
1. PRELIMINARIES, NOTATION, CONVENTIONS 

Even though the notation and conventions adopted here are fairly standard, 

slight variations that occur in the literature can cause inconvenience to the reader. So, 

the problem of making the whole text sufficiently self-contained is solved by placing 

this chapter at the beginning. N one- the-less the chapter can be used as an appendix, 

that is, the reader may refer to it only as the need arises. To facilitate such usage, 

frequent references to this one are made in the subsequent chapters. 

A. The need to treat real and complex vector spaces separately will only 

seldom arise. Therefore, the real or complex numbers will be referred to simply as 

numbers or scalars. 

To maintain the perspicuity of the notation pertaining to vector valued 

functions and integrals, the multiplication by scalars of elements of a vector space will 

be written commutat ively. That is to say, if E is a vector space, we shall write 

interchangeably ex = xc, for any scalar c and a vector x E E . 

By a seminorm on a vector space E is meant a function q: E -7 [0,(0) such 

that fix+y):s q(x) + q(y), for every x E E and y E E, and ficx} = lei q(x) , for 

every x E E and a number c. So, a seminorm has all the properties of a norm with 

the only exception that its value may be equal to zero on a non-zero element of E. 

The study of spaces of individual integrable functions, rather than those of the 

equivalence classes of such functions, makes it convenient to consider general 

seminormed and not just normed spaces. To be sure, a seminormed space is a vector 

space together with a specified seminorm on it. A majority of concepts referring to 

normed spaces are with obvious modifications applicable to seminormed spaces. The 

occasional difficulties are caused mainly by the non-uniqueness of limjts and similar 

objects. 

So, let E be a seminormed space with the semi norm q. 

A set SeE is called bounded if {fix) : XES} is a bounded set of numbers. 
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A set SeE is dense in E if, for every x E E and f > 0 , there exists an 

yES such that q(x-y) < f. 

A sequence, {Xn} :=1' of elements of E is said to be convergent if there exists 

an element x of E such that 

lim q(x-x ) = O. 
n 

n-loo 

In that case, x is said to be a limit of the sequence {x }oo We write • n n=l . 

x=limx. 
n 

n-loo 

If y too is a limit of this sequence, then q(x-y) = 0 . 

A sequence, { X }OO of elements of E is said to be Cauchy if, for every n n=l ' 
f > 0, there is a {j such that q( x - x ) < f, for every n > {j and m > (j . 

n n 

If we want to be specific, we speak of q-bounded sets, q-convergent sequences, 

and so on. 

The space E is said to be complete if every Cauchy sequence of its elements is 

convergent. 

We shall reserve the term HBanach space ll to denote a complete normed space. 

So, E is a Banach space if q is actually a norm, that is, the equality q(x) = 0 

implies that x = 0, and if E is complete. 

The norm of an unspecified Banach space will be mostly denoted as modulus. 

A sequence, {xyo-l' of elements of the seminormed space E is said to be 
J }-

conditionally (or simply) summable if the sequence {s } 00_ 1 ' where 
n n-

n 
S = 1 x 

n j=l j 

for every n = 1,2, ... , is convergent. If s is a limit of the sequence {sn}:=l' then we 

write 

00 

s=1 XJ' 
j=l 

and call the element s a sum of the sequence {x J 00_1 . J ]-
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The sequence {X yXl_l is said to be unconditionally summable if, for all choices 
. J J-

of f. = 0 or 1 , j = 1,2, ... , the sequence {c .x.}oo_l is conditionally summable. 
} J J ]-

(A.I) 

The sequence {x Y':'-l is said to be absolutely summable if 
J J-

00 

L q(x) < 00 

j=l J 

and if it is summable. 

The following two statements are designated as propositions with their own 

numbers only to give them prominence. Their proofs are of course omitted. 

PROPOSITION 1.1. The seminormed space E is complete if and only if every 

sequence, {x) ~=l ' its elements which satisfies condition (A.1) is summable. 

PROPOSITION L2. Let E be a Banach space with the norm q. Let H be a dense 

vector subspace of E. Then every element, x, of the space E can be expressed as the 

sum of some elements, Xj' of H, .i = 1,2, ... , satisfying condition (A.I). Furthermore, 

00 

q(x) = inf L q(x.), 
j=l J 

where the infimum is taken over all expressions of x as the sum of elements x. of H, 
J 

.i = 1,2, ... , satisfying (A.I). 

B. Let F be a vector space. Let Q c F; the set Q is not assumed to be 

a vector space. 

