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either M C L or L C M. Notice that L_ C L for every comparable element L of £. It
follows that the necessary condition for the semi-primeness of Alg £ given in the above
proposition is stronger than the condition that £ has no comparable elements except (0)
and X; in fact it is strictly stronger as Example 1 below shows. Since semi-primeness

is weaker than semi-simplicity, the above proposition improves the following result due

to Lambrou.

COROLLARY. (M.S. Lambrou [5]) Let £ be a subspace lattice on X. If AlgL is

semi-simple, then £ has no comparable elements except (0) and X.

EXAMPLE 1. Let H be a non-zero complex Hilbert space and on H® H @ H consider
the subspace lattice £y given by

Lo={(0)(0)®oH0),Ha0)®(0),HoHa(0),0)oHoH HoH o H}.

The Hasse diagram of £, is given in Figure 1.

H®H®H

H®H®(0) (0)®HeH

He(0)®(0) (0)®H®(0)

(0)

Figure 1

Clearly, £ has no comparable elements except (0) and H®H®H , but the condition
“J=0or, forevery L€ J,LNL_=(0)and LVL_=H @ H @ H” is false because
L=(0)®H@® H belongs to J and L_ = H® H @ (0) so LN L_ # (0). Of course, by

Proposition 1, Alg Ly is not semi-prime (so not semi-simple).
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We show later (Example 3) that the converse of Proposition 1 is false by providing
an example where J = §) and Alg £ is not semi-prime. However, our first two theorems
show that the converse is true for any subspace lattice belonging to either of the two

classes described in the opening paragraph.

THEOREM 1. Let £ be a subspace lattice on X satisfying V{L: L € J} = X. The
following are equivalent.

(1) AlgL is semi-simple,

(2) AlgL is semi-prime,

(3) For everyLe J,LNL_=(0)end LVL_=X,

(4) For every Le J, LN L_ = (0).

Proof. By the definitions, (1) = (2). Since J cannot be empty, (2) = (3) by Propos-
ition 1. Obviously (3) = (4).

Assume that (4) holds. We show that every non-zero right ideal of Alg £ contains a
non-zero idempotent (so non-quasinilpotent) operator. Let K be a non-zero right ideal
of Alg L. Let J € K be non-zero. Since V{L € L : L € J} = X, JL # (0) for some
element L € J. Now JL C Lso JL € L_ (since LN L_ = (0)). Thus there exists a
vector e € L such that Je ¢ L_. By the Hahn-Banach theorem, there exists a vector
f* € (L-)* such that f*(Je) = 1. By Lemma 1, f* ® e € Alg L. Thus the non-zero
operator J(f* ® e) belongs to . We have

(J(f*@e) =(f @ Je)f = f*(Je)(J(f*®e)) = J(f* ®e).
This completes the proof.

THEOREM 2. Let £ be a subspace lattice on X satisfying N{L_ : L € J} = (0).

The following are equivalent.
(1) AlgL is semi-simple,
(2) Alg L is semi-prime,

(3) ForeveryLe J,LNL_=(0) and LVL_ =X,
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(4) For every Le J,LVL_=X.

Proof. By the definitions (1) = (2). Since J cannot be empty, (2) = (3) by Proposition
1. Obviously (3) = (4).

Assume that (4) holds. We show that every non-zero left ideal of Alg L contains a

non-zero idempotent (so non-quasinilpotent) operator. Let K be a non-zero left ideal of

Alg L.

For any family {L.,} of subspaces of X, the weak* closure of the linear span of
{L} equals (NL)*. In particular, if NLy = (0), then the linear span of {L1} is weak*

dense in X*.

Let J € K be non-zero. Then J* # 0. Since J* is weak* continuous, and N{L_ :
L € J} = (0) implies that the linear span of {(L_)* : L € J} is weak* dense in
X*, J*(L-)* # 0 for some element L € J. Let f* € (L_-)* satisfy J*f* # 0. Now
J*f* € (L_)t so,since LV L_ =X, J*f* ¢ L*. Hence J*f*(e) = 1 for some vector
e € L. By Lemma 1, f*®e € Alg L. Thus the non- zero operator (f* ® e) J belongs to
K. We have

(@)D = (J*f* @ e = T F () (f*® ) T) = (f* ®€) J.
This completes the proof.

The following example shows that the class of subspace lattices £ satisfying V{L €
L :L e J} =X is not included in the class satisfying N{L_ : L € J} = (0) and vice-

versa.

