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ThlNnR PRODUCT ALGEBRAS Al'<"'D TI-lli FUNCflON THEORY OF 

ASSOCIATED DIRAC OPERATORS 

John Ryan 

INTRODUCTION: The aim of this paper is to introduce a countably infinite number of algebras 

associated to Rn , each of which contains a generalization of the Cauchy-Riemann equations, 

and integral fmmulao The first of these algebras is the Clifford algebra, and the 

associated ;;malysis is called Clifford analysis [2]. We demonstrate that a large number of results 

from Clifford analysis can-y over to these other including the formulae for 

extensions described in We utilise these formulae to describe Cauchy 

Kowalewski extensions of the kernel for the Fomier transform. Motivated [ 4,8] this leads us 

to construct mutually annihilating idempotents in these algebras, and to associate new differential 

l n-1 operators to this kernel. These idempotents enable us to construct from L functions on R 

solutions of these differential operators in the upper and lower half spaces. We show that from 

these solutions we can construct solutions to other differential equations including the heat 

equation. 

Inner Prod~: From Rn equipped with the inner product <, > we can construct the 

Clifford algebra . By taking the orthonormal basis e1 of Rn we can construct the 

, where 1 :::; r !> n and J1 < ... . Moreover, 

+ 0 One important property of An(l) is that each non-zero vector x ERn has 

-1 a multiplicative inverse x -x 
____,., 0 

ffxll"' 

.,...,_ -l . h y l 0 
• f h 1 he vector x 1s t e l'l..e vm mverse o t e vector x 0 

take the tensor algebra, T(Rn) , of Rn, ie the algebra 

One way, [1], to construct An(l) is to 
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and factor this algebra by the two sided ideal, I1, generated by the set 

{x®xEB<x,x>:xeRn}. 

In greater generality we can, for fixed k e { 1,2, ... ,m, ... } take the two sided ideal Ik , 

generated by the set {;k x- (-1)k <x,x>k: x eRn} and construct the algebra T(Rn)/lk. We 

shall denote this algebra by An(k), and we shall call this algebra the k-th inner product algebra 

of Rn. When k = 1 the algebra that we get is just the Clifford algebra An(1). 

From the construction of these inner product algebras we can see that for k1 and kz 

positive integers with k1 ~ kz there is a canonical projection P~,k1 : An(kz)---+ An(k1). Also 

there is a canonical projection pk: T(Rn) ---+ An(k) . We shall identify Rn with pk(Rn). By 

allowing the vectors 1,el' ... ,e1 ... en to be an orthonormal basis for An(1) we may use the 

projection Pk,1 to pull back the norm on An(l) to obtain a pseudonorm on An(k), for k > 1 . 

Again, each vector x e R~{O} has a multiplicative inverse x -l in An(k) . The inverse 

f · Zk-1 -k Wh k 1 th 1 -I 1 . "d "th h K 1 . o x 1s -x <x,x> . en :1- e e ement x no onger comc1 es w1 t e e vm 

inverse of x . 

Generalized Dirac Operators: For e1' ... ,en e Rn !: An(k) we call 

operator associated to the algebra An (k) . 

n 
Dk = L eJ . .1_ the Dirac 

j=1 ax. 
J 

When k = 1 this differential operator coincide with the Dirac operator used in Clifford analysis 

(see [2]). 
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Definition: Suppose that U is a domain lying in R11 and f: U -t An(k) is a c1 function. 

Then f is a called a left A11(k) function if Dk f (x) = 0 for each x E U. 

When k = 1 , this definition coincides vvith the usual definition of a left regular, or left 

monogenic function (see [2]) . 

1 

A C' function f: U _, An(k) is called a A (k) function if f (x) D, = 0 for all n K 

n 
x e U, where f 1: a f(x)e .. 

- J ax. 
J 

Consider the function H, : R 1\.[ 0} -> R , where n > 2 and 
IC 

H / ) II ~ 1-n + 2k ~ d , k ~x = x 1 ror n even an ,, < n 

H k 

llxll for n even and k == n 

log llxll + Ak llxli2k-n for n even and k > n , where Ak e 
l-

and is chosen so that 6.11"' Hk(x) = 0 , where 11 is the Laplacian is Rn . n 

H ( ) II ,,-n + 2k c dd .o.~k · x = XII ror n o . 

Then as 11nk Hk (x) = 0 we have from the construction of the inner algebras that 

2k-l a left :tuntctton, and a right An (k) function. 
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Theorem (Cauchy's integral formula) : Suppose that f: U---; An(k) is a left An(k) function and 

x0 e U . Then for each compact n-dimensional manifold M , with e M and M !: U we 

have 

n . 
where Wx = :E e. (-lY , and Bk, e R\{0} , is a normalization constant 

j=l J 

Outline Proof: From Stokes' theorem we have that this integral is identical to 

~-l Bk Dk2k-l Hk(x-x0) n(x) f(x) d Sn-l(x0,r), 

S (x0,r) 

where Sn-l (x0,r) r;;; M , is the (n-1) dimensional. sphere centred at x0 and of radius r , n(x) 

is the outward pointing vector, norrnal to Sn-l(x0,r) at x, and dSn-l(x0,r) is the Lebesgue 

n-1 ?k-1 
measure on S . As Dk- Hk(x) is homogeneous of degree -n+ 1 we have that 

