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DERIVATIONS OF CONVOLUTION ALGEBRAS 

J.P. McClure t 

1. INTRODUCTION 

Let w be a radical, algebra weight on lR + = [0, oo). That is, w satisfies w( x + y) :::; 

w(x)w(y), and w(x) 1fx-+ 0 as x-+ +oo. We will also assume that w is continuous on 

JR+, and that w(O) = 1. We are interested in derivations on the algebra L1 ( w) consisting 

of Lebesgue measurable functions on JR+ which are integrable with respect to the weight 

w, and on related algebras. The algebra M( w) of Radon measures on JR+ which have 

finite total variation with respect to w will also play an important part. By identifying 

functions with absolutely continuous measures, L1 ( w) is a closed ideal in M( w ). It is 

also true that M(w) is isometrically isomorphic with the multiplier algebra of L1(w), a 

measure fJ corresponding to a multiplier T by T f = fJ * f. Our interest in derivations 

is related to some questions about automorphisms. We will mention one such question, 

but this article will concentrate on derivations. Unless otherwise indicated, all integrals 

occurring here will be over the domain JR+. 

We begin by fixing some notation. We write X for the operation of multiplication by 

the coordinate function: thus, iff is a function, X f is the function defined by X f( x) = 

xf(x), and if pis a measure, XJ-t is the measure defined by d(XJ-t)(x) = xdt-t(x). 

Similarly, if z is a complex number, ezX denotes the operation of multiplication by the 

function x ~--+ ezx 0 If ,\ is a real number, it is easy to check that e)..X w is a radical, 

algebra weighto Let A>. denote L 1(e-:..xw), and let lvf:>.. denote lkf(e-:>..Xw). Note 

that the algebras A.x (respectively, M;>..) are all isomorphic. In fact, e(A.-p)X defines an 

isomorphism from Ap onto A;,. (respectively, Mp onto M>..). Also note that A.\ :;:2 Ap if 

A ~ p, and the inclusion map is a continuous embedding of AP onto a dense subalgebra 

t Research supported by NSERC (Canada) Grant No. A8069. 
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of A>... Now define A+ = n{A>.. : A > 0}. Then A+, as an intersection of Banach 

algebras, can be given the structure of a Frechet algebra. Note that A+ contains A 0 , 

and the inclusion is a continuous embedding. In general, a linear map from A0 into A+ 

is continuous if and only if, for each A > 0, the map defines a continuous linear map 

from A0 into A.\. Also, a linear map on A+ is continuous if and only if, for each ,\ > 0, 

there is p > 0 such that the map extends to a continuous linear map from Ap into A>..; 

note that we can assume p :::; A. Similarly, if we define M+ = n{M>. : A > 0}, then 

M+ is a Frechet algebra, and there are similar characterizations of continuity of linear 

maps from M 0 into M+ and from M+ into itself. In particular, the map X defines a 

continuous derivation on each of the algebras A+ and M+: the derivation property of 

the map X is well known and easy to verify, and while X is not a continuous map on A,\ 

into itself for any A, it is a continuous map from Ap into A,\ whenever p < A; similarly 

for measure algebras. To see this, note that for p < ,\ and f1 E MP, 

IIXflll>- = J xe->-xw(x)dlfll(x) 

= j xe-(>.-p)xe-pxw(x)dlfll(x) 

:::; C(p, ..\)llflllp, 

where C(p, ..\) = sup{xe-(..\-p)x: x E JR+} = [e(A- p)]-1 . It was this observation that 

originally led us to consider the algebras A+ and M+. 

2. RESTRICTIONS AND EXTENSIONS OF DERIVATIONS 

Let D be a derivation on Ao = V(w). It is known, [5], that Dis continuous, and, 

[2], that there is a Radon measure f1 on JR+ such that 

(1) Df=Xf*fl 

for each f in Ao, and 

(2) llDII =sup{ w~x) j w(x + y) dlfli(y): x > 0} < oo. 
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It is easy to see that e->.X De>.X defines a derivation on A->.· For A > 0, A-.x IS a 

dense sub algebra of A0 . It is a straightforward calculation to show that 

(3) 

for fin A->.· It follows from these observations that e->.x De>.x is continuous on A-.x 

with respect to the norm of A0 , and extends by continuity to a derivation on A0 • On 

the other hand, if A< 0, A-.\ contains A0 , and in this case, one may ask the following 

question. 

QUESTION 1. If A< 0 and Dis a derivation on A 0 , does the derivation e->.x De.\X 

on A-;.. restrict to a derivation on A 0 ? In other words, is e-:>..x De:>..x(A0 ) contained in 

Ao? 

