SURFACE MEASURES -

MAXIMAL FUNCTIONS AND FOURIER TRANSFORMS

Michael Cowling and Giancarlo Mauceri

Let S denote a smooth hypersurface in \mathbb{R}^{n+1} with surface measure $d S$ induced by the Lebesgue measure of \mathbb{R}^{n+1}. We fix a smooth nonnegative function w with compact support in \mathbb{R}^{n+1} and consider the finite Borel measure μ with $d \mu=w d S$, which is carried by S. For any function f in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n+1}\right)$ we denote by $M_{t} f$ the averages of f over the dilates of S -

$$
M_{t} f(x)=\int_{S} f(x-t y) d \mu(y) \quad \forall t \in \mathbb{R}^{+}, \quad \forall x \in \mathbb{R}^{n+1}-
$$

and by $M_{*} f$ the associated maximal function -

$$
M_{*} f(x)=\sup _{i>0}\left|M_{i} f(x)\right| \quad \forall x \in \mathbb{R}^{n+1}
$$

Our purpose is to determine the range of p 's for which an a priori estimate of the form

$$
\left\|M_{*} f\right\|_{p} \leq C\|f\|_{p} \quad \forall f \in \mathcal{S}\left(\mathbb{R}^{n+1}\right)
$$

holds; this estimate entails that the sublinear operator M_{*} extends to a bounded operator on the Lebesgue space $L^{p}\left(\mathbb{R}^{n+1}\right)$, hereafter abbreviated to L^{p}. In the last decade, since Stein's work on the "spherical maximal function" [S1], [SW], this problem has attracted considerable attention [B], [CM1], [CM2], [G], [SS1], [SS2]. It turns out that, at least when $p<2$, the range of p 's for which the maximal operator M_{*} is bounded on L^{p} is determined by the decay at infinity of the Fourier transform $\hat{\mu}$ of the measure μ.

THEOREM 1. If for some $\alpha, 1 / 2<\alpha \leq n / 2$

$$
|\hat{\mu}(\lambda \sigma)| \leq C(1+\lambda)^{-\alpha} \quad \forall \sigma \in S^{n}, \quad \forall \lambda \in \mathbb{R}^{+},
$$

then the maximal operator M_{*} is bounded on L^{p} if $p>1+1 / 2 \alpha$.

The proof of this theorem can be found in [CM1]. Later Rubio de Francia [R] proved that the theorem holds for any compactly supported Borel measure μ.

It has been known for a long time that the decay at infinity of $\hat{\mu}$ is related to the curvature of the surface $S[\mathrm{Hl}],[\mathrm{Hz}]$, [L]. In particular Littman [L] proved the following result.

THEOREM 2. If at every point the hypersurface S has at least k nonvanishing principal curvatures then

$$
|\hat{\mu}(\lambda \sigma)| \leq C(1+\lambda)^{-k / 2} \quad \forall \sigma \in S^{n}, \quad \forall \lambda \in \mathbb{R}^{+}
$$

Thus if at every point S has at least k nonvanishing curvatures, where $k \geq 2$, Theorem 1 applies and M_{*} is L^{p}-bounded for $p>1+1 / k$. However if for some σ in S^{n} the Fourier transform $\hat{\mu}(\lambda \sigma)$ decays of order less than $1 / 2$ as λ tends to $+\infty$ (as might be the case if at some point less than 2 principal curvatures are different from zero), Theorem 1 no longer applies. Indeed examples show that in this case M_{*} may fail to be bounded even on $L^{2}[\mathrm{C}]$. Since M_{*} is obviously bounded on L^{∞} it follows by interpolation that M_{*} cannot be bounded on L^{p} for any $p<2$. Nevertheless, even when $\hat{\mu}$ fails to decay sufficiently fast at infinity, one can prove L^{p}-boundedness of the maximal operator M_{*} for some $p>2$. Indeed in [CM1] the authors proved the following theorem.

