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In this talk I would like to consider hypersurfaces tE[O,Y) which move by mean 
curvature in a Riemannian manifold N"+l. The hypersurfaces are described by a one
parameter family 

of smooth immersions of ann- dimensional manifold M'"' without boundary, with images 
= Xt(Mn), satisfying 

Here t) and 

1 

a ' ) ·-xrp.t = dt \ ' 

t) 
hypersurface Mt at x(p, t). 

t) t) C ~.,rn f E (0 "'') p C: 1V~ 1 1 -'- • 

mean curvature and a choice of unit normal of the 

1viean curvature flow arises naturally as the descent flow for the area functional 
which explains its great significance due to its possible applications to minimal surface 

in Riernax1nian manifolds. Indeed, fro1n one easily derives the evolution 
equation for the surface element of Mt, 

see [Hl], which immediately yields 

(3) 

d 2 
-Jlt = -H llt 
dt 

for all t 2:: 0 where Hn denotes n- dimensional Hausdorff-measure. 

Without any special assumptions on M 0 , such as convexity (see [Hl], [H2]), a solution 
of ( 1) will in general develop singularities in finite time before it 'disappears', as for 
example Grayson's axially symmetric dumbbell surface ([Gr]). 

In [B], K Brakke has studied the regularity behaviour of n - dimensional varifolds 
moving by mean curvature in Rn+k, k 2:: 1. For smooth solutions of (1) with T < oo, 
his result implies that if there exists a unit density rectifiable varifold My such that 
lvft --+ My as t --+ T in the measure-theoretic sense in BP(x0 ) for some x 0 E Rn+l 
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then Afr is a smooth hypersurface in a neighbourhood of every point x E 
where the singular set Sr satisfies 1tn(ST) = 0, 

) "' Sr 

For applications of mean curvature flow it is very important to obtain a regularity 
theorem which does not assume unit density for the first singular surface as one cannot 
a priori rule out singularity formation based on the local n1erging of tvvo flat 
pieces of surface which are very close to each other and are connected by many very 
small catenoidal necks the number of which increases up to the first singular time. 
This is to problems arising in the regularity theory for stationary varifolds 
where double sheeted examples of bounded mean curvature surfaces with single density 
catenoidal necks give reason for concern. The catenoidal necks connect a dense set of 
holes in each sheet of surface but the double density set where the two sheets touch has 
positive fi2 ,measu:re, see for example [B, 6.1]. 

Moreover, one should try to improve the estimate on the dimension of the singular set. 
The best result one can expect here is that the singular set has locally finite '7-ln-l_ 
dimensional measure in view of the examples of a cylinder which contracts to a line and 
a symmetric thin torus which co:o.tracts to a circle in finite time. 

In [AAG], Altschuler, Angenent and Giga proved that the first set (at time 
of hypersurfaces of rotation about an axis in consists of isolated 
of course, MT has zero area as in the case of the showed, in 
fact, that these isolated singularities only form at a finite number of times the 
hypersurface 'disappears', This result suggests the following question: 

connected and at the first 
Does this imply that form? 

In [EH], it was proved that local control on the norm of the second fundamental form 
IAJ2 in the form 

sup sup jAJ2 ::; Co 
[T-p2, T) M,nB"(x 0 ) 

for some p > 0 at some point x 0 E R"+1 implies 

sup sup JVm Aj 2 ::; 

~) 2 , T) M,nB~(x 0 ) 

all m 2:: 0 and hence can be extended the time T in a "''--··'"'·""''' 
hood of x 0 . This estimate carries over to Riemannian manifolds almost immediately, 
see [E2]. 

In and [Anl]-[An4], Choi and Schoen and Anderson proved an t:-regularity themem 
involving a curvature integral for minimal surfaces in 3-manifolds which they then used 
to prove compactness theorems for minimal surfaces of fixed genus. 

The main result presented in this talk is a parabolic analogue of their theorem. It gives 
a local estimate for IA.J2 , assuming that JM, IAI2 is sufficiently small locally in space 



81 

and time. In particular, it implies the existence of a constant Eo > 0 such that for every 
point x in the singular set Sr and small p > 0, there exists a sequence of 
times t k -+ T such that 

lAY> E0 • 
nB,(x) 

Let me outline how this result could possibly lead to an alternative proof of partial 
regularity in the case n = 2. 