The linear hull of Q will be denoted by sim( Q). That is, x E sim( Q) if and 

only if there exist a (strictly) positive integer n, numbers cj and elements, xj ' of 

Q, .i = 1,2, ... ,n, such that 

(B.I) 
n 

X= L C.X.' 
j=l J J 

Elements of the space F that belong to sim( Q) are called Q-simple. This notation 

and terminology originated in elementary integration theory and will be mainly used in 

that context. (See Section D below.) 
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Let E be another vector space. A map iJ: Q -; E will be called linear if 

n 
L cp(xj = 0 
j=l J J 

for any n = 1,2, ... , numbers c. and elements x. of Q, j = 1,2, ... ,n, such that 
J J 

n 
L c.x.=O. 
j=I J J 

A map iJ : Q -; E is linear if and only if there exists a linear map 

it: sim( Q) -; E such that it(x) = Il(x) for every x E Q. If it exists, such a linear map 

it is unique. Therefore, following the custom, we shall not distinguish, in terminology 

and notation, between a linear map J,t: Q -; E and the linear map on sim( Q) into E 

that extends iJ. 

If E is the one-dimensional vector space, that it, the space of scalars, then a 

linear map iJ: Q -; E is called a linear function, or a linear functionaL The vector 

space of all linear functions on the whole of F is called the algebraic dual space to F 

and denoted by r . 
Assume now that E and Fare seminormed spaces with the seminorms p and 

q, respectively. Then we can speak about the continuity of a map 11: F -; E at a 

point x E F. To be sure, such a map is continuous at a point x E F if, for every 

( > 0, there is a (j > 0 such that p(fJ,( y) - fJ,(x)) < f for every y E F for which 

q(y-x) < 8. 

As in the case of normed spaces, for a linear map fJ,: F -; E, the following 

statements (i), (ii) and (iii), are equivalent: 

There is a point in F at which fJ, is continuous. 

(ii) The map fJ, is continuous at every point of the space F. 

(iii) There is a constant k 2: 0 such that p(f.l(x)):::; kq(x) ) for every x E F. 

So, it is quite unambiguous to say simply about a linear map on a (whole) 

vector space that it is continuous. 

The vector space of all continuous linear functionals on a seminormed space F 

is called the continuous dual space to F, or just the dual of F, and denoted by F' . 
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If we define ql (Xl) = sup{ I Xl (x) I : q( x) :::; I}, for every x' E F' , Then q' is a norm 

on F' which makes of F' a Banach space. 

A sequence, {xY':l_l' of elements of a seminormed space F is said to be 
J }-

conditionally weakly summable if there exists an element s of F such that 

00 

L xl(x-l = x'(s) , 
j=l J 

for every Xl E F' . 

A sequence, - }oo 
{Xj j=l ' of elements of a seminormed space is said to be 

unconditionally weakly summable if, for any choice of f '" 0 or 1, j = 1,2, ... , the 
j 

sequence {( .x.}oo_l' is conditionally weakly summable. 
J J )-

PROPOSITION 1.3. Any unconditionally weakly summable sequence of elements of a 

seminormed space is unconditionally summable. 

This proposition is known in the literature as the Orlicz-Pettis lemma. A 

special case of it appeared in the early work of W. Orlicz on trigonometric series. 

However, the first published proof for an arbitrary Banach space is due to B.J. Pettis, 

[57]. Several other proofs were invented since; see, for example, [9], Corollary 4.4 and 

the remarks on p.34, and [23], Lemma 3.2.1 and Theorem 3.2.3. It is a matter of a 

mere routine to weaken the assumptions so as to allow an arbitrary seminormed space. 

We are now going to modify a classical lemma of H. Hahn, see e.g. [23], 

Theorem 2.7.7, about the construction of a continuous linear functional from its values 

on a subset of a Banach space. The modification consists in relaxing the assumptions 

on the functional if the norm of the given Banach space satisfies a certain, rather 

stringent, condition. The condition says that it is the largest norm on the space with a 

given restriction on the given subset. So, the resulting proposition turns out to be 

rather trivial. However, it applies to the usual constructions of L I-spaces, some of 

their generalizations, and to the projective tensor products of pairs of Banach spaces. 

PROPOSITION 104. Let F be a Banach space with the norm q and let Q c F . 

Assume that sim( Q) is dense in F and that, for every x E sim( Q) , 
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n 
(B.2) q(x) :: inf L I c.1 q(x.) , 

;=1 J J 

where the infimum is taken over all expressions x in the form (B.l) with arbitrary 

n=1,2, ... , numbers c. and elements x.E Q, j=1,2, ... ,n. 
J J 

Let E be a Banach space with the norm denoted as the modulus. Let J.l: Q -) E 

be a linear map such that I J.l(x) I :s q(x) , for every x E Q. 