THEOREM 3. Let u be a nonnegative bounded Borel function on S such that $\mu\{x \in S: u(x)=0\}=0$. Suppose that there exist positive real numbers α, β, ϵ such that
(i) $\left|\left(u^{\alpha} \mu\right)^{\wedge}(\lambda \sigma)\right| \leq C(1+\lambda)^{-1 / 2-\epsilon} \quad \forall \sigma \in S^{n}, \quad \forall \lambda \in \mathbb{R}^{+}$.
(ii) $u^{-\beta}$ is integrable with respect to the measure μ.

Then M_{*} is bounded on L^{p} for $p>2(1+\alpha / \beta)$.

The basic idea of the proof of Theorem 3 is that by (i) and Theorem 1 the maximal operators M_{*}^{z} corresponding to the measures $d \mu_{z}=u^{z} d \mu$ are bounded on L^{2} when $\operatorname{Rez}=\alpha$, while from (ii), the operators M_{*}^{z} are bounded on L^{∞} when $\operatorname{Rez}=\beta$. Thus, by complex interpolation, $M_{*}=M_{*}^{0}$ is L^{p}-bounded if $p>2(1+\alpha / \beta)$.

The rolle of the function u in the statement of Theorem 3 is to mitigate the effect of the points of S where the curvature vanishes. Thus we shall call it a "mitigating factor". This result raises two natural questions:
(1) for every hypersurface S is it possible to find a mitigating factor u such that, for some exponent $\alpha,\left(u^{\alpha} d \mu\right)^{\wedge}$ has optimal decay, i.e.

$$
\left|\left(u^{\alpha} d \mu\right)^{\wedge}(\lambda \sigma)\right| \leq C(1+\lambda)^{-n / 2} \quad \forall \sigma \in S^{n}, \quad \forall \lambda \in \mathbb{R}^{+} ?
$$

(2) for any hypersurface S, how can we choose the mitigating factor to optimize the range of p 's for which we can prove L^{p}-boundedness of M_{*} using Theorem 3 ?

We address question (1) first. Since the role of the mitigating factor is to compensate for the lack of curvature of S, a natural choice for u is the Gaussian curvature κ of S.

We recall that, if S is locally the graph of a function $\phi: \mathbb{R}^{n} \mapsto \mathbb{R}$, its principal curvatures are, up to a nonvanishing factor, the eigenvalues of the Hessian matrix $H \phi$ of
ϕ. Thus the Gaussian curvature κ is, up to a nonvanishing factor, the determinant of $H \phi$. In [CM1] the authors were able to exhibit an example of a class of surfaces in \mathbb{R}^{3} for which $\left(\kappa^{1 / 2} d s\right)^{\wedge}$ has optimal decay. In [SS1] Sogge and Stein proved the following theorem.

THEOREM 4. Let S be a smooth hypersurface in \mathbb{R}^{n+1}. Then

$$
\left|\left(\kappa^{2 n} d \mu\right)^{\wedge}(\lambda \sigma)\right| \leq C(1+\lambda)^{-n / 2} \quad \forall \sigma \in S^{n}, \quad \forall \lambda \in \mathbb{R}^{+} .
$$

It follows from Theorems 3 and 4 that if the Gaussian curvature of S does not vanish of infinite order at any point of S, then M_{*} is L^{p}-bounded for all p larger than a critical index $p_{0}(S)$. The critical index depends on the order of vanishing of κ and can be arbitrarily large. For general hypersurfaces it is not yet clear whether $\kappa^{2 n}$ is the lowest power of the curvature that yields optimal decay of the Fourier transform of the surface carried measure. However for convex surfaces this result has been considerably improved [CDMM].