W!e il.rst use the evolution equation 
obtain an estim.EJ.e of the form 

for the area and the Gauss-Bonnet formula to 

for compact surfaces "Ht and T <:: oo Virhere c depends on T, the genus of 
M 2 and a bound on the Ricci curvature of N 3 . By a. standard <·n•ifp,-,n,,. argument this 
implies that the sets 

Now note that 

fortE 

E N 3 , lim sup p- 2 

p--+0 
>a} 

"-' 0 for any a > 0. 

,T), 

dist (x, M1 ):::; 2ff~t 

com.parison argurnent in [B, Th.3.'7]. This implies 
that 

IAI2 > 0 
nBp(x 0 ) 

The main, as yet incomplete, step in the argument is to show Sr c Ua>O s;;. which 
would then imply H 2 (Sr) = 0 in view of the covering argument mentioned above. To 
eEt.ablish this, one has to prove that nBp(x) JAI 2 is bounded below a constant 

7 = 7( Eo, x) > 0 on a set of times of measure at least (3p2 where fJ = fJ( Eo, x) > 0, This 
in tum requires good control of the change of JM,nB,(x) IA! 2 during times when this 
quantity is smalL 

A steD in tttis direction is made in [El, Corollary 2.6], where it is shown that if 
IAJ 2 is less than or equal to Eo on a given time interval then this quantity 

taken over any smaller ball does not change much during this time. The requirement 
of having to go to a smaller ball in this estimate seems to be the remaining technical 
difficulty. 
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Let me..now state the majn rer;mlt ... The prgpf givep. here is based on a modification of a 
sealing, technique used in ·[CS] and·[St]. For an alternative proof we also refer to [E2],. 

Theorem. Let (Mt)tE[O,T) be a solution of (1). Then there exist constants Eo > 0 
and Co > 0 depending only on the geometry of N 3 such that for any x 0 E N 3 and 
0 < p < min{Eo, VT} with SUP[T-p2, T) rf2(Mt n Bp(xo)) ~Eo the inequality 

implies the estimate 
o-2 sup sup IAI2 ~ Co 

[T-(p-u)2,T) M,nBp-u(xo) 

for all o- E [0, p]. 

The smoothness of Mt up to time T in a neighbourhood of x 0 is then an immediate 
consequence of the evolution equation for the derivatives of A (Lemma 7.2, [H2]) and a 
straightforward generalization of the interior estimates in [EH, Theorem 3.7], see [E2] 
for more details. 

Corollary. Under the assumptions of the theorem the estimate 

sup sup IV'm Al 2 ~ Cm 
[T-( i) 2 , T) M,nBf(xo) 

· holds for any integer m 2::: 0 where Cm depends only on m, p and the geometry of N 3 • 

Remark. (i) The area condition of the theorem enters due to the presence of the co
variant derivatives of the curvature tensor of N 3 in the evolution equation for IAI2 as 
well as due to an application of a version of Moser's mean value inequality for subso
lutions of parabolic operators (see the proposition below) which relies heavily on the 
Sobolev inequality ([HS], [MS]) on surfaces in Riemannian manifolds. In particular, no 
area condition is required in the case where N 3 is complete, simply connected, locally 
symmetric and has nonpositive sectional curvatures. 

If M 2 is compact, the area condition is automatically satisfied near every x 0 E N 3 for 
sufficiently small p, possibly depending on x 0 , in view of (3). To obtain independence 
of x0 in the choice of p one needs some local control on the area of Mt in the form 
obtained in [El] in the case of R 3 • 

(ii) In the case of minimal surfaces (which are stationary solutions of (1)), the theorem 
reduces to an earlier result of Choi and Schoen ([CS]) and M. Anderson ([An4]). Note 
furthermore that for a compact minimal surface M in N 3 , the monotonicity formula 
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implies 1i2(lvf n Bp(x0 )) :::; cp2 where c depends on the curvatures of N 3 . The area 
condition therefore reduces to a smallness assumption for p in this case. 

l<or the proof of the theorem we need the following straightforward generalization of 
Moser's mean value inequality to mean curvature flow which we state for general di
mensions. To establish this, one essentially follows Moser's proof in [M] with cut-off 
functions supported in Bp( x0 ) but uses the Sobolev inequality of [HS] (which requires 
the area condition stated below), Young's inequality and (2) to control the term involv
ing IHI, see [El]. 