Then there exists a unique linear map jJ,: F-) E such that jJ,(x) = J.l(x), for 

every x E Q, and I jJ,(x) I :s q(x), for every x E F. 

Proof. Let ttl : sim( Q) -) E be the unique linear extension of J.l. Then 

I

nn n 

I J.l l ( x) I:: L C p( x J I :s Llc.1 I J.l( x J:s Lie .1 q( x J 
j=l J J j=1 J J j=l J J 

for every x E sim( Q) and every expression of x in the form (B.l). Consequently, by 

the assumption, I J.l l (x) I :s q(x), for every x E sim( Q). SO, there exists a unique 

linear map jJ, : F -) E such that jJ,{x):: J.ll (x), for every x E sim( Q), and 

I it(x) 1 :s q(x) , for every x E F. 

C. Let:=: and T be any non-empty sets. Let n = :=:xT be their Cartesian 

product. If f is a function on n with values in a given Banach space and e E :::: , 

then by f( e,· ) is denoted the function on T whose value at any point vET is equal 

to f( e, v). Similarly, for any given vET, by f(·, v) is denoted the function on :::: 

whose value at any e E =: is f( e, v) . 

Now, let E, F and G be vector spaces. A map b: ExF-) G is said to be 

bilinear if, for every x E E, the map b( x, . ) : F -) G is linear and also, for every 

y E F, the map b(· ,y) : E -) G is linear. If G happens to be the space of scalars, we 

speak of a bilinear function. 

Let B(E,F) be the vector space of all bilinear functions on ExF. Let 

B*(E,F) be its algebraic dual; that is, B*(E,F) is the vector space of all linear 

functions on B(E,F). 
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For each x E E and y E F, let x0y denote the linear function on B(E,F) 

whose value at any element, b, of B(E,F) is equal to b(x,y). The map 

(x,y) H x®y, x E E, Y E F, is an injection of ExF into B*(E,F); it identifies ExF 

with a subset of B*(E,F) which we denote by Q. The vector space, sim( Q) , 

spanned by Q is denoted by E ° F and is called the tensor product of the spaces E 

and F. The map (x,y) H x0y, :1: E E, Y E F, is called the canonical bilinear map of 

ExF into E®F. 

It is immediate that (i) e( x®y) = (ex) 0y = x0 ( ey), for any number e and 

vectors xEE and yEF. Also (ii) (x1+X2)0y=X10y+x2®y, for any XIEE, 

x2 E E and y E F; and, similarly (iii) x®( YI +Y2) = x0Yl + x0Y2' for any x E E and 

YI E F and Y2 E F. So, an element, z, of B*(E,F) belongs to E®F if and only if 

there is an integer n = 1,2, ... and vectors x E E and y. E F, j = 1,2, ... ,n, such that 
j J 

n 
(C.I) Z= L x.0y .. 

1'=1 J J 

Alternatively, the tensor product, E0F, of the vector spaces E and F can 

be defined as the set of all formal linear combinations of the products x®y, with 

x E E and y E F, reduced so that the identities (i), (ii) and (iii) hold. More 

precisely, we define V to be the vector space whose basis is ExF and Vo to be the 

subspace of V spanned by the elements of the form (O,y) , (x,O) , (x1+x2,Y) - (xl,y) -

(x2,y), (x'Y1+Y2) - (x,y1) - (x'Y2)' (cx,y) - c(x,y) and (x,ey) - c(x,y) , with an 

arbitrary number c, vectors x, xl and x2 in E and vectors y, Y1 and Y2 in F. 

Then the space E ® F is isomorphic (as a vector space) with the quotient space VIVo 

under the linear map that associates any element x 0 Y of E ° F, x E E, Y E F , 

with the element (x,y) + Vo of the space VI VO . 

Assume now that E and Fare normed spaces with norms p and q, 

respectively. Let the norm r on E ° F be defined by 

n 
r(z) = inf L p(x.)q(y.) , 

1'=1 j J 

for every z E E ° F, where the infimum is taken over all expressions of z in the form 
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(C.1) with arbitrary n == 1,2, ... , 
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x E E and 
j 

y. E F, j;:: 1,2, ... ,n. 
} 

1.6 

Clearly, 

r( x®y) = p( x) q( y), for every xE E and y E F. In fact, r is the largest norm on 

E ® F having this property. 

By E ® F is denoted the completion of the space E ® F in the norm r. The 

Banach space E ® F is called the (complete) projective tensor product of the normed 

spaces E and F. 

