: (l-tlZ(w) 
~1 J J 

}-J. 
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for every wEn. Then 

n 
(l-t)(p(X)-t) < (l-t}p(Z):'S L I c.lp( Y.) < 

j=l J J 

n 00 
< L (I c.lp(X) + £2- j ) < L 1 c.lp(XJ + £. 

j=l J J j=l J J 

Hence, (J.3) holds and, by Proposition 2.7, the gauge p is integrating. 

K. The first proposition of this section represents a method of producing 

new integrating gauges from ones already guaranteed to be integrating. Recall that a 

quasi ring, Q, is said to be multiplicative if X n Y E Q for any sets X E Q and 

YE Q. (See Section ID.) 

Clearly, a gauge, (J, on a quashing of sets, Q, is monotonic if and only if 

(J( X) :'S (J( Y) for any sets X E Q and Y E Q such that X c Y. (See Section G.) 

PROPOSITION 2.26. Let (J be an integrating monotonic gauge on a multiplicative 

quasiring, Q, of sets in a space n. Let 'P be a real valued, continuous, strictly 

increasing and concave function on the interval [0,00) such that 'P(O) = 0. Let 

p(X) = 'P((J(X)) for every X E Q. 

Then p is an integrating gauge on Q. 

Proof. Let X E Q be a set, c. numbers and X. E Q sets, j = 1,2, ... , such that the 
J J 

equality (J.l) holds for every wEn for which the inequality (J.2) does. Our aim is to 

show that (J.3) holds. 

Without loss of generality, we will assume that X. eX, for every j = 1,2, ... , 
J 

because, if the sets X. are replaced by 
J 

for every wEn satisfying (J.2) and 

X. n X, then the equality (J.l) remains valid 
J 

p(X. n X) = 'P((J(x' n X)) :'S 'P((J(X)) = p(X.l , 
J J J J 

by the monotonicity of 'P and (J. We will also assume that 

00 
(K.l) Lie .1 p( X.l < 00 

j=l J J 

and that (J(X) i= 0, for some j = 1,2, .... 
J 
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Let s = sup{ a(X.) : j = 1,2, ... } . By the assumption just made and the 
J 

monotonicity of a, we have 0 < s:::: a(X). Let k = r.p(s)/ s. Then ka(X.l:::: 
J 

r.p(a(X.)) = p(XJ , for every j = 1,2, ... , because the function r.p is concave. Therefore 
J J 

00 1 00 

t= 1.: Ic.la(XJ:::: k- 1.: Ic.lp(X.l < 00. 

j=l J J 1'=1 J J 

By Proposition 2.7, a(X)::; t, because the gauge (J is integrating, and so, s:::: t. 

Consequently, by the monotonicity and concavity of r.p, we have 

00 00 

p(X) = r.p(a(X)) :::: r.p(t) ::; kt = k 1.: I cl a(X.l:::: 1.: I c.lp(X.l . 
j=l J J j=l J J 

So, (J.3) holds. But, if (K.1) does not hold, then (J.3) is trivially true. Moreover, if 

O'(X.) = 0 for every j = 1,2, ... , then, by Proposition 2.7, a(X) = 0, because the gauge 
J 

0' is integrating. Hence, (J.3) holds also in this case, and, by Proposition 2.7, the 

gauge p is integrating. 

Typically, a non-negative a-additive set function is used in the role of the 

gauge 0' in Proposition 2.26. 

The second proposition of this section says that if p is an integrating gauge on 

a quasiring of sets, then the assumptions of Proposition 2.10 are satisfied, that is, the 

seminorm, 0', defined in that proposition is integrating. 

PROPOSITION 2.27. Let Q be a quasiring of sets in a space n and let p be an 

integrating gauge on Q. Then, for every real valued function f E sim(Ql , 

n 
q (f) = inf L I c.lp(X.l , 
P j=1 J J 

where the infimum is taken over all expressions of f in the form 

n 
1=1.: eX, 

1'=1 J J 

with arbitrary n = 1,2, ... , real numbers e. and sets X. E Q, j = 1,2, ... ,n. 
J J 
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Proof. Let 1 be the ring of sets generated by Q. (See Section ID.) For every set 

y E 1, let 

n 
cr( 11 = min I p(XJ, 

j=l J 

where the minimum is taken over all expressions of the set Y in the form 

n 
Y= I eX, 

i=l J J 

with arbitrary n = 1,2'00" arbitrary choices of £. = ±1 and sets X. E Q, j = 1,2,00.,n. 
J J 

Then, for every real valued function f E sim(Q), there exist unique integers k 2: 0 

and .e 2: 0, sets E 1, Z. E 1 and real numbers c. > 0, d. > 0, i = 1,2, ... ,k, 
J Z J 

j = 1,2,00.,.e , such that Y1 n Zl = 0, y, 1 C Z. 1 C Z., for i = 2, ... ,k and 
z- r J 

j = 2,00.,.e, and 

k 

/= ~ 
z=l 

£. 
- I d.Z .. 

j=l J J 

For any function so expressed, let 

k £. 
aU) = I c.u( Y.) + I d.cr(Z,). 

i=1 Z I i=1 J J 

Now, C(cr,sim(Q)) = £(p,Q) and q (f) = q (f), for every f E £(cr,sim(Q)). In cr p 
fact, Q c sim(Q) and p(X) = (J(X), for every X E Q. On the other hand, if 

f. E sim( Q) , j = 1,2'00" are functions such that 
J 

00 

I (J(f.) < 00 , 

j=1 J 

then there exist numbers c. and sets X. E Q, j = 1,2, ... , such that 
J J 

00 00 00 

I I c.lp(X.l < 00, I cX(w) = I !.(w) 
;=1 J J i=l J J j=l J 
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and also 

00 00 

L Ic.IX.(w) == I If.(w) I , 
j=1 J J j=1 J 

for every WEn. It follows that a is a seminorm on (real) sim(Q) and that L(p,Q) 

can be identified with the completion of sim(Q) in (the norm induced by) a. 

Consequently, qp(f) = a(f), for every f E sim(Q) . 




