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FUNCTION THEORY ON BANACH ALGEBRAS 

R. Parvatham 

First let me recall some notions and results in function theory on the complex 

plane { . Then by adopting suitable means they are extended to Banach algebras. 

Let D be a region (an open connected set) in { and let H(D) be the class of 

all functions holomorphic in D. In general, in this work the study of univalent 

functions is confined to the class of functions S = {f E H(E) : f(O) = 0 and f is 

univalent in E} where E = {z E {: lzl < 1} is the open unit disc in {. 

A domain D in { is said to be convex if the line joining any two points in D 

lies in D . A function f E S is said to be convex in E if f(E) is a convex set. Let 

K denote the collection of all convex functions in E 0 The analytic criteria for f E K 

{ f"(z)} is [ile 1 + z F\zT > 0 in E 0 

A domain D in { is said to be starshaped with respect to a point 0 E D if 

the line joining any point a E D to 0 lies completely in D . It i~ obvious that any 

convex domain is starshaped with respect to each of its points. A function f E S is 

said to be starlike in E if f(E) is a starshaped domain with respect to the origin. Let 

s* denote the collection of all starlike functions in E 0 Clearly we have K ~ s* . 

The analytic criteria for f E s* is [ile{ zi(H)} > 0 in E . Thus we have Alexander1s 

theorem, namely: f E K if and only if zf' (z) E s* . Also f E s* can be equivalently 

put as (1-t)f(E) ~ f(E) , for all t E I= [0,1] . For details of the study of geometric 

function theory on the complex plane, the readers are referred to [1]. 

Recently another new class s* of functions that are starlike with respect to 
c 

conjugate points has been introduced by Thomas and El Rabha [5]0 A function f E S 
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is said to be starlike with respect to conjt~gatepointsif ~e{2zf 1 (z)[f(z) + f( zJr 1} >0 

in E. It is easy to verify that g(z) = f(z) + f ( z))/2 E S* whenever f E s*. 
c 

With this background let me pass on to function theory on a Banach algebra. 

Let R be a commutative Banach algebra over the complex numbers with 

identity (denoted by e) and let .U be the space of all maximal ideals in R . Then .U 

is a compact Hausdorff space where the topology is the weakest topology on ){ such 

that for each x E R the Gelfand transformation x of x is a continuous function on 

){ . Assume further that the Gelfand homomorphism x -1 x of R into C(H) is an 

isometry so that llxll = sup{ I x(M) I : M E .U} for all X E R . Under this assumption 

we may, and do, identify x E R with its Gelfand transform x E C(.U) . Let 

B = { x E R : llxll < 1} . If D is an open set in R , F : D -1 R is said to be 

L- analytic in D , [ 4], iff or each x E D there exists F 1 ( x) E R such that 

lim IIF(x+h) - F(x) - xW(x)ll_ 0 
llhll - . 

00 

If F : B -1 R is L-analytic in B with F(O) = 0 , then for each x E B , F(x) =I a xn 
1 n 

where a E R and the series converges uniformly on {x E R : llxll < o} for each 
n 

8 < 1 , [3] . If F : B -1 R is L-analytic in B and for each y E F(B) there is an open 

neighbourhood V of y on which F- 1 exists and is L-analytic, then we say that F 

is locally bi-analytic in B . If F is univalent and locally hi-analytic in B , then F 

is said to be hi-analytic in B . 

If F is 1-analytic in B then for each M E ){ , there is an associated 

holomorphic function F M : E -1 ( defined by F M(z) = F(ze)(M) for all z E E . If 

00 

F(x) =I a xn is 1-analytic in B then F(x)/x stands for the 1-analytic function 
1 n 

~ n-1 Lax in B. 
1 n 

Now let the notion of a starlike mapping be extended to R as follows. 
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DEFINITION 1. A hi-analytic map F: B -t R is said to be starlike in B if F(O) = 0 

and (1-t)F(B) ~ F(B) , for all t E I. 

DEFINITION 2. U : D -t R is said to have positive real part if U is 1-analytic in 

D and .9te(U(x)(M)) ~ 0 in D for each M E Jl and each x E D . 

If in addition .9teU(x)(M) > 0 for all ME J( and xED , we write U E 1'(D) , and 

if D = B , then 1' is written for 1'(B) . 

DEFINITION 3. A hi-analytic map F : B -t R is said to be convex in B if F(B) is 

a convex domain. 

The following results of [2] give the relation between these notions in R and { . 

00 

THEOREM 1. [2] Let F(x) = L a xn be locally bi-analytic in B . Then F is 
n=1 n 

00 

starlike in B if and only if F M(z) = L an (M)zn is starlike in E for all M E Jl. 
n-1 · 

00 

THEOREM 2. [2] Let F(x) =La xn be locally bi-analytic in B . F is convex in B 
1 n 

00 

if and only if F M(z) =La (M)zn is convex in E for each M E Jl. Thus Alexander's 
1 n 

relation holds, namely F is convex in B if and only if !l>(x) = xF' (x) is starlike in 

B. 