If so, let .6. be the restriction of e->.x De;..x to A 0 . Then ~ is continuous on A 0 ; 

using (2) and (3), we see that this happens if and only if 

sup{ w~x) j w(x + y)e-J\y dlfl!(y): x > 0} < oo, 

that is, if and only if e->.xp defines a derivation on A0 via (1). It is then easy to see that 

e>-X ~e-.\X = D; since A< 0, our earlier remarks show that D defines, by restriction, a 

derivation on A.x. In fact, Question 1 is equivalent to the next question. 

QUESTION 2. If A < 0 and D is a derivation on A 0 , does D restrict to a derivation 

on A.x? That is, is D( A>.) contained in A><? 

Here is a reason for being interested in the restriction question. It was shown in 

[3] that, at least for weights w belonging to a certain class (there denoted w+), every 

automorphism of A0 has a representation of the form eiaX e><X eD e-><X, where 01 is real, 

A > 0, and D is a derivation on A 0 • Suppose D restricts to a derivation on A->.· 

Then !:i = e;..x De-><X is a derivation on A>< which restricts to a derivation on Ao, and 

D = e-><X~e><x. It follows that eD = e-:>..Xe.6.e>-x, and the above representation of an 

automorphism simplifies to eio:X e-6.. 
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It is not true that Question 2 has a positive answer for every derivation D on A0 , 

and every ,\ > 0. To see this, suppose D is determined by p, as in (1) and (2). Then, 

given A > 0, D restricts to A->. if and only if 

sup{ X J e-"(x+y)w(x + y) dlp,I(Y): X> o} 
e..\xw(x) 

=sup{ w~x) J e-"11 w(x + y) d!p,!(y) : x > 0} 
< 00. 

It should be clear from this that some derivations on A 0 will restrict to A_;. for all,\ > 0, 

some will restrict for a finite interval of values of .A, and some will restrict for no A. Since 

our interest in restriction is associated with the representation of automorphisms, we 

refine Question 2 as follows. 

QUESTION 2A. Suppose .A > 0, D is a derivation on A0 , and it is known that 

e>..XeDe->..x is an automorphism of A 0 • Does it follow that D restricts to a derivation 

on A->..? 

3. DERIVATIONS ON A+ 

Suppose a Radon measure p, on JR+ defines a derivation D on A0 as in equation 

(1). Then (2) holds, so for any,\> 0, the inequality obtained by replacing w by e->..Xw 

in (2) is also valid. Thus D extends by continuity to a derivation on A>.., for each .A > 0, 

and hence to a continuous derivation on A+. However, there are other continuous 

derivations on A+: for example, we saw at the end of the Introduction that X defines a 

continuous derivation on A+, but not on A0 • Our aim in this section is to characterize 

the continuous derivations on A+· Here is a preliminary result. 

PROPOSITION L Every measure p, in]\![+ determines a continuous derivation on 

A+ using (1). 

Proof. Let p, belong toM+. For any p and,\ such that 0 S p < .A, and any fin AP, 

we have X f in A>.., as in the Introduction, and 11 in M>... Therefore, 
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That implies that DI = XI * J1. (f E Ap) defines a continuous linear map from Ap to 

A>., whenever 0 :s; p < ).. It is straightforward to check that D is a derivation, so the 

proposition is proved. 

The rest of this note will be devoted to an attempt to prove the converse to the above 

proposition. We will see that for some weights, every derivation on A+ is determined 

by a measure in M+, while for other weights, the situation is less clear. We need some 

technical facts about certain linear maps between the algebras for different values 

of A. Most of this is a straightforward adaptation of results in [2]. Recall that IS 

algebra of 

strong operator topology 

and thus has both the operator norm topology and the 

as a subalgebra of B(A,,), the algebra of bounded linear 

operators on AA' Since it is also the dual of the space Co(l/w) of continuous functions 

Ion lR+ such that I/w vanishes at infinity, M>. also has a weak-* topology (w*). Now, 

for 0 :s; p :s; A, write for the space of multipliers from into A>.; these are the 

linear maps T : Ap -+ Ax such that T(f * g) = T I * 9 for any I and 9 in (recall 

that when p :s; A, AA::2 Ap). Since en = nX[O,l/n] is a bounded approximate identity 

m for every A, all such multipliers are continuous. To see this, suppose In -+ 0 in 

Ap. By the Varopoulos extension of Cohen's factorization theorem [[1], p.62]' there are 

(9n) and h in Ap such that 9n -+ 0 and In = h * gn' Then TIn = Th * 9n -+ 0 in A)" 

so continuity of T follows by the closed graph theorem. 

PROPOSITION 2. For 0 :s; p :s; A, M p ,>. = M>., and the norms II lip,>. and II IIA 

inherited as s1Lbspaces of B(Ap, AA) and B(AA) are equivalent. 

