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INHOMOGENEITIES IN A FRIEDMAN UNIVERSE 

Gerald E. Tauber 

Abstract: One of the outstanding problems in cosmology is the presence of in­
homogeneities, which are characterized by an anisotropic pressure and density 
distribution. Following a method developed by McVittie (1967, 1968) it has 
been possible to find time-dependent spherically symmetric solutions of Ein­
stein's field equations containing an arbitrary pressure and density distribution 
which connect smoothly to a Friedman universe for any desired equation of 
state. 

1. INTRODUCTION 

The problem of inhomogeneities in relativity has been considered already exten-

sively in the literature. The simplest problem of a static sphere of uniform density was 

solved already in 1916 in a classic paper K. Schwarzschild, who obtained both the 

external and internal solutions. The case of a static sphere of non-uniform density was 

examined exhaustively by Wheeler et al (1964). The collapse of a pressure-free distribu­

tion of mass was studied by Oppenheimer and Snyder (1939). More general distributions 

were considered by Tolman (1934), but unless one limits oneself to pressure-less distri-

butions or at most such where the pressure is only a function of the time the problem 

becomes not amenable to analytical solution. Numerical solutions of the general time 

dependent case have been given by May and White (1966). Uniform density distribu-

tions but general pressure distributions have been successfully solved by Thompson and 

Whitrow (1967). 

The description of inhomogeneities in cosmology immediately raises the question 

of boundary conditions at the surface of these inhomogeneities. vVhile the universe as a 

whole can be described by a Robertson-Walker line element which is isotropic and will 

contain only a time-dependent pressure and density distribution, this is not the case 

for the inhomogeneities, which at least are radial dependent as well. Unless one limits 

oneself to pressure-less dust, which seems physically unrealistic, this raises a problem 
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of matching the pressure distribution at the boundary. (The corresponding problem of 

matching the density distribution can be overcome by assuming a discontinuity at the 

boundary, although one would prefer a smooth cross-over there as well). In addition, one 

would like to have a line element for the interior solution, whose gravitational potentials 

connect smoothly to the corresponding values outside the distribution. 

Some time ago, McVittie (1967, 1968) investigated a large class of time-dependent 

spherically symmetric solutions of Einstein's field equations containing a non-vanishing 

pressure and density distribution which, moreover, have time as well as radial depen­

dence. It is the purpose of this note to show that his solution can be adapted to our 

problem of finding interior solutions which connect smoothly to a Friedmann universe 

for any desired equation of state. It is shown that this can be achieved by a transforma­

tion of the time-coordinate. The local time of the interior solution is not the universal 

time defined by the exterior one, which is uniquely defined, since g44 = 1 for a Friedman 

universe. In addition to requiring that the potentials match at the boundary we de­

mand that under this transformation the pressure of the interior distribution connects 

smoothly to the one of the exterior solution at the boundary. This results in a number of 

conditions and limits the permitted values of the constants occurring in McVittie's solu­

tions. This, incidentally, also guarantees that the density distribution carries smoothly 

from the interior one to that pertaining to the exterior at the boundary, but in no way 

puts any limitations on a possible equation of state connecting the pressure and density 

distribution. 

2. INTERIOR SOLUTION 

The line element inside the material in comoving coordinates is given by 

(2.1) 

where h = h(z), y = y(z) are dimensionless functions of the variable z, defined by 

ez = Q(r)/S(t), Q = Q(r) and f = f(r) are dimensionless functions ofr, and S = S(t) 

a function of the timet. From the comoving nature (T14 = 0) it follows that 

(2.2) 
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(as usual subscripts denote differentiation with respect to that variable). 

Furthermore, the condition for an isotropic distribution 

and considering r and z as independent variables results in three equations for the 

functions J, Q andy (McVittie 1967), 

(2.3) 

(2.4) 

(2.5) Yzz +(a- 3 + Y)Yz + y[a + b- 2- (a- 3)y- y2 ] = 0 

where a and bare constants. If b = 0 the solution of (2.4) is given by 

(2.4a) f = sinr, f= r, f=sinhr 

where in anticipation of further results the constants of integration have been set equal 

to 1 and 0 respectively. The three solutions, of course, correspond to a closed, flat or 

open universe respectively. At the boundary of the inhomogeneity r = rb we can set, 

without loss of generality, Q(rb) = Qb = 1 so that the solution of (2.3) is given by 

(2.3a) 

where 

(2.3b) T1 = -cosr, rn 1 2 .Lo = -zr, T1 = coshr 

corresponding to the values of k = 1, 0, -1, Tkb denotes the value at the boundary r = rb 

and A is a constant. We now turn to (2.5) which is of the form of Abel's equation and 

is integrable in terms of elementary functions only in certain cases. For these the first 

integral is given by 

(2.5a) Yz = m(y + p)(y + q) 

3 



225 

where only certain values of m, p and q (as well as a) are possible.* 

Finally, integrating (2.5a) results in 

(2.5b) y = (pK- qu)l(u- K) 

where 

K = const. of integration. 

Note that at the boundary 

Inserting (2.5b) into (2.2) then gives 

(2.2a) 

where C is also a constant of integration. Furthermore, the pressure p and density p 

are given respectively by 

(2.6) 
J(: =- y-1 { 2S" Is+ (3y- 2)(S' I S)2+ 
c 

(c2 / R5)e-hs-z (yB1 + 2(y2 - y- Yz)Bz + (1- y)(y 2 - y- 2yz)B3)} 

where we have set 

3. BOUNDARY CONDITIONS 

We now require that at the boundary r = rb the solution described by (2.3a), 

(2.4a), (2.5b) and (2.2a) for the line element (2.1) go over into that corresponding to a 

Friedmann universe, which can be written in the form 

(3.1) 

*McVittie (Loc. cit.) lists four cases of which only two will be seen to satisfy our boundary conditions. 