EXAMPLE 2. Let H be an infinite-dimensional, complex, separable Hilbert space
and let A € B(H) be a positive injective operator which is not invertible. By a result of
von Neumann (see [1, Theorem 3.6]) there exists a positive injective operator B € B(H)
such that the ranges of A and B have only the zero vector in common. Let K and L

be the subspaces of H @ H @ H given by
I(={(.’L‘,y,A.’1}): z,y € H},

L={(z,y,By): x,y€ H}.
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Let £ be the subspace lattice on H@®H @ H with elements (0), (0)®H ®(0), HH(0)&(0),
Ho Ho(0), K, L and H® H @ H. Figure 2 below is a Hasse diagram of £; Figure 3
is a Hasse diagram of L+ = {M+: M € L}.

H®H®H H ®H ®H

K L He(0)eH (0)®H ©H

(0)®H ®(0) H®((0)®(0) K L

0) (0)

Figure 2 Figure 3

(Note that (z,y, Az) = (u,v, Bv) gives Ar = Bv, so Az = Bv = 0, since the ranges
of A and B have only the zero vector in common. This shows that K N L = (0).) For
£, 7 ={0)®H®(0),H® (0) ®(0)} so £ does not belong to the first class. But £
does belong to the second class since ((0)® H @ (0))- =L, (H ®(0)® (0))—- = K and
KnNL=(0).

On the other hand, £1 belongs to the first class but not to the second.
Note that, by Theorems 1 and 2, both £ and £+ have semi-simple Alg’s.

The two classes of subspace lattices described in the opening paragraph of this
section are far from being disjoint. Indeed, by the two characterizations of complete
distributivity mentioned in the introduction, every completely distributive subspace

lattice belongs to both classes; so does every pentagon.

In abstract lattice theory, the pentagon and the double triangle play special roles

(this terminology is due to Halmos). These lattices have Hasse diagrams, respectively,
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as follows.

Figure 4 Figure 5

We will comment soon on the Alg of a double triangle subspace lattice (notice that
here J = ), but notice that, indeed, every pentagon subspace lattice on X does belong
to both of the aforementioned classes (for a pentagon, J = {K,L} and K_ = M,
L_ = K if, as in Figure 4, K, L and M are the elements which are neither (0) nor X

with L C M). Moreover, by Theorem 1 (or 2), the Alg of any pentagon is semi-simple.

The following characterizes those V-distributive subspace lattices which belong to

both of the aforementioned classes and have semi-simple Alg’s.

THEOREM 3. Let L be a V- distributive subspace lattice on X satisfying V{L €
L:LeJ}=X andN{L_:LeJ}=(0). The following are equivalent.

(1) For every K € J, KN K_ = (0),

(2) L is an ABSL,

(3) For every Ke J, KVEK_ =X,

(4) Alg L is semi-simple,

(5) Alg L is semi-prime.
Proof. The implication (1) = (2) will be proved last.

(2) = (3): Assume that (2) holds. Then, as remarked in the introduction, J is the
set of atoms of £ and K_ = K’ for every K € J. Thus (3) holds.

(3) = (4): This follows from Theorem 2.
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(4) = (5): This is obvious, by the definitions.
(5) = (1): This follows from Theorem 1.

(1) = (2): Assume that (1) holds. We need only show that £ is atomic and

complemented.

First we show that every element of J is an atom of L. Let K € J andlet L€ L
satisfy (0) C L ¢ K. Then K € L so, by the definition of K_, L C K_. Hence
LCKnNK_=/(0),soL=(0). Thus K is an atom of L.

Next we show that £ is complemented. Of course, (0) has a complement in £. Let
M € L be non-zero. We show that M has complement M' = N{K_ : K € J and
K C M}.

Let K €¢ J. K C M,then MNM C M CK_,soMnM CK_. If
K ¢ M, then M C K_ by the definition of K_, and again M N M' C K_. Thus
MM Cn{K_:KeJ}=(0),so MNM = (0).

Since V{K € £L: K € J} = X, to show that M VM’ = X it is enough to show that
KCMVM, forevery Ke J. Let K€ J. If K C M, then certainly K C MV M'.
Suppose that K € M. We show that K C M'. Let W € J satisfy W C M. Since
KZMand W C M, W s# K. Hence, since W and K are atoms of £, W € K. By the
definition of W_, it follows that K C W_. This shows that K C M’'. Thus K C MV M’
and MV M =X.

Finally we show that £ is atomic. Let L € £ be non- zero. If K € J and K € L,
then L C K_. Thus L must contain an element of J (ifnot, L CN{K_ : K € J} = (0),
giving L = (0)). Since J consists of atoms, L contains an atom of £. Now X = V{K €
L:K € J} so, by V-distributivity, L=LNX =V{KNL: K € J}. For every K € J,
(0) C KNL C K and since K is an atom this implies that KX N L = (0) or K. Thus
L=V{K:K e J and K C L} and it follows that L is the closed linear span of the

atoms it contains. Hence £ is atomic and the proof is complete.