Proposition. Let Nn+l be a Riemannian manifold with sectional curvatures bounded 
from above by'"+ and injectivity radius denoted by injN. Let (Mt)tE[O,T) be a solution 
of (1) in Nn+l satisfying 

2 

·"'+ (.w;;- 1 sup Hn(lvft n Bp(x0 ))) ;;-:::; (1- a)2 fn, 
[T-p 2 ,T) 

~ 

sup 1f.n(Mt n Bp(xo))) n :::; (1- a) 1 /nKo~ 1 /2 sin(~ t,l_/.2 injN), 
[T-p2,T) . 2 

< 1 (1 )1/n . • _;; -a mJN, 
'"' 

in some ball Bp(x 0 ) wl1ere a E (0, 1) is arbitrary. Let f ~ 0 satis(y 

in [T- p2 , T) x B p( x 0 ). Then the mean value inequality 

1T 1 sup sup f:::; c(n,a)p-n-2 f 
'T-e!_ T) M,nB.e.(x 0 ) T-p2 M,nBp(x 0 ) 
l 4 j 2 

bolds. 

if i'o+ ~ 0 

if i'o+ :::; 0 

For the proof of the theorem we also recall the following consequence of the evolution 
equation for the curvature of Mt given in [H2]: 

Lemma. The second fundamental form A = (h;j) of Mt satisfies the inequality 

where x: 0 and x:1 denote bounds on \RiemN\ and \'VNRiemN\ respectively. 
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Proof of Theorem .. Since. Mt is smooth·i:J! [0,-T) and Eo and C0 are independent ofT. 
we may assume·without loss of generality that 

..\2 = max (IJ2 sup sup !A\2 ) < oo. 
O"E[O, P] [T-(p-0') 2 , T] M,nBp-u(xo) 

Otherwise we replace T by T- 6 for 6 E (0, T) and then let 6 --t 0. 

Let G-o E (0, p] such that 

IJ~ sup sup !A\ 2 = ..\2 

[T-(p-0'0 ) 2 ,T] M,nBp-u 0 (xo) 

and choose ToE [T- (p- !Jo)\ T] and Yo E MTo n Bp-0'0 (xo) for which 

IJ~ !A!2(yo,To) = ..\2 . 

Note, in particular, that 

and hence 

(4) 

If the estimate IJ6 IAI 2 (y0 , To) ::; 4 holds, the statement of the theorem is true. We 
therefore have to show that the reverse inequality 

(5) 

leads to a contradiction for sufficiently small Eo. 

To this end we rescale the metric g on N 3 by setting g = ..\~ g for .A 0 = !AI (y0 , T0 ). The 
family of surfaces 

is a solution of (1) with respect tog fortE [->.~To, .A~(T ::-To)]. 

From inequalities (4) and (5), we infer 

(6) sup sup !A\2 ::; 4 
[-l,O] M,nBt(Yo) 

where quantities with respect to g are indicated by a tilde. We also note that 

(7) 
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The evolution inequality for JA.J 2 implies 

( d ~)' --
\ - - .6. IAI 2 < c( 

d' ' - \ 
"" 

+K:o + 

In view of (6), the function u = J.AJ 2 + therefore satisfies the inequality 

(8) / d ""\ 
~dt- /).) tl :s; C11 

in the ba.ll fort E [-1, OJ where c depends on the curvatures of with respect 
to g as above. The area of the theorem in vimv of that for small 
enough Eo depending on ;;.0 and injN the area conditions of the proposition are satisfied 
for Mt in [-1, 0] X B1 (y0 ). We can then apply the mean value inequality to f = e-ctu 
to infer 

where c on and 

In particular, we conclude from that 

Rescaling inequality and using again implies the estimate 

where c depends exponentially on (;;.0 + ;;.~/ 3 )p2 • In view of the assumptions of the 
theorem this yields a contradiction for sufficiently small Eo. Note that Eo depends only 
on ~~: 0 , ;;. 1 and injN. 
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