Proof. Since Ap is densely and continuously embedded in AA by inclusion, MA embeds 

continuously into Mp,A by restriction. On the other hand, suppose TEMp,>.. Since 

en = nX[O,l/n] is a bounded approximate identity in both Ap and AA' we have en * I -+ I 

in Ap as n -+ 00, and therefore Ten * I = T( en * f) -+ Tf. We also have (Ten) bounded 

in M A , so (Ten) has a (w*)-convergent subnet - say it is (TIi), where Ii = en(j). Let 

J1. be the (w*)-limit of (T Ij) in M>.. Since multiplication is separately (w*)-continuous, 

(f * T Ii) converges to I * J1.. Since (T Ii) is a subnet of (Ten), we conclude that 
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T I = I * p,. Thus, restriction maps M>.. onto lvfp,>... It is easy to check that Jvlp,).. is 

closed in B(Ap, A>..); in fact an (SO)-limit of multipliers is a multiplier. The equivalence 

of the norms now follows from the open mapping theorem, and the proof is complete. 

PROPOSITION 3. Lei 0 ::; p ::; A and lei D : Ap ---7 A>.. be a derivation. Then D is 

continuous, and extends to a continuous derivation ll/Ip -t M).,. 

Proof. The continuity of D follows from a slight modification of the result in [5]. For 

p, E Mp and lEAp, define TI = D(p,*f)-p,*DI, an element of A)... One checks easily 

that T E Mp,A' By Proposition 2, there is v E M).. such that T I = I * Vi put t:;.p, = v. 

Observe that t:;. is an extension of D: the measure v is unique, and if p, = 9 E A p , then 

Dg E A).. satisfies the requirements for v. It is routine to check that t:;. is linear; also, t:;. 

is continuous: 
11t:;.p, * Ilh S; IID(p, * f)lh + lip, * Dfll.\ 

s; 21ID llp,)..IIp,llp Ilfllp , 

whence Ilvllp,).. S; 21IDllp,)..IIp,llp· Since II lip,).. and \I II).. are equivalent norms on M).., 

the continuity of t:;. follows. Finally, we show that t:;. is a derivation. For lEAp and 

p"V E M p , 

I * t:;.(p, * v) = DU * p, * v) - IH V * D I 

= f * p, * t:;.v + v * DU * p,) - p, * v * D f 

= f * p, * t:;.v + v * (j * t:;.p, + p, * Df) -/H v * Df 

= 1* (p, * t:;.v + t:;.,t.t* v) , 

which implies t:;.(p, * v) = p, * t:;. v + t:;.p, * v, as required. 

In fact, we shall write D for either a derivation from Ap to A.\, or its extension to 

a derivation from _Mp to M)... 

PROPOSITION 4. Let 0 ::; p ::; A and let D be a derivation from Mp into M.\. Then 

(aJ D maps Ap into A.\; 

(b J D is continuous; and 

(cJ D is (SO) to (SO )-continuous on bounded subsets of Mp. 
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Proof, For (a), note that, by Cohen's factorization theorem, each f in Ap factors: 

f = g *h. Then D f = Dg * h + g * Dh belongs to A>., since A>. is an ideal in M>,. 

By Proposition 3, D I Ap is continuous. Also, D!-l * f = D(!-l *f)- f-l * D f, so D is 

the extension to M>.. of D I Ap, as constructed in Proposition 3. That proves (b). 

Finally, we prove (c). Let (f.-lj) be a bounded net in Mp, (SO)-convergent to f-l· 

Because of the boundedness and because Ap is dense in A;.. whenever p ::; ).., we can 

conclude that (P,j) is (SO)-convergent to p, in A;.., for any .:\ 2:: p, so for f in AP, 

(f.!j * D f) is norm-convergent to p, * D f. Also, (f.!j *f) is norm-convergent to p, * f, 

so (D(f-li *f)) is norm-convergent to D(f-l *f). Since D(P,j *f)= Dp,j * f + /-lj * Df 

and D(p, *f)= Df-l * f + p, * Df, it now follows that (D!-lj *f) is norm-convergent to 

Dp, *f. Since (Dp,j) is bounded and Ap is dense in A>., it follows that (Dt-tj *f) is 

norm-convergent to Dp * f for any fin A,>... Thus, (Dpj) is (SO)-convergcnt to Dp, 

and (c) is proved. 

By Proposition 3 and part (a) of Proposition 4, the derivations from Ap into A,>.., and 

those from Mp into M>.., are the same. The next result characterizes these derivations. 

THEOREM 1. Let 0 ::; p ::; .\. Then D is a derivation from Ap into A>. if and only 

if there is a Radon measure p on 1R + such that 

(a) Df = Xf * f.1 for all fin AP, and 

(b) s = SUPL-pxxw(x) I e->.(x+y)w(x + y) djpj(y): X> o} < 00. 