COROLLARY. (M.S. Lambrou [5,6,8]) Let £ be a completely distributive subspace

lattice on X . The following are equivalent.
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(1) Alg L is semi-simple,
(2) Alg L is semi-prime,
(3) £ is an ABSL,

(4) For every K € J, KN K_ = (0).

In this corollary, we may add
(5) Forevery Ke J,KVK_=X

to the list of equivalent conditions. For example, by this corollary, the Alg of any
totally ordered subspace lattice with more than two elements is not semi-simple (such
a subspace lattice is an example of a commutative subspace lattice whose Alg is not

semi-simple, given that the underlying space is a Hilbert space; so is £ of Example 1).

As promised earlier, the following example proves that the converse of Proposition
1 is false, inasmuch as it shows that there exists a subspace lattice with J = () whose Alg
is not semi-prime. More significantly, it also shows that, in general the semi-primeness
(respectively, semi-simplicity) of Alg £ is not just a purely lattice-theoretic property of
L: that is, it is possible to have two lattice-isomorphic subspace lattices £1 and £, (even

on the same space) with Alg £; semi-prime (respectively, semi- simple) and Alg £5 not.

A subspace lattice £ on X is called medial [2] if KNL = (0) and K VL = X for
every pair of distinct elements K, L ¢ {(0), X}. It is clear that J = 0 for every medial

subspace lattice with at least five elements.

EXAMPLE 3. In the following, for any operator S, G(S) denotes its graph.

Let H be a complex Hilbert space with 2 < dim H < oo, and let T' € B(H) be a
non-zero operator with square zero. On H @ H let £, be the medial subspace lattice

given by
Ly ={(0),G(0),G(I),G(T +al),G(T +pI),(0)d H H® H},
where o and § are any distinct elements of C\{0,1}. Then

A1g52={[6‘ g}:AeB(H) and AT:TA}.
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Since TAT = AT? = 0 whenever AT = TA, the left ideal of Alg L, generated by

0 T
On the other hand, there exists a subspace lattice £; on H @ H which is lattice-

[T 0 } has square zero. Thus Alg £, is not semi- prime.

isomorphic to £, and which satisfies Alg £y = CI [2]. Of course, Alg £; is semi-simple.

In the above example, £; and L, are medial subspace lattices on the given space
H @ H, each with seven elements, with Alg £; semi-simple and Alg £, not semi-prime.
Can subspace lattices with these properties, but with six, not seven, elements be found?
The answer is affirmative. Indeed, if we omit G(T + BI) from L,, the resulting medial
subspace lattice, M3 say, satisfies Alg My = Alg Ly, so Alg My is not semi-prime. If
we define the medial subspace lattice M by

My = {(0),G(0), G(I),G(-I),(0) ® H,H & H},

then

Alg My = {[6‘ ,?1] Ac B(H)},

and AlgM; is semi-simple, since B(H) is. (Incidentally, if the given space H @ H is
finite-dimensional, there is no subspace lattice M on it, isomorphic to M, and sat-
isfying Alg M = CI [2]; if H is infinite-dimensional and separable such an M does
exist [3].) Concerning semi-simplicity and semi-primeness, what can be said about the
Alg’s of medial subspace lattices with five elements, that is, double triangles? It is not
known whether or not there exists a double triangle whose Alg is not semi-prime. Our
final theorem shows how to obtain examples with semi-simple Alg’s. First we prove a
proposition. As remarked earlier, for any double triangle we have J = {}, so by Lemma
1 no rank one operator belongs to its Alg. In what follows (Qe, (I — Q) e) denotes the
linear span of Qe and (I — Q)e.

PROPOSITION 2. Let 7 = {(0), K, L, M, X} be a double triangle subspace lattice
on X with Hasse diagram given by Figure 5. Let the vector sum K + L be closed and
let Q € B(X) denote the projection onto K along L. For every pair of non- zero vectors

e € M, f* € M+ the operator

R=Q(f*®e)Q-(I-Q)(/"®e)(I-Q)
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is a rank two operator of Alg T with range (Qe, (I — Q)e).

Proof. Let ¢ € M and f* € M~ be non-zero vectors and let R be the operator defined
as in the above statement. Since @ and I — @ are both idempotent, RQ = Q(f* ® €)@
and R(I — Q) = —(I — Q)(f* ® e)(I — Q). The former gives RK C K since the range
of @ is K; the latter gives RL C L since the range of I — (J is L.