THEOREM 5. Let S be a compact convex hypersurface in \mathbb{R}^{n+1} of class C^{Q}, all of whose tangent lines have order of contact at most q, where $q<Q$, and let κ denote the Gaussian curvature of S. If u is a nonnegative C^{Q-1} function on S with the property that $0 \leq u \leq \kappa^{1 / 2}$, then

$$
\left|(u \mu)^{\wedge}(\lambda \sigma)\right| \leq C(1+\lambda)^{-n / 2} \quad \forall \sigma \in S^{n}, \quad \forall \lambda \in \mathbb{R}^{+}
$$

provided that $n \leq Q-2, n q \leq 2(Q+n-1)$ and $q \leq Q-2$.

The proof of this theorem requires obtaining uniform estimates of the decay of oscillatory integrals depending on parameters. Indeed, by taking a partition of unity on S, and
using suitable coordinate systems, $(u \mu)^{\wedge}(\lambda \sigma)$ can be written as the sum of two oscillatory integrals of the form

$$
I(\lambda)=\int_{\mathbb{R}^{n}} \exp \left(i \lambda \phi_{\sigma}(x)\right) v_{\sigma}(x) d x, \quad \forall \lambda \in \mathbb{R}^{+}
$$

plus a term which is negligible as $\lambda \rightarrow+\infty$. Here the phase function $\phi_{\sigma}: \mathbb{R}^{n} \rightarrow[0,+\infty)$ is a convex C^{Q}-function and has a single critical point in the support of the compactly supported amplitude function $v_{\sigma}: \mathbb{R}^{n} \mapsto[0,+\infty)$. As the direction σ varies in the unit sphere S^{n}, the functions ϕ_{σ} and v_{σ} vary continuously in C^{Q} and C^{Q-1} respectively, and one must obtain estimates of $I(\lambda)$ which are uniform in σ. The oscillatory integral I is controlled by the volume integral $V_{\sigma}-$

$$
V_{\sigma}(t)=\int_{\left\{x: \phi_{\sigma}(x) \leq t\right\}} v_{\sigma}(x) d x \quad \forall t \in \mathbb{R}^{+} .
$$

Indeed it is easy to see that

$$
I(\lambda)=\int_{\mathbb{R}} \exp (i \lambda t) d V_{\sigma}(t) \quad \forall \lambda \in \mathbb{R}^{+} .
$$

In terms of the hypersurface S this fact has a simple geometric interpretation. For fixed σ in S^{n} denote by $p(\sigma)$ the point of S whose inward unit normal is σ and by $C(\sigma, t)$ the cap at $p(\sigma)$ of height t, t in \mathbb{R}^{+},

$$
C(\sigma, t)=\{p \in S:(p-p(\sigma)) \cdot \sigma \leq t\}
$$

If u is a nonnegative measurable function on S denote by $V(u, \sigma, t)$ -

$$
V(u, \sigma, t)=\int_{C(\sigma, t)} u(p) d \mu(p)
$$

the u-volume of the cap. Then

$$
\left|(u \mu)^{\wedge}(\lambda \sigma)\right| \leq C\left\{V\left(u, \sigma, \lambda^{-1}\right)+V\left(u,-\sigma, \lambda^{-1}\right)\right\}+\text { higher order terms. }
$$

(see [CDMM] Theorem 5.1 for a more precise statement). When u is nonvanishing and $d \mu=d S$ this estimate was proved by Bruna, Nagel and Wainger [BNW]. The second key result in [CDMM] is the estimate

$$
\begin{equation*}
V\left(\kappa^{1 / 2}, \sigma, t\right) \leq C t^{n / 2} \quad \forall t \in \mathbb{R}^{+} \tag{2}
\end{equation*}
$$

By combining (1) and (2) one easily gets the desired estimate of $(u \mu)^{\wedge}$.
Examples show that Theorem 5 is sharp: there are smooth convex hypersurfaces for which no measure $\kappa^{a} d \mu$, with α less than $1 / 2$, has optimal Fourier transform decay [CM2]. In the nonconvex case it is still an open problem to determine the lowest α for which $(u \mu)^{\wedge}$ has optimal decay for all smooth function u such that $0 \leq u \leq \kappa^{\alpha}$. It is known that α must be at least 2 .