PROPOSITION 1.5. For every element, z, of the complete projective tensor 

product, E ® F , of the spaces E and F, there exist elements, x., of the space E and 
J 

elements, y., of the space F, j == 1,2, ... , such that 
J 

00 

(C.2) L p( x .l q( y.) < 00 

j==l J J 

and 

00 

(C.3) Z== L x.®Y., 
j=l J J 

Moreover, the norm z in the space E ® F is equal to the infimum of the numbers 

(C.2) subject to the expression of z in the form (C.3). 

Proof, It follows directly from Proposition 1.2. 

Let now G be a Banach space with the norm denoted as modulus. A bilinear 

map b: ExF -t G is continuous if and only if there is a constant k ~ 0 such that 

(C.4) I b(x,y) I :s kp(x)q(y) , 

for every x E E and y E F . 

PROPOSITION 1.6. If b: ExF -t G is a continuous bilinear map, then there exists a 

unique continuous linear map /1: E ® F -t G such that /1(x®y) = b(x,y) , for every 

x E E and y E F. Furthermore, if (C.4) holds for every Z E E and y E F, then 

1/1(z) I :s kr(z) , for every zE E®F. 

Proof. It follows from Proposition 1.4. 
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This is all that will be needed in the sequel about tensor products. For further 

general facts and facts concerning the relation of tensor products with vector 

integration, the interested reader is referred to [9], Chapter VIII. 

D. We say that X isa nontrivial family of functions on a space n if n is 

a nonempty set and X is a set of scalar valued functions whose domain is n such that 

the zero function belongs to X. 

Any such nontrivial family, X, is considered to be a subset of the vector space 

of all scalar valued functions on n. So, the symbol sim(X) has an unambiguous 

meaning introduced in Section B; viz., it denotes the linear hull of X. Functions 

belonging to simCO are called X-simple. 

Clearly, X is a vector space if and only if sim(X) = X. If X is a vector space 

whose elements are real-valued and if, with every function I EX, also the function 

I II , that is, the function W H I I( w) I, WEn, belongs to X, then X is called a 

vector lattice. 

The notion of a X-·simple function is extended so as to permit consideration of 

vector valued functions. Namely, let X be a nontrivial family of functions on a space 

n and let E be a Banach space. By sim(K,E) is denoted the vector space spanned 

by all the E-valued functions ct) where c E E and t E J( . That is to say, 

sim(X,E) consists of all functions I: n ..., E for which there exist a positive integer n, 

elements c of E and functions t. E K, j = 1,2, ... ,n, such that 
j J 

n 

I= L c1.. 
j=1 J J 

Functions belonging to sim(X,E) are called (K,E)-simple. 

To save subscripts and circumlocution, subsets of n will be identified with 

their characteristic functions. Accordingly, a family, Q, of subsets of n is callcel a 

paving in n if it is a nontrivial family of functions on n, that is, characteristic 

functions of sets from Q a nontrivial family of functions on n. So, a family of 

subsets of n is a paving in n if it contains the empty set. 
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The paving Q is said to be multiplicative if it contains the intersection of any 

two of its members. 

The paving Q in n is called a quasiring of sets in the space n if, for any sets 

X and Y belonging to Q, the intersection xn Y is equal to the union of a finite 

collection of pair-wise disjoint sets belonging to Q and also the difference Y\X is 

equal to the union of a finite collection of pair-wise disjoint sets from Q. 

The paving Q in n is called a semiring of sets in the space n if, for every 

X E Q and Y E Q, there exist a positive integer n and pair-wise disjoint sets 

Z. E Q, j = O,l, ... ,n, such that 
J 

n 

xnY= Zo' Y\X= u Z 
j=l J 

and the union 

k 
U Z 

j=O j 

belongs to Q, for every k = O,l, ... ,n . The notion of a semiring is due to 

J. von Neumann who uses the term half-ring; see [55], Definition 10.1.5. The 

importance of semirings will become apparent in the next section; cf., in particular, 

Proposition 1.9. 

Every semiring is a quasiring, but it is not difficult to exhibit quasirings which 

are not semirings. 

A quasiring of sets in n which contains the union of any finite collection of its 

members is called a ring of sets in the space n. A ring of sets which contains the 

union of any sequence of its members is called a a-ring. A ring of sets which contains 

the intersection of any sequence of its members is called a 8-ring. A ring (quasiring, 

semiring, O"-ring) of sets in n which contains n as one of its members is called an 

algebra (quasialgebra, semi algebra, cr-algebra, respectively) of sets in the space n. 