In such cases, IIDIIp,>. = S. 

Sketch of Proof, This is much as in [2], and many details will be omitted. One 

first shows a(D8a) 2:: a for any a in lit+ (recall that a(p,) = inf(support f..l); also, 15a 

denotes the point mass at a). Then one shows the existence of a measure 11 such that 

D8x = xhx * f1 for all x in JR+. In passing, we note that the supremum Sin (b), above, 

lS 

Thus, finiteness of S follows from boundedness of D; in fact, S::; IIDIIp,.A· 
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Next, let J-t be a measure satisfying (b). One shows that Dl-i(f) = Xf * J-t defines a 

bounded derivation D!-1 : Ap---+ A>., with IIDI-IIIP,>. ~ S. 

Finally, starting with D, produce J-t as in the first paragraph, then D 1-1 as in the 

second. Observe that the two derivations are (SO) to (SO)-continuous on bounded sets, 

and agree on the subalgebra generated by the point masses. Since every measure in Mp 

is the (SO)-limit of a bounded net of measures with finite support, D = D!-1, and the 

result is proved. 

The existence of a measure determining the derivation D in the last result can also 

be deduced from Theorem 3.4 of [4]. We now give a characterization of the continuous 

derivations on A+· 

THEOREM 2. Let w be a radical, algebra weight on ffi+. The following statements 

are equivalent. 

(a) D is a derivation on A+. 

(b) D is a derivation from A0 to A>. for every >. > 0. 

(c) There is a Radon measure J-t on ffi+ such that D f = X f * J-t for every f in A 0 , and 

S>. =sup{ w(x) 1 e-.>.(x+y)w(x + y) dl~-ti(Y): x > 0} < oo 

for every >. > 0. 

Proof. The equivalence of (b) and (c) was proved in Theorem 1. Since A0 is contin­

uously embedded in A+, it is immediate that (a) implies (b). We show that (c) implies 

(a). Thus, suppose that the supremum S>. of (c) is finite for each>.> 0, and fix>.> 0 

and p such that 0 ~ p < >.. Then 

sup{ X 1 e->.(x+y)w(x + y) diJ-ti(y): X> o} 
e-P"'w(x) 

=sup{ X J e-p(x+y)e-(>.-p)(x+y)w(x + y) dl~-tl(y): X > o} 
e P"'w(x) 

~ B>.-p < oo. 

By Theorem 1, D f = X f * J-t defines a continuous derivation from Ap to A>. whenever 

0 ~ p < >.. It follows that D f = X f * J-t defines a continuous derivation on A+, and the 

theorem is proved. 
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COROLLARY (to the proof). If D is a derivation on A+, then for any p and 

A such that 0 < p < .A, D extends to a continuous derivation from Ap to AJ\. In 

particular, every derivation on A+ is continuous. 

We now return to the question of a converse to Proposition 1, and we formulate 

the following question. 

QUESTION 3. Suppose J-l (/. M+; that is, 

j e-Ayw(y)dl,ul(y) = oo 

for some A> 0. For each .A> 0, defineS;. as in Theorem 2(c) by 

S.A =sup{ w~x) J e-.A(x+y)w(x + y) dl,ui(Y) : x > 0} . 

Is there A > 0 such that S .A = oo? 

If such a >.exists whenever ,u (/. M+, then, by Theorem 2, the continuous derivations 

on A+ are exactly those determined by the measures in M+. One way to achieve S.A = oo 

for given .A would be to find x > 0 such that 

In some cases, we can do this. 

THEOREM 3. Let w(y) = e-Y 2
• If ,u (/. M+, there are A> 0 and x > 0 such that 

j e-J\(x+y)w(x + y) diJ-Li(Y) = oo · 

Hence, for this weight, the continuous derivations on A+ are exactly those determined 

by the measures in M+. 

Proof. Suppose A > 0 and 
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For any A such that 0 < A < A, we can take x > 0 such that A+ 2x < A. Then we have 

J e-.:\(x+y)e-(x+y)2 dJpJ(y) 

= e-.:\x-x2 J e-(.:\+2x)ye-y, dJp:J(y) 

> e-><x-x2 J e-Aye-y2 dJpJ(y) 

= 00. 

Having seen this calculation, one can immediately enlarge the set of weights for 

which such a result holds. For example, any ofthe weights e-xlog x, or e-xP (1 < p S 2) 

can be used. One can also invent weights for which the argument in Theorem 3 fails, 

and we end with a question. 

QUESTION 4. Suppose w(y) = e_Ys. Is there a Radon measure p: on ]R+ such that 

for some A> 0, while 

for every A > 0? 
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