The last part of this note is a contribution toward a solution of question 2: can we choose a different mitigating factor so as to optimize the range of p 's for which we can prove L^{p}-boundedness of the maximal operator? Notice that in order to apply Theorem 3 we do not need full decay of $(u \mu)^{\wedge}$. Any decay of order better than $1 / 2$ will suffice. Littman's result (Theorem 2) suggests that we consider mitigating factors which are products of powers of principal curvatures of S.

THEOREM 6. Let S be a hypersurface satisfying the assumptions of Theorem 5. Let k_{1}, \ldots, k_{n} denote the principal curvatures of S, and let $\theta_{1}, \ldots, \theta_{n}$ be nonnegative numbers
whose sum θ is less than or equal to 1. If u is a C^{Q-1}-function on S with the property that

$$
0 \leq u \leq\left(k_{1}^{\theta_{1}} \cdots k_{n}^{\theta_{n}}\right)^{1 / 2}
$$

then

$$
\left|(u \mu)^{\wedge}(\lambda \sigma)\right| \leq C \lambda^{-[(1 / 2-1 / q) \theta+n / q]} \quad \forall \lambda \in \mathbb{R}^{+}, \quad \forall \sigma \in S^{n}
$$

provided that $\max (n, q) \leq Q-2$ and $\theta(q / 2-1) \leq Q-1$.

Proof. By Theorem 5.1 of [CDMM], it is sufficient to show that if

$$
V\left(\underline{k}^{\underline{\theta} / 2}, \sigma, t\right)=\int_{C(\sigma, t)}\left(k_{1}^{\theta_{1}} \cdots k_{n}^{\theta_{n}}\right)^{1 / 2} d \mu
$$

then, for some C independent of σ in S^{n},

$$
V\left(\underline{\underline{k}}^{\theta / 2}, \sigma, t\right) \leq C t^{(1 / 2-1 / q) \theta+n / q} \quad \forall t \in \mathbb{R}^{+}
$$

(The restrictions on Q imply that the contributions of the error terms in Theorem 5.1 of [CDMM] may be neglected). Let $\pi_{0}=1$, and let $\pi_{j}=k_{1} \cdots k_{j}$ be the product of the first j principal curvatures, $j=1, \ldots, n$.

We shall first estimate $V\left(\pi_{j}^{1 / 2}, \sigma, t\right)$. Let p be the point of S whose inward unit normal is σ. Choose a coordinate system in \mathbb{R}^{n+1} "based at p " by choosing an orthonormal frame $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{n}\right\}$ at p such that $\tau_{1}, \ldots, \tau_{n}$ span the tangent space at p and τ_{0} points in the direction of σ. As in [CDMM] we shall denote by ϕ_{σ} the C^{Q}-function defined in a neighborhood of the origin in \mathbb{R}^{n} whose graph is a subset of S. By rescaling, if necessary, we may assume that ϕ_{σ} is defined on $B(2)$, the ball of radius 2 in \mathbb{R}^{n}, for every σ in S^{n}. If $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a vector in \mathbb{R}^{n} we shall write $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$ where $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{j}\right)$ and
$\xi^{\prime \prime}=\left(\xi_{j+1}, \ldots, \xi_{n}\right)$. Define Ω_{1} and Ω_{2} by the formulae