By a a-ideal in the space n we understand a family of subsets of n that is 

closed under taking countable unions and subsets, that is it contains all the subsets of 

the union of any sequence of its elements. A family of sets with this property is in fact 
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a a--ideal of the Boolean algebra of all subsets of n; so, this terminology represents a 

slight abuse of the language. 

If S o--algebra of sets in the space n, a function, f, on n is said to be 

S-measurable, if every set of the form : f(w) E U}, where U is an open set of 

scalars, belongs to S. 

The least o--algebra of sets in a topological space n that contains all open sets 

is called the Borel o--algebra in n; its elements are called Borel sets. The least 

a--algebra of sets in a topological space n that contains all sets of the form 

{ wEn: f( w) E U}, where f a real valued continuous function on n with com.pact 

support and U an open subset of O{, is caned the Baire a--algebra of sets in n; its 

elements are called Baire sets. 

If Q is a paving in the space nand Ten, T '" (/), then the family 

Q n T == {XnI : X E is a paving in the space T. If Q is a quasiring then so is 

Qn T. Similarly for a semiring, ring, algebra, o--ring, o-ring and (J-algebra. 

If Q is a quash'ing of sets in the space n then every Q-simple function has an 

expression 

n 
(D.l) /=1: eX., 

p=l J J 

where the n is a positive integer, the c. are numbers and the X. are pair-wise 
J J 

disjoint sets belonging to Q, j = 1,2, ... ,n. The family, 1l, of all sets belonging to 

sim(Q), that is, sets whose characteristic functions re Q-simple, is the ring of sets 

generated by Q. SO, every element of 1l is equal to the union of a finite collection of 

pair-wise disjoint sets from Q. 

Let Q be an arbitrary paving in the space n. By I:(Q) will be denoted the 

set of all families of pair-wise disjoint non-empty sets belonging to Q. 

A family of sets, 1', belonging to E{Q) is called a Q-partition (ofn), if the 

union of all sets that belong to l' is equal to n and, for every X E Q, the sub-family, 

{YE 1': Yn Xi: 0}, 
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of l' consisting of sets having non-empty intersection with X, is finite. The set of all 

Q-partitions is denoted by II(Q) . 

Let 1\ E II(Q) and 1'2 E II(Q). If, for every set Y E 1'2' there exists a 

(necessarily unique) set X E 1'1 such that Y eX, we say that the partition 1'2 is a 

refinement of the partition 1\ and write 1\ -< 1'2 . 

We say that a set r c II(Q) is directed (by the relation of refinement) if, for 

every 1\ E rand 1'2 E r, there exists a partition 1'3 E r such that 1'1 -< 1'3 and 

1'2 -< 1'3 . 

If Q is a multiplicative quasiring, then the set, II(Q) , of all partitions is 

directed. 

If Q is an arbitrary paving and r is a directed subset of II(Q), then the 

paving 

to which belong the empty set and all the sets forming the partitions belonging to r, 

is a multiplicative quasiring of sets. 

E. Let E be a vector space. 

If K is a nontrivial family of functions on a given space and J.L: K -t E a map, 

the question whether the map It is linear or not has a meaning. Indeed, the notion of 

a linear map was introduced in Section B. If K satisfies some additional hypotheses, 

then it may be possible to simplify the condition of linearity. It is obviously so when 

K happens to be a vector space. Less obvious simplifications are possible for some 

kinds of pavings. 

An E-valued map whose domain is a paving is usually called an E-valued set 

function. The real or complex valued set functions are referred to simply as set 

functions, and so are E-valued set functions whenever the space E is specified 

otherwise or irrelevant. 

Let Q be a paving in a space n and It: Q -t E a set function. Let n be a 

positive integer. The set function It is said to be n-additive if 
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n 
tt(X) == L tt(X.) 

j==l J 

for any set X E Q and pair-wise disjoint sets X. E Q, j = 1,2, ... ,n, such that 
J 

X=u 
j=l 

If p, is n-additive, for every n = 1,2, ... , we say that it is additive. 

PROPOSITION 1.7. If Q is a quasiring sets, then a set 

linear if and only if it is additive. 

IE 

ProaL Any linear set function is additive. So, let Q be a quasiring of sets and 

p, : Q -) E an additive set function. If a function f E sim(Q) is expressed in the form 

(D.l), let 

n 
it(/) = L cp(X). 

j=l J J 

The additivity of p, implies that this definition is unambiguous. It is then 

straightforward that the resulting map jJ,: sim(Q) -) E is linear and that .u(X) = p,(X) 

for every X E Q . 

