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MIXED VOLUMES AND CONNECTED 
VARIATIONAL PROBLEMS 

N.M. Ivochkina* 

ABSTRACT. The recent achievements concerning m-curvature equations gave a 

new point of view to the geometrical theory of mixed volumes of convex bodies which 

was developed by A.D. Aleksandrov in I938-I940. A principal goal of this paper 

is to pose corresponding variational problems correctly and to formulate sufficient 

conditions for the existence of minimizers. 

1. MIXED VOLUMES. Let X, P be two n-dimensional Euclidean spaces and 

u(x), v(p) be a pair of functions from C2 • Define mappings Hu, Hv as follows: 

Hu : X -+ P, p = Ux, 

Hv : P -+ X, X = Vp. 

We have a composition Hvu = Hv o Hu and 

H vu : X -+ X c X . 

The mapping Hvu generates an exterior n-form Wn = dx 1 1\ ... 1\ dxn. We mix this 

one with Wn = dx 1 1\ ... 1\ dxn as was done in [I) 

where a-(i) is I or -I in accordance with the transposition i = (i1 ... in) being even 

or odd and i1 < ... < im, im+l < ... < in. 

The exterior n-form (I) may be written in a more compact form as 

Wm,n-m[Vj u) = JL;;.[uj Wn. (2) 

* The support of the Centre for Mathematical Analysis (Canberra). 
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The operator J.l~[u] defined by (2) is a differential operator of the second order 

generated by u, Vo As Wm,n-m is a volume in some sense, it is natural to call J.t~Ju] 

an operator density and to consider such u, v that ~~~[u] ~ Oo 

Examples. (i) v = ~ p2 , u(x) is any function from C 2 • Then 

~~~[u] = fl~[u] = (~) [uxx]m 

where [uxx]m is a sum of all m-order minors of the Hessian matrix Uxx· The set of 

non-negativity of p,f/. contains a cone 

K[!. = { u E C2 ; [uxx]i > 0, i = 1, ... , m} (3) 

as a connected component (2). In the case m = n K[! coincides with the set of 

convex functions. 

(ii) v = -}1 -t-p2 , u(x) is any function from C 2 • Then 

p,::r,[u] = fJm[u] = (l) Sm(k) 

where Sm ( k) is an elementary symmetric function of the principal curvatures k = 

... kn) of the graph ( x, u( x) ). A cone similar to (3) is 

Km={uEC2 ; S;(i)>O, i=l, ... ,m} 

in this case [2]0 As .Um[tt] has a simple geometrical sense, we shall use sometimes 

the notation llm[r] or Jtm[on] where r, an are surfaces. 

(iii) If v(p) is a Lagrange transformation of the convex function u(x) 

- tl 1 X= Vp, 

then p,~[u] = u, [1]. 

2. VARIATIONAL PROBLEMS. As soon as p~[u] was interpreted as the 

density of a measure it was reasonable to consider a family of functionals 

I:;,.(u) = v(ux)W~1 ,n-m = 1 v(ux) Jl~[u] dx. 

Paper [1] contains the following assertion. 
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Theorem L An equality 

8I~ ( ) v [] 8u = - n - m flm+l u 

holds for any u, v E C2 . 

Therefore an equation 

(5) 

would be the Euler-Lagrange equation for the functional 

I~[u] =I~(u)+(n-m) fn!(x,u)dx 

if Hm =of jou. As a particular case we get the (m +I)-curvature equation corre-

sponding to the generalized area functional 

Im(u) = L (Jl+u~ fim[u]+(n-m)f(x,u))dx. (6) 

However the integrands of these functionals depend on the second derivatives of 

u( x) and we cannot hope to proceed in the usual way with them. The first obstacle 

is a mixed type of equation (5) in C2 (D). But it would be an elliptic type in the 

cone K:;, = {u E C2 (n);t-ti[u] > O,i = l, ... ,m} ifv(p) is convex [2]. The second 

obstacle is boundary conditions. ri'o make the situation dear we shall take as an 

example the functional (6) and its Euler-Lagrange equation 

r]-B.T ( \ flm+l[U- m+lx,u;. (7) 

Connect with any u E a set 

r 2 - I } Mu =tv E C (D) ;v1 811 = (f'(x),vn -t!n :S: 0 

where r.p E C2 (on) is a known function, Vn meaES a derivative along the inner 

normal to on here and further. contains if u lao = (f'( x). The following 

proposition has been proved in [3]. 
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Lemma 2. Let u E C2 (i1) be a minimizer for Im(u) on the set M,.. Assume that 

onE C2 is a closed surface in Rn, <p E C2(8n), f E C1 (n x R1 ). Then u(x) is a 

solution of the equation (7) and the inequality 

OP,m[u] > 0 X E an 
OUnn - ' 

(8) 

is fulfilled. 

The value 0P,m[u]/8unn depends on the derivatives of <p, an and Un only. Since 

we may look at (8) as the additional assumption on Un, it is reasonable to consider 

(8) as the second boundary condition in some sense. But it is not conditional on 

u(x) in the end of ends. For example if <p(x) = 0, then (8) is equivalent to 

(9) 

as it was shown in [4]. Since we have Un::::; 0 on an for any u E Km+l, ulan= 0, 

inequality (9) becomes a condition on the type of boundary. 

Lemma 3 contains sufficient conditions for p, to be a minimizer [3]. 

Lemma 3. Let u E Km+l be a solution of the equation (7) and ulan = cp(x). 

Assume that fl is a bounded domain, an, so E C2 , Hm E C1 (i1 xR1 ), aHmjau 2:0. 

Then u(x) gives a strict local minimum to Im with f = - J:1 Hm(x, t) dt, 'Pl = 

maxan <p, on the set M,.. 

vVe see that the principal question in this subject is the solvability of the corres-

ponding Dirichlet problem. 

3. EXISTENCE THEOREM. The recent achievements in the theory of m

curvature equations [3],-[9]lead to the following assertion. 

Theorem 4. Let 1::::; m::::; n- 1, £ 2: 2 and 0 <a< 1. Assume that 

(a) n is a bounded domain in Rn, n 2: 2, an E CH2+<> n Km; 
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(10) 

with some X > 0, Wn being the volume of the unit ball in Rn; 

(d) them-curvature of of'l denoted by hm(x) is connected with Hm(x,<pr) by 

the inequality 

(11) 

Then there exists a unique solution u E CH2+o:(fi) n Km of the problem 

;.tm[u] = Hm(x,u), ulan= <p(x). (12) 

Corollary. There exists a set Mu such that the functional Im-l achieves its local 

minimum on Mu if the assumptions of theorem 4 are fulfilled for some R;::: 2. 

Rema:rks. (i) The inequality (10) was formulated in [4] as a consequence of a sharp 

condition: 

{ Hm(X,)Ol)dx:::; (1- x) f f-lm-l(oE)ds 
jE laE 

where E is any subdomain of f'l with 8E E Km-1 (see [4]). 

(ii) The inequality (11) was discovered by Trudinger [5], [6] as being necessary 

for solvability of problem (12) with any smooth boundary function <p( x ). 

Theorem 4 may be proved by combining some results from [4]-[6], [7], [8]. 
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