$$
\begin{aligned}
\Omega_{1}\left(\sigma, t, \xi^{\prime \prime}\right) & =\left\{\xi^{\prime}:\left(\xi^{\prime}, \xi^{\prime \prime}\right) \in B(2), \phi_{\sigma}\left(\xi^{\prime}, \xi^{\prime \prime}\right) \leq t\right\} \quad \forall \xi^{\prime \prime} \in \mathbb{R}^{n-j}, \\
\Omega_{2}(\sigma, t) & =\left\{\xi^{\prime \prime}: \Omega_{1}\left(\sigma, t, \xi^{\prime \prime}\right) \neq \emptyset\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
V\left(\pi_{j}^{1 / 2}, \sigma, t\right) & =\int_{C(\sigma, t)}\left(k_{1} \cdots k_{j}\right)^{1 / 2} d \mu \\
& =\int_{\left\{\xi \in B(2), \phi_{\sigma}(\xi) \leq t\right\}}\left(\operatorname{det}^{\prime} H \phi_{\sigma}(\xi)\right)^{1 / 2} w_{\sigma}(\xi) d \xi
\end{aligned}
$$

where $\operatorname{det}^{\prime} H \phi_{\sigma}$ is the determinant of the first j rows and columns of the Hessian matrix $H \phi_{\sigma}$ and w_{σ} is of class C^{Q-1}, uniformly with respect to σ. Thus

$$
V\left(\pi_{j}^{1 / 2}, \sigma, t\right)=\int_{\Omega_{2}(\sigma, t)} \int_{\Omega_{1}\left(\sigma, t, \xi^{\prime \prime}\right)}\left(\operatorname{det}^{\prime} H \phi_{\sigma}\left(\xi^{\prime}, \xi^{\prime \prime}\right)\right)^{1 / 2} w_{\sigma}\left(\xi^{\prime}, \xi^{\prime \prime}\right) d \xi^{\prime} d \xi^{\prime \prime}
$$

For every $\xi^{\prime \prime}$ in $\Omega_{2}(\sigma, t)$, let

$$
\psi_{\sigma}\left(\xi^{\prime}, \xi^{\prime \prime}\right)=\phi_{\sigma}\left(\xi^{\prime}, \xi^{\prime \prime}\right)-\min \left\{\phi_{\sigma}\left(\eta, \xi^{\prime \prime}\right): \eta \in \Omega_{1}\left(\sigma, t, \xi^{\prime \prime}\right)\right\} .
$$

Then by Proposition 4.4 of [CDMM],

$$
\begin{align*}
& \int_{\Omega_{1}\left(\sigma, t, \xi^{\prime \prime}\right)}\left(\operatorname{det}^{\prime} H \phi_{\sigma}\left(\xi^{\prime}, \xi^{\prime \prime}\right)\right)^{1 / 2} w_{\sigma}\left(\xi^{\prime}, \xi^{\prime \prime}\right) d \xi^{\prime} \tag{3}\\
\leq & C_{1}\left\|w_{\sigma}\right\|_{\infty} \sup \left\{\left|\psi_{\sigma}\left(\eta, \xi^{\prime \prime}\right)\right|^{j / 2}: \eta \in \Omega_{1}\left(\sigma, t, \xi^{\prime \prime}\right)\right\} \\
\leq & C_{2} t^{j / 2}
\end{align*}
$$

On the other hand, since the tangent lines to S have order of contact at most q, there exist a positive constant m, independent of σ in S^{n}, such that $\phi_{\sigma}(\xi) \geq m|\xi|^{q}$, for all ξ in $B(2)$. Thus $\left\{\xi: \xi \in B(2), \phi_{\sigma}(\xi) \leq t\right\} \subseteq B\left((t / m)^{1 / q}\right)$ and therefore

$$
\begin{equation*}
\int_{\Omega_{2}(\sigma, t)} d \xi^{\prime \prime} \leq \int_{\left\{\xi^{\prime \prime} \in B(2):\left|\xi^{\prime \prime}\right| \leq(t / m)^{1 / q}\right\}} d \xi^{\prime \prime} \leq C_{3} t^{(n-j) / q} \tag{4}
\end{equation*}
$$

Combining estimates (3) and (4) we get

$$
V\left(\pi_{j}^{1 / 2}, \sigma, t\right) \leq C_{4} t^{(1 / 2-1 / q) j+n / q} \quad \forall j \in\{0, \ldots, n\} .
$$