This proposition implies that, if Q is a quasiring of sets and 1 is the ring of 

sets generated by Q, then any additive set function p,: Q -) E has a unique additive 

extension on the whole of 1; that is, there exists a unique additive set function 

.u : 1-) E such that jJ,(X) == p,(X) , for X E Q. 

If Q happens to be a semiring, then the condition of linearity can be simplified 

still further. 

PROPOSITION 1.8. If Q is a semiring of sets, then a set function p,: Q -) E is 

additive if and only if it is 2- additive. 

Proof. Let Q be a semiring of sets and p,: Q -) E a 2-additive set function. As It is 

trivially I-additive, for an inductive proof, assume that k:::: I is an integer and that 

It is k-additive. 
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Let X E Q and let X E Q, i == O,1,2, ... ,k, be pair-wise disjoint sets whose 
i 

union is equal to X. By the definition of a semi ring there exist a natural number m 

and pair-wise disjoint sets Zj E Q, j == O,l,2, ... ,m, such that Zo == xnxo == Xo ' 

k m 

U X. == X\Xo == U Z. 
z-=l I j==l J 

and, for every 1 == O,1,2,. .. ,m, the set 

1 
W = u Z 

I -0 j }-

belongs to Q. Then, clearly, Wo = Xo ' WI = W /-1 U Zl and W1_1 n Zl = 0, for every 

1=1,2, ... ,m, and W =X. 
m 

Now, by the 2-additivity of /1, we have /1( Wl) = /1( WI_I) + /1(ZI)' for every 

1 = 1,2, ... ,m. Therefore, /1( WI) = /1( Wo) + tt(ZI) == /1(Zo) + Jl(Zl); /1( W2) = /1( WI) + 

/1(Z2) = Jl(Zo) + Jl(Zl) + Jl(Z2); and so on. Hence, by finite induction ending at 1== m, 

m 
(E.I) /1(X) = Jl( W ) == I Jl(Z.). 

m j=O J 

Furthermore, for any i = 1,2, ... ,k, we have Xjn Wo = XjnXO == 0, Xjn WI = 

(XjnWl_l)U(XjnZz) and (XjnWl_l)n(XjnZI) = 0, for every 1= 1,2, ... ,m-l, and 

Xi n W m = Xi nx = Xi . Therefore, Jl( Xi n WI) == /1( Xi n WI_I) + /1( Xi nZ1), for every 

1== 1,2, ... , m, and, hence, by finite induction, 

m 
(E.2) /1(X) == Jl(x.nw ) = I Jl(x.nz.) 

lim j= I I J 

for every i = 1,2, ... ,k . 

On the other hand, 

k 
Z. = u (x.nz.) 

J i=l I J 

for every j == 1,2, ... ,k, and the sets x.nz., i == 1,2,.,.,k, are pair-wise disjoint. 
I J 

Hence, 
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k 
(E.3) Jl(Z.) = ~ Jl(x.nz.), 

J i=l ! J 

for every j = 1,2, ... ,m, because, by the assumption, the set function Jl is k-additive. 

So, by (E.I), (E.2) and (E.3), 

m m 

Jl(X) = ~ Jl(Z.) = Jl(Zo) + ~ Jl(Z) = 
j= 0 J j= 1 ' 

k k 
= Jl(Xo) + I Jl(Xt ) = I Jl{X). 

1=1 i=O 

That is, Jl is (k+l)-additive. 

It may be interesting to note that this proposition does not hold for quasirings 

instead of semirings. 

EXAMPLE 1.9. Let n = {l,2,3} and let Q = {0,{1 },{2},{3},n}. Then Q is a 

quasiring of sets in the space n. Let Jl( 0) = 0, Jl( {I}) = Jl( {2}) = Jl( {3}) = Jl( n) = 1 . 

Then obviously, Jl(X) = Jl( Y) + Jl(Z) , for any sets X, Y and Z belonging to Q, 

such that YnZ = 0 and X = YUZ. However, Jl is not additive. 

The surprisingly nontrivial Proposition 1.8 expresses a property of semirings 

that makes them preferable to quasirings. It is due to J. von Neumann, [55], Theorem 

10.1.12; see also [19], Exercise 5 in §7. However, some naturally occurring pavings in 

torus-like spaces are only quasirings. 

F. Let Q be a paving in a space n. Let E be a normed vector space. 

A set function Jl: Q -+ E is said to be o--additive if 
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for any set X E Q and pair-wise disjoint sets X. E Q, j = 1,2, ... , such that 
J 

00 

X= U X . 
j=l j 

1.10 

PROPOSITION LIO. Let Q be a quasiring of sets and 1 the ring generated by Q. 