=lim 
r-__,o 

So we only need to compute f 
sn-1 
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Now Bk Dk2k-1 Hk (x) can be expressed at Pk(x) , where Pk(x) is an An(k) valued 

llxlln-1 

polynomial. From the symmetry of the sphere it can be seen that the integral only depends on the 

terms of Pk(x) of odd order. Again from the symmetry of the sphere we can see that the 

integral 

2 jl 2 jn 
only depends on the terms of the form (x1 ) ... (xn ) x A. . , where j1 ... jn £ {0,1, ... } 

J1 ··ln 

and 

So 

f Pk(x) X d sn-1(0,1) = L A. . A.. A.. ' 
1 . . J1···J J1··· J sn- (0,1) J1. ··Jn n n 

f 2h 2jn n-1 
where A.. . .• A.. = (x1 ) ... (xn ) d S (0,1) . 

Jl ln sn-1 (0,1) 

A straightforward calculation now reveals that the formula x2k = <x,x>k, for x eRn!: An(k) , 

gives us 

0 

When k = 1 the previous theorem gives the generalized Cauchy integral formula from 

Clifford analysis (see for example [2]). 
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For k > 1 the previous result contradicts [6, theorem 1] . 

Having obtained Cauchy integral formulae for the inner product algebras it can be seen 

that many results on Clifford analysis extend to these algebras. 

As each vector x e Rl\.{0} has an inverse in An(k) it is also the case that many of the 

main results in [9] carry through to these algebras. We shall now briefly illustrate this point. 

Suppose that S is a c1 , orientable surface lying in Rn , so S is a manifold of 

n-1 n-1 dimension (n-1) . Suppose that n: S ____. S is a Gauss map for S. Then for each xeS 

we have that 

. -1 
Dk = n(x) n (x) Dk , 

and 

-1 a n(x) Dk = --+ r (k,x) , 
an(x) s 

where _a_ denotes the partial differential operator normal to S at x , while r s(k,x) is a 
an(x) 

differential operator acting over the tangent space TSx . 

When k = 1 the operator rs(k,x) has previously been described in [9] . 

The operator r 8(k,x) can be seen as a generalized Dirac operator of a surface. 
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We may now take an open covering, {Ua :a e I, for some indexing set I} , of S . 

For each a e. I there is an interval (aa,ba) ~,;,; R which contains the origin, and for each 

de. (aa,, ba) we can construct a surface ua,d = {x + d n (x) : x £ Ua} . When d = 0 we 

recover the surface U a . 

For each smooth map ljl : R ____, U a we may construct the smooth map 

$a: R ____, ua,d: <Jlct<t) = ¢!(t) + dn(lp(t)). On differentiating these maps it can be seen that the 

tangent space of U a,d at x + d n (x) is a translation of the tangent space of U o: at x . 

Consequently n(x) is a normal vector at x + dn(x) to U a,d . So for each x + dn(x) e U a.,d 

we get 

Dk = n(x) _d_ + n(x) r U (k, x + dn (x)) . 
dn(x) a,d 

If S == Sn-l then we may cover this surface by itself and the construction gives the 

subdivision of Rn\{0} into concentric spheres all centred at the origin. 

By noticing that any homogeneous left An (k) polynomial is an eigenvector of the 

a operators r - and r n-l (k,x) , we obtain 
ar S (O,r) 

a n(x) 
Dk = n(x) -+ -.,.-r n-l (k,x). 

ar . s (0,1) 

In this case it is easily seen that the operator r U (k, x + dn (x)) depends on the 
a,d 

variable d. 

As the operator Dk has a Cauchy integral formula associated to it we can, on taking the 

complexification, An(k) (() , of An(k) , derive analogues of the Huygens' principle integrals 



220 

described in [3, 10] for n even, and greater than two. Using these integrals, and their odd 

dimensional analogues, it is straightforward to adapt arguments given in [7] to determine: 

Theorem: (Cauchy Kowalewski theorem) Suppose that S is a real analytic, oreintable surface 

lying in Rn and f : S --1 is a real analytic function, then there is a neighbourhood 

D 

Following [9] we could try to express F , in some neighbourhood of U f , as a series of 

"" 
the form L, dmA.m k(f)(d,x) . 

m=O ' 

It is easily seen that = f(x) . · Moreover, 

/,1 k(f)(d,x:) = r U (k, X+ dn 
' a,d 

• • f (x + dn (x)) , where f (x + dn = f(x) . Continuing 

in this way we obtain 

f(x + dn 
00 (-l)mdm a m * 

1 . (- + rU (k, X+ dn (x))) f (n + dn (x)). 
m. ad a,d 

When k = 1 this formula corresponds to an expression given in [9] . 

One important case arises when S = R n-l, the space spanned by e2 , ... ,e , and the 
~ n 

. . . . -i< it. t > -> -> n-1 analyuc funcuon 1s the kemel of the Founer transform, e ' · , where x , t e R . 