Next we estimate $V\left(\underline{k}^{\underline{\theta} / 2}, \sigma, t\right)$. By permuting the ordering of the curvatures, if necessary, we may assume that $\theta_{1} \geq \theta_{2} \geq \cdots \geq \theta_{n} \geq 0$. Let $\alpha_{n}=\theta_{n}, \alpha_{j}=\theta_{j}-\theta_{j+1}$, $j=1, \ldots, n-1$ and $\alpha_{0}=1-\sum_{j=1}^{n} \alpha_{j}$. Then $k_{1}^{\theta_{1}} \cdots k_{n}^{\theta_{n}}=\pi_{1}^{\alpha_{1}} \cdots \pi_{n}^{\alpha_{n}}$. By simple application of Hölder's inequality to the conjugate exponents $\alpha_{0}^{-1}, \alpha_{1}^{-1}, \ldots, \alpha_{n}^{-1}$ we get

$$
\begin{aligned}
\int_{C(\sigma, t)} \underline{k}^{\underline{\theta} / 2} d \mu & \leq \prod_{j=0}^{n}\left(\int_{C(\sigma, t)} \pi_{j}^{1 / 2} d \mu\right)^{\alpha_{j}} \\
& \leq C_{5} \prod_{j=0}^{n} t^{[(1 / 2-1 / q) j+n / q] \alpha_{j}} \\
& =C_{5} t^{(1 / 2-1 / q) \theta+n / q}
\end{aligned}
$$

since $\sum_{j=0}^{n} \alpha_{j}=1$ and $\sum_{j=1}^{n} j \alpha_{j}=\sum_{j=1}^{n} \theta_{j}=\theta$.

References

[B] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. d'Anal. Math. 47 (1986), 69-85.
[BNW] J. Bruna, A. Nagel and S. Wainger, Convex hypersurfaces and Fourier transforms, Ann. of Math. 127 (1988), 333-365.
[C] M. Cowling, On Littlewood-Paley-Stein theory, Rend. Circ. Mat. Palermo Suppl. 1 (1981), 21-55.
[CDMM] M. Cowling, S. Disney, G. Mauceri and D. Müller, Damping oscillatory integrals, Invent. Math., to appear.
[CM1] M. Cowling and G. Mauceri, Inequalities for some maximal functions II, Trans. Amer. Math. Soc. 296 (1986), 341-365.
[CM2] M. Cowling and G. Mauceri, Oscillatory integrals and Fourier transforms of surface carried measures, Trans. Amer. Math. Soc. 304 (1987), 53-68.
[G] A. Greenleaf, Principal curvature and harmonic analysis, Indiana Math. J. 30 (1982), 519-537.
[Hz] C.S. Herz, Fourier transforms related to convex sets, Ann. of Math. 75 (1962), 81-92.
[H1] E. Hlawka, Über Integrale auf konvexen Körper. I, Monatsh. Math. 54 (1950), 1-36.
[L] W. Littman, Fourier transforms of surface carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770.
[R] J.L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), 395-404.
[SS1] C.D. Sogge and E.M. Stein, Averages of functions over hypersurfaces in \mathbb{R}^{n}, Invent. Math. 82 (1985), 543-556.
[SS2] C.D. Sogge and E.M. Stein, Averages over hypersurfaces II, Invent. Math. 86 (1986), 233-242.
[S1] E.M. Stein, Maximal functions: spherical averages, Proc. Nat. Acad. Sci. USA 73 (1976), 2174-2175.
[SW] E.M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.

School of Mathematics
University of New South Wales
P.O. Box 1,

Kensington, N.S.W. 2033
Australia

Dipartimento di Matematica, Università di Genova, Via L.B. Alberti 4, I-16132 Genova, Italy

AMS Subject Classification: 42B25