Let J..t: Q.., E be an additive set function and Tt: 1.., E its additive extension. 

The set function Tt is (J-additive if and only if It is (J-additive. 

Proof. It follows directly from the fact that every set in 1 can be written as the 

union of a finite collection of a pair-wise disjoint sets from Q. 

Demonstration of the a-additivity of a given set function may not be a simple 

matter, not even if the set function is scalar valued. In fact, the problem of 

a-additivity of vector valued set functions is often reduced, via the Orlicz-Pettis 

lemma, say, to the problem of (I-additivity of some scalar valued set functions and 

even positive real valued ones. The basic source of positive (I-additive set functions is 

the theorem of A.D. Alexandrov; see [14], Theorem IH.5.13 and the remarks in Section 

IILl5 (p.233), and also [55], Theorem 10.1.20. Because of its importance, we present 

here an elementary proof of an extended and, at the same time, simplified version of 

this theorem. 

A paving C is called compact if 

00 

(F.I) n C "f 0 
n=l n 

for any sets C E C, n::;; 1,2, ... , such that 
n 

k 
(F.2) n C "f 0 , 

n=l n 

for every k::;; 1,2, .... 

More appropriately, instead of "compact", we should have used - as some 

authors actually do - the term Iisemicompact" or "sequentially compact". The proof of 

the following lemma is taken from [56], Lemma 1.6.1. 
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LEMMA 1.11. Let C be a compact paving. Let 1) be a paving whose elements a1'e the 

unions of finite collections of sets from C. Then the paving 1) too is compact. 

Proof. Let D E 1), n == 1,2, ... , be sets such that 
n 

k 
(F.3) n D f 0 

n==l n 

for every k::: 1,2, .... The proof will be accomplished if we show that the intersection 

of all the sets D , n::: 1,2, .. , is not empty. 
n 

For every n = 1,2, ... , 

sets from C such that 

let m be a natural number and 
n 

m 
n 

D ::: U cj. 
n n 

j= 1 

cj j::: 1,2, ... ,m , 
n' n 

Let M = {1,2, ... ,m }, for every n::: 1,2,.... Let J be the set of all sequences 
n n 

t:::{t}OO_l suchthat t EM for every n:::l,2, .... Finally,foreveryk=1,2, ... , let 
n n- n n 

Jk be the set of all sequences t E J such that 

(FA) 

It then follows immediately that, 

0) 
(ii ) 

if /, E Jk , /1, E J and Kn::: in' for every n::: 1,2, ... ,k, then /1, E Jk ; 

if p and q are natural numbers such that p:S q, then J c J . 
q p 

Moreover, by the distributive law, 

k 
n D 

n:::l n 
[ k "] U n en 

tEJ n:::l n 

Therefore, by (F.3), (FA) holds for at least one t E J. So, 

(iii) Jk f. 0 for every k::: 1,2, .... 

Our next aim is to prove that there exists a sequence /, E J which belongs to 

Jk for every k::: 1,2, .... Such a sequence is constructed inductively. 
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First, using (iii), for every k = 1,2, ... , we fix an element t k of the set Jk . 

(I) Because the first terms, t~, of the sequences tk, k = 1,2, ... , all belong 

to the finite set 1111 , there exist an element tl of 1111 such that the set, Sl' of all 

natural numbers k for which t: = t1 , is infinite. 

(II) Assume that p is a natural number and that for every n = 1,2, ... ,p, t 
n 

is an element of M such that the set, S , of all natural numbers k such that 
n p 

k Because the (p+1)-st terms, tp+1 ' of the l = [k , for every n = 1,2, ... ,p, is infinite. 
n n 

sequences tk, k = 1,2, ... , belong to the finite set Mp+l' there exists an element tp+ 1 

of Mp+l such that the set Sp+ l' of those elements k of the set Sp for which 

ip+1 = t;+l' is infinite. Then in = t:, for every n = 1,2, ... ,p, P + 1, whenever 

k E Sp+l . 

So, a sequence t = {In}:=l is constructed such that, for every p = 1,2, ... , the 

set S of natural numbers k such that t = /, for every n = 1,2, ... ,p, is infinite. 
p n n 

Consequently, for every natural number p, there exists a natural number q 2: P such 

that t = tr], for every n = 1,2, ... ,p. But then, by (ii), (q E 
n n 

. Hence, by (i), 

/, E Jp ' Because the constructed sequence, l, belongs to Jk , (F.4) holds for every 

k::: 1,2, .... Consequently, 

because the paving C is compact, and the intersection of the sets 

cannot be empty either. 