If € M, then since f*(z) = 0, we have
Rz =Q(f*®e)Qz —(I-Q)(f*®e)(I - Q)
=Q(f*®e)Qz —(I-Q)(f* ®e)r+(I-Q)f" ®e)Qu
=(f"®e)Qz — f*(z)(I — Q)e
= (f*®e)Qx
= " (Qz)e,

so Rz € M. Thus R € AlgT. Clearly (Qe, (I — Q)e) contains the range of R. But Qe
and (I — Q) e both belong to the range of R. For, since f* ¢ K~ there exists a vector
y € K such that f*(y) = 1. Also, since f* ¢ L there exists a vector z € L such that
f*(z) = —1. Then

Ry =Q(f"®e)Qu=Q(f" ®e)y = f*(y)Qe = Qe

and

Rz=—-(I-Q)f"®@e)I-Q)z=-(I-Q)f"®e)z=—f"(2)I—Q)e=(I-Q)e.

Hence the range of R is (Qe, (I — Q) ¢). It only remains to show that Qe and (I — Q)e

are linearly independent, and this is fairly clear.

COROLLARY. With R and Q) as in the statement of Proposition 2, for every operator
J € Alg T we have

- JQ=QJ and (JR)® = f*(QJe)[JR].

Proof. Let J € Alg7. Since J leaves K invariant, JQ = QJQ. Since J leaves L
invariant, J(I — Q) = (I — Q) J(I — Q). These two equalities give JQ = QJ.
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With E = f* ® e we have

JR=JQEQ—-J(I-Q)E(I-Q)
=QJEQ-(I-Q)JE(I-Q)

SO

(JR) = [QJEQI* +[(I - Q) JE(I - Q)
=[Q" " @QJ +[(I-Q)f* @I -Q)Je)
=Q 1 (QJI)QIEQI+ (I - Q)" f*((I-Q)Je)l(I - Q) JE(I - Q)]
= A (QJe)QIEQI+ f(I - Q) Je)lI - Q) JE(I - Q)].

But f*(QJe) + f*((I — Q) Je) = f*(Je) = 0, since Je € M and f* € M*. Thus
(JR)? = f*(QJe)[JR], as required.

THEOREM 4. Let 7 = {(0), K, L, M, X} be a double triangle subspace lattice on X
with Hasse diagram given by Figure 5. If the vector sum K + L is closed, then Alg T is

semi-simple.

Proof. Let the vector sum K + L be closed and let @ € B(X) be the projection onto K
along L. Now QM is a linear manifold and QM C K. In fact QM is dense in K. For
this, it is enough to show that if g* € X* and QM C ker g*, then g* € K+. Suppose
that QM C ker g*. Then ¢*(Qz) = 0 for every z € M, so Q*g* € M*. However, Q*
has range L', so Q*¢* € M+ N L+ = (0). Thus ¢* € ker Q* = K*.

Similarly (I — Q)M is dense in L.
To show that Alg7T is semi-simple it is enough to show that for every non-zero

operator J € Alg7, there exists a rank two operator R of Alg7 such that JR is a

non-zero idempotent.

Let J € AlgT be non-zero. By the preceding corollary, JQ = QJ. We cannot
have JM = (0). For if JM were (0), then for every vector z € M we would have
JQz=QJz=0and J(I-Q)z=(I-Q)Jz=0,s0 QM C ker J and (I-Q) M C ker J.
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But QM is dense in K and I—Q) M is dense in L, so we would have KVL = X C ker J,
which is a contradiction. Thus JM # (0), so Je # 0 for some vector e € M. Now
Je € M and Je # 0, so Je ¢ L (since LN M = (0)) and @Je # 0. Since QJe € K,
QJe ¢ M. Hence, by the Hahn-Banach theorem, there exists a vector f* € M~ such
that f*(QJe) = 1.

Put R=Q(f*®e)Q — (I - Q)(f*®e)I — Q). By Proposition 2, R is a rank
two operator of Alg 7. Finally, JR is non-zero and idempotent. For, by Proposition 2,
R has range (Qe, (I — Q) e) and JQe = QJe # 0, so JR # 0. Also, by the preceding
corollary, (JR)? = f*(QJe)[JR] = JR. This completes the proof.

Note that the preceding theorem does not extend to medial subspace lattices with
more than five elements. Indeed, £, in Example 3 has the property that K + L is a
closed vector sum for every pair of elements K and L, but Alg L, is not semi-simple.
(The medial subspace lattice M obtained by omitting G(T' + 8I) from L, also has this
property, and Alg My = Alg L5.)
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