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THE NATURAL GENERALIZATION OF THE NATURAL CONDITIONS OF 

LADYZHENSKAYA AND URAL'TSEVA 

Gary M. Lieberman 

In the 1960's, Ladyzhenskaya and Ural'tseva [4] introduced a 

set of hypotheses for divergence structure elliptic operators which 

arise in a natural way and which lead to important estimates on the 

solutions of equations involving such operators. Here we discuss 

a more general set of hypotheses which achieve the same ends while 

also being the most general such, in a sense explained below. 

Specifically divergence structure elliptic operators are those 

of the form 

Qu div A(x,u,Du) + B(x,u,Du), 

for some vector function A and scalar function B. Ladyzhenskaya 

and Ural'tseva assumed that A and B satisfied the hypotheses 
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for some m > 1 and suitable nonnegative functions a 0 , a 1 , a 3 , a 4 , 

b 1 , b 2 , b 3 , and constants a 2 and b 0 . 

The motivation for introducing (H1)-(H3) comes from a related 

minimization problem: to find a function which minimizes the 

functional 

I(u) J0 F(x,u,Du) dx 

over all functions u satisfying a suitable boundary condition (for 

example, u =~'a known function, on an). If F(x,z,p) = IPim, then 

the Euler-Lagrange equation for this functional is div(IDulm-2ou) = 

o, which is elliptic if and only if m > 1. More is true in this 

case: if we differentiate out the Euler-Lagrange equation, we 

obtain an equation of the form aijoiju 0 for some positive 

definite matrix (aij) with the ratio of maximum to minimum 

eigenvalues uniformly bounded. For short we say that the equation 

is uniformly elliptic. Another advantage to such structure is that 

the natural space for minima of the integral is the Sobolev space 

wl,m which has many useful functional analytical properties. More 

general structure conditions lead to the study of Orlicz spaces, 

which are more complicated. It was, in part, the study of more 

general structure conditions which led Trudinger to his 

investigation of Orlicz spaces [9]. 

Another important reason for studying such operators is that 

solutions of the equation Qu = 0 have good regularity properties. 
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Ladyzhenskaya and Ural'tseva showed under these hypotheses that 

(1) all weak solutions are bounded if bo = 0, 

(2) all bounded solutions are Holder continuous. 

If also A is differentiable with respect to the variables x,z,p and 

(H4) 

then 

(3) all solutions have Holder continuous gradient. 

(Their proof was based on the corresponding results of DeGiorgi [1] 

for linear equations, which are included as a special case of this 

structure form= 2.) It was later shown by Moser (5) (for linear 

equations), and then by Serrin [6] (for b 0 = 0) and by Trudinger 

(8] (in general) that 

( 4) all nonnegative solutions satisfy a Harnack-type 

inequality. 

If we now consider the functional I with f(x,z,p) = G(IPI), 

the Euler-Lagrange equation is div(g(IDui)Du/IDul) = 0 for g = G'. 

This equation will be uniformly elliptic precisely if there are 

positive constants 6 and g0 such that 

(G) 6 ~ tg'(t)/g(t) ~ g0 fort> o. 

Our natural conditions here are those of Ladyzhenskaya and 

Ural'tseva with the function tm-1 replaced by g(t) with g as above. 
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That is, we assume that 

( H1') 

(H2') 

( H3') 

0( I Pig( IPI))' 

(Such structure conditions were shown to imply a gradient bound by 

Simon [7].) We can show that (1), (2), (3) and (4) are true under 

these hypotheses also. (Of course we only need (H4)' for ( 3).) 

Since Ladyzhenskaya and Ural'tseva use the homogeneity and 

multiplicative properties of power functions, their proofs must be 

modified to to these more general conditions. The necessary 

modifications in fact simplify the proofs of the regularity results 

even for the power case. Instead of the Sobolev inequality for wl.m 

functions with m > 1, we only need it for m = 1 (the case which 

implies ·the inequality for m > 1), and we use a weak form of 

Young's inequality. 

First we show that condition (G) is satisfied by non power 

functions. For , g(t) = tmln(t + 1) (m > 1) also satisfies 

condition (G) with 8 = m and g0 = m + 1. (In fact, tg'(t)/g(t) 

decreases from m + 1 to m as t i;ncreases from 1 to co. ) More 
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generally there are functions g which satisfy our condition (G) 

with arbitrary 6 and g 0 and these constants are best possible even 

in a neighborhood of oo. To obtain such a function, choose numbers 

8 > a > E > D, define tj inductively by 

2' tj+l 

and take g(t) to be t"" if o _:<:; t :::; t 0 , (t2k)'=>-B-£t/1+c if t 2k _:<:; t :::; 

t 2k+l for some nonnegative integer l<, and (t2k+l)B+c-ata-£ if t 2k+l _:<:; 

t :::; t 2k+2 • It follows that condition (G) is satisfied for 6 = a - '­

but no larger 6 and g 0 = 8 + '- but no smaller g 0 . 

To demonstrate the basic ideas involved, we prove the local 

boundedness of solutions under simpler hypotheses, namely B = 0 and 

a 1 = a 3 = a 4 = 0. Using 1· to denote a cut-off function in a ball 

of radius 1, we use rp (u-k)+ls as test function in the weak 

form of the equation Qu D, and we write 2:: for the subset of B1 on 

which u > k. Then 

NmJ we use Young's inequality in ·the form ag(b) :::; ag(a) + bg(b), 

which follows from the monotonicity of g, with a 

and b = jDul to see that 
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From condition (G), we infer that t-ag(t) is a decreasing function 

of t if a ~ g 0 • Hence if s = g 0 + 1 and K is an upper bound for 

!Dr!, we have 

Now we recall that G' g and observe that 

I DG(K(u-k) I K!Du!g(K(u-k))! 

~ K!Du!g(!Du!) + K[g(K(u-k))K(u-k)]~ 

1 ~ tg(t)/G(t) ~ 1 + g 0• 

Using these inequalities and the Sobolev inequality, we conclude 

that 

(E) <h ls!G(K(u-k))in/(n-l))(n-1)/n ~ CKh !G(K(u-k))!. 

Standard methods now can be used to bound u on the ball s112 , which 

is concentric to B1 with radius 1/2. For k > 0 to be chosen and 

any positive integer N, we define 



157 

and ""Je write B(N) and A(N) for the balls concentric with B, having 

radii RN and (RN + RN+l)/2, respec·tively. In our es'cimate (E), we 

take K = 1/pN and replace k by kN. For 

we find ·that YN+l :«; (YN) 1+1/n, and therefore YN tends to zero as 

N tends to inf if :«; c1 , a known constant. This inequality 

holds if k is chosen so that 

( ncte that B ( 0) = B1) , 1\Vhile Y N ·tending to zero means that u :«; k on 

B112 • Therefore u is locally bounded since ·this argu:men·t is easily 

modified ·to handle t:he case that Qu = 0 only on a ball of any 

radius. The Holder regulari·ty and Barnacle inequality 

follmJ by similar modification of the po"i>Jer case. 
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