D , n = 1,2, ... , 
n 

Let J.l be a non-negative real valued additive set function on Q and C a 

paving in n. The set function J.l is said to be C-regular if, for every X E Q and 

every t > 0, there exist a set C E C and a set Y E Q such that 

Yc Cc X and J.l(X) - J.lO,) < (. 

PROPOSITION 1.12. Let Q be a quasiring of sets and C a compact paving in the 

space n. Any C-regular non-negative real valued additive set function on Q is 

(1- additive. 



L 12 47 IG 

Proof. Let It be such a set function. Without a loss of generality we will assume 

that Q is a ring of sets. For, if it is not the case, let it be the additive extension of It 

on the ring, 11., generated by Q, and "P the paving consisting of the unions of all 

fini te collections of sets from C. Then it is, obviously, "P- regular, because every set 

from 11. is the union of a finite collection of sets from Q, and, by Lemma 1.11, the 

paving "P is compact. 

So, let 

0:>0, n= 

n = 1,2, .... Let 

X E Q be sets such that X J X 1 and It(X) ~ 0:, for some 
n n n+ n 

Let C E C and Y E Q be sets such that 
n n 

y C C C 
n n 

and It(X ) - tl( 
n 

k 
Z = nY, 

k n=l n 

for every k = 1,2, .... Then, by the assumption that Q is a ring, Zk E Q, and 

k 
jJ(Xk) - jJ(Zk):S L (It(Xn) - jJ( Yn)) < 0:, 

n=l 

so that Zk I- 0 and (F.2) holds for every k = 1,2, .... By the compactness of C, (F.l) 

holds, and, consequently, 

00 
n X 1-0, 

n=l n 

which implies the a-additivity of It, because Q is a ring of sets. 

G. By a Young function we shall understand a real valued function, .,p, on 

the interval [0,00) that is continuous, strictly increasing and convex and satisfies the 

conditions 

lim <P~t) = 0 and lim <p}t) = 00. 

t-lO + t-loo 

It follows that ~(O) = 0 and ;Il( t) > 0 for t > 0 . 

Proofs of the following two propositions can be found in [38], U.S and 1.2.2, 

respectively. 
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PROPOSITION 1.13. A function, <P, on [0,(0) is a Young function if and only if 

there exists a non-decreasing function, ip, on [0,(0) such that ip(O) == 0, ip(s) > 0 for 

s > 0, ip( s) -t 00 as S -t 00, and 

(G.!) <.P(t) = f~ ip(s)ds, 

for every t 2: O. Moreover, if 1,0 is right-continuous at every point of the interval 

[0,00), then it is unique. 

The Young function, <.P, is said to satisfy condition (.6.2) for large values of 

the argument if there exist numbers k > 0 and a 2: 0 such that 

(G.2) iI>(2t) :5 ~(t) , 

for every t E [a,oo) . 

The Young function, <.P, is said to satisfy condition (.6.2 ) for small values of 

the argument if there exist numbers k > 0 and a > 0 such that (G.2) holds for every 

t E [O,a] . 

If a Young function satisfies condition (.6.2) for small and also for large values 

of the argument, we say that it satisfies condition (.6.2), 

Let <.P be a Young function. The function W defined by 

w(t) = sup{st-<.P(s): S 2: O} , 

for every t 2: 0, that is, the Legendre transform of <P, is called the function 

complementary to <.P. 

PROPOSITION 1.14. Let <.P be a Young function and lei 1,0 be the right-continuous 

function in [0,(0) such that (G.1) holds for every t 2: O. Let 

'I/J(t) =sup{s: ip(s):5 t} 

for every t E [0,(0). Then the function w, complementary to <P, is given by 
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J
't 

W(t) = 0 ¢(s)ds , 

for every t 2: 0 . 

The function W, complementary to a Young function, if>, is again a Young 

function and the function complementary to W is q,. If ifl and W is a pair of 

mutually complementary Young functions, then the inequality, called the Young 

inequali ty, 

st:s ~(s) + w(t) 

holds for every s 2: 0 and t 2: 0 . 

Given a Young function, <I?, and an integer n 2: 1 , let 

n 
Mq,(x) = L <I?( I x.l) , 

j=l J 

for every vector X= (xl'x2, ... ,xn ) in en, 
The following proposition is known; its proof can be found, for example, in [51], 

3.32. It is of course a special case of an inequality valid in general Orlicz spaces. (See 

Section 3C below.) 

PROPOSITION 1.15. For every vector x E en, let 

where \If is the function complementary to <I? 

Then the functions x H II xII ~ and x H II xii ~, x E en., are norms on {n, each 

making of en a Banach space, such that 

for every x E {n . 