The Cauchy Kowalewski extension of this kernel to a left An (k) function is 
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where multiplication is taken within the algebra A (k) . This extension is well defined on all of - n 
• _,-+ :-. n 

n (' ""') -l < x t > Th' f · · 'h'l ed b h - 0 "" R-. So is exp 1 x1 t e ' . 1s unction 1s anm 1 at y t e operator Dk =-+ . .<:. 

axl J=2 
a e.-. 

J ax. 
J 

• -)-! 1 
Usually one is interested in the Fourier transform f e-1 < x, t > h(it) df where 

Rn-1 

h(f) belongs to some suitable function space. Suppose h(t) e L 1 (Rn-l , A11 (k)) , the A11(k) 

module of A (k) valued L 1 integrable functions over Rn-l . Then when k = 1 we can, 
n 

following [8], introduce the mutually annihilating idempotents 1/2 (1 + i_l_) and 1/2 ( 1 - i_l_). 

Jltll iit'ii 
-! 

On noting that i t (1 + i. t ) = + 11111 ( 1 + i-t- ) we have, [8] , 
:z- - lltll - 2 - litll 

• -)-! 11 4 11 . -) _, -! .. (" -,;) -I<x,t>_ x1 t, -t<x,t> 112 (1 +- .;_t_) exp J. x1 [ e - e . , 
irtll 

+ e -xlllt'll - i < Jt,1 >. 112 (1 - i_t_ ). 

Will 

· r x lltll- i <itt> . 1 -+ -.,n-1 We now have from [4,8] that (1) J e 1 ' 1/2 (1 + 1-) h(t) dt is 
Rn-1 IITII 

well defined for < 0 and {ii) for x1 > 0 the integral 

114 11 . _,-) -! 1 f e -xl I t · - 1 < x, t > 1/2 (1 -i+) h(t) d1n- is well defined. 
Rn-1 lltll 

In both cases these functions are annihilated by the operator D 1 . 
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We would like to obtain analogues of these observations for the cases where k > 1 . 

However, for k > 1 the elements 1/2 (1 + i t ) are no longer idempotents, nor are they 
- lltll 

mutually annihilating. But the elements 1/2 (1 ± i_j_ k ) are mutually annihilating idempotents 

lit II 
of the algebra An(k), for k odd. Moreover, when k is even the elements 1/2 (1 + tk ) are 

lltllk 
mutually annihilating idempotents of the algebra An (k) . 

Within An(k) we also have 

kodd 

and 

keven. 

Consequently, within An (k) 

where k = 2l + 1 . 
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This function is well defined on Rn and it is annihilated by the operator 

n k a + (!: e. a)-. 
axl j=2 J axj 

Similarly, within A11(k) 

~ 'JP • -l-l 
exp(-(-l)~~x7t~{,) e -l < x,t > 

where k = 2£. 

This function is wen defined on R0 and it is annihilated by the operator 

n - k a + CE e .. a) . 
dxl '=2 J ax. 

J .J 

Simple inequalities now give us: 

Theorem: Suppose that h £ L 1 (Rn-l, A (k)). Then 
n 

(A) when k = U + 1 the integral 

is wen defined for x1 > 0 and C odd, and for x1 < 0 and f even. 
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(B) when k == 21! + 1 the integral 

is well defined for x1 > 0 and f even, and for x1 < 0 and f odd. 

(C) when k = 2£ the integral 

(1) 

is well defined for x1 < 0 and f odd, and for x1 > 0 and f even. 

(D) when k = U the integral 

is well defined for x1 < 0 and f even, and for x1 > 0 and f odd. 

n 
All of these functions are annihilated by the operator a + ( L e. a )k . 

':\- , 2 ]':'1-
axl J= axj 

D 
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By considering the images of these functions under the projection we obtain solutions to 

other differential equations within An(l) . In particular when k = 2 we obtain solutions to the 

n 
heat operator a + ( I, e. 

ax1 j=2 J 

Note that when k is even only the function (1) can be projected to a function which is 

not identically zero. 

. £ -at + 1 -i< ~.1 > The construction of the functmns exp (-1(-1) x1 t ) e and exp 

(-(-1)1x172f.) -ei < i,t > · 1 f h c 11 · · • are spec1a' cases o t. e 10 owmg constructions: 

Suppose that L is a linear operator acting on a space of functions defined over a domain 

U in Rn-l . If g belongs to this space then, provided convergence is well defined on some 

neighourhood U g , of U , within Rn , then the series 

"" m m m 2: (-1) X 1 L t) 
m=O --,m,.,.'-'7-· --- g x 

is annihilated by the operator () + L , for each x1 + }t e U g 
axl 

(2) 

A . ' Rn-1 Rn-1 . bo d d c. , d T Rn-1 Rn-1 . s a spec1a• case g : ---; 1s a un e .. uncnon ll1l : ---; 1s a 

linear map. Then the series 

"' m m 2: (--l) xl r 111 g(il) 
m=O m. 

is well defined for each x eRn lllld this function is annihilated by the operator ~ + T, 
ox1 

Special cases of the series (2) appear in [4,5]. 
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