Amongst other results, the proofs of these use the following lemma which we 

need below. 

LEMMA 1. [2] Let U have positive real part in B . 

( 1) If M E Jl , then 

i:ll~ll.9teU(O)(M) ~ .9teU(x)(M) ~ tll~ll.9teU(O)(M) for all x E B, 

and so 
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.9leU(O)(M) > 0 if and only if .9leU(x)(M) > 0 for all x E B . 

(2) .9leU(O)(M) > 0 for all M E .At implies U(x) is nonsingular for all 

xEB. 

Now let us define a new class of mappings in B which is analogous to the class 

s* in ( . For this we need the basic space to be a Banach *-algebra. 
c 

A Banach algebra R is called a Banach *-algebra if it has an involution; that 

is, there is given a mapping x.., x* of R into itself such that (i) (x+y)* = x* + y*, 

(ii) (ax)* = ax*, (iii) (xy)* = y*x*, (iv) x** = X . It follows that 0* = 0 and 

e* =e. The element x* is called the adjoint of x . Let R* be a commutative 

Banach *-algebra with identity e and .At be the space of all maximal ideals of R* . 

We will assume that R* = C( .At) with natural involution. This is equivalent to 

assuming the Gelfand transform is isometric and symmetric. 

DEFINITION 4. Let B* = {x E R* : Jlxll < 1 } . Suppose F : B*.., R* is hi-analytic 

in B* . We say that F is starlike with respect to adjoint elements in B* if F(O) = 0 

and x F'(x) U(x) = G(x) , for each x E B* , where G(x) = (F(x) + F(x*))*)/2 and 

U has positive real part in B* . 

00 

THEOREM 3. Let F(x) = L anxn be locally bi-analytic in B* Then F is starlike 
n=l 

00 

with respect to adjoint elements in B* if and only if FM(z) = L an(M)zn is starlike 
n=1 

with respect to conjugate points in E for all M E .At. 

PROOF. Assume that F is starlike with respect to adjoint elements in B* . Then 

x F'(x) U(x) = G(x) = ~ (F(x) + F(x*))*) where U has positive real part in B*. 

However, by equating the coefficients, .9leU(O)(M) = 1 for all ME .At and hence 

U E ,9J by Lemma 1 . Setting x = ze , and using the fact that a *(M) = a (M) , we 
n n 

conclude that 
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0 < .9teU(ze)(M) = .9te n n in E . {~(a (M) + ~))zn} 

2 L~ nan(M)zn 

Thus F M is starlike with respect to conjugate points in E . 

Conversely assume that F M is starlike with respect to conjugate points in E 

for every ME .At. Set P(w) = F(w~w~,f~~w*))* for all wEB*. Then FM E s: 

which implies P E .9. Now to see the univalence of F, let x1 , x2 E B*, x1 =/= x2 , 

* and choose ME .At so that l(x2-x1)(M) I= llx2-x111. Note that whenever FM ESc, 

FM(z) + FM(z) oo a (M) + a (M) * * * 
GM(z) = 2 = t n 2 n znE S . Define G : B ...; R by 

oo a (M) + a (M) * * 
G(x) = L n 2 n xn Thus G(x) = F(x) + 2(F(x )) , and by Theorem 1 G 

1 

is starlike in B* since GM(z) E s* . By Alexander's relation there is a mapping <I> , 

convex in B* , such that G(x) = x<I>' (x) for all x E B* ; in particular <I> is 

hi-analytic. Now FM E s: implies .9te{z ~:~:~} = .9te{::~:~} > 0 in E. 

Consider H = Fo<I>-1 : <I>(B*)..., R* and let y1 = <I>(x1) and y2 = <I>(x2). Then 

since <I>(B*) is convex, {ty2+(1-t)y1 : t E I} ~ <I>(B*) , and so F(x2) - F(x1) = 

1 

H(y2)- H(y1) = J H'(ty2+(1-t)y1) (y2-y1)dt. Thus 

0 

I (F(x2)- F(x1))(M) I = I (H(y2)- H(y1))(M) I 
1 

= I (y2-y1)(M) I·IJ H'(ty2 + (1-t)y1)(M)dtl ' 

0 
1 

2: l(y2-y1)(M)1-J .9teH'(ty2+(1-t)y1)(M)dt, 

0 

J1 {F~(<I>- 1 (ty2+(1-t)y1)(M))} 
= I (y -y )(M) I · file dt 

2 1 o <I>~(<I>-1(ty2+(1-t)y1)(M)) 

> 0 
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1 

0 1= llx2-x111 = l(x2-x1)(M)I = l(y2-y1)(M)I·IJ (<P-1)'(ty2+(1-t)y1)(M)dt; 

0 

and hence I (y2-y 1)(M) I 1= 0 which implies F(x2) 1= F(x1) , thereby giving the desired 

result. 
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