4 
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where 

F1 =sin X, Fo =X, F_1 =sinh X 

corresponding to k = 1, 0, -1. More important is that the pressure p calculated at the 

boundary be the one obtained by solving the field equations for (3.1), viz. 

(3.2) 

where a dot indicates differentiation with respect to T. 

An obvious way to achieve this would be to require that 

together with 

( dr I f)r, = dX I F. 

Upon comparing this (2.5) we note that either we would have y = 1 throughout or 

Qb = 0, either of which leads to trivial or unphysical results. Another possibility would 

be to carry out a transformation of the time. Since g44 =1- 1 for the interior solution, 

its local time is not the universal time defined by the exterior solution. From (2.5b) it 

follows that 

(3.3) Yb = (pK- qx)l(x- K), X= Ub = S 2 md. 

Hence, we shall set 

(3.4) Yb = dTidt or 

Comparison of (2.1) with (3.1) shows that the remaining conditions to be satisfied are 

(drlf)b = dXIF. 

The latter is automatically satisfied by identifying X = r , while the first leads to 

(3.5) R = C(x- K)1fms-P. 

5 
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The question which remains to be answered is whether, under the transformation 

(3.4) the pressure as given by (2.6) transforms into (3.2) and if any additional conditions 

are to be met in order to effect that transformation. We first note that the derivatives 

in (2.6) are given with respect tot, while those in (3.2) are with respect toT. With the 

help of (3.4) and using (2.2) we find 

R=R'Iyb, R'IR=(S'IS)yb sothat RIR=S'IS 

as well as 

from which it follows immediately that the terms involving S" IS and ( S'l S)2 identically 

transform into the corresponding terms of (3.2). What remains are the terms multiplying 

(3.6) 

where B;b(i = 1,2,3) denote the values of B; at rb. Noting that B1 = 1 if k = 1 (and 

B1 = 0,-1 if k = 0, -1) and using again (3.5) it is seen that the transformation is 

complete provided the last two terms on the right hand side of (3.6) vanish. This will 

result in a cubic equation in Yb (or x) and if we demand that all its coefficients vanish, 

we obtain the following possible values for the various constants: 

(i) m= k, - 1 a- 2> p= -1, q = 0, B2b = 0 

(ii) m= t, a= 3, p= 1, q = -1, B2b + B3b = 0 

(ii ') m= ~' a= 3, p= -1, q = 1 
- ' B2b + B3b = 0. 

Comparison with the four cases listed by Me Vittie shows that our cases are included 

in his first two. 

Turning now to the density (2. 7) it is readily seen that it also reduces at the 

boundary to the Friedmann value. It follows that for either of the above possibilities 

(3.7) J{ p = 3( S' Is? + 3kc21 R 2 

6 
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which is exactly the Friedmann value. Thus, our interior solution goes smoothly into 

the exterior Friedmann solution at the boundary with the pressure and density taking 

their corresponding values. 

4. RESULTS 

What remains to be done is to use the values of the various constants and to 

calculate the different functions for the three cases. We shall consider each case in turn 

(i) Inserting the appropriate values we have 

y = K/(K -u), u = (Q/ S)! 

so that the line element will have the form 

The values of Q as well as Bi will be different for different values of k. For k = 1 we 

obtain 

Q = 4cos4 (r/2), B 1 = 1, B 2 = -2cosr/(1- cosr) 

where the boundary is determined by cosrb = 0 and we have taken A= -t. Fork= 0 

we have Q = 1, B2 = B1 = 0, A-1 = 0. For k = -1 the trigonometric functions are 

replaced by hyperbolic ones, so that 

Q = 4cosh4(r/2), B 1 = -1, B 2 = 2 coshr/(1 + coshr) 

the boundary being determined by cosh 'rb = 0 and A = t. We have not listed B3 since 

it turns out that the factor multiplying it vanishes in this case. The pressure turns out 

to be 

(4.2) 

K p = _ ( K - u) { 2S" + K + 2u ( S 1
) 

2 

c2 J( S K- u S 

while the density is given by 

( 4.3) 

7 
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If k = 0 (flat space) the result simplifies considerably. The pressure is given by 

(4.2a) 

while the density is just 

(4.3a) Kp = 3(S' /S)2 . 

(ii) In this case we have the following functions 

y = (u + K)/(u- K), u=S/Q 

(ii') y =(I<+ u)/(K- u), u = Q/S. 

For both cases Q as well as B; are the same, but of course take different values for 

various values of k. 

Fork= 1, 

where 

M = 1- (2/A)(cosrb- cosr), A=- sin2 r0 / cosrb. 

For k = 0 we have 

Finally, if k = -1 we obtain 

where 

N = 1- (2/A')( cosh r- cosh rb) and A' =- sinh2 rb/ cosh Tb· 

However, the pressure and the density are different in the two sub-cases. 

8 
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In the first instance we find for the pressure 

( 4.4) 

and for the density 

while the corresponding values in the second subcase are given by 

( 4.4a) 

Kp u-K{ S 11 K+Su (S') 2 
-=-- 2-+ - + 
c2 u+K S K-u S 

c2 s-2 ( K + u 4u2 4uK B ) } 
R5(I<-u)4 ,l;;K-u + (K-u)2B2 - (I<-u)2 3 

and 

( 4.5a) 

Some simplification is achieved if k = 0, since then u = Sr'/rb and u = rb/ Sr respec­

tively, while the density in both cases is again of the form ( 4.3a). The scale function 

S is still undetermined and one would have to impose additional conditions, such as a 

relation between the pressure and density, to determine it. 
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